JP5918041B2 - 光電変換装置の製造方法 - Google Patents

光電変換装置の製造方法 Download PDF

Info

Publication number
JP5918041B2
JP5918041B2 JP2012141052A JP2012141052A JP5918041B2 JP 5918041 B2 JP5918041 B2 JP 5918041B2 JP 2012141052 A JP2012141052 A JP 2012141052A JP 2012141052 A JP2012141052 A JP 2012141052A JP 5918041 B2 JP5918041 B2 JP 5918041B2
Authority
JP
Japan
Prior art keywords
photoelectric conversion
semiconductor layer
film
electrode layer
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012141052A
Other languages
English (en)
Other versions
JP2013236043A (ja
Inventor
英章 浅尾
英章 浅尾
浩充 小川
浩充 小川
計匡 梅里
計匡 梅里
遼 松岡
遼 松岡
紳之介 牛尾
紳之介 牛尾
通真 菊池
通真 菊池
佳英 大川
佳英 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2012141052A priority Critical patent/JP5918041B2/ja
Publication of JP2013236043A publication Critical patent/JP2013236043A/ja
Application granted granted Critical
Publication of JP5918041B2 publication Critical patent/JP5918041B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Description

本発明は、I−III−VI族化合物を含む半導体層を用いた光電変換装置の製造方法に関
するものである。
太陽光発電等に使用される光電変換装置として、CISやCIGS等のI−III−VI族
化合物を含む半導体層を光吸収層に用いたものがある。このような光電変換装置は、例えば特許文献1に記載されている。
このようなI−III−VI族化合物を含む半導体層を用いた光電変換装置は、複数の光電
変換セルが平面的に並設された構成を有する。各光電変換セルは、ガラス等の基板の上に、金属電極等の下部電極と、光吸収層やバッファ層等からなる光電変換層と、透明電極や金属電極等の上部電極とが、この順に積層されて構成される。また、複数の光電変換セルは、隣り合う一方の光電変換セルの上部電極と他方の光電変換セルの下部電極とが接続導体によって電気的に接続されることで、電気的に直列に接続されている。
このようなI−III−VI族化合物を含む半導体層は、下部電極上にI−III−VI族化合物の原料を含む皮膜が形成され、この皮膜が熱処理されることによって形成される。
I−III−VI族化合物の原料としては、I−III−VI族化合物を構成する元素の塩や錯体等が用いられる。例えば特許文献2には、1つの有機化合物内にCuと、Seと、InもしくはGaとを存在させた単一源前駆体(Single Source Precursor)がI−III−VI族化合物の原料として用いられることが記載されている。
特開2000−299486号公報 米国特許第6992202号明細書
I−III−VI族化合物を含む半導体層を用いた光電変換装置には、光電変換効率の向上
が常に要求される。この光電変換効率は、光電変換装置において太陽光のエネルギーが電気エネルギーに変換される割合を示し、例えば、光電変換装置から出力される電気エネルギーの値が、光電変換装置に入射される太陽光のエネルギーの値で除されて、100が乗じられることで導出される。
本発明は、上記課題に鑑みてなされたものであり、光電変換装置における光電変換効率の向上を目的とする。
本発明の一実施形態に係る光電変換装置の製造方法は、電極層上に、I−B族元素、イ
