JP5994854B2 - 焼結磁石の製造方法 - Google Patents

焼結磁石の製造方法 Download PDF

Info

Publication number
JP5994854B2
JP5994854B2 JP2014524727A JP2014524727A JP5994854B2 JP 5994854 B2 JP5994854 B2 JP 5994854B2 JP 2014524727 A JP2014524727 A JP 2014524727A JP 2014524727 A JP2014524727 A JP 2014524727A JP 5994854 B2 JP5994854 B2 JP 5994854B2
Authority
JP
Japan
Prior art keywords
sintered magnet
temperature
heat treatment
sintering
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014524727A
Other languages
English (en)
Other versions
JPWO2014010418A1 (ja
Inventor
道大 迫
道大 迫
真一郎 藤川
真一郎 藤川
明彦 池田
明彦 池田
宏樹 松苗
宏樹 松苗
崇 古屋
崇 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Publication of JPWO2014010418A1 publication Critical patent/JPWO2014010418A1/ja
Application granted granted Critical
Publication of JP5994854B2 publication Critical patent/JP5994854B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • B22F3/164Partial deformation or calibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F3/26Impregnating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Hard Magnetic Materials (AREA)

Description

本発明は、高性能モーター等に使用される焼結磁石の製造方法に関する。
ハイブリッド自動車のモーター等に使用される永久磁石にはNd−Fe−B系の焼結磁石が多く用いられ、優れた磁気特性を有することから今後も需要が増大すると考えられている。
従来のNd−Fe−B系焼結磁石の製造方法は、Nd、Fe、B等の原料を真空中もしくはアルゴンガス雰囲気中で溶解し、ジョークラッシャー及びジェットミル等を用いて溶解した原料を粗粉砕、微粉砕する。そして粉砕した原料を磁界中で所定の形状に成形して焼結及び熱処理し、スライサーや研削盤を用いて切断加工や研削加工を行い、表面処理、検査を行った後に着磁させている。
特許文献1ではNd−Fe−B系焼結磁石にCo等の遷移金属を添加した場合に発生し易い強磁性化合物の析出を抑制し、磁石特性の一つである保持力を向上させるために、急冷合金の粉末を1000℃以上1100以下の温度で焼結して焼結体を形成する。そして、焼結体を冷却して400℃を下回る温度に低下させ、再加熱することにより400℃以上900℃以下の温度に昇温し、所定の速度で冷却し、熱処理を行い、室温にまで達した後、切削加工等を行っている。
特許第4329318号公報
特許文献1では、上記のように加熱又は冷却工程を行うことにより、焼結体の粒界相の構成を非晶質層部分に囲まれた領域に非磁性結晶部分が存在する構造に変化させ、磁石の保持力を向上させることができる。しかし、一旦400℃以下まで冷却した後に再び900℃付近まで加熱すれば、再加熱しない場合に比べ余計にエネルギーを消費し、その分コストアップの要因となってしまう。
また、焼結体の温度を著しく変化させることによって、加熱冷却を行う装置の構造物への熱的負担が大きくなり、装置のライフサイクルを短くさせ、設備投資費用を増加させる要因にもなる。さらに特許文献1のように焼結工程を経た後に切削加工を実施する方法では、焼結磁石に含まれるNdやDy等のいわゆるレアアースを含む金属が一部切削されて製品に使用されないことになり、材料歩留まりが悪い、という問題がある。
本発明は、上述した課題を解決するためになされたものであり、焼結工程から時効熱処理工程時に使用するエネルギーの効率化を図り、材料歩留まりを向上させた焼結磁石の製造方法を提供することを目的とする。
上記目的を達成する本発明に係る焼結磁石の製造方法では、まず、Ndを主成分とする希土類元素Rを含むR−Fe−B系焼結磁石を構成する磁石粉末をプレス成形し、磁石粉末が圧縮された圧粉体を成形する。次に焼結温度に加熱された加熱雰囲気下において圧粉体を焼結し、焼結磁石を形成する。そして焼結温度を超えない温度に加熱された状況下で加圧成形により焼結磁石の寸法を矯正し、寸法矯正の際に生成された加熱雰囲気を利用して焼結磁石の組織を調整する時効熱処理を行なっている。圧粉体の焼結と焼結磁石の寸法矯正との間には焼結磁石に重希土類元素の粒界拡散を行い、粒界拡散の際の温度は圧粉体の焼結の際の温度よりも低く、かつ、焼結磁石の寸法矯正の際の温度よりも高い。
本発明の実施形態1に係る焼結磁石の製造方法を示すフローチャートである。 図2(A)〜(D)は、同焼結磁石の製造方法の説明に供する概略図である。 同焼結磁石の製造方法を用いて焼結工程、寸法矯正工程、時効熱処理工程を行った場合の温度変化を示すグラフである。 同焼結磁石の製造方法における焼結工程、寸法矯正工程、時効熱処理工程に使用する装置を示す断面図である。 同装置の寸法矯正部における格納容器内を示す平面図である。 図6(A)〜(F)は、本発明の実施形態2に係る焼結磁石の製造方法の説明に供する概略図である。 同焼結磁石の製造方法における焼結工程、寸法矯正工程、時効熱処理工程を行った場合の温度変化を示すグラフである。 同焼結磁石の製造方法における焼結工程、寸法矯正工程、時効熱処理工程に使用する装置を示す断面図である。 本発明の実施形態3に係る焼結磁石の製造方法における焼結工程、寸法矯正工程、時効熱処理工程を行った場合の温度変化を示すグラフである。 同焼結磁石の製造方法における焼結工程、寸法矯正工程、時効熱処理工程に使用する装置を示す断面図である。 本発明の実施形態4に係る焼結磁石の製造方法における焼結工程、寸法矯正工程、時効熱処理工程を行った場合の温度変化を示すグラフである。 同焼結磁石の製造方法における焼結工程、寸法矯正工程、時効熱処理工程に使用する装置を示す断面図である。 本発明の実施形態2、4の変形例を示す概略図である。 本発明の実施形態5に係る焼結磁石の製造方法を行った場合の温度変化を示すグラフである。 本発明の実施形態5の変形例に係る焼結磁石の製造方法を行った場合の温度変化を示すグラフである。
