JP5842750B2 - 成膜方法、成膜装置及び記憶媒体 - Google Patents

成膜方法、成膜装置及び記憶媒体 Download PDF

Info

Publication number
JP5842750B2
JP5842750B2 JP2012147711A JP2012147711A JP5842750B2 JP 5842750 B2 JP5842750 B2 JP 5842750B2 JP 2012147711 A JP2012147711 A JP 2012147711A JP 2012147711 A JP2012147711 A JP 2012147711A JP 5842750 B2 JP5842750 B2 JP 5842750B2
Authority
JP
Japan
Prior art keywords
film
gas
substrate
ultraviolet rays
processing gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012147711A
Other languages
English (en)
Japanese (ja)
Other versions
JP2014011357A (ja
JP2014011357A5 (enExample
Inventor
井下田 真信
真信 井下田
佐藤 潤
潤 佐藤
和雄 矢部
和雄 矢部
寿 加藤
寿 加藤
友策 井澤
友策 井澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2012147711A priority Critical patent/JP5842750B2/ja
Priority to KR1020130074701A priority patent/KR101589346B1/ko
Priority to TW102123004A priority patent/TWI516634B/zh
Priority to US13/930,667 priority patent/US8853100B2/en
Publication of JP2014011357A publication Critical patent/JP2014011357A/ja
Publication of JP2014011357A5 publication Critical patent/JP2014011357A5/ja
Application granted granted Critical
Publication of JP5842750B2 publication Critical patent/JP5842750B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45548Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction
    • C23C16/45551Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction for relative movement of the substrate and the gas injectors or half-reaction reactor compartments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02178Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing aluminium, e.g. Al2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0337Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31144Etching the insulating layers by chemical or physical means using masks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/791Arrangements for exerting mechanical stress on the crystal lattice of the channel regions
    • H10D30/792Arrangements for exerting mechanical stress on the crystal lattice of the channel regions comprising applied insulating layers, e.g. stress liners
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/024Manufacture or treatment of FETs having insulated gates [IGFET] of fin field-effect transistors [FinFET]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Vapour Deposition (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
JP2012147711A 2012-06-29 2012-06-29 成膜方法、成膜装置及び記憶媒体 Active JP5842750B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012147711A JP5842750B2 (ja) 2012-06-29 2012-06-29 成膜方法、成膜装置及び記憶媒体
KR1020130074701A KR101589346B1 (ko) 2012-06-29 2013-06-27 성막 방법, 성막 장치 및 기억 매체
TW102123004A TWI516634B (zh) 2012-06-29 2013-06-27 成膜方法、成膜設備及儲存媒體
US13/930,667 US8853100B2 (en) 2012-06-29 2013-06-28 Film formation method, film formation apparatus and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012147711A JP5842750B2 (ja) 2012-06-29 2012-06-29 成膜方法、成膜装置及び記憶媒体

Publications (3)

Publication Number Publication Date
JP2014011357A JP2014011357A (ja) 2014-01-20
JP2014011357A5 JP2014011357A5 (enExample) 2014-12-18
JP5842750B2 true JP5842750B2 (ja) 2016-01-13

Family

ID=49778566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012147711A Active JP5842750B2 (ja) 2012-06-29 2012-06-29 成膜方法、成膜装置及び記憶媒体

Country Status (4)

Country Link
US (1) US8853100B2 (enExample)
JP (1) JP5842750B2 (enExample)
KR (1) KR101589346B1 (enExample)
TW (1) TWI516634B (enExample)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5107185B2 (ja) * 2008-09-04 2012-12-26 東京エレクトロン株式会社 成膜装置、基板処理装置、成膜方法及びこの成膜方法を実行させるためのプログラムを記録した記録媒体
JP5445044B2 (ja) * 2008-11-14 2014-03-19 東京エレクトロン株式会社 成膜装置
JP5501807B2 (ja) * 2009-03-31 2014-05-28 東京エレクトロン株式会社 処理装置
EP2843687A4 (en) * 2012-04-27 2015-12-23 Namiki Precision Jewel Co Ltd COMPOSITION METHOD FOR COMPOSITE SUBSTRATE, METHOD FOR PRODUCING A SEMICONDUCTOR ELEMENT, COMPOSITE SUBSTRATE AND SEMICONDUCTOR COMPONENT
JP6115244B2 (ja) * 2013-03-28 2017-04-19 東京エレクトロン株式会社 成膜装置
US9552979B2 (en) * 2013-05-31 2017-01-24 Asm Ip Holding B.V. Cyclic aluminum nitride deposition in a batch reactor
FI126794B (en) 2014-12-22 2017-05-31 Picosun Oy Photon assisted surface coating method
WO2016109063A1 (en) * 2015-01-02 2016-07-07 Applied Materials, Inc. Processing chamber
US10483262B2 (en) 2015-05-15 2019-11-19 Taiwan Semiconductor Manufacturing Co., Ltd. Dual nitride stressor for semiconductor device and method of manufacturing
JP6447393B2 (ja) * 2015-07-06 2019-01-09 東京エレクトロン株式会社 成膜処理装置、成膜処理方法及び記憶媒体
US20170051407A1 (en) * 2015-08-17 2017-02-23 Applied Materials, Inc. Heating Source For Spatial Atomic Layer Deposition
WO2017034855A1 (en) * 2015-08-21 2017-03-02 Applied Materials, Inc. High temperature thermal ald silicon nitride films
JP6163524B2 (ja) * 2015-09-30 2017-07-12 株式会社日立国際電気 半導体装置の製造方法、基板処理装置およびプログラム
JP6584355B2 (ja) * 2016-03-29 2019-10-02 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
WO2017210139A1 (en) * 2016-05-29 2017-12-07 Tokyo Electron Limited Method of silicon extraction using a hydrogen plasma
KR102698026B1 (ko) * 2016-09-28 2024-08-21 삼성전자주식회사 유전막 형성 방법 및 반도체 장치의 제조 방법
JP6807278B2 (ja) 2017-05-24 2021-01-06 東京エレクトロン株式会社 シリコン窒化膜の成膜方法および成膜装置
JP6988629B2 (ja) * 2018-03-26 2022-01-05 東京エレクトロン株式会社 成膜方法及び成膜装置
CN108499094B (zh) * 2018-04-19 2024-06-11 上海欢博数字科技有限公司 一种智能互动转盘及其控制方法
JP6981356B2 (ja) * 2018-04-24 2021-12-15 東京エレクトロン株式会社 成膜装置及び成膜方法
JP2020038931A (ja) 2018-09-05 2020-03-12 キオクシア株式会社 半導体製造装置、および半導体装置の製造方法
KR102697922B1 (ko) 2019-01-09 2024-08-22 삼성전자주식회사 원자층 증착 장치 및 이를 이용한 박막 형성 방법
JP7246247B2 (ja) * 2019-05-15 2023-03-27 東京エレクトロン株式会社 基板処理装置及び監視方法
JP7240517B2 (ja) * 2019-09-20 2023-03-15 株式会社Kokusai Electric 半導体装置の製造方法、基板処理方法、プログラム、および基板処理装置
CN115896747B (zh) * 2021-09-30 2024-10-15 馗鼎奈米科技(深圳)有限公司 表面处理设备
US12331400B2 (en) 2022-11-07 2025-06-17 Creating Nano Technologies, Inc. Surface treatment apparatus
TWI880290B (zh) * 2023-08-08 2025-04-11 天虹科技股份有限公司 紫外光輔助及電漿強化之製程方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3330727B2 (ja) 1994-04-28 2002-09-30 康夫 垂井 光励起cvd装置及びcvd方法
KR100368311B1 (ko) * 2000-06-27 2003-01-24 주식회사 하이닉스반도체 반도체 소자의 게이트 형성 방법
US7232730B2 (en) 2005-04-29 2007-06-19 Taiwan Semiconductor Manufacturing Company, Ltd. Method of forming a locally strained transistor
US8138104B2 (en) * 2005-05-26 2012-03-20 Applied Materials, Inc. Method to increase silicon nitride tensile stress using nitrogen plasma in-situ treatment and ex-situ UV cure
US7579285B2 (en) 2005-07-11 2009-08-25 Imec Atomic layer deposition method for depositing a layer
US8501632B2 (en) * 2005-12-20 2013-08-06 Infineon Technologies Ag Methods of fabricating isolation regions of semiconductor devices and structures thereof
KR100825778B1 (ko) * 2006-09-28 2008-04-29 삼성전자주식회사 듀얼 스트레스 라이너를 구비하는 반도체 소자의 제조방법
JP2008217959A (ja) * 2007-02-05 2008-09-18 Fuji Electric Device Technology Co Ltd 磁気記録媒体およびその製造方法
JP5151260B2 (ja) * 2007-06-11 2013-02-27 東京エレクトロン株式会社 成膜方法及び成膜装置
JP4935684B2 (ja) * 2008-01-12 2012-05-23 東京エレクトロン株式会社 成膜方法及び成膜装置
JP5423205B2 (ja) * 2008-08-29 2014-02-19 東京エレクトロン株式会社 成膜装置
JP2010141281A (ja) * 2008-11-11 2010-06-24 Renesas Technology Corp 半導体装置およびその製造方法
JP5387176B2 (ja) * 2009-07-01 2014-01-15 富士通セミコンダクター株式会社 半導体装置の製造方法
JP5434484B2 (ja) * 2009-11-02 2014-03-05 東京エレクトロン株式会社 成膜装置、成膜方法及び記憶媒体
JP5632240B2 (ja) * 2010-08-31 2014-11-26 東京エレクトロン株式会社 微細パターンの形成方法
JP5572515B2 (ja) * 2010-10-15 2014-08-13 東京エレクトロン株式会社 成膜装置および成膜方法
KR20110115992A (ko) * 2011-09-30 2011-10-24 주성엔지니어링(주) 광원을 포함하는 원자층 증착장치 및 이를 이용한 증착방법

Also Published As

Publication number Publication date
JP2014011357A (ja) 2014-01-20
KR20140002539A (ko) 2014-01-08
US8853100B2 (en) 2014-10-07
KR101589346B1 (ko) 2016-01-29
US20140004713A1 (en) 2014-01-02
TW201410912A (zh) 2014-03-16
TWI516634B (zh) 2016-01-11

Similar Documents

Publication Publication Date Title
JP5842750B2 (ja) 成膜方法、成膜装置及び記憶媒体
US11735414B2 (en) Method of post-deposition treatment for silicon oxide film
US11201053B2 (en) Film forming method and film forming apparatus
KR101885411B1 (ko) 기판 처리 방법 및 기판 처리 장치
JP6040609B2 (ja) 成膜装置及び成膜方法
JP5434484B2 (ja) 成膜装置、成膜方法及び記憶媒体
TWI654336B (zh) 具有脈衝式電漿曝露之電漿輔助式原子層沉積
TWI497592B (zh) 成膜裝置及成膜方法
US10590534B2 (en) Film deposition method and film deposition apparatus
TWI526569B (zh) 成膜裝置、成膜方法、以及記憶媒體
JP6569520B2 (ja) 成膜装置
US20160307752A1 (en) Gas flow profile modulated control of overlay in plasma cvd films
TWI609986B (zh) 成膜方法、記憶媒體及成膜裝置
US20140011372A1 (en) Film deposition method
KR20170076571A (ko) 성막 장치
TW202013505A (zh) 電漿處理裝置及電漿處理方法
JP5750190B2 (ja) 成膜装置及び成膜方法
WO2022054225A1 (ja) 基板処理装置、半導体装置の製造方法およびプラズマ生成装置
WO2024053442A1 (ja) プラズマ処理装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151102

R150 Certificate of patent or registration of utility model

Ref document number: 5842750

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250