ンジウム元素およびガリウム元素を含むとともに少なくとも前記電極層とは反対側の表面部に硫黄元素を含んでおり、前記表面部における硫黄元素の含有率が残部よりも高い皮膜を作製する工程と、該皮膜をセレン元素を含む雰囲気で加熱することによって、表面部においてはガリウム元素が前記電極層から離れるほど相対原子数比が増加するように傾斜しているとともに残部においては前記電極層に近づくほど相対原子数比が増加するように傾斜したI−III−VI族化合物を含む半導体層にする工程とを具備する。
本発明の上記実施形態によれば、光電変換効率の高い光電変換装置を提供することができる。
本発明の一実施形態に係る光電変換装置の製造方法を用いて作製した光電変換装置の一例を示す斜視図である。 図1の光電変換装置の断面図である。 光電変換装置の製造途中の様子を模式的に示す断面図である。 光電変換装置の製造途中の様子を模式的に示す断面図である。 光電変換装置の製造途中の様子を模式的に示す断面図である。 光電変換装置の製造途中の様子を模式的に示す断面図である。 光電変換装置の製造途中の様子を模式的に示す断面図である。 光電変換装置の製造途中の様子を模式的に示す断面図である。 光電変換装置の製造途中の様子を模式的に示す断面図である。 光電変換装置の製造途中の様子を模式的に示す断面図である。 第1の半導体層の厚み方向の組成分布を示すグラフである。
以下、本発明の一実施形態に係る光電変換装置の製造方法について、図面を参照しながら説明する。なお、図面においては同様な構成および機能を有する部分については同一符号が付されており、下記説明では重複説明が省略される。また、図面は模式的に示されたものであり、各図における各種構造のサイズおよび位置関係等は正確に図示されたものではない。
<(1)光電変換装置の構成>
図1は、本発明の一実施形態に係る光電変換装置の製造方法を用いて作製した光電変換装置11の一例を示す斜視図である。図2は、図1の光電変換装置11のXZ断面図である。なお、図1から図10には、光電変換セル10の配列方向(図1の図面視左右方向)をX軸方向とする右手系のXYZ座標系が付されている。
光電変換装置11は、基板1の上に複数の光電変換セル10が並設された構成を有している。図1では、図示の都合上、2つの光電変換セル10のみが示されているが、実際の光電変換装置11には、図面のX軸方向、或いは更に図面のY軸方向に、多数の光電変換セル10が平面的に(二次元的に)配列されている。
各光電変換セル10は、下部電極層2、第1の半導体層3、第2の半導体層4、上部電極層5、および集電電極7を主に備えている。光電変換装置11では、上部電極層5および集電電極7が設けられた側の主面が受光面となっている。また、光電変換装置11には、第1〜3溝部P1,P2,P3といった3種類の溝部が設けられている。
基板1は、複数の光電変換セル10を支持するものであり、例えば、ガラス、セラミックス、樹脂、または金属等の材料で構成されている。例えば、基板1として、1〜3mm程度の厚さを有する青板ガラス(ソーダライムガラス)が用いられてもよい。
下部電極層2は、基板1の一主面の上に設けられた導電層であり、例えば、モリブデン(Mo)、アルミニウム(Al)、チタン(Ti)、タンタル(Ta)、または金(Au)等の金属、あるいはこれらの金属の積層構造体からなる。また、下部電極層2は、0.2〜1μm程度の厚さを有し、例えば、スパッタリング法または蒸着法等の公知の薄膜形成方法によって形成される。
光吸収層としての第1の半導体層3は、下部電極層2の+Z側の主面(一主面ともいう)の上に設けられた、第1の導電型(ここではp型の導電型)を有する半導体層であり、1〜3μm程度の厚さを有している。第1の半導体層3はI−III−VI族化合物を含む半導体層である。I−III−VI族化合物とは、I−B族元素(11族元素ともいう)と、III−B族元素(13族元素ともいう)と、VI−B族元素(16族元素ともいう)とを含んだ化合物である。そして、第1の半導体層3は、III−B族元素として、少なくともインジウム元素(In)およびガリウム元素(Ga)を含むとともに、VI−B族元素として、少なくともセレン元素(Se)を含んでいる。このようなI−III−VI族化合物としては、例えば、Cu(In,Ga)Se(二セレン化銅インジウム・ガリウム、CIGSともいう)、Cu(In,Ga)(Se,S)(二セレン・イオウ化銅インジウム・ガリウム、CIGSSともいう)等が挙げられる。なお、第1の半導体層3は、異なる組成のI−III−VI族化合物の層が積層されたものであってもよく、例えば、CIGS層とCIGSS層との積層体であってもよい。
第2の半導体層4は、第1の半導体層3の一主面の上に設けられた半導体層である。この第2の半導体層4は、第1の半導体層3の導電型とは異なる導電型(ここではn型の導電型)を有している。第1の半導体層3と第2の半導体層4との接合によって、第1の半導体層3で光電変換されて生じた正負キャリアが良好に電荷分離される。なお、導電型が異なる半導体とは、伝導担体(キャリア)が異なる半導体のことである。また、上記のように第1の半導体層3の導電型がp型である場合、第2の半導体層4の導電型は、n型でなく、i型であっても良い。更に、第1の半導体層3の導電型がn型またはi型であり、第2の半導体層4の導電型がp型である態様も有り得る。
第2の半導体層4は、例えば、硫化カドミウム(CdS)、硫化インジウム(In)、硫化亜鉛(ZnS)、酸化亜鉛(ZnO)、セレン化インジウム(InSe)、In(OH,S)、(Zn,In)(Se,OH)、および(Zn,Mg)O等の化合物半導体によって構成されている。そして、電流の損失が低減される観点から言えば、第2の半導体層4は、1Ω・cm以上の抵抗率を有するものとすることができる。なお、第2の半導体層4は、例えばケミカルバスデポジション(CBD)法等で形成される。
また、第2の半導体層4は、第1の半導体層3の一主面の法線方向に厚さを有する。この厚さは、例えば10〜200nmに設定される。
上部電極層5は、第2の半導体層4の上に設けられた透明導電膜であり、第1の半導体層3において生じた電荷を取り出す電極である。上部電極層5は、第2の半導体層4よりも低い抵抗率を有する物質によって構成されている。上部電極層5には、いわゆる窓層と呼ばれるものも含まれ、この窓層に加えて更に透明導電膜が設けられる場合には、これらが一体の上部電極層5とみなされても良い。
上部電極層5は、禁制帯幅が広く且つ透明で低抵抗の材料を主に含んでいる。このような材料としては、例えば、ZnO、InおよびSnO等の金属酸化物半導体等が採用され得る。これらの金属酸化物半導体には、Al、B、Ga、InおよびF等のうちの何れかの元素が含まれても良い。このような元素が含まれた金属酸化物半導体の具体例としては、例えば、AZO(Aluminum Zinc Oxide)、GZO(Gallium Zinc Oxide)、
IZO(Indium Zinc Oxide)、ITO(Indium Tin Oxide)、FTO(Fluorine tin Oxide)等がある。
上部電極層5は、スパッタリング法、蒸着法、または化学的気相成長(CVD)法等によって、0.05〜3.0μmの厚さを有するように形成される。ここで、第1の半導体層3から電荷が良好に取り出される観点から言えば、上部電極層5は、1Ω・cm未満の
抵抗率と、50Ω/□以下のシート抵抗とを有するものとすることができる。
第2の半導体層4および上部電極層5は、第1の半導体層3が吸収する光の波長領域に対して光を透過させ易い性質(光透過性ともいう)を有する素材によって構成され得る。これにより、第2の半導体層4と上部電極層5とが設けられることで生じる、第1の半導体層3における光の吸収効率の低下が低減される。
また、光透過性が高められると同時に、光反射のロスが防止される効果と光散乱効果とが高められ、更に光電変換によって生じた電流が良好に伝送される観点から言えば、上部電極層5は、0.05〜0.5μmの厚さとなるようにすることができる。更に、上部電極層5と第2の半導体層4との界面で光反射のロスが低減される観点から言えば、上部電極層5と第2の半導体層4との間で絶対屈折率が略同一となるようにすることができる。
集電電極7は、Y軸方向に離間して設けられ、それぞれがX軸方向に延在している。集電電極7は、導電性を有する電極であり、例えば、銀(Ag)等の金属からなる。
集電電極7は、第1の半導体層3において発生して上部電極層5において取り出された電荷を集電する役割を担う。集電電極7が設けられれば、上部電極層5の薄層化が可能となる。
集電電極7および上部電極層5によって集電された電荷は、第2溝部P2に設けられた接続導体6を通じて、隣の光電変換セル10に伝達される。接続導体6は、例えば、図2に示されるように集電電極7のY軸方向への延在部分によって構成されている。これにより、光電変換装置11においては、隣り合う光電変換セル10の一方の下部電極層2と、他方の集電電極7とが、第2溝部P2に設けられた接続導体6を介して電気的に直列に接続されている。なお、接続導体6は、これに限定されず、上部電極層5の延在部分によって構成されていてもよい。
集電電極5は、良好な導電性が確保されつつ、第1の半導体層3への光の入射量を左右する受光面積の低下が最小限にとどめられるように、50〜400μmの幅を有するものとすることができる。
<(2)光電変換装置の製造方法の第1の例>
図3から図10は、光電変換装置11の製造途中の様子をそれぞれ模式的に示す断面図である。なお、図3から図10で示される各断面図は、図2で示された断面に対応する部分の製造途中の様子を示す。
