JP5806479B2 - 照明光学系、露光装置及びデバイス製造方法 - Google Patents

照明光学系、露光装置及びデバイス製造方法 Download PDF

Info

Publication number
JP5806479B2
JP5806479B2 JP2011036334A JP2011036334A JP5806479B2 JP 5806479 B2 JP5806479 B2 JP 5806479B2 JP 2011036334 A JP2011036334 A JP 2011036334A JP 2011036334 A JP2011036334 A JP 2011036334A JP 5806479 B2 JP5806479 B2 JP 5806479B2
Authority
JP
Japan
Prior art keywords
light
optical system
rod
light beam
illumination optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011036334A
Other languages
English (en)
Other versions
JP2012174936A (ja
JP2012174936A5 (ja
Inventor
昇 大阪
昇 大阪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2011036334A priority Critical patent/JP5806479B2/ja
Priority to US13/371,637 priority patent/US9280054B2/en
Priority to KR1020120014805A priority patent/KR101448339B1/ko
Priority to TW101105097A priority patent/TWI475333B/zh
Publication of JP2012174936A publication Critical patent/JP2012174936A/ja
Publication of JP2012174936A5 publication Critical patent/JP2012174936A5/ja
Application granted granted Critical
Publication of JP5806479B2 publication Critical patent/JP5806479B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/7005Production of exposure light, i.e. light sources by multiple sources, e.g. light-emitting diodes [LED] or light source arrays
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70075Homogenization of illumination intensity in the mask plane by using an integrator, e.g. fly's eye lens, facet mirror or glass rod, by using a diffusing optical element or by beam deflection
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70208Multiple illumination paths, e.g. radiation distribution devices, microlens illumination systems, multiplexers or demultiplexers for single or multiple projection systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Microscoopes, Condenser (AREA)

Description

本発明は、照明光学系、露光装置及びデバイス製造方法に関する。
露光装置は、半導体デバイスや液晶表示装置等の製造工程であるリソグラフィ工程において、原版(レチクル又はマスク)のパターンを、投影光学系を介して感光性の基板(表面にレジスト層が形成されたウエハやガラスプレート等)に転写する。例えば、液晶表示装置にパターンを転写する投影露光装置では、近年、マスク上のより大きな面積パターンを基板上に一括転写する露光装置が求められている。この要求に対応するために、高解像力が得られ、かつ、大画面を転写することができるステップ・アンド・スキャン方式の走査露光装置が提案されている。
この走査露光装置は、スリット光束により照明されたパターンを、投影光学系を介してスキャン動作により基板上に転写する。このような走査露光装置として、円弧形状の光を用いて走査させる方式が存在する。この方式は、転写すべきパターンを持つ第1の物体と、転写される対象物である第2の物体との間に投影光学系が存在し、該投影光学系の特定の軸外像点のみを利用した円弧形状の露光域で露光処理を行う。
このとき、第1の物体を円弧形状で照明するために、例えば、特許文献1で挙げられる照明光学系を用いることができる。この照明光学系は、光源より射出された光束の断面形状が、被照明面である第1の物体と光学的に共役な位置において矩形形状を成すように導き、矩形形状に照明した領域から円弧形状の開口部材を用いて円弧形状の照明分布を切り出すという手法を用いている。しかし、技術文献1に示す円弧切り出し方式によると、円弧開口部以外の光を露光光に用いることができない。そのため光の利用効率が低く、光源の出力を上げたとしても、照明光学系の被照明面の照度を高くすることが困難である。
次に挙げる特許文献2では、複数個のライトパイプを光学的に継ぎ合せることにより、光源より出た光束の断面形状を円弧形状に変換し、光の利用効率を上げる試みがなされている。しかし、昨今、リソグラフィ工程においてスループットの向上および結像性能向上の要求により、第1の物体面をより高照度でかつ、より均一に照明する照明光学系が求められている。特許文献2に示された照明光学系は、光源が1つの場合には第1の物体を均一に照明することができるが、光源が1つなので高照度に照明するには限界がある。特許文献2に示された照明光学系で高照度の照明を達成するために、光源を複数個用いると、例えば光源の出力が時間により変動し、光源間で出力差が生じた場合、被照明面である第1の物体上において照度分布にムラが生じ、均一な照明ができない可能性がある。また、特許文献2の実施形態で挙げられている、円弧状のライトパイプの光の進行方向の長さを長くすれば照度ムラを軽減させることができるが、そのような円弧状の長いライトパイプを作成することは製造上困難である。また、長いライトパイプを用いた場合、照明光学系の全体サイズが大きくなってしまう。
特許文献3には、図16に示される、複数の光源1a,1bから射出された光束をプリズム8a,8bで合成し、ロッドインテグレータ4を用いて合成された光束の光強度分布を均一化させた照明光学系が記載されている。この照明光学系を用いれば、複数の光源を用いて、第1の物体(被照明面)6を高照度でかつ均一に照明することができる。
特公平4−78002号公報 特開平3−171614号公報 特開2000−164487号公報
しかし、特許文献3のような照明光学系を用いた場合、ロッドインテグレータ4に入射する光の位置分布が均一ではないので、被照明面である第1の物体6上で均一な照度分布を達成するためには、ロッドインテグレータ4の光の進行方向の長さが長くなってしまう。ロッドインテグレータ4が長くなると、照明光学系全体のサイズが大きくなる。また、ロッドインテグレータ4が長くなることで、ロッドインテグレータ4の面精度や向かい合う面の平行度等、製造誤差に起因してロッドインテグレータ4の内部吸収による光の損失が大きくなったりし、照明光学系の光の利用効率が下がる。
そこで本発明は、被照明面を高照度にかつ均一に照明する小型の照明光学系を提供することを目的とする。
本発明の1つの側面は、複数の光源から射出された光束を使用して被照明面を照明する照明光学系であって、1つの前記光源から射出された光強度分布を均一化する1つのロッドインテグレータを、前記複数の光源のそれぞれについて有する複数のロッドインテグレータと、前記複数のロッドインテグレータから射出された複数の光束をそれらの断面において互いに隣接するように合成する合成光学系と、入射面及び射出面を有し、前記合成光学系により合成された光束を前記入射面で複数の光束に分割し、該分割された複数の光束の集合体の前記射出面における断面形状が前記入射面における断面形状と異なるように前記分割された複数の光束を前記射出面で集合させ、前記分割された複数の光束のそれぞれを、光学的に継ぎ合された複数のライトパイプによって前記入射面から前記射出面まで伝達する光伝達部と、を備える、ことを特徴とする。
本発明によれば、被照射面を高照度にかつ均一に照らす、小型の照明光学系を構成することができる。
第1実施形態の照明光学系の概略図 第1ロッドインテグレータの概略図 第1実施形態における光伝達部の概略図 ロッドインテグレータの概略図 スリットの概略図 第1ロッドインテグレータの技術的意義を説明する図 第2実施形態の照明光学系の概略図 フライアイ光学系の概略図 第2実施形態における合成部、光伝達部の概略図 第3実施形態の照明光学系の概略図 第3実施形態における光伝達部の概略図 ロッドインテグレータの概略図 第4実施形態による露光装置の概略図 照度ムラセンサのスリットスキャン図 照度ムラの補正方法を表す図 従来技術の照明光学系の概略図
以下、本発明の実施形態について図面等を参照して説明する。
[第1実施形態]
第1実施形態の照明光学系について図1を用いて説明する。本実施形態の照明光学系10は、複数の光源から射出された光束を使用して被照明面を照明する照明光学系であって、例えば、露光装置に搭載される。照明光学系10は、複数(3つ)の光源部50から射出された光束を被照明面であるパターンが形成されたマスク(原版)34へ導く。照明光学系10は、第1ロッド光学系15、第1光学系17、第2ロッド光学系19、合成光学系21、第3ロッド光学系23、光伝達部25、第4ロッド光学系27、結像光学系40、スリット32、第4光学系33およびマスク34により構成されている。結像光学系40は、第2光学系29、開口絞り30、第3光学系31により構成される。光源12には、高圧水銀ランプを用いている。3つの光源部50は、光源12と楕円ミラー13をそれぞれ含む。光源12はこのほかキセノンランプやエキシマレーザーなどを用いることもできる。楕円ミラー13は、光源12から射出された光を集光するための集光光学系であり、楕円形状の一部を用いた形状をしており、光源12は楕円の焦点位置の一方に配置している。光源12から射出されて、楕円ミラー13で反射した光は、楕円のもう一方の焦点位置に集光する。本実施形態では、第1ロッド光学系15の入射面14が楕円のもう一方の焦点位置に配置させている。
第1ロッド光学系15は、例えば、図2の2Cのような断面が六角形であるロッドインテグレータであり、合成石英等で作ることができる。第1ロッド光学系15に入射した光束は、第1ロッド光学系15内部を透過する間に、内面で複数回反射して、射出面16に至る。その結果、例えば入射面14における光強度分布が不均一であっても、複数回反射することにより均一化され、射出面16上では、光束は一様な光強度分布になる。第1ロッド光学系15には六角柱の代わりに、図2の2Aのように断面が円形、2Bのように断面が四角形、2Dのように断面が八角形であるロッドインテグレータを用いてもよい。射出面16から射出した光束は第1光学系17により、第2ロッド光学系19の入射面18に導かれる。このとき第1光学系17は、入射面18が射出面16の実質的にフーリエ変換面となるように配置されている。第2ロッド光学系19は、例えば断面が四角形である四角柱のロッドインテグレータであり、合成石英等で作ることができる。第2ロッド光学系19に入射した光束は、第2ロッド光学系19内部を透過する間に、内面で複数回反射して、射出面20に至る。その結果、例えば入射面18における光強度分布が不均一であった場合でも、複数回反射することにより均一化され、射出面20上では、光束は一様な光強度分布になっている。
3つの光源部50からの光束は2つのプリズムで構成された合成光学系21により光束の断面形状が互いに隣接するように合成され、第3ロッド光学系23の入射面22に入射する。第3ロッド光学系23は、例えば断面が四角形である四角柱のロッドインテグレータであり、合成石英等で作ることができる。第3ロッド光学系23に入射した光束は、第3ロッド光学系23内部を透過する間に、内面で複数回反射して、射出面24に至る。例えば、3つの光源部50のそれぞれから入射面22に入射した光束の光強度が異なっていた場合、入射面22における光強度分布は不均一である。しかし、第3ロッド光学系23内を複数回反射することにより均一化され、射出面24上では、光束は一様な光強度分布になっている。
射出面24を射出した光束は、光伝達部25に入射する。光伝達部25は、図3に示すように、複数のライトパイプと偏向プリズムを光学的に継ぎ合せた構成をしている。図3の3Aの斜線模様部は入射面24を、3Bの斜線模様部は射出面26を表しており、合成光学系21により合成された光束を入射面24で複数(8つ)の光束に分割する。分割された各光束は、光学的に継ぎ合された複数のライトパイプと偏向プリズムによって光伝達部25内の8つの異なる経路を通過させられて、射出面26まで伝達される。8つの経路それぞれに配置されるライトパイプの総数と偏向プリズムの総数は等しく、分割された8つの光束の光伝達部内における光路長が互いに等しくされている。分割された8つの光束の集合体の射出面26における断面形状が入射面24における断面形状と異なるように、8つの光束が射出面26で集合される。本実施形態では、図3の3A、3Bに示すように、8つの光束の集合体の入射面24における断面形状は四角形であり、射出面26における断面形状は略円弧形となっている。なお、光伝達部25の周りは空気が覆っており、使用する光の波長が200nm〜500nm、ライトパイプと偏向プリズムが石英であるとすると、入射面24に入射する光束はその入射角度にかかわらず、光伝達部25の内面で全反射する。仮に、光伝達部25を保持するため、光伝達部25の一部にメカニックな接触が起こる可能性がある場合は、ライトパイプと偏向プリズムの側面に石英よりも低い屈折率である薄膜を施すことにより、部分的に全反射を保つことが可能である。ただし光伝達部25における光の透過面については、反射防止膜を付加し、ライトパイプと偏向プリズムがお互いに接触しないようにすることが望ましい。
図3の3Cは光伝達部25の1つの光束の伝達路60を表している。図3の3Cに示すようにライトパイプと偏向プリズムの間の透過部61は接触を避けるために数十μm〜数百μmほど隙間を開けている。また、面62は偏向プリズムの反射面であり、反射膜を施している。面63にはそれぞれ、MgF(フッ化マグネシウム)による厚みが10μm程度の薄膜が着けられている。このほか面63にはLiF(フッ化リチウム)やCaF(フッ化カルシウム)等のフッ化物系薄膜などを用いることができる。例えば、波長300nm〜500nmの領域ではMgF膜の屈折率は約1.460〜1.476程度である。空気の屈折率を約1とすると、入射面24に27.45度以内で入射する光は波長300nm〜500nmにおいて全反射させることができる。
射出面26から射出した光束は第4ロッド光学系27に入射する。第4ロッド光学系27は、図4に示すように、入射面81と射出面82が同一円弧形状のロッドインテグレータである。光伝達部25の射出面26から出た光束は均一に分布していることが望ましい。しかし、例えば図3の3Aに示す光伝達部25の各伝達路60と70は隣接して配置されているが、実際に光伝達部25を保持したとき、図3の3Bの位置71に隙間ができる可能性がある。この場合、射出面26において筋状に照明光が抜けた状態(筋ムラ)が生じてしまい、この筋ムラは、例えば露光装置においてある特定の位置における露光ムラとなりえる。筋ムラを低減させるために、第4ロッド光学系27をその入射面81が光伝達部25の射出面26付近にくるよう配置する。
第4ロッド光学系27の入射面81に入射した光束は、第4ロッド光学系27の内面で複数回反射し、射出面82に至る。第4ロッド光学系27の内面を複数回反射することにより、光束の光強度分布は射出面82で均一化される。これにより光伝達部25の射出面26に生ずる筋ムラを、第4ロッド光学系27の射出面82では低減させることができる。第4ロッド光学系27の射出面82を射出した光束は、第2光学系29、開口絞り30、第3光学系31を通過してスリット32に至る。第2光学系29は、開口絞り30の位置が第4ロッド光学系27の射出面82の実質的にフーリエ変換面となるように配置している。また、第3光学系31は、スリット32の位置が開口絞り30の位置の実質的にフーリエ変換面となるように配置している。このとき第4ロッド光学系27の射出面82とスリット32の位置は光学的に共役な位置となる。
スリット32を通過した光束は、第4光学系33を通過して被照明面であるマスク34に至る。第4光学系33は、スリット32の位置とマスク34の位置が光学的に共役となるように2組の凹面ミラーと2組の平面ミラーにより構成されている。本実施形態のスリット32は、図5の5Aに示すような円弧形状の開口をもつ。スリット32は、円弧形状の透過部91と遮光部92を有する。なお、透過部91は、場所ごとにスリットの幅を変えることができるような構造をしている。透過部91を通過した光を使用して、スリット32の位置と共役な位置であるマスク34上の円弧領域を照明することができる。
本実施形態では、複数の光源12から射出された光束を合成してマスク34を照明する際に、各光源間の出力差で生ずるマスク34での照度ムラを低減するために、第3ロッド光学系23、第4ロッド光学系27を配置させている。生ずる照度ムラを低減させるためには第3ロッド光学系23、第4ロッド光学系27の光の進行方向の長さを長くすることが必要である。しかし、本実施形態の照明光学系10では、光源12ごとに第1ロッド光学系15を配置させることにより、入射面22において各光源からの光束を個別に均一化するため、第3ロッド光学系23を短くすることができる。その原理について図6を用いて説明する。
図6の6Aは、長さL、断面の一辺がdである四角柱のロッドインテグレータの内部を透過する光を表しており、一点鎖線で示しているのが光軸とする。今、四角柱ロッドインテグレータの始端面から光軸から角度θだけ傾いて光が進行したとする。この光線は図のように四角柱のロッドインテグレータの長さ(L/2)の位置で内面を反射し、ロッドインテグレータの終端面に到達する。一方、6Bは、断面の一辺が(d/3)である四角柱のロッドインテグレータの内部を透過する光を表しており、四角柱のロッドインテグレータの始端面から光軸から角度θだけ傾いて光が進行したとする。この光線は四角柱のロッドインテグレータの長さ(L/6)の位置で内面を反射し、以後(L/3)ごとに反射を繰り返す。最終的に長さLのロッドインテグレータの終端面までに内面を3回反射する。
ロッドインテグレータを光の均一化の目的で用いる場合、ロッドインテグレータの始端面から終端面までに、光線を複数回反射させるように光の進行方向の長さを決める。反射回数が多ければ多いほど均一化効果は高くなる。なので、6Aと6Bを比べた場合、6Bの方が均一化効果は高くなる。言い換えると、6Aと同程度の均一化を達成するには、6Cのよう断面の一辺が(d/3)で長さが(L/3)のロッドインテグレータで十分である。
本実施形態の照明光学系10のように、光源ごとに第1ロッド光学系15を配置させ、光束を合成し第3ロッド光学系23に導いた場合、合成前に光源ごとに光束が部分的に均一化されているので、第3ロッド光学系23は短くてもよい。また、前記原理により、第1ロッド光学系15のロッド幅は、第3ロッド光学系23のロッド幅の(1/3)程度であるので、第1ロッド光学系15内で均一化をした方が、総ロッド長を短くすることができる。
また、前記のように、本実施形態では、第1ロッド光学系15の入射面14が楕円のもう一方の焦点位置に配置させて、光強度分布の均一化を図っている。例えば、本実施形態の照明光学系10を露光装置に搭載した場合、前記の均一化された光束の強度分布が有効光源分布となる。有効光源分布は露光装置の結像性能に深くかかわるパラメータである。投影露光するパターンによって、均一な光強度分布の方が好ましい場合があるので本実施形態では光強度分布を均一化するために第1ロッド光学系15を用いている。しかし、第1ロッド光学系15がない場合でも、照明光学系として利用することができる。その場合は本実施形態の入射面14と射出面16が一致するように照明光学系を構成すればよい。
本実施形態における第1光学系17、結像光学系40を構成する光学素子の個数や配置は、あくまで一例であって、これに限定される事項ではない。また、これまで本実施形態で特に言及していない光学素子の透過面には反射防止膜、ミラーには反射膜が着けられている。また、本実施形態では、マスク34を照明する照明領域が円弧形状の場合について説明をしたが、特に照明領域は円弧領域に限定されない。
[第2実施形態]
第2実施形態の照明光学系の構成について図7を用いて説明する。第2実施形態の照明光学系100では、照明領域が例えば矩形形状であり、2つの光源部50から射出された光束を照射対象物であるパターンが形成されたマスク(原版)34へ導く。照明光学系100は、フライアイ光学系101、第1光学系103、合成光学系105、光伝達部107、ロッド光学系109、スリット110、結像光学系40およびマスク34により構成される。
図8はフライアイ光学系101を表す図である。図8に示すようにフライアイ光学系101は、多数の平凸レンズを平面状に張りあわせた2つのレンズ群130、131により成る。レンズ群130、131を構成する1つ1つの平凸レンズの焦点位置に対となる平凸レンズがあるように曲率面を向かい合わせて配置されている。このようなフライアイ光学系101を用いることにより、フライアイ光学系101の射出面102位置には光源12と等価な多数の二次光源分布が形成される。フライアイ光学系101の射出面102から射出した光束は第1光学系103により、合成光学系105の入射面104に導かれる。このとき第1光学系103は、入射面104が射出面102の実質的にフーリエ変換面となるように配置する。射出面102の位置では多数の二次光源分布が形成されているので、合成光学系105の入射面104における光束の光強度分布は均一化され、入射面104上で一様な光強度分布となる。
次に図9を用いて、合成光学系105と光伝達部107の配置について説明する。図9の9Aに示すように、各光源12から射出された光束は2つのプリズムを用いた合成光学系105により合成され光伝達部107に入射する。このとき、2つの光源部50の光軸140、141が一致しないように2つのプリズムを配置している。光伝達部107は、9B、9Cに示すように、複数のライトパイプと偏向プリズムをつなぎ合わせた構成をしている。9Bの斜線模様部は光軸が140の光源部50からきた光束が入射する領域、ドット模様部は光軸が141の光源部50からきた光束が入射する領域を示している。9Aの斜線模様部およびドット模様部に入射した光束はそれぞれ4分割され、分割された領域ごとに光伝達部107内の異なる経路を通過させて、9Cのように射出面108では入射面106とは異なる断面形状に変換させている。9Cに示すように、光伝達部107は、射出面108において、光軸140の光束から分割された光束が通過する領域(ドット表示部分)の間に光軸141の光束から分割された光束が通過する領域(ハッチ表示部分)が位置するようにする。光伝達部107は、図9Cに示されるようにドット表示部分とハッチ表示部分とが規則的に配置されるように、入射面106で分割された光束を射出面108で集合させることができる。
射出面108から射出した光束はロッド光学系109に入射する。ロッド光学系109には例えば四角柱のロッドインテグレータを用いる。ロッド光学系109に入射した光束は、ロッド光学系109の内面で複数回反射し、スリット110に至る。ロッド光学系109の内面を複数回反射することにより、光伝達部107の射出面108に光の強度ムラが存在した場合でも、スリット110においては均一な光強度分布が得られる。スリット110を射出した光束は結像光学系40によりマスク34に導かれる。このときスリット110位置とマスク34が光学的に共役な位置となるように結像光学系40を配置する。図5の5Bは本実施形態に用いるスリット110を表している。スリット110は透過部161と遮光部162を有する。矩形形状の透過部161を通過した光束を用いて、スリット110位置と共役な位置であるマスク34上の矩形領域を照明することができる。
本実施形態では、複数の光源12から射出された光束を合成してマスク34を照明する際に、各光源間の出力差で生ずるマスク34での照度ムラを低減するために、ロッド光学系109を配置させている。生ずる照度ムラを低減させるためにはロッド光学系109の光の進行方向の長さを長くすることが必要である。しかし、本実施形態の照明光学系のように、各光源から分割された光束の通過する領域が、光伝達部107の射出面108で交互に配列されるようにすることで、ロッド光学系109の光の進行方向の長さを短くすることができる。これにより、コンパクトな構成により、マスク34を均一に照明することができる。本実施形態における第1光学系103、結像光学系40を構成する光学素子の個数や配置は、あくまで一例であって、これに限定される事項ではない。また、これまで本実施形態で特に言及していない光学素子の透過面には反射防止膜、ミラーには反射膜が着けられている。
[第3実施形態]
第3実施形態に係る照明光学系の構成について図10を用いて説明する。照明光学系200は、光伝達部202、第3ロッド光学系207、拡大光学系240、スリット32、結像光学系33およびマスク34により構成される。拡大光学系240は第2光学系205、開口絞り30、第3光学系206により構成される。拡大光学系240は、第3ロッド光学系207の射出面で射出される光束の断面形状を被照明面と光学的に共役の位置にあるスリット32で大きくなるように拡大する。光源部50より射出された光束は図11の11Aに示す光伝達部202の入射面(ハッチ表示部分)201に入射する。光束は、入射面201で7分割され、分割された領域ごとに光伝達部202内の異なる経路を通過させて、11Bのように射出面203では入射面201とは異なる断面形状に変換されている。本実施形態では、図11の11A、11Bのように、入射面201における光束の集合体の断面形状は四角形、射出面203における光束の集合体の断面形状は略円弧形となっている。
第3ロッド光学系207の入射面203に入射した光束は、第3ロッド光学系207の内面で複数回反射し、射出面204に至る。第3ロッド光学系207の射出面204を射出した光束は、第2光学系205、開口絞り30、第3光学系206を通過してスリット32に至る。第2光学系205は、開口絞り30の位置が第3ロッド光学系27の射出面204の実質的にフーリエ変換面となるように配置している。また、第3光学系206は、スリット32の位置が開口絞り30の位置の実質的にフーリエ変換面となるように配置している。このとき第3ロッド光学系207の射出面82とスリット32の位置は光学的に共役な位置である。射出面204における光束の断面形状が被照明面と光学的に共役の位置にあるスリット32で大きくなるように、第2光学系205と第3光学系206を構成する各光学素子を配置する。
本実施形態の場合、射出面204における光束の円弧形状の断面形状を2倍に拡大して、スリット32に写像するような構成になっている。スリット32を通過した光束は、第4光学系33を通過して被照明面であるマスク34に至る。第4光学系33は、スリット32の位置とマスク34の位置が光学的に共役となるように配置されている。本実施例では、図5の5Aに示すような円弧形状の開口をもつスリット32を用いる。これによりスリット32の位置と共役な位置であるマスク34上の円弧領域を照明することができる。
本実施形態では、光源12から射出された光束をマスク34に照明する際に、マスク34での照度ムラを低減するために、第2ロッド光学系19、第3ロッド光学系207を配置させている。生ずる照度ムラを低減させるためには第2ロッド光学系19、第3ロッド光学系207の光の進行方向の長さを長くすることが必要である。しかし、本実施形態のように、射出面204における光束の断面形状をスリット32で拡大するように第2光学系205と第3光学系206を構成することで、第2ロッド光学系19、第3ロッド光学系207の光の進行方向の長さを短くすることができる。
拡大光学系240を配置することで第2ロッド光学系19、第3ロッド光学系207の光の進行方向の長さを短くすることができる原理を下記にて説明する。図12の12Aは、長さL、断面の一辺がdである四角柱ロッドインテグレータの中部を透過する光を表しており、一点鎖線で示しているのが光軸とする。今、四角柱ロッドインテグレータの始端面から光軸から角度θだけ傾いて光が進行したとする。この光線は図のように四角柱ロッドインテグレータの長さ(L/2)の位置で内面を反射し、四角柱ロッドインテグレータの終端面に到達する。一方、12Bは、断面の一辺が(d/2)である四角柱ロッドインテグレータの内部を透過する光を表し、四角柱ロッドインテグレータの始端面から光軸から角度2θだけ傾いて光が進行したとする。この光線は四角柱ロッドインテグレータの長さ(L/8)の位置で内面を反射し、以後(L/4)ごとに反射を繰り返す。最終的に長さLの四角柱ロッドインテグレータの終端面までに内面を4回反射する。
ロッドインテグレータを光束の光強度分布の均一化の目的で用いる場合、ロッドインテグレータの始端面から終端面までに、光線を複数回反射させるように光の進行方向の長さを決める。反射回数が多ければ多いほど均一化効果は高くなる。そのため、12Aと12Bを比べた場合、12Bの方が均一化効果は高くなる。言い換えると、12Aと同程度の均一化を達成するには、12Cのように断面の一辺が(d/2)で長さが(L/4)のロッドインテグレータで十分である。ところで、本実施形態の照明光学系200には、第2ロッド光学系19、第3ロッド光学系207の後に倍率が2倍の拡大光学系240が配置されている。照明光学系内でヘルムホルツ=ラグランジュ量は一定に保たれるの。そこで、拡大光学系240がない場合に比べて、第2ロッド光学系19、第3ロッド光学系207内を通過する光の光軸からの角度は2倍に、ロッドインテグレータの断面の1方向の長さは(1/2)になる。図12で説明した内容を踏まえると、拡大光学系240を用いることにより、第2ロッド光学系19、第3ロッド光学系207の均一化効果を保ったまま、光の進行方向の長さを(1/4)程度に短くすることができることがわかる。
本実施形態における第1光学系17、第2光学系205、第3光学系206、第4光学系33の各光学素子の個数や配置はあくまで一例であって限定される事項ではない。また、これまで本実施形態で特に言及していない光学素子の透過面には反射防止膜、ミラーには反射膜が着けられている。
[露光装置]
図13を用いて、露光装置の一例を説明する。露光装置400は、照明光学系10と、原版を保持する原版ステージ300と、基板を保持する基板ステージ302と、原版のパターンを基板の上に投影する投影光学系301、照度ムラセンサ304を備え、原版と基板とを同期走査させることで基板を露光する。投影光学系301は、例えば、物体面から像面に至る光路において、第1凹反射面、凸反射面、第2凹反射面が順に配列された投影光学系でありうる。また、照明光学系10は実施形態2、3に記述した照明光学系100、200に代替させて用いることも可能である。照明光学系10のスリット32は円弧形状の開口を持ち、円弧位置ごとにスリットの幅を変えることができるような構造をしている。照度ムラセンサ304は図13のようにスリット303と複数の光学素子とセンサ305により構成されている。
図14のように基板ステージ302に結像する光の領域401に対し、スリット303をスキャンさせる。このとき、領域401に結像する光のうち、スリット303の開口部306に結像した光のみが、照度ムラセンサ304内に入射する。照度ムラセンサ304内に入射した光は複数の光学素子によりセンサ305に導かれ、センサ305に到達する。スリット303を14Aの矢印の方向にスキャンさせながら、センサ305に到達する光のエネルギーを読み取ることで、領域401内の場所ごとの照度を計測でき、照度ムラを算出することができる。
照度ムラがあった場合、スリット形状が調整可能なスリット32の開口幅を調節することで、低減することができる。例えば、照度ムラセンサ304により、図15の15Aのように、円弧の中心では照度が高く、円弧の外側に向けて、照度が低くなっているような照度ムラを計測したとする。この場合、15Bのように、円弧の中心に比べて円弧の外側に向けて、スリット32の開口幅を広げるようにスリット形状を調整することで、照度ムラセンサ304のセンサ305に入射する光の照度を円弧の場所に依らず、一定値にすることができる。
[デバイス製造方法]
次に、デバイス(半導体デバイス、液晶表示デバイス等)の製造方法について説明する。半導体デバイスは、ウエハに集積回路を作る前工程と、前工程で作られたウエハ上の集積回路チップを製品として完成させる後工程を経ることにより製造される。前工程は、前述の露光装置を使用して感光剤が塗布されたウエハを露光する工程と、ウエハを現像する工程を含む。後工程は、アッセンブリ工程(ダイシング、ボンディング)と、パッケージング工程(封入)を含む。液晶表示デバイスは、透明電極を形成する工程を経ることにより製造される。透明電極を形成する工程は、透明導電膜が蒸着されたガラス基板に感光剤を塗布する工程と、前述の露光装置を使用して感光剤が塗布されたガラス基板を露光する工程と、ガラス基板を現像する工程を含む。本実施形態のデバイス製造方法によれば、従来よりも高品位のデバイスを製造することができる。以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で種々の変形および変更が可能である。

Claims (8)

  1. 複数の光源から射出された光束を使用して被照明面を照明する照明光学系であって、
    1つの前記光源から射出された光の強度分布を均一化する1つのロッドインテグレータを、前記複数の光源のそれぞれについて有する複数のロッドインテグレータと、
    前記複数のロッドインテグレータから射出された複数の光束をそれらの断面において互いに隣接するように合成する合成光学系と、
    入射面及び射出面を有し、前記合成光学系により合成された光束を前記入射面で複数の光束に分割し、該分割された複数の光束の集合体の前記射出面における断面形状が前記入射面における断面形状と異なるように前記分割された複数の光束を前記射出面で集合させ、前記分割された複数の光束のそれぞれを、光学的に継ぎ合された複数のライトパイプによって前記入射面から前記射出面まで伝達する光伝達部と、を備える、ことを特徴とする照明光学系。
  2. 前記合成光学系から射出された光束の強度分布を均一化して前記光伝達部に射出するロッドインテグレータをさらに備える、ことを特徴とする請求項1の照明光学系。
  3. 複数の光源から射出された光束を被照明面に導く照明光学系であって、
    前記複数の光源から射出された複数の光束をそれらの断面において互いに隣接するように合成する合成光学系と、
    入射面及び射出面を有し、前記合成光学系により合成された光束を前記入射面で複数の光束に分割し、該分割された複数の光束の集合体の前記射出面における断面形状が前記入射面における断面形状と異なるように前記分割された複数の光束を前記射出面で集合させ、前記分割された複数の光束のそれぞれを、前記入射面及び前記射出面の間で光学的に継ぎ合された複数のライトパイプによって前記入射面から前記射出面まで伝達する光伝達部と、を備え、
    前記射出面において、ある1つの光源からの光束から分割された2つの光束が通過する領域の間に他の光源からの光束から分割された光束が通過する領域が位置するように、前記光伝達部が構成される、ことを特徴とする照明光学系。
  4. 前記ある1つの光源からの光束から分割された光束が通過する領域と、前記他の光源からの光束から分割された光束が通過する領域と、が交互に配列されるように前記光伝達部が構成されている、ことを特徴とする請求項3に記載の照明光学系。
  5. 前記被照明面に対してフーリエ変換の関係となる面に配置された開口絞りをさらに備える、ことを特徴とする請求項1乃至請求項4のいずれか1項に記載の照明光学系。
  6. 前記被照明面と光学的に共役な位置に配置された、スリット形状が調整可能なスリットをさらに備える、ことを特徴とする請求項1乃至請求項5のいずれか1項に記載の照明光学系。
  7. 被照明面としてのマスクを照明する、請求項1乃至請求項のいずれか1項に記載の照明光学系と、
    前記照明光学系によって照明されたマスクのパターンを基板に投影する投影光学系と、
    を有し、前記基板を露光する露光装置。
  8. 請求項に記載の露光装置を用いて基板を露光する工程と、
    前記工程で露光された基板を現像する工程と、を含むデバイス製造方法。
JP2011036334A 2011-02-22 2011-02-22 照明光学系、露光装置及びデバイス製造方法 Expired - Fee Related JP5806479B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011036334A JP5806479B2 (ja) 2011-02-22 2011-02-22 照明光学系、露光装置及びデバイス製造方法
US13/371,637 US9280054B2 (en) 2011-02-22 2012-02-13 Illumination optical system, exposure apparatus, and method of manufacturing device
KR1020120014805A KR101448339B1 (ko) 2011-02-22 2012-02-14 조명 광학계, 노광 장치, 및 디바이스 제조 방법
TW101105097A TWI475333B (zh) 2011-02-22 2012-02-16 照明光學系統、曝光設備、和製造裝置的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011036334A JP5806479B2 (ja) 2011-02-22 2011-02-22 照明光学系、露光装置及びデバイス製造方法

Publications (3)

Publication Number Publication Date
JP2012174936A JP2012174936A (ja) 2012-09-10
JP2012174936A5 JP2012174936A5 (ja) 2014-04-03
JP5806479B2 true JP5806479B2 (ja) 2015-11-10

Family

ID=46652457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011036334A Expired - Fee Related JP5806479B2 (ja) 2011-02-22 2011-02-22 照明光学系、露光装置及びデバイス製造方法

Country Status (4)

Country Link
US (1) US9280054B2 (ja)
JP (1) JP5806479B2 (ja)
KR (1) KR101448339B1 (ja)
TW (1) TWI475333B (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6178588B2 (ja) * 2013-02-28 2017-08-09 キヤノン株式会社 照明光学系、露光装置、デバイスの製造方法及び光学素子
CN104423174B (zh) * 2013-08-27 2017-05-31 上海微电子装备有限公司 一种照明系统
CN105745579B (zh) * 2013-09-25 2019-02-22 Asml荷兰有限公司 束传输设备和方法
JP6415266B2 (ja) * 2014-11-20 2018-10-31 キヤノン株式会社 照明光学系、光学装置および画像投射装置
CN106707691B (zh) * 2015-07-15 2018-10-16 上海微电子装备(集团)股份有限公司 曝光装置及方法
WO2017194393A1 (en) * 2016-05-11 2017-11-16 Asml Netherlands B.V. Radiation conditioning system, illumination system and metrology apparatus, device manufacturing method
CN107450270B (zh) * 2016-05-31 2019-07-23 上海微电子装备(集团)股份有限公司 照明系统
CN109564379B (zh) * 2016-08-02 2021-12-14 索尼公司 投影式显示装置
CN107885042A (zh) * 2016-09-30 2018-04-06 上海微电子装备(集团)股份有限公司 多光谱光源耦合装置
CN108020994B (zh) * 2016-10-31 2020-01-24 上海微电子装备(集团)股份有限公司 一种照明装置
US11175487B2 (en) * 2017-06-19 2021-11-16 Suss Microtec Photonic Systems Inc. Optical distortion reduction in projection systems
CN107656415A (zh) * 2017-11-24 2018-02-02 北京速镭视激光科技有限公司 一种高效、高均匀性被动光束匀光整形照明系统

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60232552A (ja) 1984-05-02 1985-11-19 Canon Inc 照明光学系
US4939630A (en) * 1986-09-09 1990-07-03 Nikon Corporation Illumination optical apparatus
US5153773A (en) * 1989-06-08 1992-10-06 Canon Kabushiki Kaisha Illumination device including amplitude-division and beam movements
US5218660A (en) * 1989-11-29 1993-06-08 Canon Kabushiki Kaisha Illumination device
JPH088208B2 (ja) * 1989-11-29 1996-01-29 キヤノン株式会社 照明光学系
JP2657957B2 (ja) * 1990-04-27 1997-09-30 キヤノン株式会社 投影装置及び光照射方法
JPH0478002A (ja) 1990-07-13 1992-03-12 Toshiba Corp 磁気記録再生装置
JP3049777B2 (ja) * 1990-12-27 2000-06-05 株式会社ニコン 投影露光装置及び方法、並びに素子製造方法
JPH078002B2 (ja) 1991-05-27 1995-01-30 富士通株式会社 ファクシミリシステムにおける管理記録方式
JP3368654B2 (ja) * 1994-03-23 2003-01-20 株式会社ニコン 照明光学装置及び転写方法
US5729331A (en) * 1993-06-30 1998-03-17 Nikon Corporation Exposure apparatus, optical projection apparatus and a method for adjusting the optical projection apparatus
JP3707060B2 (ja) * 1994-06-29 2005-10-19 株式会社ニコン 照明光学装置
JPH10199800A (ja) * 1997-01-09 1998-07-31 Nikon Corp オプティカルインテグレータを備える照明光学装置
EP1069600A4 (en) * 1998-03-24 2002-11-20 Nikon Corp ILLUMINATOR, EXPOSURE METHOD AND APPARATUS, METHOD FOR MANUFACTURING SAID DEVICE
JPH11354424A (ja) * 1998-06-04 1999-12-24 Canon Inc 照明装置及びそれを用いた投影露光装置
JP2000164487A (ja) * 1998-11-25 2000-06-16 Nikon Corp 照明光学装置及び露光装置
JP3814444B2 (ja) * 1999-07-26 2006-08-30 キヤノン株式会社 照明装置及びそれを用いた投影露光装置
JP2001242326A (ja) * 2000-02-29 2001-09-07 Toshiba Lighting & Technology Corp 導光装置
JP2001326171A (ja) * 2000-05-18 2001-11-22 Canon Inc 照明装置
US6464404B1 (en) * 2000-06-19 2002-10-15 Schott Fiber Optics, Inc. Optical fiber rearrangement method and device
JP2002184676A (ja) * 2000-12-18 2002-06-28 Nikon Corp 照明光学装置および該照明光学装置を備えた露光装置
JP3634782B2 (ja) * 2001-09-14 2005-03-30 キヤノン株式会社 照明装置、それを用いた露光装置及びデバイス製造方法
US20050134825A1 (en) * 2002-02-08 2005-06-23 Carl Zeiss Smt Ag Polarization-optimized illumination system
JP2004022708A (ja) * 2002-06-14 2004-01-22 Nikon Corp 結像光学系、照明光学系、露光装置及び露光方法
TWI387855B (zh) 2003-11-13 2013-03-01 尼康股份有限公司 A variable slit device, a lighting device, an exposure device, an exposure method, and an element manufacturing method
JP2006337834A (ja) * 2005-06-03 2006-12-14 Fujifilm Holdings Corp 露光装置及び露光方法
JP2007041378A (ja) * 2005-08-04 2007-02-15 Fujifilm Corp 合波光源
KR20090048541A (ko) * 2006-07-12 2009-05-14 가부시키가이샤 니콘 조명 광학 장치, 노광 장치 및 디바이스 제조 방법
JP5245775B2 (ja) 2008-12-04 2013-07-24 株式会社ニコン 照明装置、露光装置、及びデバイス製造方法
JP2010282114A (ja) * 2009-06-08 2010-12-16 Panasonic Corp 多灯照明装置及びそれを用いた投写型画像表示装置

Also Published As

Publication number Publication date
JP2012174936A (ja) 2012-09-10
KR101448339B1 (ko) 2014-10-07
US9280054B2 (en) 2016-03-08
TWI475333B (zh) 2015-03-01
TW201237566A (en) 2012-09-16
KR20120096421A (ko) 2012-08-30
US20120212724A1 (en) 2012-08-23

Similar Documents

Publication Publication Date Title
JP5806479B2 (ja) 照明光学系、露光装置及びデバイス製造方法
US11353795B2 (en) Light source apparatus, optical apparatus, exposure apparatus, device manufacturing method, illuminating method, exposure method, and method for manufacturing optical apparatus
JPWO2007138805A1 (ja) 照明光学装置、露光装置、およびデバイス製造方法
KR20200062316A (ko) 조명 광학계, 노광 장치 및 물품의 제조 방법
US6857764B2 (en) Illumination optical system and exposure apparatus having the same
JP2002208551A (ja) 反射屈折光学系及び投影露光装置
JP2021113998A (ja) カタディオプトリック光学系、照明光学系、露光装置および物品製造方法
JP5283928B2 (ja) 照明光学系、露光装置及びデバイス製造方法
CN111656245B (zh) 投射光刻的照明光学单元
JP2015005676A (ja) 照明光学系、照明光学装置、露光装置、およびデバイス製造方法
JP2014195048A (ja) 照明光学系、露光装置及びデバイスの製造方法
KR101999553B1 (ko) 조명 광학장치, 노광장치, 및 물품의 제조방법
US6833905B2 (en) Illumination apparatus, projection exposure apparatus, and device fabricating method
JP2002350620A (ja) 光学部材、当該光学部材を用いた照明装置及び露光装置
JP2013143450A (ja) 走査露光装置及びデバイスの製造方法
JP5570225B2 (ja) 照明光学系、それを用いた露光装置及びデバイスの製造方法
JP6051905B2 (ja) 光分配装置、照明システム及びこれを備える露光装置
JP2022128509A (ja) 照明光学系、露光装置、およびデバイス製造方法
WO2014010552A1 (ja) 照明光学系、露光装置、およびデバイス製造方法
JP2014236211A (ja) 照明装置、露光装置、照明方法及びデバイス製造方法
JP2014150216A (ja) 光伝達光学系、露光装置、それを用いたデバイスの製造方法

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150904

LAPS Cancellation because of no payment of annual fees