以下、添付した図面を参照しながら、本発明の実施の形態を説明する。なお、以下の記載は特許請求の範囲に記載される技術的範囲や用語の意義を限定するものではない。また、図面の寸法比率は説明の都合上誇張されており、実際の比率とは異なる場合がある。
(実施形態1)
図1は本発明の実施形態1に係る焼結磁石の製造方法を示すフローチャートである。本実施形態においてR−Fe−B系の焼結磁石は、原料となる合金の作製(ステップS1)、粗粉砕(ステップS2)、微粉砕(ステップS3)、磁場中成形(ステップS4)、焼結(ステップS5)、寸法矯正(ステップS6)、時効熱処理(ステップS7)、表面処理(ステップS8)、検査(ステップS9)、及び着磁(ステップS10)の工程を経ることによって製造される。
原料合金の作製は、真空又は不活性ガス雰囲気中においてストリップキャスティング法又はその他の溶解法によって行われる(ステップS1)。本実施形態に係る焼結磁石はNd2Fe14Bを主相とし、この中のNdに対してDyやTb、Pr等を適宜添加する。Ndを主成分として上記希土類金属を添加することによって焼結磁石の保持力を向上させることができる。
作製された原料合金はジョークラッシャー又はブラウンミル等を用いて粒径数百μm程度になるまで粗粉砕される(ステップS2)。粗粉砕された合金はジェットミル等によって粒径3〜5μm程度にまで微粉砕される(ステップS3)。微粉砕工程においては、特に粒径を3〜4μmにすると保磁力を高くすることができるため好ましい。
次に微粉砕された磁性材料を磁場中で成形し、圧粉体を得る(ステップS4)。圧粉体は平行磁界成形法や直交磁界成形法などの種々の方法を用いて行なうことができる。なお、本実施形態において原料合金の作製から磁場中成形までの工程を包括して圧粉体成形と称する。
磁場中で成形された圧粉体は真空又は中無酸化状態で焼結され、R−Fe−B系焼結磁石が得られる(ステップS5)。焼結温度は圧粉体の材料組成や粉砕方法、粒径によって前後するが、900℃〜1100℃程度で行われる。
図2(A)〜(D)は本発明の実施形態1に係る焼結磁石の製造方法の説明に供する概略図、図3は同焼結磁石の製造方法における焼結工程、寸法矯正工程、時効熱処理工程を行った場合の温度変化を示すグラフである。また、図4は同焼結磁石の製造方法における焼結工程、寸法矯正工程、時効熱処理工程に使用する装置を示す断面図、図5は同装置の寸法矯正部における格納容器内を示す平面図である。
寸法矯正工程では、概して無酸化状態において図2(A)、図2(B)、図4に示す寸法矯正部200を構成する上金型213と下金型214によってワークWにプレス成形を行い、焼結磁石の寸法矯正を行う(ステップS6)。詳細については後述する。
寸法矯正後には無酸化状態で時効熱処理を行い、焼結磁石の保磁力を調整する(ステップS7)。焼結磁石の寸法矯正は時効熱処理よりも高い温度にて実施される場合があるため、時効熱処理の前に焼結磁石の寸法矯正を実施する。熱処理を行う温度は磁石の組織を変えるおそれがあり、磁石特性に影響を与える可能性があるためである。
時効熱処理後には焼結磁石の錆びや腐食を防止するためにNiめっきなどによって表面処理を行う(ステップS8)。表面処理が終わったら、磁気特性や外観、及び寸法などの検査を行い(ステップS9)、最後にパルス磁界や静的磁界を印加して着磁することによって焼結磁石が製造される(ステップS10)。
次に本実施形態に係る焼結磁石の製造方法の中でも焼結工程、寸法矯正工程、及び時効熱処理工程を具現化した装置について詳述する。
実施形態1に係る焼結磁石の製造装置は、図4に示すように焼結工程を行う焼結炉100と、寸法矯正工程、時効熱処理工程、及び冷却工程を行う寸法矯正部200と、を有している。焼結炉100は、磁場中成形された圧粉体を焼結するために、外部と隔離された空間を形成するための隔壁101と、焼結炉内を加熱するためのヒーター(不図示)と、を有する。また、焼結炉100は、入り口及び出口において圧粉体を焼結炉内に出入りさせ、無酸化状態とするために圧粉体搬入後に当該出入り口を締め切るためのシャッター機構102を有する。
さらに、焼結炉100は、ヒーターにより生成された加熱雰囲気を焼結炉100に導入するための導入ダクト103と、焼結時に発生するガスを焼結炉内から排出する排気ダクト104と、焼結後の磁石を冷却するための冷却室107と、を有する。
隔壁101は、焼結炉内が1100℃程度まで加熱可能となるようにセラミックス等の十分耐熱性を有する材料から構成される。ヒーターは、均一な加熱を行う点で金属ヒーターや、1000℃以上の高温にも耐えうる観点からモリブデンヒーターを挙げることができるが、これに限定されない。
導入ダクト103は、ヒーターにより生成された加熱雰囲気を焼結炉内に導き、これにより焼結炉内が所定の温度に調整される。導入ダクト103の大きさ、形状、配置等により焼結炉内の温度の調整範囲が左右される。排気ダクト104は、コンプレッサー等の負圧発生手段と接続され、焼結時に焼結磁石から発生するガス等を焼結炉内から排出し、室内を無酸化状態とするために設置される。排気ダクトの設置により焼結時に発生するガスを排出して室内を無酸化状態に保持し、磁石特性の低下を防止することができる。
シャッター機構102は、図3における焼結炉100の出入り口において上下方向に移動するシャッター105と、不図示の駆動機構によってシャッター105が上下移動する際のガイドとなるガイドレール106と、を有する。シャッター105がガイドレール106に沿って移動することによって焼結炉100の出入り口の開閉が行われる。
冷却室107は、例えば水冷ジャケットを有することによって加熱された焼結磁石を室内程度にまで冷却する。
焼結磁石の寸法矯正を行う寸法矯正部200は、相対的に近接離間可能な上スライド201およびボルスタ202と、寸法矯正部200に取付け及び取外しが可能なダイセット210とを有する。ダイセット210は、上ダイ211と、上ダイ211に対向して配置される下ダイ212と、上ダイ211と下ダイ212の位置合わせを行なう調節機構240と、を有する。また、ダイセット210は、ワークW(寸法矯正加工の対象となる焼結磁石)の寸法を矯正する矯正金型が設けられ下ダイ211に載置される格納容器220を有する。