まず、図3で示されるように、洗浄された基板1の略全面に、スパッタリング法等を用いて、Mo等からなる下部電極層2を成膜する。そして、下部電極層2の上面のうちのY方向に沿った直線状の形成対象位置からその直下の基板1の上面にかけて、第1溝部P1を形成する。第1溝部P1は、例えば、YAGレーザー等によるレーザー光を走査しつつ形成対象位置に照射することで溝加工を行なう、レーザースクライブ加工によって形成することができる。図4は、第1溝部P1を形成した後の状態を示す図である。
第1溝部P1を形成した後、下部電極層2の上に、I−B族元素、インジウム元素およびガリウム元素を含むとともに少なくとも下部電極層2とは反対側の表面部(以下、皮膜Mの下部電極層2とは反対側の表面部のことを、単に皮膜Mの表面部ともいう)に硫黄元素を含む皮膜Mを作製する。そして、この皮膜Mを、セレン元素を含む雰囲気で加熱することによってI−III−VI族化合物を含む第1の半導体層3にする。
このように少なくとも表面部に硫黄元素を含む皮膜Mを形成し、この皮膜Mをセレン化することによって、第1の半導体層3の下部電極層2とは反対側の表面部(以下、第1の半導体層3の下部電極層2とは反対側の表面部のことを、単に第1の半導体層3の表面部ともいう)におけるガリウム元素の含有率を容易に制御することが可能となり、開放電圧が高く、光電変換効率の高い光電変換装置11とすることができる。これは以下の理由によると考えられる。I−B族元素、インジウム元素およびガリウム元素を含む皮膜Mをセレン化する場合、ガリウム元素よりもインジウム元素の方がセレン化物の結晶を生じやすい傾向がある。そのため、雰囲気中のセレン元素との反応が生じやすい皮膜Mの表面部において、インジウム元素とセレン元素と反応して結晶化するとともに、反応性の低いガリウム元素は下部電極層2側に移動する傾向がある。よって、第1の半導体層3の表面部において、インジウム元素とガリウム元素との合計原子数に対するガリウム元素の相対原子数比は、低くなり易い。その結果、開放電圧が小さくなって光電変換効率を十分に高めることが困難である。一方、上記のように少なくとも表面部に硫黄元素を含む皮膜Mを形成し、この皮膜Mをセレン化すると、硫黄元素が存在する状態では、逆にガリウム元素が硫化物の結晶を生じやすい傾向があるため、第1の半導体層3の表面部でのガリウム元素の相対原子数比がある程度高くなるように制御しやすくなる。よって、第1の半導体層3の開放電圧を高め、光電変換効率を高めることが可能となる。
なお、皮膜M中のI−B族元素、インジウム元素、ガリウム元素および硫黄元素の各元素は、すべて均一に皮膜M中に混在していてもよいが、複数の元素がそれぞれ別々の層に存在した状態(特定の元素が皮膜Mの厚み方向の一部分だけに存在する状態)であってもよい。これは、数μm〜数10μm程度の厚みの皮膜Mであれば、複数の元素がそれぞれ別々の層に存在していたとしても、皮膜Mを加熱処理する際、各元素が拡散し合うことによって、各元素同士が反応し合うことができるためである。
皮膜Mは、I−B族元素、インジウム元素、ガリウム元素および硫黄元素のうち、いずれか1種または複数種を含む原料を用いて、これらを所望の組成比となるように組み合わせて作製することができる。具体的には、上記原料を含む原料溶液を塗布することによって、あるいは、スパッタリング法や蒸着法等によって、皮膜Mを形成することができる。皮膜Mは複数層から成る積層体であってもよい。
I−B族元素、インジウム元素、ガリウム元素および硫黄元素の各元素は、それぞれ皮膜M中に化合物の状態、合金の状態、および単体の状態のいずれの状態で存在していてもよい。皮膜Mの内部で良好に硫化を進行させ、生成する第1の半導体層3の表面部におけるガリウム元素の相対原子数比を容易に高くできるという観点からは、上記各元素は、有機配位子が配位した有機錯体の状態で皮膜M中に存在していてもよい。特に、反応性を高くして、結晶性を高めるという観点からは、硫黄元素が有機硫黄化合物として存在し、この有機硫黄化合物が、I−B族元素、インジウム元素およびガリウム元素の少なくとも1種に配位した有機錯体を用いてもよい。
有機硫黄化合物とは、硫黄元素を含む有機化合物であり、炭素元素と硫黄元素との共有結合を有する有機化合物である。有機硫黄化合物としては、例えば、チオールや、スルフィド、ジスルフィド等を用いることができる。有機硫黄化合物が配位した有機錯体の具体例としては、銅元素や銀元素等のI−B族元素に有機硫黄化合物が配位した有機錯体、インジウム元素に有機硫黄化合物が配位した有機錯体、ガリウム元素に有機硫黄化合物が配位した有機錯体、または、有機硫黄化合物がI−B族元素およびIII−B族元素の両方に配位して1つの分子中にI−B族元素とIII−B族元素と硫黄元素とを有する単一源有機錯体(特許文献2参照)等を用いることができる。
以上のような、I−B族元素、インジウム元素、ガリウム元素および硫黄元素のいずれ
かを含む有機錯体を、ピリジンやアニリン等の有機溶媒に溶解して原料溶液とする。原料溶液における硫黄元素のモル数は、III−B族元素の合計モル数の1〜10倍程度とする
ことができる。そして、この原料溶液を、例えば、スピンコータ、スクリーン印刷、ディッピング、スプレー、ダイコータ等によって第1の電極層2上に膜状に被着し、溶媒を乾燥によって除去することにより、皮膜Mを形成することができる。なお、皮膜Mは、上記皮膜形成工程を繰り返すことによって、複数層の積層体としてもよい。図5は、皮膜Mを形成した後の状態を示す図である。
そして、作製した皮膜Mを、セレン元素がセレン蒸気またはセレン化水素等として含まれている雰囲気において、450〜600℃で加熱してセレン化を行なうことによって、I−B族元素、インジウム元素、ガリウム元素およびセレン元素を含むI−III−VI族化
合物(CIGS)を含む第1の半導体層3、あるいは、I−B族元素、インジウム元素、ガリウム元素、セレン元素および硫黄元素を含むI−III−VI族化合物(CIGSS)を
含む第1の半導体層3を作製することができる。つまり、皮膜Mに含まれていた硫黄元素は、雰囲気中のセレン元素によって置換される傾向にあり、例えば、上記セレン化工程における加熱温度や加熱時間を調整することによって、硫黄元素からセレン元素への置換の程度を変えることができる。硫黄元素のほとんどがセレン元素に置換されれば、CIGSを主として含む第1の半導体層3が形成され、硫黄元素のセレン元素による置換の程度が低ければ、CIGSSを主として含む第1の半導体層3が形成される。図6は、第1の半導体層3を形成した後の状態を示す図である。
なお、上記皮膜Mを形成するための原料溶液には、さらにセレン元素を添加しておいてもよい。セレン元素をさらに添加しておくことによって、皮膜Mのセレン化工程において、雰囲気中のセレン元素だけでなく、皮膜M中のセレン元素をもセレン源として利用することができ、皮膜Mの全面においてムラなく、セレン化反応をより良好に行なうことができる。
原料溶液の塗布によって皮膜Mを容易に作製できるという観点からは、セレン元素は、有機配位子が配位した有機錯体の状態で存在していてもよい。反応性が高く、結晶性を高めるという観点からは、セレン元素が有機セレン化合物として存在し、この有機セレン化合物が、I−B族元素、インジウム元素およびガリウム元素の少なくとも1種に配位した有機錯体を用いてもよい。
有機セレン化合物とは、セレン元素を含む有機化合物であり、炭素元素とセレン元素との共有結合を有する有機化合物である。有機セレン化合物としては、例えば、セレノールや、セレニド、ジセレニド等を用いることができる。有機セレン化合物が配位した有機錯体の具体例としては、銅元素や銀元素等のI−B族元素に有機セレン化合物が配位した有機錯体、インジウム元素に有機セレン化合物が配位した有機錯体、ガリウム元素に有機セレン化合物が配位した有機錯体、または、有機セレン化合物がI−B族元素およびIII−
B族元素の両方に配位して1つの分子中にI−B族元素とIII−B族元素とセレン元素と
を有する単一源有機錯体(特許文献2参照)等を用いることができる。
また、上述したような、I−B族元素、インジウム元素およびガリウム元素を含むとともに少なくとも下部電極層2とは反対側の表面部に硫黄元素を含む皮膜Mを作製した後、この皮膜Mをセレン化する前に、皮膜Mを、セレン元素を含まない雰囲気中で、例えば50〜350℃で加熱して、皮膜M中の有機成分を熱分解しておいてもよい。これにより、第1の半導体層3中に有機成分が残存するのを低減でき、第1の半導体層3の光電変換効率をより高めることができる。特に、この皮膜M中の有機成分を熱分解する際に、雰囲気中に水蒸気や酸素等の酸化性ガスを、分圧比で50〜300ppmv程度含有させておいてもよい。この場合、皮膜Mの表面部の金属元素が、金属酸化物、金属硫化物、および金属合金等の種々の形態で存在することとなり、その後のセレン化工程における、液化速度やセレン化反応速度等の反応性に差が生じることとなる。その結果、I−III−VI族化合物の微結晶の生成とともにその周囲を、まだ液化状態の原料が取り囲んだ状態で反応が進行するため、緻密で結晶性の高い第1の半導体層3が得られやすくなる傾向がある。
第1の半導体層3を形成した後、第1の半導体層3の上に、第2の半導体層4および上部電極層5を順に形成する。
第2の半導体層4は、溶液成長法(CBD法ともいう)によって形成することができる。例えば、酢酸カドミウムとチオ尿素とをアンモニア水に溶解し、これに第1の半導体層3の形成まで行なった基板1を浸漬することで、第1の半導体層3の上にCdSを含む第2の半導体層4を形成することができる。
上部電極層5は、例えば、Snが含まれた酸化インジウム(ITO)等を主成分とする透明導電膜であり、スパッタリング法、蒸着法、またはCVD法等で形成することができる。図7は、第2の半導体層4および上部電極層5を形成した後の状態を示す図である。
上部電極層5を形成した後、上部電極層5の上面のうちのY方向に沿った直線状の形成対象位置からその直下の下部電極層2の上面にかけて、第2溝部P2を形成する。第2溝部P2は、例えば、スクライブ針を用いたメカニカルスクライビング加工によって形成することができる。図8は、第2溝部P2を形成した後の状態を示す図である。第2溝部P2は、第1溝部P1よりも若干X方向(図中では+X方向)にずれた位置に形成する。
第2溝部P2を形成した後、集電電極7および接続導体6を形成する。集電電極7および接続導体6については、例えば、Ag等の金属粉を樹脂バインダー等に分散した導電性を有するペースト(導電ペーストともいう)を、所望のパターンを描くように印刷し、これを加熱することで形成できる。図9は、集電電極7および接続導体6を形成した後の状態を示す図である。
集電電極7および接続導体6を形成した後、上部電極層5の上面のうちの直線状の形成対象位置からその直下の下部電極層2の上面にかけて、第3溝部P3を形成する。第3溝部P3の幅は、例えば、40〜1000μm程度とすることができる。また、第3溝部P3は、第2溝部P2と同様に、メカニカルスクライビング加工によって形成することができる。このようにして、第3溝部P3の形成によって、図1および図2で示された光電変換装置11を製作したことになる。
<(3)光電変換装置の製造方法の第2の例>
上記光電変換装置の製造方法の第1の例において、皮膜Mを図10に示すような複数の層から成る積層体(図10ではMa〜Mcの3層構造としている)とし、最上層Maにおける硫黄元素の含有率を、他の層Mb、Mcよりも高くする、すなわち、皮膜Mの表面部において硫黄元素の含有率を最大にするようにしてもよい。なお、他の層Mb、Mcは硫黄元素が含まれていてもよく、含まれていなくてもよい。
このような皮膜Mを用いた場合、皮膜Mのセレン化工程において、皮膜Mの最上層Maでは、硫黄元素の存在によって、ガリウム元素が下部電極層2から離れるように移動しやすくなるが、皮膜Mの他の層Mb、Mcでは、硫黄元素の含有率が低いため、ガリウム元素の下部電極層2側への移動しやすくなる。その結果、生成する第1の半導体層3のガリウム元素の相対原子数比が、図11に示すように、第1の半導体層3の表面部においては、下部電極層2から離れるほど相対原子数比が増加するように傾斜するとともに、それ以外の部位においては、下部電極層2に近づくほど相対原子数比が増加するように傾斜する、いわゆるダブルグレーデッド構造になりやすくなる。このような構成により、光電変換効率をより高めることができる。
特に、皮膜Mのセレン化工程において、硫黄元素のセレン元素による置換の程度を調整して、硫黄元素が第1の半導体層3中に残留するようにすると、図11に示すように、第1の半導体層3の表面部において、硫黄元素が下部電極層2から離れるほど相対原子数比が増加するように傾斜させることができる。このような構成により、第1の半導体層3の表面部におけるガリウム元素および硫黄元素の両方の含有率を高めることができ、より開放電圧を高めることができ、光電変換効率をより高めることができる。
なお、図11は、Ma〜Mcの3層構造の皮膜Mを用いて作製した第1の半導体層3の断面における元素分布を示すものであり、縦軸はインジウム元素とガリウム元素の合計原子数に対するガリウム元素または硫黄元素の原子数比を示している。
なお、本発明は上述の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更、改良などが可能である。例えば、上記の実施形態では、少なくとも表面部に硫黄元素を含む皮膜Mを、硫黄元素を含む原料を用いて作製したが、金属元素を含む層を形成した後、これを、硫黄元素を含む雰囲気で加熱することによって、少なくとも表面部に硫黄元素を含む皮膜Mを形成してもよい。
1:基板
2:下部電極層
3:第1の半導体層
4:第2の半導体層
5:上部電極層
6:接続導体
7:集電電極
10:光電変換セル
11:光電変換装置
M:皮膜

Claims (6)

  1. 電極層上に、I−B族元素、インジウム元素およびガリウム元素を含むとともに少なくとも前記電極層とは反対側の表面部に硫黄元素を含んでおり、前記表面部における硫黄元素の含有率が残部よりも高い皮膜を作製する工程と、
    該皮膜をセレン元素を含む雰囲気で加熱することによって、表面部においてはガリウム元素が前記電極層から離れるほど相対原子数比が増加するように傾斜しているとともに残部においては前記電極層に近づくほど相対原子数比が増加するように傾斜したI−III−VI
    族化合物を含む半導体層にする工程とを具備する光電変換装置の製造方法。
  2. 前記硫黄元素を、前記I−B族元素、前記インジウム元素および前記ガリウム元素の少なくとも1種に配位した有機硫黄化合物として前記皮膜に含ませる、請求項に記載の光電変換装置の製造方法。
  3. 前記皮膜を作製する工程において、前記皮膜にセレン元素をさらに含ませる、請求項1または2に記載の光電変換装置の製造方法。
  4. 前記セレン元素を、前記I−B族元素、前記インジウム元素および前記ガリウム元素の少なくとも1種に配位した有機セレン化合物として前記皮膜に含ませる、請求項に記載の光電変換装置の製造方法。
  5. 前記皮膜をセレン元素を含む雰囲気で加熱する前に、前記皮膜に含まれる有機成分を熱分解により除去する、請求項2または4に記載の光電変換装置の製造方法。
  6. 前記皮膜をセレン元素を含む雰囲気で加熱する前に、前記皮膜の前記電極層とは反対側の表面部の一部を酸化する、請求項1乃至のいずれかに記載の光電変換装置の製造方法。
JP2012141052A 2012-04-10 2012-06-22 光電変換装置の製造方法 Expired - Fee Related JP5918041B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012141052A JP5918041B2 (ja) 2012-04-10 2012-06-22 光電変換装置の製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012089605 2012-04-10
JP2012089605 2012-04-10
JP2012141052A JP5918041B2 (ja) 2012-04-10 2012-06-22 光電変換装置の製造方法

Publications (2)

Publication Number Publication Date
JP2013236043A JP2013236043A (ja) 2013-11-21
JP5918041B2 true JP5918041B2 (ja) 2016-05-18

Family

ID=49761902

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2012141052A Expired - Fee Related JP5918041B2 (ja) 2012-04-10 2012-06-22 光電変換装置の製造方法
JP2012141053A Expired - Fee Related JP5918042B2 (ja) 2012-04-10 2012-06-22 光電変換装置の製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2012141053A Expired - Fee Related JP5918042B2 (ja) 2012-04-10 2012-06-22 光電変換装置の製造方法

Country Status (1)

Country Link
JP (2) JP5918041B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6162592B2 (ja) * 2013-12-11 2017-07-12 京セラ株式会社 光電変換装置の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04326526A (ja) * 1991-04-25 1992-11-16 Dowa Mining Co Ltd CuIn(Se1−xSx)2混晶薄膜の製造法
JP3249407B2 (ja) * 1996-10-25 2002-01-21 昭和シェル石油株式会社 カルコパイライト系多元化合物半導体薄膜光吸収層からなる薄膜太陽電池
JPH114009A (ja) * 1997-06-12 1999-01-06 Yamaha Corp 太陽電池の製造方法
JP5121678B2 (ja) * 2008-11-26 2013-01-16 京セラ株式会社 化合物半導体薄膜の製法および薄膜太陽電池の製法
JP5311984B2 (ja) * 2008-11-26 2013-10-09 京セラ株式会社 薄膜太陽電池の製法
KR20100073717A (ko) * 2008-12-23 2010-07-01 삼성전자주식회사 태양전지 및 그 제조 방법
WO2011040272A1 (ja) * 2009-09-29 2011-04-07 京セラ株式会社 光電変換装置
WO2012014924A1 (ja) * 2010-07-29 2012-02-02 京セラ株式会社 光電変換装置
JP5335148B2 (ja) * 2010-09-28 2013-11-06 京セラ株式会社 光電変換装置および光電変換装置の製造方法
JP5709662B2 (ja) * 2011-06-16 2015-04-30 ソーラーフロンティア株式会社 Czts系薄膜太陽電池の製造方法

Also Published As

Publication number Publication date
JP2013236044A (ja) 2013-11-21
JP2013236043A (ja) 2013-11-21
JP5918042B2 (ja) 2016-05-18

Similar Documents

Publication Publication Date Title
JP5687343B2 (ja) 半導体層の製造方法、光電変換装置の製造方法および半導体原料
JP5918041B2 (ja) 光電変換装置の製造方法
WO2012147427A1 (ja) 光電変換装置
JP5451899B2 (ja) 光電変換装置
JP5837196B2 (ja) 光電変換装置の製造方法
JP2012204482A (ja) 光電変換装置
JP5902592B2 (ja) 光電変換装置の製造方法
JP5791802B2 (ja) 光電変換装置の製造方法
JP2014067745A (ja) 光電変換装置の製造方法
JP2013239618A (ja) 光電変換装置の製造方法
JP6162592B2 (ja) 光電変換装置の製造方法
JP2014045155A (ja) 光電変換装置の製造方法
JP2015191931A (ja) 光電変換装置の製造方法
JP2014049493A (ja) 光電変換装置の製造方法
JP2015070020A (ja) 光電変換装置の製造方法
JP2012114250A (ja) 光電変換装置の製造方法
JP2014090009A (ja) 光電変換装置
JP2015026711A (ja) 光電変換装置の製造方法
JP2012109559A (ja) 光電変換装置
JP2016122742A (ja) 光電変換装置の製造方法
JP2012064734A (ja) 光電変換装置の製造方法
JP2016009754A (ja) 光電変換装置の製造方法
WO2014017354A1 (ja) 光電変換装置
JP2015211107A (ja) 光電変換装置の製造方法
JP2015103657A (ja) 光電変換装置の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160407

R150 Certificate of patent or registration of utility model

Ref document number: 5918041

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees