JP5988564B2 - 有機薄膜トランジスタの製造方法及び該方法で製造された有機薄膜トランジスタ - Google Patents

有機薄膜トランジスタの製造方法及び該方法で製造された有機薄膜トランジスタ Download PDF

Info

Publication number
JP5988564B2
JP5988564B2 JP2011234967A JP2011234967A JP5988564B2 JP 5988564 B2 JP5988564 B2 JP 5988564B2 JP 2011234967 A JP2011234967 A JP 2011234967A JP 2011234967 A JP2011234967 A JP 2011234967A JP 5988564 B2 JP5988564 B2 JP 5988564B2
Authority
JP
Japan
Prior art keywords
conductive layer
layer
conductive
film transistor
gate insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011234967A
Other languages
English (en)
Other versions
JP2012109560A (ja
Inventor
智紀 松室
智紀 松室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2011234967A priority Critical patent/JP5988564B2/ja
Publication of JP2012109560A publication Critical patent/JP2012109560A/ja
Application granted granted Critical
Publication of JP5988564B2 publication Critical patent/JP5988564B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/621Providing a shape to conductive layers, e.g. patterning or selective deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/80Constructional details
    • H10K10/82Electrodes
    • H10K10/84Ohmic electrodes, e.g. source or drain electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

本発明は、有機薄膜トランジスタに関し、特にボトムゲート・ボトムコンタクト構造の有機薄膜トランジスタに関する。
現在、次世代薄膜能動素子の材料として、有機半導体、酸化物半導体、マイクロクリスタルシリコン半導体、溶液塗布可能な低温ポリシリコン半導体等が盛んに研究されている。その中で、有機半導体は曲げ等に対する機械強度が強く、低温で塗布法にて層形成することができ、フレキシブル基板を用いた素子の製造において、他の半導体材料に比べ優れている。
図17は、有機半導体を使用したボトムゲート・ボトムコンタクト構造の有機薄膜トランジスタの層構成を示す断面図である。この有機薄膜トランジスタには、基板1と、基板1上に形成されたゲート電極2と、ゲート電極2上に形成されたゲート絶縁層3と、ゲート絶縁層3上にチャネル部を挟んで形成されたソース電極7及びドレイン電極7と、ソース電極7及びドレイン電極7上に形成された有機半導体層8と、素子全体を被覆するオーバーコート10とが、備えられている。この構造は、ソース・ドレイン電極と有機半導体層のチャンネル形成部とが同一平面的に配置されており、コプラナー型とも呼ばれる。
図18は、有機半導体を使用したボトムゲート・トップコンタクト構造の有機薄膜トランジスタの層構成を示す断面図である。この有機薄膜トランジスタには、基板1と、基板1上に形成されたゲート電極2と、ゲート電極2上に形成されたゲート絶縁層3と、ゲート絶縁層3上に形成された有機半導体層8と、有機半導体層8上にチャネル部を挟んで形成されたソース電極7及びドレイン電極7と、素子全体を被覆するオーバーコート10とが、備えられている。この構造は、ソース・ドレイン電極と有機半導体層のチャンネル形成部とが異平面的に配置されており、スタガ型とも呼ばれる。この他、有機半導体を使用したスタガ型の構造としては、図18の構造とは層の配置が上下逆になった、トップゲート・ボトムコンタクト型の構造も使われている。
スタガ型の素子では、キャリアはソース電極から有機半導体のバルク内を流れ、次いで、チャネル形成部が存在するゲート絶縁層と有機半導体との界面を流れ、次いで、有機半導体のバルク内を流れてドレイン電極に至る。そのため、短チャネルにすると高い有機半導体バルクの抵抗値が、トランジスタ特性を顕著に低下させる因子となる。一方、コプラナー型の構造には、有機半導体バルクの抵抗が0になる利点があり、微細な素子には、コプラナー型の構造が広く用いられている。
コプラナー型の構造では、スタガ型と比較して、ソース・ドレイン電極と有機半導体のチャネル形成部との接触面積が小さく、両者間のコンタクト抵抗が特性を決めるクリティカルな因子となる。コンタクト抵抗の問題を解決する手法として、ゲート絶縁層の表面に、有機絶縁材料に対する密着性に優れた金属材料の層を形成し、その横部に有機半導体とオーミック接触を形成する金属材料の層を形成してソース・ドレイン電極とした素子が知られている(特許文献1)。しかしながら、該金属材料の層はリフトオフ法で形成されており、フォトリソグラフィ工程及びマスク総数が増加してしまうという課題がある。
また、金属蒸気は高エネルギーを有し、接触した有機絶縁材料を損傷することがある。それゆえ、ゲート絶縁層として有機絶縁材料を用いた場合に、絶縁層上に直接ソース電極及びドレイン電極を物理気相成長(PVD)させると、ゲート絶縁層の表面に欠陥が発生し、トランジスタ特性が低下するという課題がある。
ソース・ドレイン電極形成時のゲート絶縁層表面に対するプロセスダメージを緩和するため、有機絶縁膜上に無機バリア層を形成し、該無機バリア層上にソース・ドレイン電極を形成した素子(特許文献2)、有機絶縁膜上に無機絶縁層を積層し、該無機絶縁層上にソース・ドレイン電極を形成した素子(特許文献3)が知られている。しかしながら、曲げ応力に劣る無機層が素子の全面に形成されており、これらの素子は柔軟性及び耐久性に劣る。
特開2006-147613号公報 国際公開第2007/099689号 特開2006-013480号公報
本発明の目的は、大面積の素子の製造が容易であり、ソース電極及びドレイン電極を形成する際にゲート絶縁層表面を損傷せず、有機絶縁材料が有する柔軟性を損なわない、ボトムゲート・ボトムコンタクト構造の有機薄膜トランジスタの製造方法を提供することにある。また、本発明の目的は、かかる製造方法で製造されるボトムゲート・ボトムコンタクト構造の有機薄膜トランジスタを提供することにある。
即ち、本発明は、ボトムゲート・ボトムコンタクト構造の有機薄膜トランジスタを製造する方法であって、
ゲート電極、及び該ゲート電極を被覆し、有機絶縁材料を含むゲート絶縁層を形成する工程;
該ゲート絶縁層上に塗布法、無電解めっき法又は原子層堆積法からなる群の内の一つを用いて導電性材料からなる第1導電層を成膜する工程;
該第1導電層上に更に導電性材料からなる導電層を成膜後、該導電層を所定の形状にパターニングすることにより第2導電層を形成する工程;
該第2導電層で被覆されていない第1導電層の部分を除去して、第1導電層及び第2導電層からなるソース電極及びドレイン電極を形成する工程;
ソース電極、ドレイン電極、及び該ソース電極と該ドレイン電極に挟まれた領域のゲート絶縁層が被覆されるように、有機半導体層を形成する工程;
を有する方法を提供する。
ある一形態においては、第1導電層を成膜する工程は、酸化銀、酸化銅、酸化亜鉛、銀塩、銀及び銅からなる群から選ばれる少なくとも1種の材料を含む導電性材料の前駆体及び/又は前記導電性材料のナノ粒子を溶解もしくは分散させたインクを前記ゲート絶縁層上に塗布法で成膜し焼成することにより、前記導電性材料からなる導電層を得る工程である。
ある一形態においては、前記第1導電層を成膜する工程は、タングステンアルコキシドから作られたゾルゲル液を塗布法で該ゲート絶縁層上に成膜し、ゲル化したタングステンアルコキシドを焼成処理して酸化タングステンからなる導電層を得る工程である。
ある一形態においては、タングステンアルコキシドのゾルゲル液の溶媒は、プロピレングリコールモノメチルエーテルアセテート(PGMEA)もしくは、2,3,4,5,6−ペンタフルオロトルエンである。
ある一形態においては、第1導電層の除去は、前記第2導電層をマスクとして用いて湿式エッチング法により行い、そのときに用いられるエッチング液はアルカリ溶液であり、第1導電層と第2導電層のエッチング選択比が10:1以上である。
ボトムゲート・ボトムコンタクト構造の有機薄膜トランジスタのソース電極及びドレイン電極は第3導電層を備えており、第3導電層の形成は、パターニングされた第2導電層と、第1導電層の露出している部分の上に導電性材料の層を成膜した後、該導電性材料の層を第2導電層が完全に被覆されるようにパターニングすることにより行われる。
また、本発明は、上記いずれかの方法により製造されるボトムゲート・ボトムコンタクト構造の有機薄膜トランジスタである。
本発明の第1の実施形態である有機薄膜トランジスタの構造を示す断面図である。 図1の有機薄膜トランジスタの製造過程で形成される積層体の構造を示す断面図である。 図1の有機薄膜トランジスタの製造過程で形成される積層体の構造を示す断面図である。 図1の有機薄膜トランジスタの製造過程で形成される積層体の構造を示す断面図である。 図1の有機薄膜トランジスタの製造過程で形成される積層体の構造を示す断面図である。 図1の有機薄膜トランジスタの製造過程で形成される積層体の構造を示す断面図である。 図1の有機薄膜トランジスタの製造過程で形成される積層体の構造を示す断面図である。 本発明の第2の実施形態である有機薄膜トランジスタの構造を示す断面図である。 図8の有機薄膜トランジスタの製造過程で形成される積層体の構造を示す断面図である。 図8の有機薄膜トランジスタの製造過程で形成される積層体の構造を示す断面図である。 図8の有機薄膜トランジスタの製造過程で形成される積層体の構造を示す断面図である。 図8の有機薄膜トランジスタの製造過程で形成される積層体の構造を示す断面図である。 図8の有機薄膜トランジスタの製造過程で形成される積層体の構造を示す断面図である。 図8の有機薄膜トランジスタの製造過程で形成される積層体の構造を示す断面図である。 図8の有機薄膜トランジスタの製造過程で形成される積層体の構造を示す断面図である。 図8の有機薄膜トランジスタの製造過程で形成される積層体の構造を示す断面図である。 ボトムゲート・ボトムコンタクト構造の有機薄膜トランジスタの層構成を示す断面図である。 ボトムゲート・トップコンタクト構造の有機薄膜トランジスタの層構成を示す断面図である。
本発明の有機薄膜トランジスタの製造方法は、基板1上に、ゲート電極2、及び該ゲート電極を被覆し、有機絶縁材料を含むゲート絶縁層3を形成する工程;
該ゲート絶縁層3上に塗布法、無電解めっき法又は原子層堆積法からなる群から選択される一つの方法を用いて導電性材料からなる第1導電層4を成膜する工程;
該第1導電層4上に更に導電性材料からなる導電層を成膜後、該導電層を所定の形状にパターニングすることにより第2導電層5を形成する工程;
該第2導電層5で被覆されていない第1導電層4の部分を除去して、第1導電層4及び第2導電層5からなるソース電極及びドレイン電極を形成する工程;
ソース電極、ドレイン電極、及び該ソース電極と該ドレイン電極に挟まれた領域のゲート絶縁層が被覆されるように、有機半導体層8を形成する工程;
を有する方法である。該方法は、以下に述べるような実施形態を包含する。
第1の実施形態
本発明の第1の実施形態を、図1から図7を用いて説明する。
図1は本発明の第1の実施形態である有機薄膜トランジスタの構造を示す断面図である。この有機薄膜トランジスタは、基板上1に、ゲート電極2及び該ゲート電極2を被覆するゲート絶縁層3を有し、該ゲート絶縁層3上に、第1導電層4及び第2導電層5からなるソース電極及びドレイン電極7を有し、該ソース・ドレイン電極の間に有機半導体層8を有し、該有機半導体層8を被覆する保護層10を有する。
有機薄膜トランジスタが折り曲げることが可能なフレキシブル素子である場合、基板1に用いられる材料としては、ポリイミド(PI)、ポリエチレンテレフタレート(PET)、ポリカーボネート(PC)、ポリエチレンナフタレート(PEN)、芳香族ポリエーテルスルホン(PES)、液晶ポリマー(LCP)等の樹脂、ステンレススチール等の金属箔、エッチングにより曲げる事が可能な薄さにしたガラス等が挙げられる。有機薄膜トランジスタが折り曲げることができない素子である場合、基板1に用いられる材料としては、ガラス、金属等が挙げられる。
ゲート電極2の材料としては、導電性の高い金属及びその合金が好ましく用いられる。
より好ましくは、耐エレクトロ・ストレスマイグレーション性の高い高融点金属の合金、酸化物、窒化物である。また、金属表面の仕事関数を調整するため、必要に応じて、ゲート電極を積層構造にしたり、表面改質の処理を実施してもよい。本発明において、高融点金属とは、融点が1000℃以上の金属を指す。
ゲート電極2は、例えばフォトリソグラフィ法、印刷法等のような、通常使用される方法によって基板1上に形成される。
基板1とゲート電極2の間には、基板1に含まれる材料によるゲート電極の変質を防止するため、必要に応じて該基板1とゲート電極2との間に保護層を設けてもよい。
ゲート絶縁層3に含まれる有機絶縁材料としては、PMMA(ポリメチルメタクリレート)、ポリスチレン、ポリエチレン、ポリイミド、ポリビニルアルコール、ポリエステル、ポリ塩化ビニル、ポリビニルフェノール、シアノエチルプルラン等のフッ素原子を有さない樹脂、旭硝子社製「Cytop」(登録商標)、Dupont社製の「TEFLON」(登録商標)等のフッ素系樹脂等が挙げられる。また、これらの樹脂に含まれる繰り返し単位を有する共重合体や該樹脂又は該共重合体を含む組成物を用いてもよい。該共重合体はスチレンから誘導される繰り返し単位等の分極を有さない繰り返し単位を含むことが好ましく、該組成物は、ポリスチレン等の分極を有さない高分子化合物を含むことが好ましい。
ゲート絶縁層3は、例えば有機絶縁材料と溶媒とを含む溶液を塗布し乾燥させる方法等によってゲート電極2上に積層される。溶液の塗布方法としては、スピンコート法、ディップコート法、ブレードコート法、キャピラリーコート法、スリットコート法、スプレーコート法、印刷法等が挙げられる。
ゲート絶縁層3の積層時には、必要に応じて、ゲート絶縁層3にコンタクトホールを形成する等のパターニングを施してもよい。有機絶縁材料は光もしくは熱により架橋し硬化することが好ましく、上記パターニングを行う場合は、有機絶縁材料が感光性を有していることがより好ましい。有機絶縁材料としては、分極を有さない材料が好ましく、誘電率が1.5(F/m)以上の材料が好ましい。また、架橋により硬化する以外にも、有機絶縁材料を乾燥してフィルムを形成し、高い絶縁耐圧を確保してもよい。
有機薄膜トランジスタの特性の観点からは、有機絶縁材料が、有機薄膜トランジスタの製造に用いられる溶媒に対して不活性であり、かつ、不溶であることが好ましい。
次に、ソース電極及びドレイン電極について説明する。本明細書では両者を総称してソース・ドレイン電極という。
ソース・ドレイン電極7は、以下の工程を経て形成される。即ち、
前記ゲート絶縁層3上に塗布法、無電解めっき法又は原子層堆積法からなる群から選択される一つの方法を用いて導電性材料からなる第1導電層4を成膜する工程;
該第1導電層4上に更に導電性材料からなる導電層を成膜後、該導電層を所定の形状にパターニングすることにより第2導電層5を形成する工程;及び
該第2導電層5で被覆されていない第1導電層4の部分を除去して、第1導電層4及び第2導電層5からなるソース電極及びドレイン電極を形成する工程。
一つの好ましい態様において、前記第1導電層4を成膜する工程は、前記導電性材料の前駆体及び/又は前記導電性材料のナノ粒子を溶解もしくは分散させたインクを前記ゲート絶縁層3上に塗布法で成膜し焼成することにより、酸化銀、酸化銅、酸化亜鉛、銀塩、銀及び銅からなる群から選ばれる導電性材料からなる導電層を得る工程である。
一つの好ましい態様において、前記第1導電層4を成膜する工程は、タングステンアルコキシドから作られたゾルゲル液を塗布法で該ゲート絶縁層3上に成膜し、ゲル化したタングステンアルコキシドを焼成処理して酸化タングステンからなる導電層を得る工程である。この方法は、いわゆるゾル−ゲル法である。
一つの好ましい態様において、前記タングステンアルコキシドのゾルゲル液の溶媒は、プロピレングリコールモノメチルエーテルアセテート(PGMEA)もしくは、2,3,4,5,6−ペンタフルオロトルエンである。
更に、一つの好ましい態様において、前記第1導電層4の除去は、前記第2導電層5をマスクとして用いて湿式エッチング法により行い、そのときに用いられるエッチング液はアルカリ溶液であり、第1導電層4と第2導電層5のエッチング選択比が10:1以上である。
以下にソース・ドレイン電極についてより具体的に説明する。ソース・ドレイン電極7は第1導電層4及び第2導電層5からなる積層構造をとる。ソース・ドレイン電極7を積層構造とすることでそれぞれの層に違った機能を持たせることが可能となる。例えば、第1導電層4の機能として、ゲート絶縁層3とソース・ドレイン電極7の密着性を上げる効果を持つ密着層としての機能や第2導電層5の金属原子がゲート絶縁層3へ拡散するのを防ぐバリア層としての機能を持たせたり、第1導電層4もしくは第2導電層5のどちらかに有機半導体層への電荷注入層の機能を持たせたりする事ができる様になる。
有機絶縁層上に導電性材料からなる第1導電層4を成膜する(即ち、連続層として積層する)際には、塗布法、無電解めっき法又は原子層堆積法からなる群から選択される一つの方法を用いることが好ましく、塗布法を用いることがより好ましい。これらの方法を用いることにより、ゲート絶縁層3に含まれる有機絶縁材料に対するプロセスダメージが少なくなる。
塗布法で第1導電層4を成膜するには、材料がインクで有る必要が有る。更に、本発明の効果を出すには、インク状態から後工程で不要箇所の除去が容易な無機の導電層になるのが良い。酸化タングステン、酸化銀、酸化銅、銀塩、銀及び銅は、比較的低温焼成でインク状態から無機の導電層にする事ができ、フレキシブル基板等の樹脂基板への適用も可能となる。この中でも、酸化タングステンはゾルゲル液にしてゾルゲル法で150〜200℃程度で容易に膜を得る事が可能であり、酸化銀は成膜後、エタノール液に浸漬し超音波処理を行う事で還元反応が起きる事が知られており、更には、還元反応の強いアルコール(例えば、トリエチレングリコールなど)を溶媒として用い200℃未満の熱処理を行う事で還元されて銀になる事が知られている。更に最良の材料は、酸化タングステンであり第2導電層5で用いられる金属材料に対して比較的容易にエッチング選択比を取る事が可能である。
本明細書でいうプロセスダメージとは、有機薄膜トランジスタを製造するための操作や処理がその構成部材を損傷することをいう。例えば、ゲート絶縁層上に直接金属等を物理気相成長(PVD)させると、ゲート絶縁層に含まれている有機絶縁材料は金属蒸気のエネルギーによって損傷される。特に、PVD法に含まれるスパッタリング法を用いた場合、損傷が顕著である。
中でも、第1導電層4は、好ましくは、図2に示す様に、導電性材料と溶媒とを含む溶液を該ゲート絶縁層3上に塗布し乾燥させて成膜される。
第1導電層4は、例えば、金属アルコキシドからゾルゲル法により形成することができるポリメタロキサンを含む。金属アルコキシドの金属としては、チタン、アルミニウム、タングステン、ニオブ、ジルコニウム、バナジウム、タンタル等が挙げられる。
好ましい金属アルコキシドは、タングステンアルコキシドである。タングステン酸化物の層はゲート絶縁層3や第2導電層5に対して直交溶媒(オルトゴナル溶媒)であるアルカリ溶液でエッチングしやすく、不用になった第1導電層4は、ゲート絶縁層3表面から容易に除去することができる。
タングステンアルコキシドとしては、タングステン(V)メトキシド、タングステン(V)エトキシド、タングステン(V)イソプロポキシド、タングステン(V)ブトキシド等が挙げられる。また、これらのタングステンアルコキシドから得られる酸化タングステンにおけるタングステンの価数は5価である。タングステンアルコキシドから得られる酸化タングステンは、アルカリ溶液に非常に良く溶ける為、エッチング時間を短くできるという利点もある。更に、エッチング時間が短かすぎる場合は、オゾンUVもしくはOプラズマ等を当てることで酸化タングステンにおけるタングステンの価数を変えて溶解性を変化させることができるため、エッチング時間を長くすることも容易である。更には、塗布法に簡単なオゾンUV処理のみで価数を上げて6価にできるため、反応性スパッタリング法などを用いずとも塗布法でWOの層を簡単に得ることができる。また、焼成温度も150℃と低温で処理出来るためフレキシブル基板等への適用も可能である。この様にして得られる第1導電層4の酸化タングステンにおけるタングステンの価数は、オゾンUV処理によるUV/Oの影響が強い第2導電層5の端部付近は6価の酸化タングステンであるWOが多く、UV/Oの影響が殆ど無い電極下は5価の成分が多い。従って、最終的に得られる酸化タングステンの第1導電層4は、5価と6価の組合せとなる。
第1導電層4をゾルゲル法により形成する場合、用いられるゾルゲル液の溶媒は、使用する金属アルコキシドを溶解又は分散し、室温で揮発性を示すものである。更には、下層であるゲート絶縁層3を溶かしたり膨潤させるなどのダメージを与えない直交溶媒(オルトゴナル溶媒)が好ましい。かかる溶媒には、例えば、プロピレングリコールモノメチルエーテルアセテート(以後、「PGMEA」ということがある。)、フッ素原子を有する芳香族化合物が含まれる。また、ゲート絶縁層3がフッ素樹脂を有する場合、表面自由エネルギーが30mN/m以下の表面に均一に平滑膜を塗布形成する必要が有る為、最良の溶媒は、低表面張力でありフッ素原子を有する芳香族化合物(例えば、2,3,4,5,6−ペンタフルオロトルエン(別名:パーフルオロトルエン))である。
また、ゾルゲル液には、形成される層の均一性及び表面平滑性を向上させるために金属アルコキシドの安定化剤を含有させてもよい。金属アルコキシドの安定化剤は、例えば、α−ヒドロキシケトン化合物、α−ヒドロキシケトン誘導体、エタノールアミン化合物、α−ジケトン化合物、α−ジケトン化合物誘導体、α−ヒドロキシカルボン酸化合物、β−ジケトン化合物からなる群より選ばれる少なくとも一種の化合物であることが好ましい。
その他、第1導電層4に含まれる材料としては、金属、金属の化合物、金属を含む合金、半導体、半導体の化合物、半導体を含む合金が挙げられる。金属の化合物には、上記金属酸化物、酸化物半導体、塩化銀等の銀塩が含まれる。
金属としては、Ti、Ta、Cu、Mo、W、Au、Ag等が挙げられる。金属の化合物としては、TiN、TaN、TiO、WO、MoO、AgCl、AgO、CuO等が挙げられる。金属を含む合金としては、MoW、TiW、MoCr等が挙げられる。半導体としては、Si、Ge、Ga等が挙げられる。半導体の化合物としては、SiC、GaN、GaAs等が挙げられる。半導体を含む合金としては、WSi、MoSi、TiSi等が挙げられる。酸化物半導体としては、インジウムスズ酸化物(ITO)、インジウム亜鉛酸化物(IZO)、インジウムガリウム亜鉛複合酸化物(IGZO)、酸化亜鉛(ZnO)、亜鉛スズ酸化物(ZTO)、CdSnO、GaSnO、TiSnO、CuAlO、SrCuO、LaCuOS等が挙げられる。
中でも、Ti、Mo、Cr、Ta、W、Ni、Pd、Cu、Ag、Au、Pt、Ir、Co、Fe、V、Zr、これらの金属の化合物、これらの金属のいずれかを含む合金、Si、B、Ge、これらの半導体の化合物、これらの半導体のいずれかを含む合金が好ましく、酸化銀、酸化銅、酸化亜鉛、銀塩、銀、銅がより好ましく、酸化銀がさらに好ましい。
例えば、第1導電層4は、Ti、Al、W、Nb、Zr、V及びTaから成る群から選択される金属の酸化物又は窒化物を含有する。
第1導電層4に含まれる材料としては、高融点金属の微粒子、酸化物、窒化物がより好ましく、融点が1000℃以上である金属の微粒子、酸化物、窒化物がさらに好ましい。
ここで、金属の微粒子とは、粒径が1nm〜1000nmの金属をいう。好ましくは、平均粒径が3〜100nmのナノ粒子、更に好ましくは、3〜30nmのナノ粒子である。
第1導電層4を形成するための導電性材料と溶媒とを含む溶液は、先に示した金属アルコキシド以外では、例えば、ITO、IZO、IGZO、タングステン酸化物(W)、チタン酸化物(Ti)、チタンニオブ酸化物(TiNb)、酸化銀、酸化銅、酸化亜鉛、銀、銅のナノ粒子分散溶液又は銀塩である(式中、添え字のx、y及びzは0よりも大きい数である。)。又は、上記溶液は、これらの導電性材料の金属イオンを含有する無電解めっき液である。
第1導電層4は、導電性材料と溶媒とを含む分散液又はゾルゲル液を用い、スピンコート法、ディップコート法、ブレードコート法、キャピラリーコート法、スリットコート法、スプレーコート法、印刷法等の塗布手法により成膜することが好ましい。
又は、第1導電層4は、上記導電性材料の金属イオンを含有する無電解めっき液を用い、スピンコート法、ディップコート法、ブレードコート法、キャピラリーコート法、スリットコート法、スプレーコート法、印刷法でめっき触媒又はめっき触媒前駆体をゲート絶縁層上全面に塗布し、ゲート絶縁層等と共に該めっき触媒又はめっき触媒前駆体を上記無電解めっき液に浸漬して金属等を堆積させることにより形成してもよい。
第1導電層4の積層方法は上記以外の方法であってもよく、ゲート絶縁膜へダメージを与えない方法ならば特に制限はない。また、原子層堆積(ALD)法等により成長させて積層してもよい。ALD法で積層する場合、第1導電層4に含まれる材料としては、Ti、Mo、Cr、Ta、W、Ni、Pd、Cu、Au、Pt、Ir、Co、Fe、V、Zr、これらの金属のいずれかを含む合金、これらの金属の酸化物又はこれらの金属の窒化物等が挙げられる。また、ALD法に使用する金属化合物前駆体としては、窒化チタン(TiN)の前駆体であるビス(ジエチルアミド)ビス(ジメチルアミド)チタニウム(IV)(Bis(diethylamido)bis(dimethylamido)titanium(IV))、窒化タンタル(TaN)の前駆体であるトリス(エミルメチルアミド)(tert−ブチルアミド)チタニウム(Tris(ethylmethylamido)(tert-butylimido)tantalum)等が挙げられる。
さらに、第1導電層4のフェルミレベルは、有機半導体層7の最高被占有軌道(HOMO)のエネルギーと同等かそれよりも深いことが好ましい。
第1導電層4の層厚は、3〜500nmが好ましく、3〜50nmがより好ましい。
第2導電層5は、好ましくは、図3に示す様に、導電性材料を第1導電層4上に成膜し、その後パターニングして形成する。
第2導電層5は、例えば、Ag合金からスパッタリング法により成膜することができる。スパッタリング法を使用しても、パターニング前の第1導電層4がバリア層として機能するため、有機絶縁材料に対するプロセスダメージが小さくなる。Ag合金としては、例えば、Ag−Pd−Cu合金(APC)等が挙げられる。
第2導電層5に含まれる材料は、Ag合金以外にも、導電性が高い金属、その合金、その酸化物、その窒化物を用いることができる。中でも、Ag、Al、Au、Cd、Co、Cr、Cu、Fe、Mg、Mo、Ni、Pb、Pd、Pt、Sn、Ta、Ti、V、W、Zn、Zr又はこれらの金属のいずれかを含む合金が好ましい。これらの金属は非常に一般的な金属であり、導電性が高く比較的容易にスパッタリングターゲットを入手する事が可能である。さらに、これらの金属の合金、酸化物、窒化物を成膜する場合にも、反応性スパッタにより容易にこれらの物を得る事が可能である。有機薄膜トランジスタの第1の実施形態においては、該材料が低コストで高いエレクトロ・ストレスマイグレーション耐性を有することが好ましい。該材料としては、Cu等が挙げられる。
第2導電層5に含まれる材料を、第1導電層4に含まれる材料との非限定的な組み合わせと共に、具体的に例示する。第2導電層5の導電性は第1導電層4の導電性よりも高くなることが好ましい。第2導電層5の導電性が第1電極層4の導電性よりも高くなることにより、第2導電層に、素子構成上不可欠なバスライン等、配線層としての機能を持たせることが可能となるためである。
[表1]
Figure 0005988564
第2導電層5は、スパッタリング法以外物理気相成長(PVD)法、化学気相成長(CVD)法、無電解めっき法により積層してもよい。

微細なパターンを形成する観点からは、第2導電層5のパターニングは、フォトリソグラフィ法を用いて行う。その場合、図4に示す様に、第2導電層5の上にマスク9を形成し、マスクに被覆されていない第2導電層5の部分はエッチングして除去する。
また、パターニングを簡便に行うためには、例えば、金属ナノ粒子分散溶液のような導電性材料と溶媒とを含む分散液又はゾルゲル液を、印刷法により第1導電層4上の必要な領域に直接塗布して、パターン化された第2導電層5を形成してもよい。又は、無電解めっき法を用いて、第1導電層4上の必要な領域に直接めっき触媒又はめっき触媒前駆体を印刷してパターニングを行い、第1導電層等と共に該めっき触媒又はめっき触媒前駆体を上記導電性材料の金属イオンを含有する無電解めっき液に浸漬して金属等を堆積し、パターン化された第2導電層5を形成してもよい。
これらのパターニングにより、図5に示す様に、ボトムゲート・ボトムコンタクト構造に適した所望の位置に第2導電層5を形成する。
第2導電層の層厚は、10〜1000nmであることが好ましく、50nm〜500nmがより好ましい。
次に、パターニングされた第2導電層5をマスクとして、第2導電層5に対するエッチング選択比が高いアルカリエッチング液により第1導電層4の湿式エッチングを行い、第1導電層4を図6に示す様にパターニングして、ソース・ドレイン電極7を形成する。例えば、エッチング液のエッチング選択比が、第1導電層4:第2導電層5=10:1の場合、第1導電層4が500nmエッチングされる場合には、第2導電層5は、50nmしかエッチングされない。この場合、より好ましくは、第2導電層5が不溶であるエッチング液を用いる。
アルカリエッチング液としては、水酸化カリウム(KOH)の希釈水溶液、水酸化テトラメチルアンモニウム水溶液(TMAH)の希釈水溶液を用いてもよく、該溶液の濃度は、エッチングレートの調整のため如何ようにも変更が可能であるが0.1wt%以上であることが好ましい。また、市販のアルカリエッチング液を使用してもよく、具体例としては、メルテックス株式会社製「メルストリップ」(商品名)シリーズ等が挙げられる。より好ましいアルカリエッチング液は、金属イオンが無い水酸化テトラメチルアンモニウム水溶液(TMAH)の希釈水溶液である。
所望のエッチング選択比を得る材料の組合せとしては、第1導電層4に酸化タングステンを用いた場合、第2導電層5には、金、銀、銅、又は銀と銅とパラジウム合金を用いる事がより好ましい。第1導電層4の酸化タングステンはTMAHに可溶であるが、金、銀、銅、又は銀と銅とパラジウム合金は不溶である。従って、非常に高い選択比を取る事が出来る。また、エッチング選択比を取るだけならば第2導電層5は前記以外のAl、Cd、Co、Cr、Fe、Mg、Mo、Ni、Pb、Pd、Pt、Sn、Ta、Ti、V、W、Zn、Zr等でも良いがエッチングなどのプロセス的な側面や半導体層に対する電荷注入性の観点から好ましく無い。特に有機半導体への電荷注入性という側面では、金、銀、銅、又は銀と銅とパラジウム合金が好ましく、これらの金属は、塗布形成された有機半導体層8に焼成処理を行うことで、焼成を行わない場合と比べて有機半導体層8に対する高いホール注入性を得ることが出来る。
他のパターニング法として、アルカリ性のレジスト剥離液等を用い、レジスト剥離と同時に第1導電層4を剥離してもよい。
パターニング前の第1導電層4は、第2導電層5を形成する際のプロセスダメージからゲート絶縁層3を保護する保護層としての機能を有している。また、第1導電層4は、ゲート絶縁層3と第2導電層5との密着性を高める機能を有している。更に、第1導電層4は、バリア層としての機能、有機半導体層8への電荷注入層としての機能等をも有している。
第1導電層4の保護層としての機能とは、有機薄膜トランジスタの製造プロセス中で発生する物理的及び化学的な外的因子から、構成部材を保護する機能をいう。例えば、有機絶縁層の場合、表面にダメージを受けると接触角や表面ラフネスが変化するが、保護層を設ける事によりこれらの変化を抑制する事が出来る。
第1導電層4のゲート絶縁層と第2導電層との密着性を高める機能は、スクラッチ試験法による定量的な評価や、より簡単に確認する手法として「JIS G0202」に定められている碁盤目試験により確認することができる。
第1導電層4のバリア層としての機能とは、金属分子の周辺膜中への拡散防止層としての機能、エレクトロマイグレーション、ストレスマイグレーション耐性を付与する機能をいう。該機能は、XPS、AES、TOF−SIMS等により層厚方向に対する組成分析を実施し、有機絶縁膜中に金属原子が拡散してないかで確認できる。また、エレクトロマイグレーション及び、ストレスマイグレーションについては、電極の抵抗値に大きな変化が無く、有機薄膜トランジスタが所望の動きをしていれば問題が発生してないと判断できる。
ここで、エレクトロマイグレーションとは、大電流ストレスを受けた金属配線中の金属原子の移動が原因でボイド形成又は原子の蓄積が生じ、配線の抵抗値増加、断線及び配線間ショート等の故障を引き起こす現象をいう。また、ストレスマイグレーションとは、金属配線膜が保護層(パッシベーション膜)又は層間絶縁膜から受ける応力に起因して、高温処理又は温度サイクルによって配線内の原子移動が起こり、抵抗値が変動したり断線する現象をいう。
有機半導体層8への電荷注入層としての機能とは、ホール又は電子を有機半導体層8へ注入する機能をいう。該機能は、有機薄膜トランジスタの電気特性評価により確認することができる。
有機半導体材料からなる有機半導体層8は、図7に示す様に、ソース電極とドレイン電極との間のゲート絶縁層3上に、例えば、スピンコート法により積層することができる。有機半導体層8の積層方法としては、スピンコート法、ディップコート法、ブレードコート法、キャピラリーコート法、スリットコート法、スプレーコート法、印刷法等の塗布手法が好ましい。
また、有機半導体材料としては、溶媒に溶解し、有機半導体層8を塗布法で形成できる材料であれば特に制限は無い。該有機半導体材料としては、6,13−ビス(トリイソプロピルシリルエチニル)ペンタセン(6,13-bis(triisopropylsilylethynyl) pentacene(Tips-Pentacene))、13,6−N−スルフィニルアセトアミドペンタセン(13,6-N-sulfinyl
acetamidopentacene(NSFAAP))、6,13−ジヒドロ−6,13−メタノペンタセン−15−オン(6,13-Dihydro-6,13-methanopentacene-15-one(DMP))、ペンタセン−N−スルフィニル−n−ブチルカルバマート付加物(Pentacene-N -sulfinyl-n -butylcarbamate adduct)、ペンタセン−N−スルフィニル−tert−ブチルカルバマート(Pentacene-
N -sulfinyl-tert -butylcarbamate)等のペンタセン前駆体、[1]ベンゾチエノ[3,2−b]ベンゾチオフェン([1]Benzothieno[3,2-b]benzothiophene (BTBT))、ポルフィリ
ン、可溶性基としてアルキル基等を有するオリゴチオフェン等の低分子化合物、ポリ(3−ヘキシルチオフェン)(P3HT)等のポリチオフェン、フルオレンコポリマー(例えば、フルオレンジイル基とチオフェンジイル基とを有する共重合体)等の高分子化合物等が挙げられる。
保護層10は、図1に示す様に、有機半導体層8上に有機絶縁材料と溶媒とを含む溶液をスピンコート法等により塗布して積層することができる。この時、必要に応じて、保護層10にコンタクトホール形成等のパターニングを施してもよい。パターン形成を行う場合は、保護層10に含まれる有機絶縁材料が感光性を有していることが好ましい。有機絶縁材料としては、分極を有さない材料が好ましく、誘電率が1.5(F/m)以上4.0(F/m)以下の材料が望ましい。また、架橋で硬化させてもよく、有機絶縁材料を乾燥してフィルムを形成し、高い絶縁耐圧を確保してもよい。
有機絶縁材料としては、PMMA(ポリメチルメタクリレート)、ポリスチレン、ポリエチレン、ポリイミド等のフッ素原子を有さない樹脂、例えば、旭硝子社製「Cytop」(商品名)、Dupont社製の「TEFLON」(登録商標)等のフッ素系樹脂等が挙げられる。また、これらの樹脂に含まれる繰り返し単位を有する共重合体や該樹脂又は該共重合体を含む組成物を用いてもよい。該共重合体はスチレンから誘導される繰り返し単位等の分極を有さない繰り返し単位を含むことが好ましく、該組成物は、ポリスチレン等の分極を有さない高分子化合物を含むことが好ましい。
一つの態様において、本発明の有機薄膜トランジスタの製造方法は、前記ボトムゲート・ボトムコンタクト構造の有機薄膜トランジスタのソース電極及びドレイン電極は第3導電層6を備えており、第3導電層6の形成は、パターンニングした第2導電層5と、第1導電層4の露出している部分の上に導電性材料の層を成膜し、該層を第2導電層5が完全に被覆されるようにパターニングすることにより行われる。この態様について、以下に詳述する。
第2の実施形態
次に、本発明の第2の実施形態を、図8から図16を用いて説明する。
図8は本発明の第2の実施形態である有機薄膜トランジスタの構造を示す断面図である。この有機薄膜トランジスタは、基板上1に、ゲート電極2及び該ゲート電極2を被覆するゲート絶縁層3を有し、該ゲート絶縁層3上に、第1導電層4、第2導電層5及び第3導電層6からなるソース電極及びドレイン電極を有し、該ソース・ドレイン電極7の間に有機半導体層8を有し、該有機半導体層8を被覆する保護層10を有する。
この有機薄膜トランジスタの基板1、ゲート電極2、ゲート絶縁層3に含まれる材料及び形成方法は、上記第1の実施形態と同様である。
次に、ソース・ドレイン電極について説明する。ソース・ドレイン電極7は第1導電層4、第2導電層5及び第3導電層6からなる。有機絶縁層上に第1導電層を積層する際には、塗布法、無電解めっき法又は原子層堆積法を用いることが好ましく、塗布法を用いることがより好ましい。これらの方法を用いることにより、ゲート絶縁層3に含まれる有機絶縁材料に対するプロセスダメージが少なくなる。
中でも、第1導電層4は、好ましくは、図9に示す様に、導電性材料と溶媒とを含む溶液を該ゲート絶縁層3上に塗布し乾燥させて連続層を積層し、その後パターニングして形成する。第1導電層4に含まれる材料、第1導電層4を積層する方法及び第1導電層4の機能は、上記第1の実施形態と同様である。
第2導電層5は、好ましくは、図10に示す様に、第1導電層4上に連続層として積層する。その後、第2導電層5は、図11に示す様に、マスク9を用いてパターニングされて、図12に示す様に、所望の位置に形成される。第2導電層5に含まれる材料及び第2導電層5の形成及びパターニングの方法は、上記第1の実施形態と同様である。
第3導電層6は、好ましくは、図13に示す様に、第1導電層4及び第2導電層5上に連続層として積層し、その後パターニングして形成する。
第3導電層6は、例えばTaNからスパッタリング法により積層することができる。その後、印刷法等により、積層された連続層上にマスクを形成し、マスクに被覆されていない第3導電層6(TaN膜)の部分を湿式エッチングにより除去してパターニングが行われる。TaN用エッチング液としては、例えば、シグマ・アルドリッチ社製の「667501」(商品名)等が用いられる。該パターニングにより、図14に示す様に、第2導電層5の上に第3導電層6を形成する。
例えば、第3導電層6は、第2導電層5の上面及び側面を被覆し、端部が第1導電層の上面と接するように形成される。
第3導電層6に含まれる材料は、TaN以外にも、金属、金属の化合物、金属を含む合金、半導体、半導体の化合物、半導体を含む合金、酸化物半導体等を用いることができる。金属、金属の化合物、金属を含む合金、半導体、半導体の化合物、半導体を含む合金、酸化物半導体の具体例としては、第1導電層4に含まれていてもよい金属、金属の化合物、金属を含む合金、半導体、半導体の化合物、半導体を含む合金、酸化物半導体と同じ材料が挙げられる。これらの中でも、Ti、Mo、Cr、Ta、W、Ni、Pd、Cu、Au、Pt、Ir、Co、Fe、V、Zr、これらの金属の化合物、これらの金属の酸化物又は窒化物、これらの金属のいずれかを含む合金、Si、B、Ge、これらの半導体の化合物、これらの半導体を含む合金、ZnO、ZTO(ZnSnO)、CdSnO、GaSnO、TlSnO、InGaZnO、CuAlO、SrCuO、LaCuOS等に代表される酸化物半導体が好ましい。
これらの金属や半導体を用いれば、第2導電層5に用いる銀や銀とパラジウムと銅の合金よりも高いマイグレーション性能を得る事ができるため、バリア層としての機能をもつことができる。更に好ましくは、酸化物半導体材料やPd、Au、Pt、Irなどの仕事関数が高い材料が電荷注入性の面からもより好ましい。
第2導電層5の導電性は第3導電層6の導電性よりも高くなることが好ましい。第2導電層5の導電性が第3電極層6の導電性よりも高くなることにより、第2導電層に、素子構成上不可欠なバスライン等、配線層としての機能を持たせることが可能となるためである。
スパッタリング法以外にも、物理気相成長(PVD)法、化学気相成長(CVD)法又は無電解めっき法により第3導電層6を積層してよい。第3導電層6は、原子層堆積(ALD)法等により成長させて積層してもよい。ALD法で積層する場合、導電層6に含まれる材料としては、Ti、Mo、Cr、Ta、W、Ni、Pd、Cu、Au、Pt、Ir、Co、Fe、V、Zr、これらの金属のいずれかを含む合金、これらの金属の酸化物又はこれらの金属の窒化物等が挙げられる。
その後、該第3導電層6をフォトリソグラフィによるパターニングや印刷法でエッチング保護層を直接印刷することによりパターニングしてもよい。
また、パターニングを簡便に行うためには、例えば、金属微粒子分散溶液のような導電性材料と溶媒とを含む分散溶液又はゾルゲル液を、印刷法により第2導電層5上に直接塗布して、第3導電層6を形成してもよい。又は、無電解めっき法を用いて、第2導電層5上に直接めっき触媒又はめっき触媒前駆体を印刷して、第2導電層等と共に該めっき触媒又はめっき触媒前駆体を上記導電性材料の金属イオンを含有する無電解めっき液に浸漬して金属等を堆積し、第3導電層6を形成してもよい。
第3導電層の層厚は、10〜500nmであることが好ましく、10〜100nmであることがより好ましい。
次に、パターニングされた第3導電層6をマスクとして、第3導電層6に対するエッチング選択比が高いアルカリエッチング液により第1導電層4の湿式エッチングを行い、第1導電層4を図15に示す様にパターニングして、ソース・ドレイン電極7を形成する。例えば、エッチング液のエッチング選択比が、第1導電層4:第3導電層6=10:1の場合、第1導電層4が500nmエッチングされる場合には、第3導電層6は、50nmしかエッチングされない。この場合、より好ましくは、第3導電層6が不溶であるエッチング液を用いる。
アルカリエッチング液としては、水酸化カリウム(KOH)の希釈水溶液、水酸化テトラメチルアンモニウム水溶液(TMAH)の希釈水溶液を用いてもよく、該溶液の濃度は、エッチングレートの調整のため如何様にも変更が可能であるが0.1wt%以上であることが好ましい。また、市販のアルカリエッチング液を使用してもよく、メルテックス株式会社製メルストリップシリーズ等が挙げられる。より好ましいアルカリエッチング液は、金属イオンが無い水酸化テトラメチルアンモニウム水溶液(TMAH)の希釈水溶液である。
他のパターニング法として、アルカリ系エッチング液であるTaN用エッチング液にて第3導電層6及び第1導電層4を同時に剥離してパターニングしてもよい。
第3導電層6は第2導電層5の上面及び側面を覆い、バリア層としての機能を有している。
また、第3導電層6は第2導電層5の上面及び側面を覆い、有機半導体層8への電荷注入層としての機能を有している。
またこの時、第3導電層6が第2導電層5の側面を確実に被覆する為、第3導電層6は第2導電層5に対して1辺あたり10nm以上はみ出していることが好ましく、1000nm程度はみ出していることがより好ましい。このため、必然的に第1導電層4も第3導電層6と同等量、第2導電層5からはみ出す構造となる。
有機半導体材料からなる有機半導体層8は、図16に示す様に、ソース電極とドレイン電極との間のゲート絶縁層上に積層することができる。有機半導体層8に含まれる材料及び有機半導体層8の形成方法は、上記第1の実施形態と同様である。
保護層10は、図8に示す通り、有機半導体層7上に有機絶縁材料と溶媒とを含む溶液を塗布して積層することができる。保護層10に含まれる材料及び保護層10の形成方法は、上記第1の実施形態と同様である。
本発明の有機薄膜トランジスタは、アクティブマトリックス表示装置、回路に用いることができる。尚、文中で挙げた印刷法とは、パターン塗布可能なスリットコート法、キャピラリーコート法、ブレードコート法、スプレーコート法、インクジェット法に代表される無版印刷法とフレキソ印刷、グラビア印刷、オフセット印刷、スクリーン印刷、マイクロコンタクト印刷、ナノインプリントに代表される有版印刷法である。
合成例1
(高分子化合物1の合成)
スチレン(和光純薬製)2.06g、2,3,4,5,6−ペンタフルオロスチレン(アルドリッチ製)2.43g、2−〔O−[1’−メチルプロピリデンアミノ]カルボキシアミノ〕エチル−メタクリレート(昭和電工製、商品名「カレンズMOI−BM」)1.00g、2,2’−アゾビス(2−メチルプロピオニトリル)0.06g、2−ヘプタノン(和光純薬製)14.06gを、50ml耐圧容器(エース製)に入れ、窒素をバブリングした後、密栓し、60℃のオイルバス中で48時間重合させて、高分子化合物1が溶解している粘稠な2−ヘプタノン溶液を得た。高分子化合物1は下記繰り返し単位を有している。ここで、( )の添え数字は繰り返し単位のモル分率を示している。
Figure 0005988564
高分子化合物1
得られた高分子化合物1の標準ポリスチレンから求めた重量平均分子量は、32800であった(島津製GPC、「Tskgel super HM−H」1本+「Tskgel super H2000」1本、移動相=THF)。
合成例2
(高分子化合物2の合成)
4−アミノスチレン(アルドリッチ製)3.50g、2,3,4,5,6−ペンタフルオロスチレン(アルドリッチ製)13.32g、2,2’−アゾビス(2−メチルプロピオニトリル)0.08g、2−ヘプタノン(和光純薬製)25.36gを、125ml耐圧容器(エース製)に入れ、窒素をバブリングした後、密栓し、60℃のオイルバス中で48時間重合させて、高分子化合物2が溶解している粘稠な2−ヘプタノン溶液を得た。
高分子化合物2は下記繰り返し単位を有している。ここで、( )の添え数字は繰り返し単位のモル分率を示している。
Figure 0005988564
高分子化合物2
得られた高分子化合物2の標準ポリスチレンから求めた重量平均分子量は、132000であった(島津製GPC、「Tskgel super HM−H」1本+「Tskgel super H2000」1本、移動相=THF)。
合成例3
(高分子化合物3の合成)
9,9−ジ−n−オクチルフルオレン−2,7−ジ(エチレンボロネート)6.40g、及び5,5’−ジブロモ−2,2’−バイチオフェン4.00gを含むトルエン(80mL)中に、窒素下において、テトラキス(トリフェニルホスフィン)パラジウム0.18g、メチルトリオクチルアンモニウムクロライド(Aldrich製、商品名「Aliquat 336」(登録商標))1.0g、及び2Mの炭酸ナトリウム水溶液24mLを加えた。この混合物を激しく攪拌し、加熱して24時間還流した。粘稠な反応混合物をアセトン500mLに注ぎ、繊維状の黄色のポリマーを沈澱させた。このポリマーを濾過によって集め、アセトンで洗浄し、真空オーブンにおいて60℃で一晩乾燥させた。得られたポリマーを高分子化合物3とよぶ。高分子化合物3は、下記繰り返し単位を有している。nは繰り返し単位の数を示している。高分子化合物3の標準ポリスチレンから求めた重量平均分子量は、61000であった(島津製GPC、「Tskgel super HM−H」1本+「Tskgel super H2000」1本、移動相=THF)。
Figure 0005988564
高分子化合物3
実施例1
(有機薄膜トランジスタの製造)
本発明の有機薄膜トランジスタの実施例を、図1から図7を用いて説明する。
本実施例では、基板(ガラス)1、該基板1上にゲート電極(Mo)2、該ゲート電極2上にゲート絶縁膜(有機絶縁膜)3、該ゲート絶縁膜3上に第1導電層4及び第2導電層5からなるソース電極7と、第1導電層4及び第2導電層5からなるドレイン電極7とを形成し、該ソース電極7と該ドレイン電極7との間に有機半導体層8を形成して有機薄膜トランジスタを製造した。
製造した有機薄膜トランジスタについては、真空プローバー内でトランジスタ特性を測定し特性を比較して本発明の効果を確認した。この時の真空プローバーの圧力は、約5×10−3Paとした。
次に、本発明の素子作製プロセスについて説明する。
最初に、洗浄済の基板1上にスパッタリング法でMo(モリブデン)層を形成し、フォトリソグラフィにより、ゲート電極2を形成した。フォトリソグラフィにおいて、フォトレジストは、東京応化工業社製「TFR−H PL」を、現像液は、ナガセケムテックス社製「NPD−18」を、レジスト剥離液は、東京応化工業社製「106」を、Moエッチング液は、関東化学社製の「S−80520」を使用した。フォトリソグラフィは、以下の工程により行った。Mo層上にフォトレジスト「TFR−H PL」の膜を形成し、フォトマスクを介して365nm UV光を照射した。次いで、現像液「NPD−18」を用いてフォトレジストの現像を行った。次いで、現像したフォトレジストをマスクとして、Mo層のMoが露出している部分を、Moエッチング液「S−80520」を用いて除去し、レジスト剥離液「106」を用いて残りのフォトレジストを剥離して、ゲート電極2のパターニングを行った。
次に、ゲート電極2を形成した基板をウエット洗浄し、その後、UVオゾン洗浄機にて300秒基板を洗浄し、その後、高分子化合物1、高分子化合物2及び2−ヘプタノンを含む溶液をゲート電極2上にスピンコート法により塗布して有機層を形成した。この有機層は熱架橋性であるため、直ぐに、焼成処理を行い、ゲート絶縁層3を得た。この時の焼成処理は、最終焼成処理として220℃で25分焼成した。ゲート絶縁層3の層厚は、約470nmであった。
次に、該ゲート絶縁層3上に、5価の酸化タングステン(W)のゾルゲル液をスピンコート法により塗布した。塗布後、5分程度大気中で乾燥させた後、150℃で30分の焼成処理を行い図2に示す第1導電層4を得た。第1導電層4の層厚を求めるため、予め同条件で塗布して形成した層の層厚は30nmであった。
第1導電層4の形成に使用したWのゾルゲル液は、タングステンアルコキシドとしてタングステン(V)エトキシド(tungsten(V)ethoxide)を使用し、安定化剤としてβ−ジケトン化合物であるアセチルアセトンを使用した。今回作製した基板のゾル−ゲル溶液の溶媒は、2,3,4,5,6−ペンタフルオロトルエンを使用した。
次に、スパッタリング法により第1導電層4上に銅(Cu)を100nmの層厚で形成し、図3に示す第2導電層5を得た。この後、該第2導電層5をフォトリソグラフィ法により図4の形態を経て、図5に示す第2導電層5の形状へ加工した。フォトリソグラフィにおいて、フォトレジストは、東京応化工業社製「TFR−H PL」を、現像液は、ナガセケムテックス社製「NPD−18」を、レジスト剥離液は、東京応化工業社製「106」を、Cuエッチング液は、関東化学社製の混酸「Cu−03」を使用した。フォトリソグラフィは、以下の工程により行った。Cu層上にフォトレジスト「TFR−H PL」の膜を形成し、フォトマスクを介して365nm UV光を照射した。次いで、現像液「NPD−18」を用いてフォトレジストの現像を行った。次いで、現像したフォトレジストをマスクとして、第2導電層5のCuが露出している部分を、Cuエッチング液「Cu−03」を用いて除去し、レジスト剥離液「106」を用いて残りのフォトレジストを剥離して、第2導電層5のパターニングを行った。
次いで、パターニングされた第2導電層5をマスクとして、水酸化テトラメチルアンモニウム水溶液(TMAH水溶液:濃度2.38%)で、第1導電層4の第2導電層5に覆われていない部分(露出している部分)をエッチングし、図6に示す素子構造を得た。この時のエッチング時間は、90秒とした。最後に、ゲート絶縁膜3と第1電極層4、第2電極層5の密着性を向上させると共に、プロセス中に付着した水分を除去するため、最終焼成を窒素雰囲気で酸素濃度0.1ppm未満、水分濃度1.0ppm未満のグローブボックス中で200℃10分実施した。
該第1導電層4を設ける事により、該第2導電層5を作製する際のプロセスダメージから該ゲート絶縁層3表面を保護する事ができる。また、該第1導電層4を設ける事により、ゲート絶縁層3と第2導電層5の密着性が向上する。第1導電層は第2導電層5のゲート絶縁層3への拡散に対する保護層としても機能する。
次に、有機半導体層8として、キシレン溶液に0.5wt%の濃度で高分子化合物3を溶かし、窒素雰囲気下のグローブボックス内でスピンコート法により基板上へ塗布し、塗布後直ぐに200℃10分の焼成処理を実施した。この時の有機半導体層の層厚は約16nmであった。この様にして、図7に示す構造を有する有機薄膜トランジスタを得た。また、この時はソース電極、及び、ドレイン電極への表面処理は行わなかった。
この後、真空プローバーでトランジスタ特性として、20〜−40Vの伝達(Vg−Id)特性と0〜−40Vの出力(Vd−Id)特性を測定した。この時の真空プローバーの真空度は、約5×10−3Paであった。トランジスタ特性を表2に示す。
ゲート絶縁層のゲート絶縁層表面ラフネスRaは走査型プローブ顕微鏡(エスアイアイ(SII)・ナノテクノロジー社製、商品名「SPI3800N」)を用いて測定した。
ゲート絶縁層表面接触角は自動接触角測定装置(英弘精機社製、商品名「OCA20」)を用いて測定した。移動度μ、最大電流Ion、スレッショルド電圧Vth、ヒステリシス、Swing Factor(サブスレッショルドスイング)、On/Off比は、伝達(Vg−Id)特性から求めた。また、伝達(Vg−Id)特性のドレイン電流Idが立ち上がる弱反転領域形成開始電圧をドレイン電流立ち上り電圧Vonと定義し、スレッショルド電圧Vthとは別に表2に示す。
比較例1
比較例として、基板(ガラス)1、該基板1上にゲート電極(Mo)2、該ゲート電極2上にゲート絶縁層(有機絶縁層)3、該ゲート絶縁層3上に本発明の第2導電層5と同材料の単一金属1層による単層のソース電極、及び、ドレイン電極を形成し、該ソース電極と該ドレイン電極との間に有機半導体層を形成して、有機薄膜トランジスタを製造した。
即ち、第1導電層4を形成せず、ゲート絶縁層3上に第2導電層5をスパッタリング法で成膜し、フォトリソグラフィによりパターニングしてソース電極及びドレイン電極を形成した以外は、実施例1と同様に有機薄膜トランジスタを製造し、トランジスタ特性を測定した。得られたトランジスタ特性を表2に示す。
参考例1
実施例1と同様の方法で、基板1上にゲート電極2を形成し、該ゲート電極上にゲート絶縁層3を形成した。該ゲート絶縁層のゲート絶縁層表面ラフネスRa及びゲート絶縁層表面接触角を測定した。結果を表2のプロセス未通過ゲート絶縁層の欄に示す。
[表2]
Figure 0005988564
比較例1の有機薄膜トランジスタに対し、実施例1の有機薄膜トランジスタは、全てのトランジスタ特性が改善していることがわかる。また、ゲート絶縁層3の表面ラフネスと表面接触角については、実施例1の有機薄膜トランジスタは、スパッタリング法によりCu層を形成する際のゲート絶縁層へのプロセスダメージが大幅に緩和されており、参考例1のプロセス未通過のゲート絶縁層と同等の値を示している。比較例1の有機薄膜トランジスタは、有機絶縁層上に、直接高出力のスパッタ法でCu層を形成したため、ゲート絶縁層への物理的ダメージによる影響がゲート絶縁層3の表面ラフネスと表面接触角に顕著に表れている。
比較例1の有機薄膜トランジスタと比較して、実施例1の有機薄膜トランジスタは、ドレイン電流立ち上がり電圧Vonが0[V]に近く、ヒステリシスが殆ど無く、最大電流Ionは約2桁改善した。
以上、本発明の方法により、特性が高い有機薄膜トランジスタを得られた。また、本発明の有機薄膜トランジスタは、図1及び図8に示す保護層10を最後に形成するのがより好ましい。更に、第1導電層(W層)4の部分に電荷注入性がより良好な材料を用いる事により、電荷注入層としての機能を備える事がより好ましい。本発明の有機薄膜トランジスタは、アクティブマトリックス表示装置、回路に用いることができる。
また、本発明が実施例により限定されるものではないことは言うまでもない。
1…基板、
2…ゲート電極、
3…ゲート絶縁層、
4…第1導電層、
5…第2導電層、
6…第3導電層、
7…ソース・ドレイン電極、
8…有機半導体層、
9…マスク、
10…保護層。

Claims (6)

  1. ボトムゲート・ボトムコンタクト構造の有機薄膜トランジスタを製造する方法であって、
    ゲート電極、及び該ゲート電極を被覆し、有機絶縁材料を含むゲート絶縁層を形成する工程;
    酸化タングステン、酸化銀、酸化銅、酸化亜鉛、銀塩、銀及び銅からなる群から選ばれる少なくとも1種の材料と溶媒とを含む分散液又はゾルゲル液を該ゲート絶縁層上に塗布法で成膜し焼成することにより、導電性材料からなる第1導電層を成膜する工程
    該第1導電層上に更に導電性材料からなる第2導電層を成膜後、該導電層を所定の形状にパターニングすることにより第2導電層を形成する工程;
    該第2導電層で被覆されていない第1導電層の部分を除去して、第1導電層及び第2導電層からなるソース電極及びドレイン電極を形成する工程;
    ソース電極、ドレイン電極、及び該ソース電極と該ドレイン電極に挟まれた領域のゲート絶縁層が被覆されるように、有機半導体層を形成する工程;
    を有し、
    該第2導電層の導電性材料は金属、合金、金属酸化物又は金属窒化物であり、
    該第2導電層の成膜は物理気相成長法を使用して行われる、
    方法。
  2. 前記第1導電層を成膜する工程は、タングステンアルコキシドから作られたゾルゲル液を塗布法で該ゲート絶縁層上に成膜し、ゲル化したタングステンアルコキシドを焼成処理して酸化タングステンからなる導電層を得る工程である請求項1に記載の方法。
  3. 前記タングステンアルコキシドのゾルゲル液の溶媒は、プロピレングリコールモノメチルエーテルアセテート(PGMEA)もしくは、2,3,4,5,6−ペンタフルオロトルエンである請求項に記載の方法。
  4. 前記第1導電層の除去は、前記第2導電層をマスクとして用いて湿式エッチング法により行い、そのときに用いられるエッチング液はアルカリ溶液であり、第1導電層と第2導電層のエッチング選択比が10:1以上である請求項1〜のいずれか一項に記載の方法。
  5. 前記ボトムゲート・ボトムコンタクト構造の有機薄膜トランジスタのソース電極及びドレイン電極は第3導電層を備えており、
    前記第3導電層の形成は、パターンニングされた第2導電層と、第1導電層の露出している部分の上に導電性材料の層を成膜した後、該導電性材料の層を第2導電層が完全に被覆されるようにパターニングすることにより行われる請求項1〜のいずれか一項に記載の方法。
  6. 前記第2導電層の導電性材料が、Ag、Al、Au、Cd、Co、Cr、Cu、Fe、Mg、Mo、Ni、Pb、Pd、Pt、Sn、Ta、Ti、V、W、Zn、Zr又はこれらの金属のいずれかを含む合金である請求項1〜5のいずれか一項に記載の方法。
JP2011234967A 2010-10-27 2011-10-26 有機薄膜トランジスタの製造方法及び該方法で製造された有機薄膜トランジスタ Expired - Fee Related JP5988564B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011234967A JP5988564B2 (ja) 2010-10-27 2011-10-26 有機薄膜トランジスタの製造方法及び該方法で製造された有機薄膜トランジスタ