格納容器220は、焼結磁石を加熱するヒーター221と、格納容器220の室内を無酸化状態に形成するための配管ダクト223と、寸法矯正後の焼結磁石を冷却する冷却プレート224と、冷却プレート224に冷却水などを循環させる冷却パイプ225と、を有する。
図4において、上スライド201は、油圧によってボルスタ202に対して近接離間移動する。上スライド201は、ダイセット210の上ダイ211を着脱自在に固定する連結ピン217を有し、ボルスタ202は、ダイセット210の下ダイ212を着脱自在に固定する連結ピン217を有する。ボルスタ202には、寸法を矯正した後の焼結磁石を矯正金型から取り出すノックアウトバー203が昇降自在に設けられている。
矯正金型は上金型213、下金型214、外周金型215から構成される。ノックアウトバー203及び下金型214によってワークWを取り出すノックアウト機構が構成される。図4における符合204は、ノックアウトバー203を昇降駆動する油圧シリンダを示している。
ダイセット210は、上ダイ211を連結ピン217によって上スライド201に固定し、下ダイ212を連結ピン217によってボルスタ202に固定することによって、寸法矯正部200に固定される。上ダイ211は、上スライド201の動作に連動する。
調節機構240は、下ダイ212に設けられたガイディングロッド241と、上ダイ211に設けられたガイディングロッド241をスライド移動自在に保持するガイディングシリンダ242と、を有する。ガイディングロッド241がガイディングシリンダ内を摺動することによって、上ダイ211と下ダイ212との位置合わせが行なわれる。本実施形態において、上ダイ211が下ダイ212から最も離間した場合でもガイディングロッド241はガイディングシリンダ242から外れることはなく、これによって位置精度が確保される。
また、上ダイ211及び下ダイ212は連結ピン217によって上スライド201及びボルスタ202に固定される。そのため、連結ピン217の取外しのみによってダイセット210の寸法矯正部200への取付け及び取外しを容易に行うことができる。
格納容器220は、加工対象となる焼結磁石を無酸化状態において加工するために下ダイ212に載置されている。配管ダクト223は、室内を無酸化状態に形成するために真空ポンプ(不図示)に接続されている。配管経路の途中にはバルブ(不図示)が設けられ、格納容器内を真空にした後にバルブによって経路を切り替えることによって窒素ガス等の不活性ガスを格納容器内に充填することができる。室内の酸素濃度はNd−Fe−Bの焼結磁石において10ppm以下、NdにDyやTb、Pr等の金属を添加した場合は1ppm以下とすることが望ましい。Ndに比べてDyやTb、Prの方が酸化されやすいためである。
格納容器内部には、真空状態を保持した状態で上ダイ211及び下ダイ212に取付けられた矯正金型が図4における上下方向から格納容器内部に挿通している。下ダイ212からは下金型214が固定治具216によって固定されて設置され、上ダイ211には上金型213が下金型214と同様に固定治具216によって固定されて設置されている。また、図4において下金型214の上には、加工対象となる焼結磁石を包囲する外周金型215が下金型214先端の鍔形状と係合することによって下金型214に取り付けられる。
また、格納容器220には焼結炉100より搬送された焼結磁石を下金型上に載置し、寸法矯正後に次の焼結磁石との取替えを行う磁石投入取り外し機構が設けられている。
本実施形態において磁石投入取り外し機構は不図示のロボットアームによって構成され、焼結炉100から取り出された焼結磁石の速やかな投入及び取外しが行われる。
ヒーター221は、上金型213、下金型214、及び外周金型215の付近に設けられ、上金型213が上下にスライド移動できるように中空状に形成されている。ヒーター221の構成は特に限定されないが、電熱ヒーターや高周波誘導ヒーター等を挙げることができる。
また、冷却プレート224及び冷却パイプ225は、図5に示すように格納容器内部において熱源であるヒーター221から離間して配置される。冷却プレート224の内部にはウォータージャケットが形成されている。冷却パイプ225から導かれた水等の冷媒が冷却プレート224に吹き付けられることによって、冷却プレート224に載置された焼結磁石を強制冷却する。従来は加熱後のワークを自然に冷却させていたが、冷却プレート224、冷却パイプ225を使用することによって冷却時間を短縮し、加工時間を短縮することができる。
次に実施形態1に係る焼結磁石の製造方法における焼結工程、寸法矯正工程、及び時効熱処理工程について説明する。まず、焼結炉100のシャッター105を上昇させて圧粉体であるワークWを搬入する。そして、ワークWが載置された搬送路の移動と同期させながらワークWをヒーターによって無酸化状態で図3に示すように900℃〜1100℃に加熱して焼結させ、焼結磁石に形成する。焼結炉内を通過したワークWは出口側のシャッター105の上昇により焼結炉100から取り出され、冷却室107にて室温まで冷却される。
室温まで冷却されたワークWは、寸法矯正部200における格納容器内に搬入され、ロボットアームによって金型214に載置し、外周金型215を設置してワークWの水平方向における位置を保持する。外周金型215は焼結磁石の変形を考慮して焼結磁石を加圧していないが、側面の寸法矯正を行う場合には加圧するように構成してもよい。
次にヒーター221を用いて金型213、214、215及びワークWを約620℃〜1000℃となるように雰囲気加熱又は高周波加熱を行う。なお、620℃〜1000℃の範囲の中であっても、焼結磁石自身の熱変形や酸化の促進を防止することを考慮して800℃以下で実施することがより好ましい。ワークWの温度が設定温度に達したら、温度を保持した状態で上スライド201を下降させると、上スライド201の下降に伴って上金型213が下降し、図2(A)、図2(B)に示すように矯正金型内の空間においてワークWをプレス成形する。
上記プレス成形は0.1〜30分程度、上金型213を下死点に保持すると寸法精度よく矯正を行うことができるため好ましい。設定温度の保持は格納容器内に不活性ガスを充填した場合には格納容器内のガスを循環させることによって行ってもよい。プレス加工にて付加する圧力は焼結磁石の加熱によって磁石の降伏応力が低下することを考慮しつつ、降伏応力に達しない圧力で加圧する。
上記加熱雰囲気中でプレス成形を行うことによって、焼結時に焼結磁石に生じた歪が矯正され、磁石の形状を所定の寸法公差範囲内に矯正することができる。
寸法矯正後、ワークWは上金型213を下死点に保持した状態で寸法矯正時より低い500℃〜950℃程度にヒーター221により温度を調整し、所定時間時効熱処理を実施する。上記工程により焼結磁石の組織の相体密度が向上し、残留磁束密度や機械強度等が向上する。
時効熱処理を終えたワークWは、図2(C)に示すように離型され、冷却プレート224にて冷却パイプ225によって磁石表面が酸化されにくい温度まで冷却される。上記焼結工程、寸法矯正工程、時効熱処理工程、及び冷却工程はいずれも無酸化状態において行われる。その後、図2(D)に示すように焼結磁石を格納容器220から外部に搬出し、表面処理、検査、着磁を行った後に出荷する。
従来の焼結磁石の製造工程では、保持力等の磁石特性を調整するために焼結工程から時効熱処理工程において圧粉体を加熱して冷却し、再び加熱する、といった工程を実施している。また、時効熱処理後、磁石を室温まで冷却した後には寸法矯正として切削加工を行っている。焼結工程から時効熱処理工程において、加熱冷却後に再加熱を実施する方法はエネルギー効率が悪いため、製品におけるコストアップの要因となる。また、焼結磁石に使用されるいわゆるレアアースは希少価値が高く、切削加工を行えば製品に使用されないレアアースが発生し、材料歩留りが悪くなってしまう。
これに対し本実施形態に係る焼結磁石の製造方法によれば、焼結工程後に焼結磁石を加熱雰囲気下でプレス成形して寸法矯正を行うことにより、切削加工のように材料の一部が切削されて使用されなくなる、といったことがなくなる。よって、材料歩留まりを向上させることができる。
また、時効熱処理は寸法矯正時に生成した加熱雰囲気を利用して行っているため、時効熱処理のためにヒーター等によって生成するエネルギーを低減することができ、エネルギーの効率化を図ることができる。また、寸法矯正を加熱雰囲気下で行い、その後に寸法矯正時に生成した熱を利用して熱処理工程を行っているため、時効熱処理に至るまでの温度変化を少なくでき、その分、装置を構成する構造物の温度変化を抑制することができる。
さらに、従来の寸法矯正に当たる切削加工は、熱処理後に磁石を室温にまで冷却した上で行っているが、本実施形態では加熱雰囲気下で寸法矯正を行っているため、磁石を冷却する時間を削減でき、工程の所要時間を短縮することができる。
以上説明したように実施形態1に係る焼結磁石の製造方法によれば、焼結工程後に加熱雰囲気下においてプレス成形を行うことによって焼結磁石の寸法を矯正し、その後に格納容器220内で時効熱処理を行っている。そのため、機械加工のように材料が一部切除されることがなくなり、材料歩留まりを向上させることができる。
また、時効熱処理は寸法矯正の際に生成した加熱雰囲気を利用して行なっているため、熱処理の際に生成する熱量を低減でき、エネルギー利用の効率化を図ることができる。また、時効熱処理工程は寸法矯正工程の際に生成された加熱雰囲気を利用して行っている為、時効熱処理工程に至るまでの温度変化が少なく、装置内の構造物の温度による変形を抑制することができる。さらに、寸法矯正工程は、加熱雰囲気下で行っている為、従来のように磁石を室温まで冷却する必要がなく、工程の所要時間を短縮することができる。
また、焼結工程、寸法矯正工程、時効熱処理工程は、無酸化状態で行われるため、焼結磁石の酸化を防止し、磁石特性の低下を防止することができる。
また、寸法矯正の際には焼結磁石を800℃以下に加熱して加圧成形を行うように構成しているため、材料歩留まりを向上させるだけでなく焼結磁石自身の熱変形や酸化の促進を防止することもできる。
(実施形態2)
図6(A)〜(F)は、本発明の実施形態2に係る焼結磁石の製造方法の説明に供する概略図、図7は同焼結磁石の製造方法における焼結工程、寸法矯正工程、時効熱処理工程を行った場合の温度変化を示すグラフである。また、図8は同焼結磁石の製造方法における焼結工程、寸法矯正工程、時効熱処理工程に使用する装置を示す断面図である。なお、実施形態1と同様の構成には同一の符号を付し、説明を省略することとする。
実施形態1では寸法矯正部200の格納容器内において時効熱処理工程を行い、焼結磁石を冷却したが、時効熱処理工程及び冷却工程は以下のように実施してもよい。
実施形態2では焼結炉100及び寸法矯正部200aに加えて熱処理室300及び冷却室400が設けられている。なお、焼結炉100は図示の都合上、搬送路の距離を縮小している。
熱処理室300は、寸法矯正部200aと別個に設けられ、焼結工程及び寸法矯正工程を経た焼結磁石を格納し、所定の温度、時間にて時効熱処理を行う。熱処理室300は、実施形態2において寸法矯正部200aの配管ダクト223と接続されており、寸法矯正部内部で生成した加熱雰囲気をダクト223から吸引し、ダクト301を通じて熱処理室300へ導く。
また、熱処理室300には不図示のヒーターが設置されており、寸法矯正部200aから送られる加熱ガスと共に利用することにより、熱処理室300の内部温度を所定値に昇温又は保持する。磁石によって処理時間や処理温度が異なる場合には、実施形態2のように寸法矯正部と熱処理室を別に構成することで処理温度や処理時間の調整を容易に行うことができる。
冷却室400は、実施形態1の冷却室107と同様の構成であるため説明を省略する。
次に実施形態2に係る焼結磁石の製造方法の中でも焼結工程、寸法矯正工程、時効熱処理工程について説明する。磁場中成形を終えた圧粉体は、実施形態1と同様に焼結炉100にて図7に示すように900℃〜1100℃で焼結工程を行い、焼結磁石を形成する。
そして、ワークWを下金型214に載置して外周金型215により位置決めし、図6(A)、図6(B)、に示すように620℃〜1000℃にてプレス成形により外形形状の寸法矯正を行う。寸法矯正後に焼結磁石は図6(C)〜図6(F)に示すように離型され、温度制御のされた熱処理室300にて500℃〜950℃にて時効熱処理を行い、冷却室400にて室温にまで冷却した後、設備の外へ搬出する。
実施形態1に係る焼結磁石の製造方法では、寸法矯正部内にて寸法矯正工程と時効熱処理工程とが行われる。寸法矯正工程は620℃〜1000℃、時効熱処理は500℃〜950℃程度において行われるが、実施形態2に係る製造方法によれば時効熱処理及び冷却工程を別の空間にて行っている。そのため、寸法矯正部200aにおいて寸法矯正後に室内を熱処理に適した温度に調整する必要がなくなり、その分製品のサイクルタイムを短縮することができる。
また、工場内のレイアウトによる制約によって寸法矯正部に冷却プレート及び冷却パイプを設置できない場合にも実施形態2のように熱処理室300及び冷却室400を別個に設置することにより、工場内のレイアウトに柔軟に対応することができる。さらに寸法矯正部200aと熱処理室300及び冷却室400が別に設けられることにより、各構成を個別に整備できるため、保守性を向上させることができる。
以上説明したように実施形態2に係る焼結磁石の製造方法によれば、時効熱処理及び冷却工程を寸法矯正工程とは異なる装置にて行っているため、寸法矯正部において温度調整を省力でき、その分製品のサイクルタイムを短縮することができる。また、熱処理室300と冷却室400が寸法矯正部200aと別に設置されることで工場内のレイアウトに柔軟に対応することができる。さらに寸法矯正部200aと熱処理室300及び冷却室400が別に設けられることにより、各構成を個別に整備できるため、保守性を向上させることができる。
(実施形態3)
図9は本発明の実施形態3に係る焼結磁石の製造方法における焼結工程、寸法矯正工程、時効熱処理工程を行った場合の温度変化を示すグラフ、図10は同焼結磁石の製造方法における焼結工程、寸法矯正工程、時効熱処理工程に使用する装置を示す断面図である。実施形態1、2では焼結工程と寸法矯正工程とが別の構成によって行われていたが、以下のような構成を採用することも可能である。なお、実施形態3における焼結磁石の製造の概略手順は図2(A)〜図2(D)と同様であるため、図示を省略する。
実施形態3では、実施形態1、2の寸法矯正部の格納容器内にワークWの搬送スペースが設けられ、格納容器内において焼結工程が実施できるように構成されている。
格納容器220には焼結炉に当たる機能が統合され、格納容器内のヒーター(不図示)によって室内の温度管理がなされるように構成されている。また、格納容器220には、ワークWを搬入するための搬入口221が設置されている。
次に実施形態3に係る焼結磁石の製造方法における焼結工程、寸法矯正工程、及び時効熱処理工程について説明する。まず、搬入口221から圧粉体であるワークWが搬入され、図9に示すように寸法矯正部分にあたる構成に搬送されるまでにヒーターにより900℃〜1100℃で焼結工程が行われる。
次に焼結磁石は、ロボットアームによって下金型214に載置され、外周金型215により位置決めされた状態で、620℃〜1000℃の加熱雰囲気中において上金型213の下降によってプレス成形され、外形形状の寸法矯正が行われる。
寸法矯正後、焼結磁石は格納容器内において500℃〜950℃程度に温度調整された状態で所定時間時効熱処理が行われる。時効熱処理後、焼結磁石は離型して冷却プレート224に移送され、冷却パイプ225からのガスにより室温にまで冷却され、装置外に搬出される。実施形態3に係る焼結磁石の製造装置によれば、時効熱処理工程時に温間プレス時に生成した加熱雰囲気を利用するだけでなく、寸法矯正工程においても焼結工程時に生成した加熱雰囲気をも利用できるため、エネルギーをさらに効率よく利用することができる。
また、焼結工程時に生成された加熱雰囲気を利用することによって、寸法矯正に必要な温度に昇温するための加熱時間を短縮することができる。さらに、焼結工程時に生成された熱を利用して寸法矯正及び時効熱処理を行っているため、焼結工程、寸法矯正工程、及び時効熱処理工程が温度の高い順に実施されるため、上記実施形態と同様に装置内の構造物の温度変化による変形を抑制することができる。さらに焼結工程、寸法矯正工程、時効熱処理工程、及び冷却工程を一つの装置にて行えるため、装置構成を簡素化することができる。
以上説明したように実施形態3に係る焼結磁石の製造装置によれば、無酸化状態に形成される格納容器内に搬送スペースを設置し、装置内にて焼結工程、寸法矯正工程、時効熱処理工程、及び冷却工程を行うように構成している。そのため、寸法矯正工程では焼結工程において生成された加熱雰囲気を利用でき、エネルギーのさらなる効率化を図ることができる。
また、焼結工程時の加熱雰囲気を利用できることにより、寸法矯正に必要な温度への加熱時間を短縮することができる。また、焼結工程、寸法矯正工程、及び時効熱処理工程が温度の高い順に実施されることになり、装置を構成する構造物の温度変化による変形を抑制することができる。さらに焼結工程、寸法矯正工程、時効熱処理工程、及び冷却工程を一つの装置にて行えるため、装置構成を簡素化することもできる。
(実施形態4)
図11は本発明の実施形態4に係る焼結磁石の製造方法における焼結工程、寸法矯正工程、時効熱処理工程を行った場合の温度変化を示すグラフ、図12は同焼結磁石の製造方法における焼結工程、寸法矯正工程、時効熱処理工程に使用する装置を示す断面図である。実施形態3では焼結工程、寸法矯正工程、時効熱処理工程、及び冷却工程を同一の装置内にて行ったが、以下のように構成することも可能である。なお、実施形態4における焼結磁石の製造の概略手順は図6(A)〜図6(F)と同様であるため、図示を省略する。
実施形態4では、実施形態3と同様に格納容器220内に焼結工程を実施するための搬送スペースが設けられ、不図示のヒーターにより格納容器220における焼結工程及び寸法矯正工程の際の温度調整が行われるよう構成されている。また、実施形態4では寸法矯正部200cに加えて、実施形態2と同様に時効熱処理を行う熱処理室300及び冷却工程を行う冷却室400が別に設置されている。
次に実施形態4に係る焼結磁石の製造における焼結工程から時効熱処理工程について説明する。まず、実施形態3と同様に格納容器220の搬入口221から圧粉体であるワークWを搬入し、図11に示すように搬送路の移動と同期させてワークWを900℃〜1100℃で焼結させて焼結磁石に形成する。そして、ワークWを下金型214に載置して外周金型215により位置決めし、620℃〜1000℃にて外形形状をプレス成形により寸法矯正する。
寸法矯正した焼結磁石は、無酸化状態が維持された状態で離型して装置から取出され、熱処理室300にて500℃〜950℃にて時効熱処理を行い、磁石組織の調整を行う。その後、冷却室400に移送し、室温まで冷却した後に無酸化状態に調整されていない外部へ搬出する。
実施形態4に係る製造装置によれば、寸法矯正の際に焼結時に生成された加熱雰囲気を利用でき、寸法矯正後に格納容器内の加熱雰囲気を時効熱処理に利用できるため、エネルギーのさらなる効率化を図ることができる。また、熱処理室300と冷却室400を焼結工程及び寸法矯正工程を行う装置と別に設けることにより、寸法矯正後に格納容器内を熱処理に必要な温度に調整する必要がなくなり、その分製品のサイクルタイムを短縮することができる。
また、熱処理室300と冷却室400が寸法矯正部200cと別に設置されることで大規模な装置を設置できない工場内のレイアウトにも柔軟に対応することができる。また、焼結工程及び寸法矯正工程を行う構成が熱処理室300、冷却室400と分離していることによってメンテナンスの際に製造装置全体の中でも必要な部分のみを停止させることができ、保守性を向上させることができる。
また、焼結工程時の加熱雰囲気を利用できることにより、寸法矯正に必要な温度への加熱時間を短縮することができる。さらに、焼結工程、寸法矯正工程、及び時効熱処理工程が温度の高い順に実施されることになり、装置を構成する構造物の温度変化による変形を抑制することもできる。
(実施形態5)
図14は本発明の実施形態5に係る焼結磁石の製造方法を行った場合の温度変化を示すグラフである。実施形態1〜4では希土類元素を含む磁石粉末を圧縮して圧粉体を形成して焼結し、寸法矯正を行い、時効熱処理を行ったが、上記以外にも以下の工程を実施してもよい。なお、焼結磁石の製造装置は実施形態1と同様のものを用いるため説明を省略する。
実施形態5では、焼結工程、寸法矯正工程、及び時効熱処理工程に加えて磁石特性を向上させる粒界拡散工程が図10に示す寸法矯正部200bのような設備によって行われる。実施形態5では、図14に示すように、900℃〜1100℃において焼結工程を行い、620℃〜1000℃において焼結磁石の寸法矯正を行った後に、800℃〜1000℃において粒界拡散工程を行い、その後に500℃〜950℃において時効熱処理工程を行っている。実施形態1では寸法矯正工程の際に形成された加熱雰囲気を利用して時効熱処理を行うことによって時効熱処理を行う際に加熱雰囲気を形成するために必要な時間やエネルギーを削減できると記載した。これは、焼結磁石の保持力の低下を防止する粒界拡散処理についても同様に適用できる。
DyやTb等の重希土類元素を拡散させる際には加熱が用いられることがあるが、粒界拡散工程を行うことによって、寸法矯正された焼結磁石の保持力等の磁石特性の低下を防止することができる。また、実施形態3と同様に寸法矯正工程を行うことによって、焼結磁石を材料歩留まりよく寸法矯正したり、前の工程が行われた空間と同一の空間において後工程を行うことによって、熱エネルギーロスや生産リードタイムを減らしたり、温度変化が少ない事によって製造装置を構成する構造物を変形しにくくしたりすることができる。なお、本実施形態は各工程を同一設備で行うことが望ましい、連続する2以上の工程を同一設備で行う事ができれば、設備は実施形態1の図4に示す焼結炉100と寸法矯正部200のように別々になっていてもよい。
また、焼結工程、寸法矯正工程、粒界拡散工程、及び時効熱処理工程は、実施形態3等と同様に無酸化状態の空間において行われている。粒界拡散工程を行うと、磁石の表面はレアアースがリッチとなって磁石が酸化し易い状態となるが、無酸化状態において時効熱処理等を行う事によって、磁石が酸化して磁石特性が低下する事を防止できる。
図15は本発明の実施形態5の変形例に係る焼結磁石の製造方法を行った場合の温度変化を示すグラフである。粒界拡散工程を行う際に格納容器20内を加熱雰囲気とするためには、図15に示すように900℃〜1100℃において焼結工程を行ってから800℃〜1100℃において粒界拡散工程を行う。そして、620℃〜1000℃〜において寸法矯正工程を行い、500℃〜950℃において時効熱処理を行ってもよい。図15に示すように粒界拡散工程を行うことによっても、保持力等の磁石特性の低下を防止できると共に、焼結磁石を歩留まりよく寸法矯正したり、熱エネルギーロスや生産リードタイムを減らしたり、製造装置を構成する構造物を変形しにくくすることができる。
本発明は、上述した実施形態にのみ限定されず、特許請求の範囲において種々の変更が可能である。
図13は本発明の実施形態2、4の変形例を示す概略図である。実施形態2、4では寸法矯正後の焼結磁石を金型212、213、214から離型させた後に熱処理室300及び冷却室400に移送すると説明したが、金型212、213、214を離型しないまま熱処理室300及び冷却室400に移送して時効熱処理及び冷却工程を行ってもよい。
(実験例1)
次に本実施形態に係る焼結磁石の製造方法において。寸法矯正工程時に行うプレス加工の成形温度に関する実験を行ったので説明する。
本実験では焼結磁石の試験片(厚さ3.8mm、断面の長さが6mm×6mm)に図4と同様に上スライド、ボルスタ、及び外周金型を用いて磁石試験片を固定し、加圧しながら温度を室温から上昇させ、試験片の変形量を測定した。本実験例1に係る焼結磁石の金属はFe70%、Nd22%、B0.4%、Dy2.5%、Pr2.5%から構成される。表1は本実験例1に係る焼結磁石試験片を加温、加圧させていった場合の成形温度と変形率(%)の表、図11は表1をグラフ化したものである。なお、成形温度については、加圧時の磁石試験片側面に熱電対を接触させることで測定した。
Figure 0005994854
表1及び図11より、本実験例1に係るR−Fe−B系焼結磁石は620度より塑性変形が起こることがわかった。以上より、620℃以上であればプレス加工で焼結磁石の寸法矯正が行えることになるが、上記R−Fe−B系焼結磁石の焼結温度は1000℃となっている。620℃以上であっても成形温度が焼結温度を超えると焼結磁石の組織や磁気特性が変化してしまうため、上記実施形態に係る寸法矯正工程は620℃から焼結温度を超えない1000℃の範囲において行うことが好ましいことがわかった。また、この場合に磁石にプレス加工を行って、磁石が塑性変形する降伏応力は表1より36MPa〜262MPaになることがわかった。
本出願は、2012年7月12日に出願された日本特許出願番号2012−156982号に基づいており、その開示内容は、参照され、全体として、組み入れられている。
100 焼結炉、
101 隔壁、
102 シャッター機構、
103 導入ダクト、
104 排気ダクト、
105 シャッター、
106 ガイドレール、
200、200a、200b、200c 寸法矯正部、
201 上スライド、
202 ボルスタ、
203 ノックアウトバー、
204 油圧シリンダ、
210 ダイセット、
211 上ダイ、
212 下ダイ、
213 上金型、
214 下金型、
215 外周金型、
216 固定治具、
217 連結ピン、
220 格納容器、
221 ヒーター、
223 配管ダクト
224 冷却プレート、
225 冷却パイプ、
240 調節機構、
241 ガイディングロッド、
242 ガイディングシリンダ、
300 熱処理室、
301 ダクト
400 冷却室、
W ワーク。

Claims (5)

  1. Ndを主成分とする希土類元素を含むR−Fe−B系焼結磁石を構成する磁石粉末をプレス成形することによって前記磁石粉末が圧縮して形成された圧粉体を成形し、
    焼結温度に加熱された状況下において前記圧粉体を焼結して焼結磁石を成形し、
    前記焼結温度を超えない温度に加熱された状況下において前記焼結磁石を加圧成形することによって前記焼結磁石の寸法を矯正し
    前記寸法矯正において生成された加熱雰囲気を利用して、前記寸法矯正の際の温度を超えない温度で前記焼結磁石の組織を調整する時効熱処理を行い、
    前記圧粉体の焼結と前記焼結磁石の寸法矯正との間において前記焼結磁石に重希土類元素の粒界拡散を行い、
    前記粒界拡散の際の温度は、前記圧粉体の焼結の際の温度よりも低く、かつ、前記焼結磁石の寸法矯正の際の温度よりも高い焼結磁石の製造方法。
  2. 前記焼結磁石の寸法矯正の際には、前記圧粉体の焼結の際に生成された加熱雰囲気を利用して前記焼結磁石の寸法を矯正することを特徴とする請求項1に記載の焼結磁石の製造方法。
  3. 前記圧粉体の焼結から前記時効熱処理までの少なくともいずれかは、無酸化処理された雰囲気下において行なわれることを特徴とする請求項1または2に記載の焼結磁石の製造方法。
  4. 前記焼結磁石の寸法矯正の際に前記焼結磁石の温度を620℃以上に加熱することを特徴とする請求項1〜3のいずれか1項に記載の焼結磁石の製造方法。
  5. 前記焼結磁石の寸法矯正の際に前記焼結磁石の温度を800℃以下に加熱することを特徴とする請求項1〜3のいずれか1項に記載の焼結磁石の製造方法。
JP2014524727A 2012-07-12 2013-06-26 焼結磁石の製造方法 Active JP5994854B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012156982 2012-07-12
JP2012156982 2012-07-12
PCT/JP2013/067499 WO2014010418A1 (ja) 2012-07-12 2013-06-26 焼結磁石の製造方法

Publications (2)

Publication Number Publication Date
JPWO2014010418A1 JPWO2014010418A1 (ja) 2016-06-23
JP5994854B2 true JP5994854B2 (ja) 2016-09-21

Family

ID=49915882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014524727A Active JP5994854B2 (ja) 2012-07-12 2013-06-26 焼結磁石の製造方法

Country Status (5)

Country Link
US (1) US11515086B2 (ja)
EP (1) EP2874163B1 (ja)
JP (1) JP5994854B2 (ja)
CN (1) CN104412343B (ja)
WO (1) WO2014010418A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6379625B2 (ja) * 2014-04-21 2018-08-29 日産自動車株式会社 分割磁石の製造方法
JP6233170B2 (ja) * 2014-04-21 2017-11-22 日産自動車株式会社 焼結磁石の製造方法
JP6604321B2 (ja) * 2016-12-27 2019-11-13 トヨタ自動車株式会社 希土類磁石の製造方法
CN108376607A (zh) * 2017-12-31 2018-08-07 江西荧光磁业有限公司 一种降低重稀土烧结钕铁硼的制备方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3892598A (en) * 1974-01-07 1975-07-01 Gen Electric Cobalt-rare earth magnets comprising sintered products bonded with solid cobalt-rare earth bonding agents
JPS582567B2 (ja) * 1978-12-14 1983-01-17 日立金属株式会社 異方性Fe−Cr−Co系磁石合金の製造方法
JPS5760055A (en) * 1980-09-29 1982-04-10 Inoue Japax Res Inc Spinodal decomposition type magnet alloy
JPS6077961A (ja) * 1983-10-03 1985-05-02 Sumitomo Special Metals Co Ltd 永久磁石材料の製造方法
JPH0617535B2 (ja) * 1985-08-01 1994-03-09 住友特殊金属株式会社 永久磁石材料の製造方法
JPS62262405A (ja) * 1986-05-09 1987-11-14 Hitachi Metals Ltd 永久磁石合金の加工方法
JPH01270210A (ja) * 1988-04-21 1989-10-27 Hitachi Metals Ltd アーク状永久磁石及びその製造方法
WO1992020081A1 (en) * 1991-04-25 1992-11-12 Seiko Epson Corporation Method of producing a rare earth permanent magnet
JP4226855B2 (ja) * 2002-07-31 2009-02-18 パナソニック株式会社 熱解析方法及び熱解析装置、並びに前記熱解析方法を実施するプログラム
JP4329318B2 (ja) 2002-09-13 2009-09-09 日立金属株式会社 希土類焼結磁石およびその製造方法
EP1428897A1 (de) * 2002-12-10 2004-06-16 Siemens Aktiengesellschaft Verfahren zur Herstellung eines Bauteils mit verbesserter Schweissbarkeit und/oder mechanischen Bearbeitbarkeit aus einer Legierung
JP4577486B2 (ja) 2004-03-31 2010-11-10 Tdk株式会社 希土類磁石及び希土類磁石の製造方法
JP4662046B2 (ja) 2005-09-22 2011-03-30 Tdk株式会社 希土類焼結磁石の製造方法
CN103227022B (zh) * 2006-03-03 2017-04-12 日立金属株式会社 R‑Fe‑B系稀土类烧结磁铁
CN101331566B (zh) * 2006-03-03 2013-12-25 日立金属株式会社 R-Fe-B系稀土类烧结磁铁及其制造方法
JP2007258377A (ja) * 2006-03-22 2007-10-04 Tdk Corp 希土類焼結磁石の製造方法
JP4962198B2 (ja) * 2007-08-06 2012-06-27 日立金属株式会社 R−Fe−B系希土類焼結磁石およびその製造方法
JP5107198B2 (ja) * 2008-09-22 2012-12-26 株式会社東芝 永久磁石および永久磁石の製造方法並びにそれを用いたモータ
CN102576589B (zh) 2010-03-31 2014-06-18 日东电工株式会社 永久磁铁及永久磁铁的制造方法
JP5447246B2 (ja) * 2010-07-14 2014-03-19 トヨタ自動車株式会社 異方性希土類磁石の製造方法
JP2013098485A (ja) * 2011-11-04 2013-05-20 Toyota Motor Corp 希土類磁石の製造装置と製造方法

Also Published As

Publication number Publication date
US11515086B2 (en) 2022-11-29
US20150206654A1 (en) 2015-07-23
EP2874163A1 (en) 2015-05-20
EP2874163B1 (en) 2020-08-19
WO2014010418A1 (ja) 2014-01-16
EP2874163A4 (en) 2015-10-14
CN104412343B (zh) 2018-02-27
JPWO2014010418A1 (ja) 2016-06-23
CN104412343A (zh) 2015-03-11

Similar Documents

Publication Publication Date Title
JP6280137B2 (ja) 希土類焼結磁石の製造方法及び当該製法にて使用される製造装置
JP5815655B2 (ja) R−t−b−m−c系焼結磁石の製造方法、及びその製造装置
JP2015032669A (ja) 焼結磁石の製造方法
JP5994854B2 (ja) 焼結磁石の製造方法
EP2472535A1 (en) NdFeB SINTERED MAGNET PRODUCTION METHOD AND PRODUCTION DEVICE, AND NdFeB SINTERED MAGNET PRODUCED WITH SAID PRODUCTION METHOD
JP6330438B2 (ja) 希土類焼結磁石の製造方法
CN105448444B (zh) 一种制备性能改善的稀土永磁材料的方法及稀土永磁材料
KR101744403B1 (ko) 희토류 자석의 제조 방법
JPWO2018088392A1 (ja) 希土類磁石の製造方法
JP6079643B2 (ja) 焼結磁石の製造方法および製造装置
KR20110116757A (ko) 희토류 소결자석 제조방법
JP6252021B2 (ja) 焼結磁石の製造方法
JP2007098424A (ja) 磁場中成形装置、金型、希土類焼結磁石の製造方法
JP2007103606A (ja) 磁場中成形装置、金型
JP4513968B2 (ja) 希土類焼結磁石の製造方法、磁場中成形装置
JP2006156425A (ja) 希土類焼結磁石の製造方法、磁場中成形装置、金型
JP6379625B2 (ja) 分割磁石の製造方法
CN113921260A (zh) 一种稀土永磁体的热压制备方法
CN111785504A (zh) 一种稀土永磁体的近净成型制备方法
JP6233170B2 (ja) 焼結磁石の製造方法
JP2007245186A (ja) 粉末成形装置及び粉末成形方法
JP5043307B2 (ja) 焼結磁石の製造方法及び磁場中成形装置
JP4392605B2 (ja) 成形装置及び成形方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160808

R151 Written notification of patent or utility model registration

Ref document number: 5994854

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151