JP5803736B2 - 制御装置 - Google Patents

制御装置 Download PDF

Info

Publication number
JP5803736B2
JP5803736B2 JP2012039401A JP2012039401A JP5803736B2 JP 5803736 B2 JP5803736 B2 JP 5803736B2 JP 2012039401 A JP2012039401 A JP 2012039401A JP 2012039401 A JP2012039401 A JP 2012039401A JP 5803736 B2 JP5803736 B2 JP 5803736B2
Authority
JP
Japan
Prior art keywords
engagement
speed
rotational speed
shift
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012039401A
Other languages
English (en)
Other versions
JP2013173451A (ja
Inventor
耕平 津田
耕平 津田
友宏 小野内
友宏 小野内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin AW Co Ltd
Original Assignee
Aisin AW Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin AW Co Ltd filed Critical Aisin AW Co Ltd
Priority to JP2012039401A priority Critical patent/JP5803736B2/ja
Priority to DE112013000312.0T priority patent/DE112013000312B4/de
Priority to US14/362,568 priority patent/US9303758B2/en
Priority to PCT/JP2013/054572 priority patent/WO2013125692A1/ja
Priority to CN201380004074.6A priority patent/CN103958318B/zh
Publication of JP2013173451A publication Critical patent/JP2013173451A/ja
Application granted granted Critical
Publication of JP5803736B2 publication Critical patent/JP5803736B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0213Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal characterised by the method for generating shift signals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • B60W10/115Stepped gearings with planetary gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/19Improvement of gear change, e.g. by synchronisation or smoothing gear shift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/06Smoothing ratio shift by controlling rate of change of fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • F16H63/50Signals to an engine or motor
    • F16H63/502Signals to an engine or motor for smoothing gear shifts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/42Control of clutches
    • B60Y2300/429Control of secondary clutches in drivelines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0213Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal characterised by the method for generating shift signals
    • F16H2061/0234Adapting the ratios to special vehicle conditions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Control Of Transmission Device (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Description

本発明は、駆動力源に駆動連結される入力部材と、車輪に駆動連結される出力部材と、変速比の異なる複数の変速段の内、複数の係合装置が解放又は係合されて形成された変速段の変速比に応じて前記入力部材の回転速度を変速して前記出力部材に伝達する変速機構と、を備えた車両用駆動装置を制御するための制御装置に関する。
上記のような制御装置に関して、例えば下記の特許文献1に記載された技術が既に知られている。特許文献1に記載されている技術は、車輪への要求駆動力が低い状態で、車速の減少などにより、目標変速段が現在の変速段より変速比が大きい変速段に決定されてダウンシフト制御を開始した後、解放側の係合装置を解放させると共に係合側の係合装置を係合させて、目標変速段を変速機構に形成させている。
しかしながら、特許文献1の技術では、ダウンシフト制御の開始後、入力部材の回転速度を変速後の同期回転速度まで上昇させると共に係合側係合装置の係合圧を増加させて、係合側係合装置を直結係合状態に速やかに移行させている。このため、入力部材の回転速度の上昇に対する係合側係合装置の係合圧を増加させるタイミングのズレ、及び入力部材の回転速度を上昇させるために要するトルクなどにより、車輪側に伝達されるトルクが変動してトルクショックが生じる恐れがある。
特開2009−6735号公報
そこで、車輪への要求駆動力が低い状態で、目標変速段が現在の変速段より変速比が大きい変速段に決定された後、係合側係合装置の係合に伴いトルクショックが生じることを抑制できる制御装置が求められる。
本発明に係る、駆動力源に駆動連結される入力部材と、車輪に駆動連結される出力部材と、変速比の異なる複数の変速段の内、複数の係合装置が解放又は係合されて形成された変速段の変速比に応じて前記入力部材の回転速度を変速して前記出力部材に伝達する変速機構と、を備えた車両用駆動装置を制御するための制御装置の特徴構成は、
前記車輪への要求駆動力と車速に応じて決定する目標変速段が現在の変速段とは異なる変速段になった場合に、現在の変速段を形成する前記係合装置の少なくとも1つである解放側係合装置を解放させると共に、前記目標変速段を形成する少なくとも1つの係合装置である係合側係合装置を係合させて、前記目標変速段を前記変速機構に形成させる変速制御部を備え、
前記変速制御部は、前記要求駆動力が予め定めた制御判定値以下である状態で、前記目標変速段が現在の変速段より変速比が大きい変速段に決定された場合に、係合規制ダウンシフト制御の実施条件が成立したと判定し、前記解放側係合装置を直結係合状態から非直結係合状態に移行させる移行制御を開始し、前記解放側係合装置が非直結係合状態に移行した後、前記入力部材の回転速度が前記目標変速段を前記変速機構に形成した場合の前記入力部材の回転速度である同期回転速度より高くなるように前記駆動力源の出力トルクを制御する上昇回転速度制御を開始し、前記入力部材の回転速度が前記同期回転速度より高くなった後、前記入力部材の回転速度が、前記同期回転速度より高く設定した目標回転速度に近づくように前記駆動力源の出力トルクを制御する差回転速度制御を開始し、少なくとも前記入力部材の回転速度が前記同期回転速度より高くなるまでは、前記係合側係合装置の係合を禁止し、前記差回転速度制御の開始後に前記係合側係合装置を係合させる点にある。
なお、本願において、「駆動連結」とは、2つの回転要素が駆動力を伝達可能に連結された状態を指し、当該2つの回転要素が一体的に回転するように連結された状態、或いは当該2つの回転要素が一又は二以上の伝動部材を介して駆動力を伝達可能に連結された状態を含む概念として用いている。このような伝動部材としては、回転を同速で又は変速して伝達する各種の部材が含まれ、例えば、軸、歯車機構、ベルト、チェーン等が含まれる。また、このような伝動部材として、回転及び駆動力を選択的に伝達する係合装置、例えば摩擦係合装置や噛み合い式係合装置等が含まれていてもよい。
上記の特徴構成によれば、目標変速段がより変速比が大きい変速段に決定された後、入力部材の回転速度が、同期回転速度より高くなるまでは、係合側係合装置の係合が禁止されるので、入力部材の回転速度が同期回転速度まで上昇されている間に、係合側係合装置が係合されることを防止できる。よって、入力部材の回転速度の上昇に対する係合側係合装置の係合圧を増加させるタイミングのズレ、及び入力部材の回転速度を上昇させるために要するトルクなどにより、車輪側に伝達されるトルクが変動してトルクショックが生じることを防止できる。
入力部材の回転速度が同期回転速度より高い場合は、係合側係合装置を係合させるために係合圧が増加されると、入力部材側から出力部材側に正のトルクが伝達される。上記の特徴構成によれば、解放側係合装置が非直結係合状態に移行した後、入力部材の回転速度が、同期回転速度より高くなるように駆動力源の出力トルクを制御する上昇回転速度制御が開始され、入力部材の回転速度が同期回転速度より高くなるまでは、係合側係合装置の係合が禁止されるので、係合側係合装置を係合させるときの入力部材の回転速度を同期回転速度より高くでき、入力部材側から出力部材側に正のトルクを伝達することができる。
よって、入力部材の回転速度が同期回転速度より高くなった後、要求駆動力が増加した場合や、車両を微速走行させるためのクリープトルクを発生させる場合など、入力部材側から出力部材側に正のトルクを伝達させる要求があった場合に、係合側係合装置を係合させて、要求に応じた正のトルクを出力部材側に伝達させることができる。
また、上記の特徴構成によれば、入力部材の回転速度が同期回転速度より高くなった後、差回転速度制御が開始されるので、入力部材の回転速度を同期回転速度より高い状態に精度良く維持できる。よって、上記のように、入力部材の回転速度が同期回転速度より高くなった後、入力部材側から出力部材側に正のトルクを伝達させる要求があり、係合側係合装置を係合させる際に、トルクショックが生じることを精度良く抑制できる。
ここで、前記係合規制ダウンシフト制御の実施条件が成立した後、前記出力部材の回転速度が低下する場合、前記変速制御部は、前記入力部材の回転速度又は前記同期回転速度が予め定めた滑り判定値以下になった場合に、前記係合側係合装置を係合部材間に回転速度差がある滑り係合状態へ移行させと好適である。
車速が低下してくると、車両を微速走行させるためのクリープトルクを発生させることが望まれる場合がある。上記の構成によれば、入力部材の回転速度又は同期回転速度が予め定めた滑り判定値以下になった場合に、係合側係合装置を滑り係合状態へ移行させ、入力部材側から出力部材側へクリープトルクを伝達させることができる。
ここで、前記係合規制ダウンシフト制御の実施条件が成立した後、前記出力部材の回転速度が低下すると共に前記要求駆動力が増加する場合、前記変速制御部は、前記滑り判定値に基づく判定に拘わらず、前記要求駆動力が前記制御判定値以上に設定された加速判定値以上になった場合に、前記係合側係合装置を前記滑り係合状態又は係合部材間に回転速度差がない直結係合状態に移行させると好適である。
この構成によれば、入力部材の回転速度が同期回転速度より高くなったこと、及び要求駆動力が加速判定値以上であること、の双方の条件が成立した場合に、係合側係合装置が滑り係合状態に移行されるので、要求駆動力に応じた正のトルクを車輪側に伝達させることができると共に、トルクショックが生じることを抑制できる。
上記の双方の条件が成立する具体例として、入力部材の回転速度が同期回転速度より高くなった後、要求駆動力が加速判定値以上まで増加した場合では、要求駆動力が加速判定値以上になった後、速やかに係合側係合装置を滑り係合状態に移行させて要求駆動力に応じた正のトルクを車輪側に伝達させることができる。
また、もう1つの具体例として、係合規制ダウンシフト制御を開始した後、入力部材の回転速度が同期回転速度より高くなるまでの間に、要求駆動力が加速判定値以上まで増加した場合では、入力部材の回転速度が同期回転速度より高くなるまで、係合側係合装置の係合が禁止されるため、要求駆動力と正負の符号が反対の負のトルクが、入力部材側から出力部材側に伝達されてトルクショックが生じることを防止できる。そして、入力部材の回転速度が同期回転速度より高くなった後、速やかに係合側係合装置を滑り係合状態に移行させて、要求駆動力に応じた正のトルクを車輪側に伝達させることができる。
ここで、前記係合規制ダウンシフト制御の実施条件が成立した後、前記要求駆動力が増加することなく前記出力部材の回転速度が上昇する場合、前記変速制御部は、前記入力部材の回転速度又は前記同期回転速度が前記滑り判定値よりも大きい直結判定値以上になった場合に、前記係合側係合装置を直結係合状態へ移行させと好適である。
車速の増加などにより、入力部材の回転速度又は同期回転速度が高くなると、変速機構に目標変速段を形成させて、変速機構を通常の変速状態に復帰させることが望まれる。
上記の構成によれば、入力部材の回転速度又は前記同期回転速度が直結判定値以上になった場合に、係合側係合装置を直結係合状態へ移行させ、目標変速段を変速機構に形成させることができる。
ここで、前記駆動力源として、少なくとも内燃機関を備え、
前記内燃機関が運転状態であって、前記入力部材の回転速度又は前記同期回転速度が予め定めた下限回転速度以下になった場合に、前記入力部材の回転速度が予め定めた目標回転速度に近づくように前記駆動力源の出力トルクを制御する下限回転速度制御を開始すると好適である。
内燃機関が運転状態である場合に、車速の低下などにより、入力部材の回転速度又は同期回転速度が低下してくると、入力部材の回転速度を、内燃機関の燃焼が安定して継続する最低限の回転速度以上に維持することが望まれる。上記の構成によれば、入力部材の回転速度又は同期回転速度が下限回転速度以下になった場合に、下限回転速度制御を開始させ、入力部材の回転速度を最低限の回転速度以上に維持させることができる。
ここで、前記変速制御部は、前記要求駆動力が予め定めた前記制御判定値以下である状態で、前記目標変速段が、前記現在の変速段より変速比が大きい変速段として、変速比が最も大きい変速段に変更された場合に、前記係合規制ダウンシフト制御の実施条件が成立したと判定すると好適である。
目標変速段の変速比が大きくなるほど、係合側係合装置を係合させる際に生じたトルク変動が、より大きく増幅されて出力部材に伝達される。よって、目標変速段が、変速比が最も大きい変速段に変更された場合に、係合側係合装置の係合を禁止する係合規制ダウンシフト制御の必要性が高くなる。上記の構成によれば、目標変速段が、変速比が最も大きい変速段に変更された場合に、係合規制ダウンシフト制御の実施条件が成立したと判定されるので、トルクショックの低減効果を大きくすることができる。
また、要求駆動力が低い状態で、目標変速段が、変速比が最も大きい変速段に変更される場合は、通常、車速が低い状態であり、負トルクである制動トルクを駆動力源側から車輪側に伝達させる必要性が低い。このため、上記の構成のように、目標変速段が、変速比が最も大きい変速段に変更された場合に、係合規制ダウンシフト制御の実施条件が成立したと判定して、係合側係合装置の係合を禁止しても、車両の制動を損なうことなく、トルクショックを低減させることができる。
本発明の実施形態に係る車両用駆動装置及び制御装置の概略構成を示す模式図である。 本発明の実施形態に係る制御装置の概略構成を示すブロック図である。 本発明の実施形態に係る係合規制ダウンシフト制御の処理を示すフローチャートである。 本発明の比較例に係る駆動力補助制御の処理を説明するためのタイミングチャートである。 本発明の実施形態に係る係合規制ダウンシフト制御の処理を説明するためのタイミングチャートである。 本発明の実施形態に係る係合規制ダウンシフト制御の処理を説明するためのタイミングチャートである。 本発明の実施形態に係る係合規制ダウンシフト制御の処理を説明するためのタイミングチャートである。 本発明の実施形態に係る係合規制ダウンシフト制御の処理を説明するためのタイミングチャートである。 本発明の実施形態に係る係合規制ダウンシフト制御の処理を説明するためのタイミングチャートである。 本発明のその他の実施形態に係る係合規制ダウンシフト制御の処理を説明するためのタイミングチャートである。 本発明のその他の実施形態に係る車両用駆動装置及び制御装置の概略構成を示す模式図である。 本発明のその他の実施形態に係る車両用駆動装置及び制御装置の概略構成を示す模式図である。
本発明に係る制御装置30の実施形態について、図面を参照して説明する。図1は、本実施形態に係る車両用駆動装置1及び制御装置30の概略構成を示す模式図である。この図において、実線は駆動力の伝達経路を示し、破線は作動油の供給経路を示し、一点鎖線は信号の伝達経路を示している。
本実施形態では、制御装置30は、回転電機MG及びエンジンEを有する駆動力源に駆動連結される入力軸Iと、車輪Wに駆動連結される出力軸Oと、変速比の異なる複数の変速段の内、複数の係合装置B1、C1、・・・が解放又は係合されて形成された変速段の変速比に応じて入力軸Iの回転速度を変速して出力軸Oに伝達する変速機構と、を備えた車両用駆動装置1を制御するための装置である。本実施形態では、エンジンEは、エンジン分離クラッチCLを介して、入力軸Iに駆動連結される。なお、入力軸Iが、本発明における「入力部材」に相当し、出力軸Oが、本発明における「出力部材」に相当する。
また、制御装置30は、回転電機MGの制御を行う回転電機制御ユニット32と、変速機構TM及びエンジン分離クラッチCLの制御を行う動力伝達制御ユニット33と、これらの制御装置を統合して車両用駆動装置1の制御を行う車両制御ユニット34と、を有している。また、ハイブリッド車両には、エンジンEの制御を行うエンジン制御装置31も備えられている。
このような構成において、本実施形態に係る制御装置30は、図2に示すように、変速制御部43を備えている。変速制御部43は、車輪Wへの要求駆動力と車速に応じて決定する目標変速段が現在の変速段とは異なる変速段になった場合に、現在の変速段を形成する係合装置の少なくとも1つである解放側係合装置を解放させると共に、目標変速段を形成する少なくとも1つの係合装置である係合側係合装置を係合させて、目標変速段を変速機構TMに形成させる変速制御を行う。
変速制御部43は、要求駆動力が予め定めた制御判定値以下である状態で、目標変速段が現在の変速段より変速比が大きい変速段に決定された場合に、係合規制ダウンシフト制御の実施条件が成立したと判定し、解放側係合装置を直結係合状態から非直結係合状態に移行させる移行制御を開始し、解放側係合装置が直結係合状態から非直結係合状態に移行した後、入力軸Iの回転速度が目標変速段を変速機構TMに形成した場合の入力軸Iの回転速度である変速後同期回転速度より高くなるように駆動力源の出力トルクを制御する上昇回転速度制御を開始する。そして、変速制御部43は、入力軸Iの回転速度が変速後同期回転速度により高くなった後、入力軸Iの回転速度が、変速後同期回転速度より高く設定した目標回転速度に近づくように駆動力源の出力トルクを制御する同期平行回転速度制御を開始する。また、変速制御部43は、少なくとも入力軸Iの回転速度が変速後同期回転速度より高くなるまでは、係合側係合装置の係合を禁止する係合規制ダウンシフト制御を行う。なお、変速後同期回転速度が、本発明における「同期回転速度」に相当し、同期平行回転速度制御が、本発明における「差回転速度制御」に相当する。
1.車両用駆動装置1の構成
まず、本実施形態に係るハイブリッド車両の車両用駆動装置1の構成について説明する。図1に示すように、ハイブリッド車両は、車両の駆動力源としてエンジンE及び回転電機MGを備え、これらのエンジンEと回転電機MGとが直列に駆動連結されるパラレル方式のハイブリッド車両となっている。ハイブリッド車両は、変速機構TMを備えており、当該変速機構TMにより、入力軸Iに伝達されたエンジンE及び回転電機MGの回転速度を変速すると共にトルクを変換して出力軸Oに伝達する。
エンジンEは、燃料の燃焼により駆動される内燃機関であり、例えば、ガソリンエンジンやディーゼルエンジンなどの公知の各種エンジンを用いることができる。本例では、エンジンEのクランクシャフト等のエンジン出力軸Eoが、エンジン分離クラッチCLを介して、回転電機MGに駆動連結された入力軸Iと選択的に駆動連結される。すなわち、エンジンEは、摩擦係合要素であるエンジン分離クラッチCLを介して回転電機MGに選択的に駆動連結される。また、エンジン出力軸Eoには、ダンパが備えられており、エンジンEの間欠的な燃焼による出力トルク及び回転速度の変動を減衰して、車輪W側に伝達可能に構成されている。
回転電機MGは、非回転部材に固定されたステータと、このステータと対応する位置で径方向内側に回転自在に支持されたロータと、を有している。この回転電機MGのロータは、入力軸Iと一体回転するように駆動連結されている。すなわち、本実施形態においては、入力軸IにエンジンE及び回転電機MGの双方が駆動連結される構成となっている。回転電機MGは、直流交流変換を行うインバータを介して蓄電装置としてのバッテリに電気的に接続されている。そして、回転電機MGは、電力の供給を受けて動力を発生するモータ(電動機)としての機能と、動力の供給を受けて電力を発生するジェネレータ(発電機)としての機能と、を果たすことが可能とされている。すなわち、回転電機MGは、インバータを介してバッテリからの電力供給を受けて力行し、或いはエンジンEや車輪Wから伝達される回転駆動力により発電し、発電された電力は、インバータを介してバッテリに蓄電される。
駆動力源が駆動連結される入力軸Iには、変速機構TMが駆動連結されている。本実施形態では、変速機構TMは、変速比の異なる複数の変速段を有する有段の自動変速装置である。変速機構TMは、これら複数の変速段を形成するため、遊星歯車機構等の歯車機構と複数の係合装置B1、C1、・・・とを備えている。この変速機構TMは、各変速段の変速比で、入力軸Iの回転速度を変速すると共にトルクを変換して、出力軸Oへ伝達する。変速機構TMから出力軸Oへ伝達されたトルクは、出力用差動歯車装置DFを介して左右二つの車軸AXに分配されて伝達され、各車軸AXに駆動連結された車輪Wに伝達される。ここで、変速比は、変速機構TMにおいて各変速段が形成された場合の、出力軸Oの回転速度に対する入力軸Iの回転速度の比であり、本願では入力軸Iの回転速度を出力軸Oの回転速度で除算した値である。すなわち、入力軸Iの回転速度を変速比で除算した回転速度が、出力軸Oの回転速度になる。また、入力軸Iから変速機構TMに伝達されるトルクに、変速比を乗算したトルクが、変速機構TMから出力軸Oに伝達されるトルクになる。
本例では、変速機構TMの複数の係合装置B1、C1、・・・、及びエンジン分離クラッチCLは、それぞれ摩擦材を有して構成されるクラッチやブレーキ等の摩擦係合要素である。これらの摩擦係合要素は、供給される油圧を制御することによりその係合圧を制御して伝達トルク容量の増減を連続的に制御することが可能とされている。このような摩擦係合要素としては、例えば湿式多板クラッチや湿式多板ブレーキ等が好適に用いられる。
摩擦係合要素は、その係合部材間の摩擦により、係合部材間でトルクを伝達する。摩擦係合要素の係合部材間に回転速度差(滑り)がある場合は、動摩擦により回転速度の大きい方の部材から小さい方の部材に伝達トルク容量の大きさのトルク(スリップトルク)が伝達される。摩擦係合要素の係合部材間に回転速度差(滑り)がない場合は、摩擦係合要素は、伝達トルク容量の大きさを上限として、静摩擦により摩擦係合要素の係合部材間に作用するトルクを伝達する。ここで、伝達トルク容量とは、摩擦係合要素が摩擦により伝達することができる最大のトルクの大きさである。伝達トルク容量の大きさは、摩擦係合要素の係合圧に比例して変化する。係合圧とは、入力側係合部材(摩擦板)と出力側係合部材(摩擦板)とを相互に押し付け合う圧力である。本実施形態では、係合圧は、供給されている油圧の大きさに比例して変化する。すなわち、本実施形態では、伝達トルク容量の大きさは、摩擦係合要素に供給されている油圧の大きさに比例して変化する。
各摩擦係合要素は、リターンばねを備えており、ばねの反力により解放側に付勢されている。そして、各摩擦係合要素の油圧シリンダに供給される油圧により生じる力がばねの反力を上回ると、各摩擦係合要素に伝達トルク容量が生じ始め、各摩擦係合要素は、解放状態から係合状態に変化する。この伝達トルク容量が生じ始めるときの油圧を、ストロークエンド圧と称す。各摩擦係合要素は、供給される油圧がストロークエンド圧を上回った後、油圧の増加に比例して、その伝達トルク容量が増加するように構成されている。なお、摩擦係合要素は、リターンばねを備えておらず、油圧シリンダのピストンの両側にかかる油圧の差圧によって制御させる構造でもよい。
本実施形態において、係合状態とは、摩擦係合要素に伝達トルク容量が生じている状態であり滑り係合状態と直結係合状態とが含まれる。解放状態とは、摩擦係合要素に伝達トルク容量が生じていない状態である。また、滑り係合状態とは、摩擦係合要素の係合部材間に回転速度差(滑り)がある係合状態であり、直結係合状態とは、摩擦係合要素の係合部材間に回転速度差(滑り)がない係合状態である。また、非直結係合状態とは、直結係合状態以外の係合状態であり、解放状態と滑り係合状態とが含まれる。
2.油圧制御系の構成
車両用駆動装置1の油圧制御系は、車両の駆動力源や専用のモータによって駆動される油圧ポンプから供給される作動油の油圧を所定圧に調整するための油圧制御装置PCを備えている。ここでは詳しい説明を省略するが、油圧制御装置PCは、油圧調整用のリニアソレノイド弁からの信号圧に基づき一又は二以上の調整弁の開度を調整することにより、当該調整弁からドレインする作動油の量を調整して作動油の油圧を一又は二以上の所定圧に調整する。所定圧に調整された作動油は、それぞれ必要とされるレベルの油圧で、変速機構TMの複数の係合装置B1、C1、・・・、並びにエンジン分離クラッチCLの各摩擦係合要素等に供給される。
3.制御装置の構成
次に、車両用駆動装置1の制御を行う制御装置30及びエンジン制御装置31の構成について、図2を参照して説明する。
制御装置30の制御ユニット32〜34及びエンジン制御装置31は、CPU等の演算処理装置を中核部材として備えるとともに、当該演算処理装置からデータを読み出し及び書き込みが可能に構成されたRAM(ランダム・アクセス・メモリ)や、演算処理装置からデータを読み出し可能に構成されたROM(リード・オンリ・メモリ)等の記憶装置等を有して構成されている。そして、制御装置のROM等に記憶されたソフトウェア(プログラム)又は別途設けられた演算回路等のハードウェア、或いはそれらの両方により、制御装置30の各機能部41〜44などが構成されている。また、制御装置30の制御ユニット32〜34及びエンジン制御装置31は、互いに通信を行うように構成されており、センサの検出情報及び制御パラメータ等の各種情報を共有するとともに協調制御を行い、各機能部41〜44の機能が実現される。
また、車両用駆動装置1は、センサSe1〜Se4を備えており、各センサから出力される電気信号は制御装置30及びエンジン制御装置31に入力される。制御装置30及びエンジン制御装置31は、入力された電気信号に基づき各センサの検出情報を算出する。
入力回転速度センサSe1は、入力軸Iの回転速度を検出するためのセンサである。入力軸Iには回転電機MGのロータが一体的に駆動連結されているので、回転電機制御ユニット32は、入力回転速度センサSe1の入力信号に基づいて回転電機MGの回転速度(角速度)、並びに入力軸Iの回転速度を検出する。
出力回転速度センサSe2は、出力軸Oの回転速度を検出するためのセンサである。動力伝達制御ユニット33は、出力回転速度センサSe2の入力信号に基づいて出力軸Oの回転速度(角速度)を検出する。また、出力軸Oの回転速度は車速に比例するため、動力伝達制御ユニット33は、出力回転速度センサSe2の入力信号に基づいて車速を算出する。
エンジン回転速度センサSe3は、エンジン出力軸Eo(エンジンE)の回転速度を検出するためのセンサである。エンジン制御装置31は、エンジン回転速度センサSe3の入力信号に基づいてエンジンEの回転速度(角速度)を検出する。
また、アクセル開度検出センサSe4は、運転者により操作されるアクセルペダルAPの操作量を検出することによりアクセル開度を検出するためのセンサである。制御装置30は、アクセル開度検出センサSe4の入力信号に基づいてアクセル開度を検出する。
3−1.車両制御ユニット34
車両制御ユニット34は、エンジンE、回転電機MG、変速機構TM、及びエンジン分離クラッチCL等に対して行われる各種トルク制御、及び各係合装置の係合制御等を車両全体として統合する制御を行う車両制御部41を備えている。
車両制御部41は、アクセル開度、車速、及びバッテリの充電量等に応じて、車輪Wの駆動のために要求されている要求駆動力であって、入力軸I側から出力軸O側に伝達されるトルクである車両要求トルクを算出するとともに、エンジンE及び回転電機MGの運転モードを決定する。そして、車両制御ユニット34は、エンジンEに対して要求する出力トルクであるエンジン要求トルク、回転電機MGに対して要求する出力トルクである回転電機要求トルク、及びエンジン分離クラッチCLに対して要求する伝達トルク容量であるエンジン分離目標トルク容量を算出し、それらを他の制御ユニット32、33及びエンジン制御装置31に指令して統合制御を行う機能部である。
車両制御部41は、運転モードとして、エンジン分離クラッチCLを係合して、エンジンEを運転状態にするパラレル走行モード、エンジン分離クラッチCLを解放して、エンジンEを運転停止状態にする電動走行モードなどを決定する。
3−2.回転電機制御ユニット32
回転電機制御ユニット32は、回転電機MGの動作制御を行う回転電機制御部42を備えている。本実施形態では、回転電機制御部42は、車両制御ユニット34から回転電機要求トルクが指令されている場合は、車両制御ユニット34から指令された回転電機要求トルクを出力トルク指令値に設定し、回転電機MGが出力トルク指令値のトルクを出力するように制御する。具体的には、回転電機制御部42は、インバータが備える複数のスイッチング素子をオンオフ制御することにより、回転電機MGの出力トルクを制御する。
3−3.エンジン制御装置31
エンジン制御装置31は、エンジンEの動作制御を行うエンジン制御部40を備えている。本実施形態では、エンジン制御部40は、車両制御ユニット34からエンジン要求トルクが指令されている場合は、車両制御ユニット34から指令されたエンジン要求トルクを出力トルク指令値に設定し、エンジンEが出力トルク指令値のトルクを出力するように制御するトルク制御を行う。また、エンジン制御装置31は、エンジンの燃焼開始要求があった場合は、エンジンEの燃焼開始が指令されたと判定して、エンジンEへの燃料供給及び点火を開始するなどして、エンジンEの燃焼を開始する制御を行う。
3−4.動力伝達制御ユニット33
動力伝達制御ユニット33は、変速機構TMの制御を行う変速制御部43と、エンジン分離クラッチCLの制御を行うエンジン分離クラッチ制御部44と、を備えている。
3−4−1.エンジン分離クラッチ制御部44
エンジン分離クラッチ制御部44は、エンジン分離クラッチCLの係合状態を制御する。本実施形態では、エンジン分離クラッチ制御部44は、エンジン分離クラッチCLの伝達トルク容量を、車両制御ユニット34から指令されたエンジン分離目標トルク容量に近づけるように、油圧制御装置PCを介してエンジン分離クラッチCLに供給される油圧を制御する。具体的には、エンジン分離クラッチ制御部44は、エンジン分離目標トルク容量に基づき設定した目標油圧(指令圧)を、油圧制御装置PCに指令し、油圧制御装置PCは、指令された目標油圧(指令圧)の油圧をエンジン分離クラッチCLに供給する。
3−4−2.変速制御部43
変速制御部43は、変速機構TMを制御する機能部である。変速制御部43は、車輪Wへの要求駆動力と車速とに応じて目標変速段を決定し、目標変速段を変速機構TMに形成させる。本実施形態では、変速制御部43は、目標変速段を決定する要求駆動力として、アクセル開度及びシフト位置を用いている。変速制御部43は、油圧制御装置PCを介して変速機構TMに備えられた各係合装置B1、C1、・・・に供給される油圧を制御することにより、各係合装置B1、C1、・・・を係合又は解放して目標とされた変速段を変速機構TMに形成させる。具体的には、変速制御部43は、油圧制御装置PCに各係合装置の目標油圧(指令圧)を指令し、油圧制御装置PCは、指令された目標油圧(指令圧)の油圧を各係合装置に供給する。
本実施形態では、変速制御部43は、変速マップを備えており、変速マップを参照して目標変速段を決定するように構成されている。変速マップは、アクセル開度及び車速と、変速機構TMにおける目標変速段との関係を規定したマップである。変速マップには複数のアップシフト線と複数のダウンシフト線とが設定されており、車速及びアクセル開度が変化して変速マップ上でアップシフト線又はダウンシフト線を跨ぐと、変速制御部43は、変速機構TMにおける新たな目標変速段を決定する。また、シフト位置の変更があった場合も、目標変速段が変更される。例えば、セカンドレンジ、又はローレンジに変更されたと検出した場合にも、目標変速段が変更される場合がある。なお、ここでは、アップシフトとは変速比の大きい変速段から変速比の小さい変速段への切り替えを意味し、ダウンシフトとは変速比の小さい変速段から変速比の大きい変速段への切り替えを意味する。
変速制御部43は、目標変速段が現在の変速段とは異なる変速段になった場合に、現在の変速段を形成している係合装置の少なくとも1つである解放側係合装置を解放させると共に、目標変速段を形成する少なくとも1つの係合装置である係合側係合装置を係合させて、目標変速段を変速機構TMに形成させる変速制御を行う。すなわち、変速制御部43は、変速制御開始前(変速前)において係合している係合装置のうちの少なくとも一つである解放側係合装置を解放させると共に、目標変速段を形成する係合装置の内、変速前において解放されている少なくとも1つの係合装置である係合側係合装置を係合させる、いわゆるつなぎ替え変速を行う。
より具体的には、変速前の変速段を形成する複数の係合装置と変速後の変速段を形成する複数の係合装置との間で共通していない係合装置であって、変速前の変速段を形成している係合装置が解放側係合装置に設定されて解放される。一方、変速前後の変速段で共通していない係合装置であって、変速後の変速段を形成する係合装置が係合側係合装置に設定されて係合される。なお、変速前後の変速段で共通している係合装置は、変速前後で係合状態に維持される。
例えば、ダウンシフトが行われる場合には、変速制御部43は、変速比が小さい高速段を形成している係合装置の1つである解放側係合装置を解放させるとともに、変速比が大きい低速段を形成する係合装置の内、変速前に解放されている1つの係合装置である係合側係合装置を係合させるダウンシフト制御を行う。
また、アップシフトが行われる場合には、変速制御部43は、変速比が大きい低速段を形成する係合装置の1つである解放側係合装置を解放させるとともに、変速比が小さい高速段を形成する係合装置の内、変速前に解放されている1つの係合装置である係合側係合装置を係合させるアップシフト制御を行う。
なお、アップシフトとは変速比の大きい変速段から変速比の小さい変速段への切り替えを意味し、ダウンシフトとは変速比の小さい変速段から変速比の大きい変速段への切り替えを意味する。なお、第一変速段、第二変速段、第三変速段、第四変速段、第五変速段、第六変速段、・・・の順に、変速比が小さくなるように設定されている。
3−4−2−1.係合規制ダウンシフト制御
変速制御部43は、要求駆動力が予め定めた制御判定値以下である状態で、目標変速段が現在の変速段より変速比が大きい変速段に決定された場合に、係合規制ダウンシフト制御の実施条件が成立したと判定し、解放側係合装置を直結係合状態から非直結係合状態に移行させる移行制御を開始し、解放側係合装置が直結係合状態から非直結係合状態に移行した後、入力軸Iの回転速度が目標変速段を変速機構TMに形成した場合の入力軸Iの回転速度である変速後同期回転速度より高くなるように駆動力源の出力トルクを制御する上昇回転速度制御を開始する。そして、変速制御部43は、入力軸Iの回転速度が変速後同期回転速度により高くなった後、入力軸Iの回転速度が、変速後同期回転速度より高く設定した目標回転速度に近づくように駆動力源の出力トルクを制御する同期平行回転速度制御を開始する。また、変速制御部43は、少なくとも入力軸Iの回転速度が変速後同期回転速度より高くなるまでは、係合側係合装置の係合を禁止する係合規制ダウンシフト制御を行う。
本実施形態では、変速制御部43は、解放側係合装置が直結係合状態から解放状態に移行した後、上昇回転速度制御を開始するように構成されている。このように、解放側係合装置が解放状態に移行した後、上昇回転速度制御が開始される場合は、入力軸Iの回転速度を変化させて、解放側係合装置の係合部材間に回転速度差を生じさせても、解放側係合装置の係合部材間に伝達トルクが生じることはない。よって、解放側係合装置を介して車輪W側にトルクが伝達されることを抑制でき、トルクショックが生じることを抑制できる。
また、本実施形態では、目標回転速度は、変速後同期回転速度より一定回転速度だけ高く設定されるように構成されている。このように目標回転速度が、変速後同期回転速度より一定回転速度だけ高く設定されるので、車速の変化により変速後同期回転速度が変化した場合でも、入力軸Iの回転速度を変速後同期回転速度より高い状態に精度良く維持できる。また、目標回転速度が変速後同期回転速度より一定回転速度だけ高く設定されるので、入力軸Iの回転速度を変速後同期回転速度まで低下させて、係合側係合装置を直結係合状態に移行させる移行制御の制御挙動を安定的なものとすることができ、係合側係合装置の係合圧の増加などにより、トルクショックが生じることを抑制できる。
変速制御部43は、入力軸Iの回転速度が変速後同期回転速度より高くなった後、入力軸Iの回転速度又は変速後同期回転速度が予め定めた滑り判定値以下になった場合に、係合側係合装置を滑り係合状態へ移行させる移行制御を開始するように構成されている。
一方、変速制御部43は、入力軸Iの回転速度又は変速後同期回転速度が予め定めた直結判定値以上になった場合に、係合側係合装置を直結係合状態へ移行させる移行制御を開始するように構成されている。
また、変速制御部43は、入力軸Iの回転速度が変速後同期回転速度より高くなったこと、及び要求駆動力が制御判定値以上に設定された加速判定値以上であること、の双方の条件が成立した場合に、係合側係合装置を滑り係合状態に移行させるように構成されている。
また、変速制御部43は、エンジンEが運転状態であって、入力軸Iの回転速度又は変速後同期回転速度が予め定めた下限回転速度以下になった場合に、入力部材の回転速度が予め定めた目標回転速度に近づくように駆動力源の出力トルクを制御する下限回転速度制御を開始するように構成されている。ここで、エンジンEが運転状態であるとは、入力軸IとエンジンEが一体的に回転している状態であり、本実施形態では、エンジン分離クラッチが直結係合状態である。
変速制御部43は、要求駆動力が予め定めた制御判定値以下である状態で、目標変速段が、現在の変速段より変速比が大きい変速段として、変速比が最も大きい変速段である第一変速段に変更された場合に、係合規制ダウンシフト制御の実施条件が成立したと判定するように構成されている。このような場合として、目標変速段が、第二変速段から第一変速段に変更された場合、第三変速段から第一変速段に変更された場合などがある。なお、第二変速段での車両の発進が判定されている場合など、目標変速段として第一変速段が決定されないようにされている場合は、第三変速段から第二変速段に変更された場合などに、係合規制ダウンシフト制御の実施条件が成立したと判定されてもよい。
以上で説明した本実施形態に係る変速制御部43を、図3に示すフローチャートの例に示すように構成することができる。
変速制御部43は、目標変速段が現在の変速段より変速比が大きい変速段(本実施形態では、第一変速段)に決定された場合(ステップ♯01:Yes)に、ダウンシフト制御の開始条件が成立した判定して、一連のダウンシフト制御を開始する。
そして、変速制御部43は、要求駆動力が制御判定値以下である場合(ステップ♯02:Yes)に、係合規制ダウンシフト制御の実施条件が成立したと判定し、ステップ♯03からステップ♯14までの一連の係合規制ダウンシフト制御を開始する。
一方、変速制御部43は、要求駆動力が制御判定値より大きい場合(ステップ♯02:No)には、係合規制ダウンシフト制御の実施条件が成立しなかったと判定し、通常のダウンシフト制御を実行する(ステップ♯20)。
通常のダウンシフト制御では、係合規制ダウンシフト制御のように、入力軸Iの回転速度が変速後同期回転速度より高くなるまで、係合側係合装置の係合が禁止されることはなく、ダウンシフト制御の開始後、解放側係合装置が解放されると共に係合側係合装置が係合されて目標変速段が形成される。
変速制御部43は、係合規制ダウンシフト制御の実施条件が成立したと判定した後、解放側係合装置を非直結係合状態(本実施形態では、解放状態)にすると決定し(ステップ♯03)、解放側係合装置を直結係合状態から非直結係合状態に移行させる移行制御を開始する。
そして、変速制御部43は、解放側係合装置が非直結係合状態(本実施形態では、解放状態)に移行したと判定した場合(ステップ♯04:Yes)に、入力軸Iの回転速度が変速後同期回転速度より高くなるように駆動力源の出力トルクを制御する上昇回転速度制御を実行すると決定し、上昇回転速度制御を開始する(ステップ♯05)。
そして、変速制御部43は、入力軸Iの回転速度が変速後同期回転速度より高くなったと判定した場合(ステップ♯06:Yes)であって、後述するステップ♯07の条件が成立していない場合(ステップ♯07:No)は、入力軸Iの回転速度が、変速後同期回転速度より一定回転速度だけ高く設定した目標回転速度に近づくように駆動力源の出力トルクを制御する同期平行回転速度制御を実行すると決定して、上昇回転速度制御を終了し、同期平行回転速度制御を開始する(ステップ♯09)。
変速制御部43は、ステップ♯06で入力軸Iの回転速度が変速後同期回転速度より高くなったと判定した後、ステップ♯07からステップ♯14までを繰り返し実行する際に、エンジンEが運転状態であって、入力軸Iの回転速度又は変速後同期回転速度が予め定めた下限回転速度以下であると判定した場合(ステップ♯07:Yes)は、下限回転速度制御を実行すると決定し(ステップ♯08)、それ以外の場合(ステップ♯07:No)は、同期平行回転速度制御を実行すると決定する(ステップ♯09)。
具体例としては、入力軸Iの回転速度が変速後同期回転速度より高くなった後、係合規制ダウンシフト制御が引き続き実行されている間(ステップ♯07からステップ♯14までが繰り返し実行されている間)に、エンジンEが運転されている状態で、車速が低下するなどして、変速制御部43が、入力軸Iの回転速度又は変速後同期回転速度が下限回転速度以下になったと判定した場合(ステップ♯07:Yes)に、下限回転速度制御を実行すると決定し、同期平行回転速度制御を終了し、下限回転速度制御を開始する(ステップ♯08)。一方、係合規制ダウンシフト制御が引き続き実行されている間に、エンジンEが運転されている状態で、車速が上昇するなどして、変速制御部43が、入力軸Iの回転速度又は変速後同期回転速度が下限回転速度より大きくなったと判定した場合(ステップ♯07:No)に、同期平行回転速度制御を実行すると決定し、下限回転速度制御を終了し、同期平行回転速度制御を開始する(ステップ♯09)。
また、変速制御部43は、ステップ♯06で入力軸Iの回転速度が変速後同期回転速度より高くなったと判定した後、ステップ♯07からステップ♯14までを繰り返し実行する際に、以下で説明するステップ♯10からステップ♯12で、入力軸Iの回転速度又は変速後同期回転速度に基づいて、係合側係合装置の目標係合状態を決定し、係合状態を解放状態から滑り係合状態又は直結係合状態に移行させる。すなわち、入力軸Iの回転速度が変速後同期回転速度より高くなった後、係合側係合装置が係合されることとなり、入力軸Iの回転速度が変速後同期回転速度より高くなるまでは、係合側係合装置の係合が禁止される。
具体的には、変速制御部43は、入力軸Iの回転速度又は変速後同期回転速度が予め定めた直結判定値以上になったと判定した場合(ステップ♯10:Yes)に、係合側係合装置を直結係合状態にすると決定する(ステップ♯15)。そして、変速制御部43は、係合側係合装置を滑り係合状態又は解放状態から直結係合状態に移行させる移行制御を開始する。また、変速制御部43は、入力軸Iの回転速度又は変速後同期回転速度が直結判定値以上になったと判定した場合(ステップ♯10:Yes)に、トルク制御を実行すると決定し、同期平行回転速度制御又は下限回転速度制御を終了し、トルク制御を開始する(ステップ♯16)。そして、変速制御部43は、係合規制ダウンシフト制御を終了する(エンド)。
また、変速制御部43は、入力軸Iの回転速度又は変速後同期回転速度が、直結判定値より低く設定された滑り判定値以下であると判定した場合(ステップ♯11:Yes)に、後述するクリープトルクを駆動力源側から車輪W側に伝達させるため、係合側係合装置を滑り係合状態にすると決定する(ステップ♯13)。
一方、変速制御部43は、入力軸Iの回転速度又は変速後同期回転速度が、直結判定値より低く(ステップ♯10:No)、且つ滑り判定値より高い(ステップ♯11:No)場合に、要求駆動力が加速判定値以上であるか否かを判定する(ステップ♯12)。変速制御部43は、要求駆動力が加速判定値以上であると判定した場合(ステップ♯12:Yes)は、要求駆動力に応じたトルクを駆動力源側から車輪W側に伝達させるため、係合側係合装置を滑り係合状態にすると決定する(ステップ♯13)。一方、変速制御部43は、要求駆動力が加速判定値より小さいと判定した場合(ステップ♯12:No)は、駆動力を駆動力源から車輪Wに伝達させないと決定して、係合側係合装置を解放状態にすると決定する(ステップ♯14)。
このように、入力軸Iの回転速度又は変速後同期回転速度が、直結判定値から滑り判定値までの範囲内にあり、ダウンシフト制御の完了又はクリープトルクの伝達のために、係合側係合装置を直結係合状態又は滑り係合状態に制御しない場合であっても、要求駆動力が加速判定値以上である場合は、係合側係合装置を滑り係合状態に制御する。
変速制御部43は、決定している係合側係合装置の目標係合状態が、解放状態から滑り係合状態に変化した場合は、係合側係合装置を解放状態から滑り係合状態に移行させる移行制御を開始する。変速制御部43は、決定している係合側係合装置の目標係合状態が、解放状態から直結係合状態に変化した場合は、係合側係合装置を解放状態から直結係合状態に移行させる移行制御を開始する。変速制御部43は、決定している係合側係合装置の目標係合状態が、滑り係合状態から直結係合状態に変化した場合は、係合側係合装置を滑り係合状態から直結係合状態に移行させる移行制御を開始する。変速制御部43は、決定している係合側係合装置の目標係合状態が、滑り係合状態から解放状態に変化した場合は、係合側係合装置を滑り係合状態から解放状態に移行させる移行制御を開始する。
そして、入力軸Iの回転速度又は変速後同期回転速度が予め定めた直結判定値以上になったと判定されるまで(ステップ♯10:Yes)、ステップ♯07からステップ♯14までを繰り返し実行して、係合規制ダウンシフト制御を継続する。
3−4−2−1−1.ダウンシフト制御の課題
まず、ダウンシフト制御の課題について、図4に示す比較例に基づいて説明する。
時刻t01までは、要求駆動力としての車両要求トルクが小さい値(図4に示す例では負の値)に設定されており、車速が次第に減少している状態である。なお、エンジン分離クラッチCLは、直結係合状態に制御されており、エンジンEは入力軸Iと一体的に回転している。
時刻t01で、車速の減少により、目標変速段が第二変速段から、より変速比が大きい第一変速段に変更され、ダウンシフト制御の開始条件が成立したと判定されており、ダウンシフト制御が開始されている。図4に示す比較例は、車両要求トルクが制御判定値以下である場合でも、係合規制ダウンシフト制御が実施されないように構成されており、通常のダウンシフト制御が実施されるように構成されている。よって、図4に示す比較例では、ダウンシフト制御の開始後、入力軸Iの回転速度が変速後同期回転速度より高くなるまで、係合側係合装置の係合が禁止されることなく、係合側係合装置の係合が開始されている(時刻t01)。
ダウンシフト制御の開始条件が成立したとき(時刻t01)、解放側係合装置を直結係合状態から解放状態に移行させる移行制御が開始されている。図4に示す比較例では、移行制御を開始したとき、解放側係合装置に対する係合圧(指令圧)を、完全係合圧から後述する予備係合圧まで減少させる予備係合圧制御が開始されている(時刻t01)。そして、予備係合圧制御が終了した後(時刻t02)、解放側係合装置の係合圧(指令圧)が、解放側係合装置が解放されるように、予備係合圧からゼロ近くまで次第に減少されている(時刻t02から時刻t03)。
一方、ダウンシフト制御の開始条件が成立したとき(時刻t01)、係合側係合装置を解放状態から直結係合状態に移行させる移行制御が開始されている。図4に示す比較例では、移行制御を開始した後、油圧シリンダへの作動油の充填を早めるため、指令圧が一時的に高く設定されている(時刻t01から時刻t02)。この際、比較例では、作動油の充填をできるだけ早めて、変速制御を早く終了させるため、指令圧が高く設定されると共に指令圧が高く設定される期間が長く設定されており、係合圧が目標とされた係合圧に対してオーバーシュートする恐れがある。図4に示す比較例には、実油圧が目標とされた油圧に対してオーバーシュートした場合を示しており、このオーバーシュートにより、係合側係合装置に伝達トルクが生じ、図4に(1)で示すように、出力軸伝達トルクが変動し、トルクショックが生じている(時刻t02付近)。
解放側係合装置が直結係合状態から、解放状態又は滑り係合状態の非直結係合状態に移行した後、滑り係合係合状態に制御された係合側係合装置を伝達するトルクにより、入力軸Iの回転速度が、変速前同期回転速度から変速後同期回転速度まで上昇していく(時刻t03から時刻04)。この際、係合側係合装置を介して、出力軸O側から入力軸I側にトルクが伝達されるため、図4に(2)で示すように、出力軸伝達トルクが車両要求トルクに対して当該伝達トルク分だけ低下し、トルクショックが生じている(時刻t03から時刻t04)。
そして、入力軸Iの回転速度が、変速後同期回転速度まで上昇したと判定されたとき、係合側係合装置の係合圧(指令圧)が完全係合圧まで増加され、係合側係合装置が直結係合状態に移行されている。係合側係合装置が直結係合状態に移行すると、変速機構TMに目標変速段(第一変速段)が形成される。この際、係合圧を増加させるタイミングのズレなどにより、係合側係合装置の係合部材間に回転速度差がある状態で、係合圧が大きく増加されると、係合側係合装置を伝達するスリップトルクが大きくなり、図4に(3)で示すように、出力軸伝達トルクが車両要求トルクに対して大きく変動し、トルクショックが生じる恐れがある(時刻t04付近)。
車速が減少していき、車速又は入力軸Iの回転速度が、クリープトルク出力制御の実行判定値以下になったと判定されたとき(時刻t05)、車両要求トルクが目標のクリープトルクに応じたトルクまで増加され、駆動力源の出力トルクが増加されている。
そして、エンジンEの回転速度の低下を防止するため、入力軸Iの回転速度が下限回転速度を開始するための判定値以下になったと判定されたとき、係合側係合装置を直結係合状態から滑り係合状態に移行させる移行制御が開始されている。係合側係合装置が滑り係合状態になったと判定した後(時刻t06以降)、下限回転速度制御が開始され、入力軸Iの回転速度が目標回転速度付近に制御されている。この際、下限回転速度制御を開始するタイミングのズレなどにより、係合側係合装置が直結係合状態から滑り係合状態に移行する前に、下限回転速度制御が開始されると、変速後同期回転速度に沿って低下しようとする入力軸Iの回転速度を目標回転速度に制御するために、図4に(4)で示すように、駆動力源の出力トルクが変動し、出力軸伝達トルクにトルクショックが生じる恐れがある(時刻t06付近)。
以上のように、通常のダウンシフト制御が実行される場合は、ダウンシフト制御の開始後、係合側係合装置を直結係合状態に移行させる際に、図4の(1)から(3)のように、出力軸伝達トルクにトルクショックが生じる恐れがある。また、係合側係合装置が直結係合状態に移行された後、エンジンEの回転速度の低下を防止するため、係合側係合装置を直結係合状態から滑り係合状態に移行させる必要があり、当該移行の際に、図4の(4)のように、出力軸伝達トルクにトルクショックが生じる恐れがある。
また、上記のトルク変動は、変速比の大きい第一変速段で生じるため、トルク変動が、変速比の大きい変速段で増幅されて出力軸Oに伝達される。よって、出力軸伝達トルクのトルクショックが大きくなる恐れがある。
3−4−2−1−2.エンジン運転状態で、車速が減少する運転条件
係合規制ダウンシフト制御について、運転条件毎にタイムチャートを参照して説明する。
まず、エンジンEが運転状態で、車速が減少していく運転条件について、図5に示す例を参照して説明する。図3のフローチャートにおいて、車速の減少により、ステップ♯11でYesと判定され、ステップ♯07でYesと判定される運転条件である。
時刻t11までは、図4の時刻t01までと同様に、要求駆動力としての車両要求トルクが小さい値(負の値)に設定されており、車速が次第に減少している状態である。なお、エンジン分離クラッチCLは、直結係合状態に制御されており、エンジンEは回転している。
変速制御部43は、時刻t11で、車速の減少により、目標変速段を第二変速段からより変速比が大きい第一変速段に変更し、ダウンシフト制御の開始条件が成立したと判定し(図3のステップ♯01:Yes)、ダウンシフト制御を開始している。また、変速制御部43は、車両要求トルクが制御判定値以下であると判定し(図3のステップ♯02:Yes)、係合規制ダウンシフト制御の実施条件が成立したと判定している(係合規制制御:ON)。本実施形態では、制御判定値は、クリープトルク以下の任意のトルク(本例では、クリープトルク)に対応するトルクに設定されている。或いは、制御判定値は、空気抵抗、タイヤ摩擦抵抗、及び坂路抵抗などの走行抵抗により、車輪Wから出力軸Oに伝達される走行抵抗トルク(負トルク)の絶対値に対応したトルクに設定されてもよい。この場合、変速制御部43は、車両重量、車速、道路傾斜に基づいて走行抵抗トルクを推定することができる。或いは、変速制御部43は、車速の変化速度及び出力軸伝達トルク(車両要求トルク)に基づいて走行抵抗トルクを推定することができる。
そして、変速制御部43は、解放側係合装置を解放状態にすると決定し(ステップ♯03)、解放側係合装置を直結係合状態から解放状態に移行させる移行制御を開始している(時刻t11)。図5に示す例では、変速制御部43は、移行制御を開始したとき、解放側係合装置に対する係合圧(指令圧)を、完全係合圧から予備係合圧まで減少させる予備係合圧制御を開始している(時刻t11)。そして、予備係合圧制御が終了した後(時刻t12)、解放側係合装置の係合圧(指令圧)を、解放側係合装置が解放されるように、予備係合圧からゼロまで次第に減少させている(時刻t12から時刻t13)。ここで、完全係合圧とは、駆動力源から係合装置に伝達されるトルクが変動しても滑りのない係合状態を維持できる係合圧(指令圧)である。また、解放側係合装置の予備係合圧は、最小係合圧より所定圧だけ高く設定された係合圧(指令圧)である。最小係合圧は、入力軸Iに伝達される駆動力源のトルクを、全て出力軸O側に伝達可能な最小の係合圧(指令圧)である。
変速制御部43は、時刻t13で解放側係合装置が解放状態に移行したと判定し(ステップ♯04:Yes)に、入力軸Iの回転速度が変速後同期回転速度より高くなるように駆動力源の出力トルクを制御する上昇回転速度制御を開始している(ステップ♯05)。本実施形態では、目標回転速度が、変速前同期回転速度から変速後同期回転速度より大きい回転速度まで次第に増加されて、入力軸Iの回転速度が変速前同期回転速度から変速後同期回転速度より高い回転速度まで上昇されている(時刻t13から時刻t14)。
そして、変速制御部43は、時刻t14で入力軸Iの回転速度が変速後同期回転速度より高くなったと判定し(ステップ♯06:Yes)、エンジンEは運転状態であるが入力軸Iの回転速度が下限回転速度より大きいので(ステップ♯07:No)、上昇回転速度制御を終了し、同期平行回転速度制御を開始している(ステップ♯09)。目標回転速度は、変速後同期回転速度に対して、所定のオフセット値を加算した回転速度に設定されている。ここで、変速後同期回転速度は、出力軸Oの回転速度に、変更後の目標変速段(本例では第一変速段)の変速比を乗算した回転速度である。また、変速前同期回転速度は、出力軸Oの回転速度に、変速前の目標変速段(本例では第二変速段)の変速比を乗算した回転速度である。
変速制御部43は、時刻t15で、車速の減少により、変速後同期回転速度と平行に変化する入力軸Iの回転速度が、滑り判定値以下になったと判定し(ステップ♯11:Yes)、係合側係合装置を解放状態から滑り係合状態に移行させる移行制御を開始している。なお、入力軸Iの回転速度が滑り判定値以下であると判定されたとき、クリープトルクを駆動力源側から車輪Wに伝達させるクリープトルク出力制御が開始されている(時刻t15)。ここで、クリープトルク出力制御は、走行レンジにおいて、アクセル開度がゼロに近く、車速が低い場合に、車両が微速走行する(クリープする)ようなクリープトルクを、駆動力源側から車輪W側に伝達させる制御である。
クリープトルク出力制御の開始後、車両要求トルクがクリープトルクに応じたトルクまで増加されている(時刻t15)。また、変速制御部43は、係合側係合装置の係合圧(指令圧)を、車輪Wにクリープトルクを伝達可能な最小限の係合圧(指令圧)まで増加させている。この際、入力軸Iの回転速度は、同期平行回転速度制御により変速後同期回転速度より高くされているので、係合側係合装置を滑り係合状態に制御することで、入力軸I側から出力軸O側に正のトルクを伝達させることができる。
また、図5に示す例では、移行制御を開始した後、油圧シリンダへの作動油の充填を早めるため、指令圧が一時的に高く設定されている(時刻t15から時刻t16の間)。この際、図4を参照して説明した通常のダウンシフト制御を実行する場合とは異なり、変速制御を早く終了させる必要性が低く、作動油の充填をできるだけ早める必要が低いため、指令圧をあまり高くしないように設定すると共に指令圧を高く設定する期間をあまり長くしないように設定することができ、係合圧(油圧)が目標とされた係合圧(油圧)に対してオーバーシュートすることを抑制できる。このため、図5に示すように、実油圧が目標とされた油圧に対してオーバーシュートすることを抑制できており、出力軸伝達トルクが変動しトルクショックが生じることを抑制できている(時刻t15から時刻t16)。
そして、変速制御部43は、時刻t16で、車速が更に減少することにより、変速後同期回転速度と平行に変化する入力軸Iの回転速度が、下限回転速度以下になったと判定し(ステップ♯07:Yes)、同期平行回転速度制御を終了し、下限回転速度制御を開始している(ステップ♯08)。下限回転速度は、エンジンEの燃焼が安定して継続する最低限の回転速度以上になるように予め設定されている。
下限回転速度制御における目標回転速度も、最低限の回転速度以上になるように予め設定されており、典型的にはアイドリング運転状態における目標回転速度である。
3−4−2−1−3.エンジン運転停止状態で、車速が減少する運転条件
次に、エンジンEが運転停止状態で、車速が減少していく運転条件について、図6に示す例を参照して説明する。図3のフローチャートにおいて、車速の減少により、ステップ♯11でYesと判定されるが、エンジンEが運転停止状態であるためステップ♯07でYesと判定されない運転条件である。
時刻t26までは、図5の時刻t16までと、エンジンEが運転状態であるか運転停止状態であるかを除いて同様である。すなわち、図6に示す例は、エンジン分離クラッチCLが、解放状態に制御されており、エンジンEは入力軸Iと一体的に回転していない。
変速制御部43は、時刻t26で、車速が更に減少することにより、変速後同期回転速度と平行に変化する入力軸Iの回転速度が、下限回転速度以下になった場合でも、エンジンEが運転停止状態であるため(ステップ♯07:No)、図5に示す例とは異なり、エンジンEの回転速度を最低限の回転速度以上に維持する必要がないため、下限回転速度制御を開始せずに、同期平行回転速度制御を継続している(ステップ♯09)。
よって、車速が減少するに従い、変速後同期回転速度と平行に変化する入力軸Iの回転速度が、下限回転速度未満に低下している(時刻t26以降)。
3−4−2−1−4.要求駆動力が増加され、車速が増加する運転条件、第一の例
次に、係合規制ダウンシフト制御の開始後、要求駆動力が増加され、車速が増加していく運転条件の第一の例について、図7を参照して説明する。図3のフローチャートにおいて、係合規制ダウンシフト制御の開始後(ステップ♯03以降)、要求駆動力が加速判定値以上まで増加され、ステップ♯12でYesと判定され、その後、車速の増加により、ステップ♯10でYesと判定される運転条件である。
時刻t34までは、図5の時刻t14までと同様である。なお、図7に示す例では、エンジンEは運転状態又は運転停止状態のいずれの状態でも同様の挙動になる。
図7に示す例では、係合規制ダウンシフト制御が開始され(時刻t31)、時刻t34で入力軸Iの回転速度が変速後同期回転速度より高くなったと判定した(ステップ♯06:Yes)後、アクセル開度が増加するなどして、車両要求トルクが増加している。そして、変速制御部43は、時刻t35で車両要求トルクが加速判定値以上であると判定し(ステップ♯12:Yes)、係合側係合装置を解放状態から滑り係合状態に移行させる移行制御を開始している。本実施形態では、加速判定値は、クリープトルクに対応するトルクに設定されている。
変速制御部43は、移行制御を開始した後、車両要求トルクを車輪W側に伝達できるように、車両要求トルクの増加に応じて、係合側係合装置の係合圧(指令圧)を増加させている。図7に示す例では、移行制御を開始した後、油圧シリンダへの作動油の充填を早めるため、指令圧が一時的に高く設定されている。係合側係合装置の実油圧がストロークエンド圧より大きくなった後、係合側係合装置の伝達トルク容量がゼロから増加し、出力軸伝達トルクがゼロから増加している。この際、入力軸Iの回転速度は、同期平行回転速度制御により変速後同期回転速度より高くされているので、係合側係合装置を滑り係合状態に制御することで、入力軸I側から出力軸O側に正のトルクを伝達させることができる。
入力軸Iの回転速度を目標回転速度に維持するために、駆動力源の出力トルクが、出力軸伝達トルクの増加に応じて増加している。
そして、出力軸伝達トルクの増加により車速が増加していくと、変速制御部43は、時刻t36で入力軸Iの回転速度が直結判定値以上になったと判定し(ステップ♯10:Yes)、係合側係合装置を滑り係合状態から直結係合状態に移行させる移行制御を開始している。本実施形態では、直結判定値は、係合規制ダウンシフト制御を開始した時点(時刻t31)の変速後同期回転速度より、所定値だけ高くなるように設定されている。
また、変速制御部43は、時刻t36で入力軸Iの回転速度が直結判定値以上になったと判定し、同期平行回転速度制御を終了し、トルク制御を開始している。なお、トルク制御では、車両要求トルクに応じたトルクを駆動力源に出力させる。図7に示す例では、変速制御部43は、係合側係合装置の係合圧(指令圧)を増加させて、入力軸Iの回転速度を変速後同期回転速度まで近づけている。或いは、変速制御部43は、係合側係合装置の係合圧(指令圧)の増加に代え、又は係合側係合装置の係合圧(指令圧)の増加とともに、駆動力源の出力トルクを減少させて入力軸Iの回転速度を変速後同期回転速度まで近づけるようにしてもよい。
入力軸Iの回転速度は、同期平行回転速度制御により、変速後同期回転速度より一定回転速度だけ高く設定された目標回転速度付近に制御されているので、同期平行回転速度制御を終了した後、入力軸Iの回転速度を速やかに変速後同期回転速度に近づけることができている。
そして、変速制御部43は、入力軸Iの回転速度が変速後同期回転速度に近づいたとき、係合側係合装置の係合圧(指令圧)を完全係合圧まで増加させて、係合規制ダウンシフト制御を終了する(係合規制制御:OFF)(時刻t37)。
3−4−2−1−5.要求駆動力が増加され、車速が増加する運転条件、第二の例
次に、係合規制ダウンシフト制御の開始後、要求駆動力が増加され、車速が増加していく運転条件の第二の例について、図8を参照して説明する。図3のフローチャートにおいて、係合規制ダウンシフト制御の開始後(ステップ♯03以降)、要求駆動力が加速判定値以上まで増加され、ステップ♯12でYesと判定され、その後、車速の増加により、ステップ♯10でYesと判定される運転条件である。
時刻t43までは、図7の時刻t33までと同様である。図7に示す例は、入力軸Iの回転速度が変速後同期回転速度より大きくなったと判定された後(時刻t34以降)に、車両要求トルクが加速判定値以上になっているが(時刻t35)、図8に示す例では、入力軸Iの回転速度が変速後同期回転速度より大きくなったと判定される前(時刻t45以前)に、車両要求トルクが加速判定値以上になっている(時刻t44)。
変速制御部43は、入力軸Iの回転速度が変速後同期回転速度より高くなったこと(ステップ♯06:Yes)、及び要求駆動力(車両要求トルク)が加速判定値以上であること(ステップ♯12:Yes)、の双方の条件が成立した場合に、係合側係合装置を滑り係合状態に移行させるように構成されている。よって、車両要求トルクが加速判定値以上になった後(時刻t44以降)、入力軸Iの回転速度が変速後同期回転速度より高くなる時刻t45まで、係合側係合装置の滑り係合状態への移行が禁止されている。そして、変速制御部43は、入力軸Iの回転速度が変速後同期回転速度より高くなったと判定したとき(時刻t45)、係合側係合装置を解放状態から滑り係合状態へ移行させる移行制御を開始している。
入力軸Iの回転速度が変速後同期回転速度より高くなった後、係合側係合装置を滑り係合状態に制御することで、入力軸I側から出力軸O側に正のトルクを伝達させることができる。なお、本実施形態とは異なり、入力軸Iの回転速度が変速後同期回転速度より高くなる前に、係合側係合装置を滑り係合状態に制御すると、入力軸I側から出力軸O側に負のトルクが伝達され、車両要求トルクとは、正負が反対のトルクが出力軸O側に伝達され、トルクショックが生じる。
係合側係合装置の滑り係合状態への移行制御の開始後の制御は、図7の例と同様であるので説明を省略する。
3−4−2−1−6.要求駆動力が増加されず、車速が増加する運転条件
次に、係合規制ダウンシフト制御の開始後、要求駆動力が増加されていないが、下り坂になるなどして、車速が増加していく運転条件について、図9に示す例を参照して説明する。図3のフローチャートにおいて、係合規制ダウンシフト制御の開始後(ステップ♯03以降)、車速の増加により、ステップ♯10でYesと判定される運転条件である。
時刻t54までは、図5の時刻t14までと同様である。図9に示す例は、入力軸Iの回転速度が変速後同期回転速度より大きくなったと判定された後(時刻t54以降)、時刻t55に、車両が走行している道路が下り坂になるなどして、車速が増加し始めている。図9に示す例は、図7及び図8に示す例とは異なり、車両要求トルクは、加速判定値未満である(ステップ♯12:No)ため、係合側係合装置は解放状態に維持されている。
そして、下り坂などにより車速が増加していき、変速制御部43は、時刻t56で入力軸Iの回転速度が直結判定値以上になったと判定し(ステップ♯10:Yes)、係合側係合装置を解放状態から直結係合状態に移行させる移行制御を開始している。本実施形態では、直結判定値は、図7及び図8に示す例と同様に、係合規制ダウンシフト制御を開始した時点(時刻t51)の変速後同期回転速度より、所定値だけ高くなるように設定されている。
また、変速制御部43は、図7及び図8に示す例と同様に、時刻t56で入力軸Iの回転速度が直結判定値以上になったと判定し、同期平行回転速度制御を終了し、トルク制御を開始している。変速制御部43は、駆動力源の出力トルクを減少させて入力軸Iの回転速度を変速後同期回転速度まで近づけている。
図9に示す例では、移行制御を開始した後、油圧シリンダへの作動油の充填を早めるため、指令圧が一時的に高く設定されている。そして、変速制御部43は、入力軸Iの回転速度が変速後同期回転速度に近づいたとき、係合側係合装置の係合圧(指令圧)を完全係合圧まで増加させて、係合規制ダウンシフト制御を終了する(係合規制制御:OFF)(時刻t57)。
〔その他の実施形態〕
最後に、本発明のその他の実施形態について説明する。なお、以下に説明する各実施形態の構成は、それぞれ単独で適用されるものに限られず、矛盾が生じない限り、他の実施形態の構成と組み合わせて適用することも可能である。
(1)上記の実施形態においては、変速機構TMが回転電機MGと出力軸Oとの間に設けられている場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、車両用駆動装置1は、図11に示すように、回転電機MGと変速機構TMと間に、更にトルクコンバータTC、及びトルクコンバータTCの入出力部材間を直結係合状態にするロックアップクラッチCL2を備えるように構成されてもよい。
或いは、車両用駆動装置1は、図12に示すように、回転電機MGと変速機構TMと間に更に係合装置CL2を備えるように構成されてもよい。
(2)上記の実施形態においては、変速機構TMの係合装置B1、C1、・・・が油圧により制御される係合装置である場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、変速機構TMの係合装置B1、C1、・・・は、油圧以外の駆動力、例えば、電磁石の駆動力、サーボモータの駆動力など、により制御される係合装置であってもよい。
(3)上記の実施形態において、制御装置30は、複数の制御ユニット32〜34を備え、これら複数の制御ユニット32〜34が分担して複数の機能部41〜44を備える場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、制御装置30は、上述した複数の制御ユニット32〜34を任意の組み合わせで統合又は分離した制御装置として備えるようにしてもよく、複数の機能部41〜44の分担も任意に設定することができる。
(4)上記の実施形態において、変速制御部43は、係合側係合装置を解放状態から滑り係合状態又は直結係合状態に移行させる移行制御を開始した後に、係合側係合装置への指令圧をゼロから増加させる場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、変速制御部43は、入力軸Iの回転速度が変速後同期回転速度より高くなるまでは、係合側係合装置に伝達トルク容量を生じさせる指令を出すことを禁止して、係合側係合装置の係合を禁止すればよい。例えば、変速制御部43は、係合規制ダウンシフト制御の開始後、入力軸Iの回転速度が変速後同期回転速度より高くなる前から、予め係合側係合装置に伝達トルク容量が生じない程度の低い予備油圧を供給する制御を実行しておき、入力軸Iの回転速度が変速後同期回転速度より高くなった後、係合側係合装置を滑り係合状態又は直結係合状態に移行させる際に、予備油圧から、伝達トルク容量が生じる油圧まで増加させるように構成されてもよい。なお、伝達トルク容量が生じない程度の低い予備油圧を供給する制御は、係合装置の係合に含まれず、予備油圧から伝達トルク容量が生じる油圧まで増加させる制御は、係合装置の係合に含まれる。
例えば、図10に示す例のように、係合規制ダウンシフト制御を開始した後(時刻t61)、係合側係合装置の指令圧を、ストロークエンド圧より低く設定された予備圧まで増加させておき、入力軸Iの回転速度が変速後同期回転速度より高くなった後(時刻t64以降)、係合側係合装置を解放状態から滑り係合状態に移行させる際に、指令圧を予備圧から増加させるように構成されてもよい。
(5)上記の実施形態において、変速制御部43は、同期平行回転速度制御における目標回転速度を変速後同期回転速度より一定回転速度だけ高く設定する場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、変速制御部43は、同期平行回転速度制御における目標回転速度を、変速後同期回転速度より高く設定すればよく、変速後同期回転速度と目標回転速度との回転速度差が、一定でなく変化するように構成されてもよい。このように構成されても、入力軸Iの回転速度は、変速後同期回転速度より高くなるので、係合側係合装置を係合させる際に、入力軸I側から出力軸O側に正のトルクを伝達させることができる。
(6)上記の実施形態において、変速制御部43は、入力軸Iの回転速度が変速後同期回転速度より高くなったこと、及び要求駆動力が制御判定値以上に設定された加速判定値以上であること、の双方の条件が成立した場合に、係合側係合装置を滑り係合状態に移行させる場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、変速制御部43は、入力軸Iの回転速度が変速後同期回転速度より高くなったこと、及び要求駆動力が制御判定値以上に設定された加速判定値以上であること、の双方の条件が成立した場合に、係合側係合装置を直結係合状態に移行させるように構成されてもよい。この場合は、図3のフローチャートにおいて、ステップ12で要求駆動力が加速判定値以上になったと判定された場合(ステップ♯12:Yes)に、ステップ♯13ではなく、ステップ♯15に進み、係合側係合装置を直結係合状態にすると決定する。
本発明は、駆動力源に駆動連結される入力部材と、車輪に駆動連結される出力部材と、変速比の異なる複数の変速段の内、複数の係合装置が解放又は係合されて形成された変速段の変速比に応じて前記入力部材の回転速度を変速して前記出力部材に伝達する変速機構と、を備えた車両用駆動装置を制御するための制御装置に好適に利用することができる。
1 :車両用駆動装置
30 :制御装置
31 :エンジン制御装置
32 :回転電機制御ユニット
33 :動力伝達制御ユニット
34 :車両制御ユニット
40 :エンジン制御部
41 :車両制御部
42 :回転電機制御部
43 :変速制御部
44 :エンジン分離クラッチ制御部
AP :アクセルペダル
CL :エンジン分離クラッチ
E :エンジン(内燃機関)
I :入力軸(入力部材)
O :出力軸(出力部材)
MG :回転電機
PC :油圧制御装置
Se1 :入力回転速度センサ
Se2 :出力回転速度センサ
Se3 :エンジン回転速度センサ
Se4 :アクセル開度検出センサ
TM :変速機構
W :車輪

Claims (6)

  1. 駆動力源に駆動連結される入力部材と、車輪に駆動連結される出力部材と、変速比の異なる複数の変速段の内、複数の係合装置が解放又は係合されて形成された変速段の変速比に応じて前記入力部材の回転速度を変速して前記出力部材に伝達する変速機構と、を備えた車両用駆動装置を制御するための制御装置であって、
    前記車輪への要求駆動力と車速に応じて決定する目標変速段が現在の変速段とは異なる変速段になった場合に、現在の変速段を形成する前記係合装置の少なくとも1つである解放側係合装置を解放させると共に、前記目標変速段を形成する少なくとも1つの前記係合装置である係合側係合装置を係合させて、前記目標変速段を前記変速機構に形成させる変速制御部を備え、
    前記変速制御部は、前記要求駆動力が予め定めた制御判定値以下である状態で、前記目標変速段が現在の変速段より変速比が大きい変速段に決定された場合に、係合規制ダウンシフト制御の実施条件が成立したと判定し、前記解放側係合装置を直結係合状態から非直結係合状態に移行させる移行制御を開始し、前記解放側係合装置が非直結係合状態に移行した後、前記入力部材の回転速度が前記目標変速段を前記変速機構に形成した場合の前記入力部材の回転速度である同期回転速度より高くなるように前記駆動力源の出力トルクを制御する上昇回転速度制御を開始し、前記入力部材の回転速度が前記同期回転速度より高くなった後、前記入力部材の回転速度が、前記同期回転速度より高く設定した目標回転速度に近づくように前記駆動力源の出力トルクを制御する差回転速度制御を開始し、少なくとも前記入力部材の回転速度が前記同期回転速度より高くなるまでは、前記係合側係合装置の係合を禁止し、前記差回転速度制御の開始後に前記係合側係合装置を係合させる制御装置。
  2. 前記係合規制ダウンシフト制御の実施条件が成立した後、前記出力部材の回転速度が低下する場合、前記変速制御部は、前記入力部材の回転速度又は前記同期回転速度が予め定めた滑り判定値以下になった場合に、前記係合側係合装置を係合部材間に回転速度差がある滑り係合状態へ移行させる請求項1に記載の制御装置。
  3. 前記係合規制ダウンシフト制御の実施条件が成立した後、前記要求駆動力が増加する場合、前記変速制御部は、前記滑り判定値に基づく判定に拘わらず、前記要求駆動力が前記制御判定値以上に設定された加速判定値以上になった場合に、前記係合側係合装置を前記滑り係合状態又は係合部材間に回転速度差がない直結係合状態に移行させる請求項に記載の制御装置。
  4. 前記係合規制ダウンシフト制御の実施条件が成立した後、前記要求駆動力が増加することなく前記出力部材の回転速度が上昇する場合、前記変速制御部は、前記入力部材の回転速度又は前記同期回転速度が前記滑り判定値よりも大きい直結判定値以上になった場合に、前記係合側係合装置を直結係合状態へ移行させる請求項1に記載の制御装置。
  5. 前記駆動力源として、少なくとも内燃機関を備え、
    前記内燃機関が運転状態であって、前記入力部材の回転速度又は前記同期回転速度が予め定めた下限回転速度以下になった場合に、前記入力部材の回転速度が予め定めた目標回転速度に近づくように前記駆動力源の出力トルクを制御する下限回転速度制御を開始する請求項1から4のいずれか一項に記載の制御装置。
  6. 前記変速制御部は、前記要求駆動力が予め定めた前記制御判定値以下である状態で、前記目標変速段が、前記現在の変速段より変速比が大きい変速段として、変速比が最も大きい変速段に変更された場合に、前記係合規制ダウンシフト制御の実施条件が成立したと判定する請求項1から5のいずれか一項に記載の制御装置。
JP2012039401A 2012-02-24 2012-02-24 制御装置 Active JP5803736B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012039401A JP5803736B2 (ja) 2012-02-24 2012-02-24 制御装置
DE112013000312.0T DE112013000312B4 (de) 2012-02-24 2013-02-22 Steuervorrichtung
US14/362,568 US9303758B2 (en) 2012-02-24 2013-02-22 Control device
PCT/JP2013/054572 WO2013125692A1 (ja) 2012-02-24 2013-02-22 制御装置
CN201380004074.6A CN103958318B (zh) 2012-02-24 2013-02-22 控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012039401A JP5803736B2 (ja) 2012-02-24 2012-02-24 制御装置

Publications (2)

Publication Number Publication Date
JP2013173451A JP2013173451A (ja) 2013-09-05
JP5803736B2 true JP5803736B2 (ja) 2015-11-04

Family

ID=49005868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012039401A Active JP5803736B2 (ja) 2012-02-24 2012-02-24 制御装置

Country Status (5)

Country Link
US (1) US9303758B2 (ja)
JP (1) JP5803736B2 (ja)
CN (1) CN103958318B (ja)
DE (1) DE112013000312B4 (ja)
WO (1) WO2013125692A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5772627B2 (ja) * 2012-01-26 2015-09-02 アイシン・エィ・ダブリュ株式会社 車両用伝動装置
KR101734262B1 (ko) * 2015-08-12 2017-05-11 현대자동차 주식회사 자동변속기 제어 장치 및 방법
WO2017057757A1 (ja) * 2015-09-30 2017-04-06 アイシン・エィ・ダブリュ株式会社 制御装置
CN105584484B (zh) * 2016-01-16 2017-11-03 吉林大学 一种装载机amt换档过程中发动机的转速节能控制方法
JP7090984B2 (ja) * 2018-06-27 2022-06-27 日野自動車株式会社 ハイブリッド自動車の変速支援方法及び装置
JP2020125015A (ja) * 2019-02-05 2020-08-20 トヨタ自動車株式会社 ハイブリッド車両の制御装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0571631A (ja) * 1991-09-10 1993-03-23 Mazda Motor Corp 自動変速機の変速制御装置
JP3658934B2 (ja) * 1997-08-11 2005-06-15 トヨタ自動車株式会社 自動変速機の変速制御装置
JP3173450B2 (ja) * 1998-02-04 2001-06-04 トヨタ自動車株式会社 ハイブリッド車の駆動制御装置
DE19939334A1 (de) 1999-08-19 2001-03-08 Daimler Chrysler Ag Verfahren zum Schalten eines Doppelkupplungsgetriebes und Doppelkupplungsgetriebe
WO2003074907A2 (de) 2002-03-07 2003-09-12 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Doppelkupplungsgetriebe und verfahren zum durchführen einer schaltung bei einem doppelkupplungsgetriebe
JP4171684B2 (ja) * 2002-10-04 2008-10-22 ジヤトコ株式会社 車両用自動変速機の変速制御装置
JP3901630B2 (ja) 2002-12-04 2007-04-04 ヤマハ発動機株式会社 水ジェット推進艇の運転制御装置
JP5104061B2 (ja) 2007-06-26 2012-12-19 日産自動車株式会社 車両の変速制御装置
JP2010007491A (ja) * 2008-06-24 2010-01-14 Toyota Motor Corp 車両の制御装置および制御方法
JP5030925B2 (ja) * 2008-11-27 2012-09-19 ダイハツ工業株式会社 車両の制御装置
JP5035228B2 (ja) 2008-12-18 2012-09-26 日産自動車株式会社 電動車両の制御装置
US8430789B2 (en) * 2009-01-08 2013-04-30 Aisin Aw Co., Ltd. Vehicle control device
JP4983820B2 (ja) 2009-02-13 2012-07-25 トヨタ自動車株式会社 パワートレーンの制御装置、制御方法、その方法を実現させるプログラムおよびそのプログラムを記録した記録媒体
JP5490115B2 (ja) 2009-06-12 2014-05-14 株式会社ユニバンス 車両用制御装置
JP5381873B2 (ja) 2010-04-01 2014-01-08 トヨタ自動車株式会社 車両制御システム
JP6744558B2 (ja) 2018-12-18 2020-08-19 サミー株式会社 遊技機

Also Published As

Publication number Publication date
WO2013125692A1 (ja) 2013-08-29
CN103958318B (zh) 2016-06-29
US9303758B2 (en) 2016-04-05
DE112013000312T5 (de) 2014-08-21
DE112013000312B4 (de) 2022-02-17
US20140365093A1 (en) 2014-12-11
CN103958318A (zh) 2014-07-30
JP2013173451A (ja) 2013-09-05

Similar Documents

Publication Publication Date Title
EP2311705B1 (en) Control device
JP5532339B2 (ja) 制御装置
JP5083638B2 (ja) 制御装置
JP5365889B2 (ja) 車両用変速装置
JP5803736B2 (ja) 制御装置
JP6003913B2 (ja) ハイブリッド車両の制御装置
JP5915666B2 (ja) 車両用駆動装置の制御装置
US10414403B2 (en) Control device
JP5920476B2 (ja) 車両用駆動装置の制御装置
US20140297089A1 (en) Control device for vehicle drive device
JP5967190B2 (ja) 制御装置
US10279795B2 (en) Control device
US10393256B2 (en) Control device for vehicle drive apparatus
JP5557026B2 (ja) 変速制御装置
JP5578362B2 (ja) 制御装置
JP6350676B2 (ja) 車両用駆動装置の制御装置
JP6414499B2 (ja) 車両用駆動装置の制御装置
EP4316897A1 (en) Vehicle drive device
JP5765579B2 (ja) 制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150817

R150 Certificate of patent or registration of utility model

Ref document number: 5803736

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150