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010240286 2010-10-27
JP2010240286 2010-10-27
JP2011234967A JP5988564B2 (ja) 2010-10-27 2011-10-26 有機薄膜トランジスタの製造方法及び該方法で製造された有機薄膜トランジスタ

Publications (2)

Publication Number Publication Date
JP2012109560A JP2012109560A (ja) 2012-06-07
JP5988564B2 true JP5988564B2 (ja) 2016-09-07

Family

ID=45993900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011234967A Expired - Fee Related JP5988564B2 (ja) 2010-10-27 2011-10-26 有機薄膜トランジスタの製造方法及び該方法で製造された有機薄膜トランジスタ

Country Status (3)

Country Link
JP (1) JP5988564B2 (ja)
TW (1) TW201230426A (ja)
WO (1) WO2012057194A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105027259A (zh) * 2013-03-06 2015-11-04 吉坤日矿日石能源株式会社 具有凹凸构造的构件的制造方法以及通过该制造方法制造出的具有凹凸构造的构件
KR101499076B1 (ko) * 2013-08-06 2015-03-06 (주) 파루 이중막을 구비한 박막 트랜지스터 및 그 제조방법
JP6092134B2 (ja) * 2014-01-30 2017-03-08 富士フイルム株式会社 有機薄膜トランジスタの製造方法
WO2015159328A1 (ja) 2014-04-15 2015-10-22 株式会社Joled 薄膜トランジスタ基板の製造方法
CN105609637B (zh) * 2016-03-04 2017-12-19 北京大学深圳研究生院 沉积氧化物薄膜的方法、有机场效应晶体管及其制备方法
TWI731791B (zh) * 2020-09-21 2021-06-21 丁肇誠 半導體測試晶片及其製作方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146430A (ja) * 2002-10-22 2004-05-20 Konica Minolta Holdings Inc 有機薄膜トランジスタ、有機tft装置およびそれらの製造方法
JP4826074B2 (ja) * 2004-08-18 2011-11-30 ソニー株式会社 電界効果型トランジスタ
JP5084173B2 (ja) * 2005-05-31 2012-11-28 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP4984458B2 (ja) * 2005-08-29 2012-07-25 ソニー株式会社 半導体装置
JP5157582B2 (ja) * 2008-03-28 2013-03-06 コニカミノルタホールディングス株式会社 有機薄膜トランジスタの製造方法
JP5135073B2 (ja) * 2008-06-18 2013-01-30 出光興産株式会社 有機薄膜トランジスタ

Also Published As

Publication number Publication date
JP2012109560A (ja) 2012-06-07
TW201230426A (en) 2012-07-16
WO2012057194A1 (ja) 2012-05-03

Similar Documents

Publication Publication Date Title
JP5988564B2 (ja) 有機薄膜トランジスタの製造方法及び該方法で製造された有機薄膜トランジスタ
EP2589085B1 (en) Thin film transistors
EP1515378A2 (en) Method of forming electrodes for field effect transistors
JP5221896B2 (ja) 有機電子素子の電極形成方法、これによって形成された電極を含む有機薄膜トランジスタ及びこれを備えた表示素子
TWI416249B (zh) 光阻組成物、利用其以形成薄膜圖案之方法,與利用其以製造薄膜電晶體陣列面板之方法
KR102094847B1 (ko) 박막 트랜지스터를 포함하는 표시 기판 및 이의 제조 방법
JP5512144B2 (ja) 薄膜トランジスタ及びその製造方法
JP6274029B2 (ja) 圧力センサ装置およびその製造方法
JP6394096B2 (ja) 圧力センサ装置
TWI677104B (zh) 薄膜電晶體、薄膜電晶體之製造方法及使用薄膜電晶體之影像顯示裝置
JP6887806B2 (ja) 薄膜トランジスタおよびその製造方法
US20110254061A1 (en) Transistor and method of fabricating the same
WO2012057195A1 (ja) 積層構造のソース・ドレイン電極を有する有機薄膜トランジスタ
WO2009150886A1 (ja) 酸化物薄膜トランジスタ、及びその製造方法
US9123588B2 (en) Thin-film transistor circuit substrate and method of manufacturing the same
JP5988565B2 (ja) 電荷注入特性が高い有機薄膜トランジスタ
WO2011052618A1 (ja) 有機表面保護層組成物及び有機表面保護方法
JP4984458B2 (ja) 半導体装置
CN102751448B (zh) 半导体元件及其制造方法
JP7206887B2 (ja) 有機薄膜トランジスタおよび電子装置
CN114496764B (zh) 一种半导体器件及其制备方法
KR102197263B1 (ko) 박막 트랜지스터를 포함하는 표시 기판 및 이의 제조 방법
US8569171B2 (en) Mask-based silicidation for FEOL defectivity reduction and yield boost
KR100822270B1 (ko) 박막 트랜지스터 및 그 제조방법
TWI508190B (zh) 薄膜電晶體及其製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160809

R150 Certificate of patent or registration of utility model

Ref document number: 5988564

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees