JP5779642B2 - 半導体発光素子およびその製造方法 - Google Patents

半導体発光素子およびその製造方法 Download PDF

Info

Publication number
JP5779642B2
JP5779642B2 JP2013503400A JP2013503400A JP5779642B2 JP 5779642 B2 JP5779642 B2 JP 5779642B2 JP 2013503400 A JP2013503400 A JP 2013503400A JP 2013503400 A JP2013503400 A JP 2013503400A JP 5779642 B2 JP5779642 B2 JP 5779642B2
Authority
JP
Japan
Prior art keywords
layer
semiconductor
light emitting
emitting device
hard film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013503400A
Other languages
English (en)
Other versions
JPWO2012120894A1 (ja
Inventor
寛郎 田崎
寛郎 田崎
秀高 山田
秀高 山田
博行 十川
博行 十川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2013503400A priority Critical patent/JP5779642B2/ja
Publication of JPWO2012120894A1 publication Critical patent/JPWO2012120894A1/ja
Application granted granted Critical
Publication of JP5779642B2 publication Critical patent/JP5779642B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/405Reflective materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3512Cracking
    • H01L2924/35121Peeling or delaminating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials

Description

本発明は、半導体発光素子およびその製造方法に関し、特に、パッド電極による遮光は最小限としたまま、ワイヤーボンディングに伴うパッド部分の剥離を抑制することが可能な半導体発光素子およびその製造方法に関する。
近年、自動車のヘッドランプやブレーキランプ、または信号機への応用など、発光ダイオード(LED)の用途の多様化と共に、LEDの光出力の向上が求められている。
一般にLEDは、表面電極と裏面電極との間に、p型半導体層、n型半導体層、およびこれら半導体層間に設けられた発光層を具える構造を有する半導体発光素子である。前記発光層で発生した光のうち、LEDの外に出てくる光の割合を光取り出し効率というが、電極は発光層で発光した光を遮光するため、光取り出し効率を低下させ、LEDの出力の向上を阻害する要因であった。
電極による遮光を低減し、光取り出し効率を向上させる技術としては、次のようなものが知られている。まず、特許文献1には、ボンディングパッドの直下の電極層とオーミックコンタクト層との間に電流遮断層を設けて、パッド直下以外に電流を流し、パッドに遮られる光を減らす技術が記載されている。この文献では、電流遮断層として、SiOなどではなく、オーミックコンタクト層と反対の導電型の半導体を用いている。
また、特許文献2には、支持基板と下側クラッド(半導体層)との間に、Auなどの光反射層と、AlNなどの高熱伝導率を有する光透過層とを設け、裏面に向かう光を有効に反射するとともに、発光層からの熱の放熱性を向上させる技術が記載されている。
特許文献2に記載の構成は、透光性絶縁膜でもあるAlNが半導体層と光反射層との間に位置することから、半導体層から光反射層へ不純物が拡散するのを抑制し、高反射率界面を得ることができるため、光取り出し効率の向上の観点からは好ましい形態である。
特開昭61−6880号公報 特開2009−231323号公報
ここで本発明者らは、ボンディングパッドによる遮光をさらに低減し、光取り出し効率を向上させるべく、図4(b)のような半導体発光素子について検討を行った。図4(b)に記載の半導体発光素子300は、発光部を含む半導体層304と、この半導体層上に位置するパッド電極305と、を有し、半導体層304とパッド電極305との間に、透光性絶縁層306および反射層307からなる反射部308、ならびにオーミック電極309を有する。反射部308は、半導体層304上に位置する電流遮断層としての透光性絶縁層306、および、この透光性絶縁層306上に位置する反射層307を含む。オーミック電極309は、半導体層304上に位置し、反射部308に接し、これを取り囲むように形成される。図4(b)において、半導体層304の支持基板および裏面電極は図示を省略している。例えば、透光性絶縁層306は厚さ100nmのAlN層、反射層307は厚さ10nmのCrおよび厚さ500nmのAuからなる金属層、オーミック電極309はAuGe/Ni/Auを順次蒸着させた金属層、パッド電極305は厚さ100nmのTiおよび該Ti上に位置する厚さ1.5μmのAuからなる金属層とすることができる。
このような層構造を有する半導体発光素子300によれば、透光性絶縁層306が電流遮断層として機能するため、パッド直下での発光を抑えることができるのに加えて、パッド直下の周辺から発光しパッド電極305へ向かう光を反射層307が反射する。さらに、反射層307と半導体層304との間には、透光性絶縁層306が配置されているため、反射層307には半導体層304からの不純物が拡散しない。よって、半導体発光素子300は、パッド電極305による遮光の影響を最小限とし、出力を向上させることができるという観点からは、好ましい層構造を有する。
しかしながら、このような半導体発光素子300では、LEDチップとして通電するために、パッド電極305にAuワイヤーをボンディングする際に、パッド部分に剥離が生じやすいという問題があることが判明した。すなわち、ワイヤーボンディング時にパッド部に剥離が生じたり、実際に剥離は生じなくとも潜在的に剥離が生じやすくなっている結果、ワイヤーの接合強度を試験するボールシェア試験時に剥離が生じ、また、シェア強度が低くなるなど、ワイヤーボンディングに伴うパッド部分の機械的信頼性に問題があることが判明した。
そこで本発明は、上記課題に鑑み、パッド直下に反射層および透光性絶縁層を設けることによる発光素子の出力の向上効果を維持したまま、ワイヤーボンディングに伴うパッド部分の剥離を抑制することが可能な半導体発光素子およびその製造方法を提供することを目的とする。
この目的を達成すべく本発明者らがさらに検討したところ、上記のパッド部分の剥離は、反射層307/透光性絶縁層306の界面および透光性絶縁層306/半導体層304の界面で起こりやすいことを見出した。これは、以下のような理由によるものと思われる。反射層307/透光性絶縁層306の界面および透光性絶縁層306/半導体層304の界面での付着力は、いわゆるファンデルワールス力によるものであり、電荷のやり取りや原子の相互拡散を伴う界面と比較して密着性が低い。ここで、ワイヤーボンディングにあたり、キャピラリーをパッド電極305に押しつけるときの荷重や、Auワイヤーをパッド電極305に融着させるために超音波を印加したときの機械的、熱的応力により、パッド電極305や反射層307が変形し、この応力がパッド電極305の下部の各層に伝播する。そのため、密着性の低い上記界面から剥離が生じやすいと考えられる。
上記の知見に基づき、本発明者らは、上記の層構造の半導体発光素子において、反射層とパッド電極との間に、比較的硬い硬質膜を比較的厚く設ければ、ワイヤーボンディングに伴いパッド電極が変形しても、硬質膜では変形が抑制されるため、互いに密着性の低い層への応力の伝搬が抑制されるとの着想を得た。この硬質膜によれば、ワイヤーボンディングに伴う応力の伝搬を抑制できる結果、透光性絶縁膜の上下でワイヤーボンディングに起因する剥離が生じにくくなる。実際本発明者らが硬質膜を比較的厚く設けた半導体発光素子を検討したところ、ワイヤーボンディング時またはボールシェア試験時のパッド部の剥離が抑制され、ボールシェア試験時に高いシェア強度が得られ、本発明を完成するに至った。
すなわち、上記課題に鑑み、本発明の要旨構成は以下の通りである。
(1)発光部を含む半導体層と、該半導体層上に位置するパッド電極と、を有する半導体発光素子であって、前記半導体層と前記パッド電極との間に、前記半導体層上に位置する電流遮断層としての透光性絶縁層、および、該透光性絶縁層上に位置する反射層、を含む反射部と、前記半導体層上に位置し、前記反射部と接するオーミック電極からなるコンタクト部と、を有し、前記反射層と前記パッド電極との間にTiNからなる導電性硬質膜を有し、該導電性硬質膜のビッカース硬度をHV(Hv)、厚さをt(μm)としたときに、HV×t≧1000であることを特徴とする半導体発光素子。
(2)前記導電性硬質膜が、前記パッド電極および前記反射層のいずれのビッカース硬度よりも高いビッカース硬度HVを有する上記(1)に記載の半導体発光素子。
(3)前記導電性硬質膜の厚さtが、0.μm以上である上記(1)または(2)に記載の半導体発光素子。
)前記導電性硬質膜の厚さtが、2μm以下である上記(1)〜()のいずれか1項に記載の半導体発光素子。
)前記導電性硬質膜の通電時の電圧降下が、前記半導体層での閾値電圧以下である上記(1)〜()のいずれか1項に記載の半導体発光素子。
)前記導電性硬質膜が、前記反射層の全ておよび前記オーミック電極の少なくとも一部を覆う上記(1)〜()のいずれか1項に記載の半導体発光素子。
)前記オーミック電極が前記反射部を取り囲むように形成される上記(1)〜()のいずれか1項に記載の半導体発光素子。
)発光部を含む半導体層と、該半導体層上に位置するパッド電極と、を有する半導体発光素子の製造方法であって、前記半導体層を形成する工程と、該半導体層上に所定パターンのオーミック電極からなるコンタクト部を形成する工程と、前記半導体層上に電流遮断層としての透光性絶縁層を形成し、該透光性絶縁層上に反射層を形成することにより、前記コンタクト部と接する反射部を形成する工程と、前記反射層上に、ビッカース硬度をHV(Hv)、厚さをt(μm)としたときに、HV×t≧1000となり、かつ、TiNからなる導電性硬質膜を形成する工程と、該導電性硬質膜上に、前記パッド電極を形成する工程と、と有する半導体発光素子の製造方法。
本発明によれば、反射層とパッド電極との間に、ビッカース硬度をHV(Hv)、厚さをt(μm)としたときに、HV×t>630となる導電性硬質膜を配置したことにより、上記のような作用により、パッド直下に反射層および透光性絶縁層を設けることによる発光素子の出力の向上効果を維持したまま、ワイヤーボンディングに伴うパッド部分の剥離を抑制することが可能となった。
本発明に従う半導体発光素子100のパッド部分を拡大して示す模式断面図である。 (a)は、本発明に従う半導体発光素子100を示す模式断面図であり、(b)は、(a)に示した半導体発光素子100において、パッド電極105および導電性硬質膜110を取り除いた状態の上面図であり、オーミック電極の配置関係を説明する図である。 本発明に従う半導体発光素子100の製造工程の一例を示す模式断面図である。 (a)は、比較例1の半導体発光素子200を示す模式断面図であり、(b)は、比較例2の半導体発光素子300を示す模式断面図であり、(c)は、比較例3の半導体発光素子400を示す模式断面図である。 実施例において、導電性硬質膜110としてのTiNの膜厚とボールシェア試験におけるシェア強度および剥離率との関係を示したグラフである。
以下、図面を参照しつつ本発明をより詳細に説明する。なお、本明細書において、本発明に従う半導体発光素子と比較例の半導体発光素子とで共通する構成要素には、原則として下2桁が同一の参照番号を付し、説明は省略する。また、発光素子の模式断面図においては、説明の便宜上、各層の厚さが実状とは異なる比率で誇張して示す。
(半導体発光素子100)
本発明の一実施形態である半導体発光素子100は、図1に示すとおり、発光部を含む半導体層104と、該半導体層104上に位置するパッド電極105と、を有する。半導体発光素子100は、半導体層104とパッド電極105との間に、反射部108とオーミック電極(コンタクト部)109とを有する。反射部108は、半導体層104上に位置する電流遮断層としての透光性絶縁層106、および、該透光性絶縁層上に位置する反射層107、を含む。コンタクト部は、半導体層104上に位置し、反射部108と接するオーミック電極109からなる。ここで、半導体発光素子100は、反射層107とパッド電極105との間に、ビッカース硬度をHV(Hv)、厚さをt(μm)としたときに、HV×t>630となる導電性硬質膜110を有することを特徴とし、このような構成を採用することにより、ワイヤーボンディング時のパッド電極105への押圧でパッド電極105が変形しても、導電性硬質膜110では変形が抑制されるため、密着性の低い反射層107/透光性絶縁層106界面および透光性絶縁層106/半導体層104界面における剥離を抑制することができる。一方で、半導体発光素子100は、図4(b)の半導体発光素子300と同様に、パッド電極105による遮光の程度を最小限に抑えることができる。
図2を用いて、半導体発光素子100の層構造をより詳細に説明する。半導体発光素子100は、支持基板115と、この支持基板115上に位置する金属接合層114と、この金属接合層114上に位置する反射層113と、この反射層113上に位置するオーミック電極111および絶縁膜112の混在層と、この混在層上に位置する第2導電型半導体層としてのp型半導体層103、発光層(発光部)102、および第1導電型半導体層としてのn型半導体層101からなる半導体層104と、を有する。支持基板115の裏面(半導体層104が積層されない側)には、下部電極116が形成される。この半導体発光素子100は、金属接合層114を有するウェーハ貼り合わせ型のLED素子であり、製造工程の詳細は後述する。半導体層104のn型半導体層上には、図1で説明したパッド部分が形成される。半導体発光素子100の光取り出し方向は、パッド電極105側(図2(a)の上方向)である。
半導体発光素子100のオーミック電極109は、上面視で図2(b)に示す形状に形成されており、中央の円形電極の内部に透光性絶縁膜106および反射層107からなる反射部108が形成されている。そして、図2(a)および(b)から明らかなとおり、オーミック電極109の円形電極部分は、透光性絶縁膜106および反射層107と接して、これらを取り囲むように形成されている。このように、パッド電極105直下にオーミック電極109による開口部が設けられ、この開口部の半導体層104上に反射部108を設ける構成により、反射部108の側面はオーミック電極109で覆われることになり、密着性の高くない反射部の外周が、その後の工程での側面からの外力から保護されるという点で好適であると言える。また、導電性硬質膜110は反射部108(より厳密には反射層107)の全てを覆い、かつ、オーミック電極109の少なくとも一部(本実施形態では、中央の円形電極部分)を覆うように形成される。このように、導電性硬質膜110が反射層107の全てを覆うことにより、ワイヤーボンディングの押圧による応力をより確実に緩和して、パッド部分の剥離をより効果的に抑制することができる。
支持基板115を構成する好適な材料としては、例えばSi、GaAs、Ge等の半導体材料のほか、AlやCuなどの金属またはその合金材料等が挙げられ、好適には100〜300μmの厚さを有する。
金属接合層114を構成する好適な材料としては、例えばAuなどが挙げられ、好適には0.5〜3.0μmの厚さを有する。
反射層113は、発光層102から発光された光のうち、支持基板115側へと向かう光を反射して、光取り出し効率を高める。発光層102から放射される光の主波長に対して高い反射率を有することが望ましく、波長が600〜950nmの範囲の光について、60%以上の反射率を有することが好ましい。反射層113を構成する好適な材料としては、金(Au)、アルミ(Al)、銀(Ag)の単体もしくはそれを構成元素とした合金またはそれらの積層体等が挙げられ、好適には100〜1000nmの厚さを有する。一般的に金(Au)や銀(Ag)は、絶縁体との密着性が低く、そのままでは容易に剥離する。そのため、Cr、Ti、Mo等の密着層を介在させることで密着性を改善できることが知られている。ただし、これらの密着層は反射率が低いため、光が透過するよう、例えば10nm程度の薄い層とする。
オーミック電極111は、第2導電型半導体層103(本実施形態ではp型半導体層)と良好なオーミック接触を形成するための電極である。オーミック電極111を構成する好適な材料としては、例えばAuZn,AuBeなどが挙げられ、好適には100〜500nmの厚さを有する。
絶縁膜112は、発光層102から発光された光を透過して反射層113へと導くことが可能な絶縁材料であれば特に限定されない。活性層から放射される光の主波長に対して高い透過率を有することが望ましく、波長が600〜950nmの範囲の光について、80%以上の透過率を有することが好ましい。好適な材料としては、例えばSiN,SiO,AlNなどが挙げられ、好適には100〜500nmの厚さを有する。
半導体層104の各層を構成する好適な材料としては、化合物半導体が挙げられ、例えばIII−V族化合物半導体とすることができる。III−V族化合物半導体としては、例えばn型半導体層101およびp型半導体層103をそれぞれAlGaAs系材料、AlGaInP系材料、AlGaN系材料などとすることができる。p型不純物としては、Mg,Zn,C、n型不純物としては、Si,Te,Seが例示できる。発光層102はAlGaAs系材料、AlGaAsInP系材料、AlGaN系材料などからなる単層、あるいは多重量子井戸のような積層構造などとすることができる。これらはいずれも、MOCVD法など既知の手法を用いてエピタキシャル成長させることにより形成することができる。発光波長は600〜950nmの範囲とすることができる。各層の厚みは、例えばn型半導体層101は1〜10μm、発光層102は10〜500nm、p型半導体層103は1〜10μmとすることができる。なお、これまで本発明における第1伝導型をn型、第2伝導型をp型として、半導体層104を説明したが、本発明はこれに限定されず、第1伝導型をp型、第2伝導型をn型としても良いことは勿論である。
オーミック電極109は、第1導電型半導体層101(本実施形態ではn型半導体層)との良好なオーミック接触を形成するための電極である。オーミック電極109を構成する好適な材料としては、例えばAuGe,NiおよびAuを順次形成したAuGe/Ni/Au電極が挙げられ、好適には100〜1000nmの厚さを有する。
透光性絶縁層106は、発光層102から発光された光を透過して反射層107へと導くことが可能な絶縁材料であれば、特に限定されない。透光性絶縁層106は、半導体層104とパッド電極105との間で電流遮断層として機能する。そのため、透光性絶縁層106は、パッド電極105直下の少なくとも中央領域を含んで設けられることが好ましい。透光性絶縁層106は、波長が600〜950nmの範囲の光について、80%以上の透過率を有することが好ましい。好適な材料としては、例えばSiN,SiO,AlNなどが挙げられ、好適には100〜500nmの厚さを有する。
反射層107は、発光層102から発光された光のうち、パッド電極105へと向かう光を反射して、光取り出し効率を高める。波長が600〜950nmの範囲の光について、60%以上の反射率を有することが好ましい。反射層107を構成する好適な材料としては、例えば金(Au)または金合金材料、白金(Pt)、アルミ(Al)、銀(Ag)の単体もしくはそれを構成元素とした合金またはそれらの積層体等が挙げられ、近赤外の波長領域での好適な例としては、同領域で90%以上の反射率を示すAuを、Crの薄い密着層を介して配置したCr/Au電極とすることができ、好適には密着材であるCr層は5〜20nmの厚さを有し、反射材であるAu層は100〜1000nmの厚さを有する。このような材料は通常、100Hv以下の範囲のビッカース硬度を有する。
本発明の特徴的構成である導電性硬質膜110は、ビッカース硬度をHV(Hv)、厚さをt(μm)としたときに、HV×t>630であり、その結果、ワイヤーボンディング時にパッド電極105に応力が加わった際にも導電性硬質膜110はほとんど変形することなく応力を緩和し、ボンディングの応力が反射層107、透光性絶縁層106、半導体層104へと伝播するのを抑制する。すなわち、応力に基づく変形という観点から考えると、導電性硬質膜110は、ビッカース硬度が大きいほど、また、厚さが厚いほど、応力伝播抑制効果が大きいと考えられる。そこで、[ビッカース硬度]×[厚さ]という概念を導入した場合、ワイヤーボンディングに伴うパッド部分の剥離を抑制するための必要条件として、本発明者らの検討によれば、[ビッカース硬度]×[厚さ]>630Hv・μmとすることを見出したのである。本発明の効果をより確実に得る観点からは、HV×t>700であることが好ましく、さらにはHV×t≧1000であることがより好ましい。なお、本発明におけるビッカース硬度は、JIS Z 2244に準拠した測定方法によるものである。導電性硬質膜は数μm以下の薄膜であり、薄膜に対するビッカース硬度の測定は、超微小硬度計(MHA−400,NEC社製)を用い、上記JIS規格によりビッカース硬度HVの値が既知のサンプルをリファレンスとして用いて計測する。参考として、以下に代表的なビッカース硬度を記載する文献を例示する。
Handbook of refractory carbides and nitrides: properties, characteristics, processing and applications / Hugh O. Pierson (1996)
Metals Handbook: Properties and Selection: Nonferrous Alloys American Society for Metals, Metals Park, OH (1988)
この応力伝播抑制効果の観点からは、導電性硬質膜110が、パッド電極105および反射層107のいずれのビッカース硬度よりも高いビッカース硬度HVを有することが好ましい。
具体的には、ビッカース硬度HVが600Hv以上、より好ましくは1500Hv以上、最も好ましくは2000Hv以上とすることができる。
導電性硬質膜110の厚さtは、0.3μm以上、より好ましくは0.5μm以上とすることができる。これにより、本発明の応力伝播抑制効果をより確実に十分に得られるためである。
また、導電性硬質膜110の厚さtは、2μm以下であることが好ましく、1μm以下であることがより好ましい。厚さtが2μmを超えると、コスト・加工性の面で悪影響となり、また、電極全体の抵抗が高くなり、順方向電圧の値の増加につながるためである。
なお、本明細書における膜厚の測定方法は、触針式段差計によるものであり、ウェーハ面内の5点(本実施例の3インチ基板の場合、ウエハ中央を通る対角線上で、ウエハ外周から1cm内側の2点を両端として均等な距離の5点)の測定の平均値で求められる。
また、半導体発光素子100が導電性硬質膜110を通して通電する構成の場合、導電性硬質膜110は低抵抗であることが好ましい。例えば、導電性硬質膜110の通電時の電圧降下が、半導体層104での閾値電圧以下であることが好ましい。より好ましくは、20℃における抵抗率が10−5Ω・m以下、さらに好ましくは10−6Ω・m以下とすることができる。なお、導電性硬質膜の通電時の電圧降下Vd(V)は、直流通電の場合に簡単に以下で求めることができる。
Vd=(ρ×t/S)×I
ρ:導電性硬質膜の抵抗率(Ω・m)
:導電性硬質膜の厚さ(m)
:導電性硬質膜の面積(m
I:通電電流(A)
通電電流は、例えばLED素子の定格電流以下といった常識的な範囲に限られる。また、半導体層の閾値電圧は、理想的にはLED素子の電流−電圧特性から求められるが、実際のLED素子の電流−電圧特性には寄生抵抗等の影響もあるため、本明細書では簡易的に、主発光波長に相当する光のエネルギーを電荷qで割ったものとして定義する。
導電性硬質膜110の具体的な材料としては、Ti,Ta,Cr,W,Mo,Vのいずれかを含む単体または窒化物を挙げることができ、より具体的にはTiN、Ta、TaN、WNなどを挙げることができる。特に最も好ましいのはTiNである。TiNは硬く、導電性を有するのみならず、ウェットエッチング特性に優れているため、扱いやすい材料である。
図1に示すように、パッド電極105とオーミック電極109が直接接触しないように、両者の間に導電性硬質膜110が設けられることが好ましい。これにより、オーミック電極109や、半導体発光素子100からの不純物(例えば、Ga,As,Ge)がパッド電極105に拡散するのを抑制することができるからである。
パッド電極105を構成する好適な材料としては、最上面はAuワイヤー融着用のAl,Au材料などが挙げられ、好ましくは密着層としてのTi上にAuを順次形成したTi/Au電極である。Ti層は密着層としての機能を果たす厚さであればよく50〜200nmの厚さを有する。Au層は、好適には1〜3μmの厚さを有する。Ti層は通常、70〜250Hvの範囲のビッカース硬度を有し、Au層は通常、20〜30Hvの範囲のビッカース硬度を有する。
下部電極116は、支持基板115とオーミック接合を形成する材料から選択され、例えば支持基板としてn型GaAsを選択した場合には、AuGe/Ni/Auの積層などを選択できる。支持基板115として金属基板を使用した場合には、下部電極のない構造を選択することも可能である。
(半導体発光素子100の製造方法)
次に、半導体発光素子100の製造方法の一例を、図3を用いて説明する。まず、図3(a)に示すように、GaAs基板などの成長用基板120上に半導体層104を形成する。半導体層104は、既述のような材料からなるn型半導体層101、発光層102およびp型半導体層103をこの順に、例えばMOCVD法などによりエピタキシャル成長させて形成する。
次に、図3(b)に示すように、半導体層104上に所定パターンのオーミック電極111を形成する。例えば既述のような材料を抵抗加熱による蒸着法や電子ビーム蒸着などにより成膜し、フォトリソグラフィーによりレジストパターン形成後、エッチングして、所定パターンを形成し、その後コンタクトアニール(RTA:Rapid Thermal Annealing)する。その後、オーミック電極が形成されない半導体層104上に、絶縁膜112を形成する。これは、例えば既述のような材料をプラズマCVD法またはスパッタ法などにより形成することで得られる。その後、フォトリソグラフィーによりオーミック電極部のみ開口したレジストパターンを形成し、所定のエッチング液で絶縁膜をウェットエッチングすることで絶縁膜に通電用の開口部を形成する。その後、反射層113を例えばスパッタ法などにより形成する。反射層113上に、第1金属接合層114a(半導体層側接合層)として、例えばAuなどを蒸着などの方法により形成する。
次に、図3(c)に示すように、裏面に下部電極116を形成し、表面に第1金属接合層114b(支持基板側接合層)を形成した支持基板115と、図(b)に示した基板とを接合する。具体的には、第1金属接合層114aと第2金属接合層114bとを接合し加熱することにより、金属接合層114にて両基板が接合される。なお、支持基板115上への第2金属接合層114bの形成は、第1金属接合層114aと同様の方法で行うことができる。支持基板115上への下部電極116の形成は、既述の材料を例えばスパッタ法や電子ビーム蒸着法などにより成膜することにより行う。
その後、成長用基板120を研削し、さらにエッチングすることで成長用基板120を除去する。
次に、図3(d)に示すように、半導体層104上に所定パターンのオーミック電極109からなるコンタクト部を形成する。例えば既述のような材料を例えば抵抗加熱による蒸着法などにより成膜し、フォトリソグラフィーによりレジストパターンを形成後、エッチングして、所定パターンを形成し、その後コンタクトアニール(RTA:Rapid Thermal Annealing)する。なお、本明細書において「抵抗加熱による蒸着」とは、真空中で金属を加熱し、蒸発させることで蒸着する方法であり、蒸着金属を加熱するために、蒸着金属を載せる高融点材料の台(例えばタングステンの線やボート)に通電して金属抵抗で発生する熱で高温にする方法である。
次に、図3(e)に示すように、半導体層104上に電流遮断層としての透光性絶縁層106を形成し、透光性絶縁層106上に反射層107を形成することにより、コンタクト部109と接する反射部108を形成する。具体的には、フォトリソグラフィー法により、オーミック電極109の中央の円形電極の内部のみ開口したレジストパターンを形成し、透光性絶縁膜106をスパッタ法、またはプラズマCVD法などにより成膜し、さらに反射層107をスパッタ法、電子ビーム蒸着法、または抵抗加熱による蒸着法などにより成膜する。その後、リフトオフにより、レジストを残した箇所の絶縁膜ならびに反射層を除去する。
次に、図3(f)に示すように、反射層107上に導電性硬質膜110を形成する。具体的には、フォトリソグラフィーにより、反射層107およびオーミック電極109の中央の円形電極部分のみ開口したレジストパターンを形成し、導電性硬質膜110をスパッタ法などにより成膜する。さらに、導電性硬質膜110上にパッド電極105を例えばスパッタ法、電子ビーム蒸着法、または抵抗加熱による蒸着法などにより成膜する。その後、リフトオフにより、レジストを残した箇所の導電性硬質膜とパッド電極を除去する。
最後に、メサパターンを形成後、ダイシングを行い、半導体発光素子100を用いたLED素子を作製することができる。
これまで本発明の一実施形態として、ウェーハ貼り合わせ型のLED素子である半導体発光素子100とその製造方法を説明してきたが、本発明はウェーハ貼り合わせ型のLED素子に限られることはない。また、上述したところはいずれも代表的な実施形態の例を示したものであって、本発明はこれらの実施形態に限定されるものではない。また、以下、実施例を用いて本発明をさらに詳細に説明するが、本発明は以下の実施例に何ら限定されるものではない。
(実施例1)
図3に示す方法で本発明に従う半導体発光素子を作製した。まず、GaAsからなる成長用基板上に、MOCVD法により、n型半導体層(厚さ:7.5μm、AlGaAs材料)、発光層(総厚:50nm、AlGaInAs材料)およびp型半導体層(厚さ:2μm、AlGaAs材料)からなる半導体層を形成した。次に、p型半導体層上にAuZn(厚さ:200nm)を抵抗加熱による蒸着法により成膜し、フォトリソグラフィーによりパターニングし、420℃でコンタクトアニールを行い、オーミック電極を形成した。その後、プラズマCVD法によりオーミック電極が形成されないp型半導体層上にSiNからなる絶縁膜を形成した。その後、反射層(厚さ:750nm、Au材料)を電子ビーム蒸着法により形成した。さらに、半導体層側接合層として、Ti/Au(厚さ:100nm/1μm)を蒸着により形成した。
上記とは別途、GaAs材料からなる支持基板の両面にオーミック電極(厚さ:200nm、AuGe/Ni/Au材料)を抵抗加熱による蒸着法により形成し、一方を下部電極とし、他方の面上に支持基板側接合層として、Ti/Au(厚さ:100nm/1μm)を電子ビーム蒸着法により形成した。そして、半導体層側接合層と支持基板側接合層とを接着させ、400℃で30分加熱することにより、両者を接合した。その後、成長用基板を研削して薄くした後に、アンモニア、過酸化水素水、水からなるエッチング液にてエッチングすることで成長用基板を完全に除去した。
次に、成長用基板の除去により露出したn型半導体層上に、AuGe/Ni/Au(厚さ:90nm/15nm/600nm)を抵抗加熱による蒸着法により成膜し、フォトリソグラフィーにより外径120μm、内径90μmのドーナツ状にパターニングし、420℃でコンタクトアニールを行い、オーミック電極を形成した。その後、このオーミック電極の中央のn型半導体層が露出した内径90μmの開口部を除いてレジストを形成し、透光性絶縁膜(厚さ:100nm、AlN材料)をスパッタ法により成膜した。さらに、その透光性絶縁膜の上に、反射層(厚さ:10nm/500nm、Cr/Au材料)を電子ビーム蒸着法により成膜した。そして、リフトオフ法を用いて、オーミック電極の開口部に透光性絶縁膜と反射層を形成した。次に、反射層およびオーミック電極からなる直径120μmの面上を除いてレジストを形成した。スパッタ装置SPC−350(ANELVA社製、DCマグネトロン、出力100W)を使用し、純Tiターゲット(純度3N、高純度化学研究所製)を室温で窒素ガス含有Arガス雰囲気(N2:0.9sccm、Ar:36sccm)中でスパッタすることにより、導電性硬質膜(厚さt:0.50μm、TiN材料)を成膜した。成膜したTiNは金色を有し、TiとNの比が1:1のTiN膜であることを、ESCA(Electron Spectroscopy for Chemical Analysis)により確認した。その後、さらにパッド電極(厚さ:100nm/1.5μm、Ti/Au材料)を電子ビーム蒸着法により成膜した。そして、リフトオフ法を用いてパッド電極を形成した。最後に、フォトリソグラフィーによるパターニングの後、リン酸と過酸化水素水の混合液にてエッチングすることでメサパターンを形成し、ダイシングして本発明に従う半導体発光素子(LED素子)を作製した。なお、このLED素子の発光波長は850nmであった。
導電性硬質膜であるTiNのビッカース硬度HVは2100Hvであるため、HV×t=1050(>630)となる。また、パッド電極および反射層のビッカース硬度は、それぞれ22Hvであった。
(実施例2)
導電性硬質膜であるTiNの厚さを0.75μmとした以外は実施例1の方法により、本発明に従う半導体発光素子を作製した。HV×t=1575となる。
(実施例3)
導電性硬質膜であるTiNの厚さを1.00μmとした以外は実施例1の方法により、本発明に従う半導体発光素子を作製した。HV×t=2100となる。
参考例4)
ターゲットをTiに替えて純タングステン(W)ターゲット(純度3N、高純度化学研究所製)とし、室温でAr雰囲気下でスパッタを行い、厚さを2.00μmの純W膜を導電性硬質膜とした以外は、実施例1の方法により、本発明に従う半導体発光素子を作成した。タングステンのビッカース硬度HVは350Hvのため、HV×t=700となる。
(比較例1)
透光性絶縁層、反射層、および導電性硬質膜を形成しない以外は実施例1の方法により、パッド部の層構造が図4(a)に示すような半導体発光素子200を作製した。この半導体素子200は、半導体層204上に開口部を有しない円形電極(AuGe/Ni/Au材料)からなるオーミック電極209を形成し、その上にパッド電極205を形成した。
(比較例2)
導電性硬質膜を形成しない以外は実施例1の方法により、パッド部の層構造が図4(b)に示すような半導体発光素子300を作製した。この半導体発光素子300は、半導体層304上に、透光性絶縁層306/反射層307からなる反射部とオーミック電極309からなるコンタクト部とを形成し、導電性硬質膜を形成することなく、パッド電極305を形成した。
(比較例3)
導電性硬質膜であるTiNに替えて、厚さ1.00μmのPtを電子ビーム蒸着により形成した以外は、実施例1の方法により、パッド部の構造が図4(c)に示すような半導体発光素子400を作製した。この半導体発光素子400は、半導体層404上に、透光性絶縁層406/反射層407からなる反射部とオーミック電極409からなるコンタクト部とを形成し、Pt膜410を形成した後、パッド電極405を形成した。Ptのビッカース硬度は41Hvであるため、HV×t=41となる。
(比較例4)
実施例1の導電性硬質膜部分にタングステン(W)を厚さ1.00μmで形成した以外は実施例1の方法により、半導体発光素子を作製した。HV×t=350となる。
(比較例5)
導電性硬質膜であるTiNの厚さを0.10μmとした以外は実施例1の方法により、半導体発光素子を作製した。TiNのビッカース硬度HVは2100Hvであるため、HV×t=210となる。
(比較例6)
導電性硬質膜であるTiNの厚さを0.30μmとした以外は実施例1の方法により、半導体発光素子を作製した。HV×t=630となる。
(参考例)
さらに参考例として、HV×tの境界値の確認のため、ビッカース硬度がWとTiNの中間にある、蒸着したSi膜を硬質膜として導入した素子を形成した。蒸着したSi膜は半絶縁性であるため、請求項の「導電性硬質膜」に該当するものではなく、あくまでも剥離防止効果の確認として実施した。Siは電子ビーム蒸着により、10Å/secのレートにて蒸着した。蒸着開始真空度は1.0E−4(Pa)、基板温度は25〜35℃にて蒸着した。蒸着Si膜は、超微小硬度計にてビッカース硬度を計測し、HV=1150であった。
(参考例1)
導電性硬質膜であるTiNに替えて、厚さ0.4μmのSiを電子ビーム蒸着により形成した以外は、実施例1の方法により、半導体発光素子を作製した。HV×t=460となる。
(参考例2)
導電性硬質膜であるTiNに替えて、厚さ0.6μmのSiを電子ビーム蒸着により形成した以外は、実施例1の方法により、半導体発光素子を作製した。HV×t=690となる。
(参考例3)
導電性硬質膜であるTiNに替えて、厚さ0.8μmのSiを電子ビーム蒸着により形成した以外は、実施例1の方法により、半導体発光素子を作製した。HV×t=920となる。
(評価方法)
実施例1〜4、比較例1〜6および参考例1〜3の半導体発光素子をそれぞれ20個作製し、それぞれについてワイヤーボンディングを行った。
ワイヤーボンディングは、キャピラリー中にAuワイヤーを通し、加熱によりキャピラリーの先端部にAuワイヤーが凝集して丸まったボールを作り、このボールに荷重と超音波をかけながら、パッド電極に押しつけることにより、パッド電極にAuワイヤーを接合するものである。ワイヤーボンダー(WEST-BOND社製、MODEL-7700D)により、直径25μmのAuワイヤーをボンディングした。荷重は0.7N、超音波印加時間は60ms、超音波の出力は1.0Wとした。ボンディング後に、パッド部分に剥離が生じているものの割合を、各実施例・比較例において算出し、結果を表1の「ボンディング後剥離率」に示す。
Auワイヤーをボンディングした各実施例・比較例・参考例の半導体発光素子を20個作製し、それぞれの半導体発光素子についてボールシェア試験を行った。ボールシェア試験は、ワイヤーボンディングによりパッド電極との接合部にできたAuボールを金属の爪で横方向に切断し、その切断に必要な荷重(ボールシェア強度)から接合強度を測定する試験であり、「Wire Bond Shear Test Method」によるEA/JESD22−B116規格に準拠した測定を行った。万能型シェアテスター(DAGE社製、4000PXY)を用いて、シェア速度100μm/s、シェア高さ10μmで試験を行った。なお、シェア速度とは、爪を横方向にスライド移動させる速度であり、シェア高さとは、パッド電極表面から爪の先端部の高さを意味する。各実施例・比較例・参考例において、20個の試料のボールシェア強度の中間値を表1の「ボールシェア強度」に示す。また、試験後に、パッド部分において、絶縁膜からの剥離(絶縁層/半導体層間、絶縁層/反射層間、もしくはその両方の箇所での剥離)が生じているものの割合を、各実施例・比較例・参考例において算出し、結果を表1の「ボールシェア後剥離率」に示す。また、比較例2(TiN=0nm)、比較例5,6(TiN=100nm,300nm)および実施例1〜3(TiN=500nm,750nm,1μm)のボールシェア強度およびボールシェア後剥離率をプロットしたグラフを図5に示す。
各実施例・比較例から得られた半導体発光素子に定電流電圧電源を用いて20mAの電流を流したときの順方向電圧Vfおよび積分球による発光出力Poを測定し、10個の試料の測定結果の中間値の結果を表1に示した。
Figure 0005779642
(評価結果)
表1に示すとおり、比較例1は他の試験例に比べて順方向電圧Vfおよび発光出力Poが低い。これは、パッド部直下に透光性絶縁膜および反射層を設けなかったためである。一方、比較例2は、パッド部直下に透光性絶縁膜および反射層を設けたため、比較例1に比べて高出力を得ることができた。しかしながら、ワイヤーボンディング後には、一部の試料でパッド部に剥離が見られ、ボールシェア試験後には全ての試料でパッド部に絶縁膜からの剥離が生じた。ボールシェア強度も低かった。このようにボンディング後に剥離が発生するようなことは製品としては不適切であり、ボンディング後剥離率は0%であることが望まれる。
また、ビッカース硬度HVと厚さtの積が630Hv・μm以下である比較例3〜6および参考例1も、比較例2と同様にパッド部の機械的信頼性は低い。比較例3では、Pt膜が41Hvというビッカース硬度の低い導電性材料であり、ワイヤーボンディングに伴いPt膜も大きく塑性変形し、パッド部に生じる応力を緩和することができなかったためである。また、比較例4では、ビッカース硬度が比較的高いW膜を挿入し、比較例5では、ビッカース硬度が高く2100HvであるTiN膜を挿入したが、いずれも厚さが十分ではなく、膜が割れ、同様にワイヤーボンディングの応力を緩和することができなかったためである。このように、本発明の条件を満たす導電性硬質膜を用いないと、製品として十分なパッド部の機械的信頼性を得ることはできない。
一方で、ビッカース硬度Hvと厚さtの積が630Hv・μmより大きい実施例1〜4および参考例2,3については、いずれもボンディング後剥離率は0%であり、さらに、比較例2〜6に比べて、ボールシェア試験後剥離率が低く、ボールシェア強度は高かった。すなわち、実施例1〜4および参考例2,3では、ほとんどパッド部に剥離が生じないという結果が得られた。これは、Wは350Hv、Siは1150Hv、TiNは2100Hvというビッカース硬度の高い材料であり、膜の構造的にも十分な強度をもつ厚さを有していることで、ワイヤーボンディングに伴いパッド部に生じる応力を緩和することができたためである。また、TiNは抵抗率(21.7×10−8Ω・m)が低いため、順方向電圧Vfを上昇させることもなかった。ただし、Wではわずかに順方向電圧Vfの上昇があった。抵抗率が一般に5.29×10−8Ω・m(R.T.)と小さいタングステンで順方向電圧Vfの上昇があったことは、低い硬度で十分な強度に必要な厚さが大きいことよりも、高い硬度で十分な強度に必要な厚さが小さいことの方が、順方向電圧Vfの上昇のリスクが小さいことを示している。
本発明によれば、反射層とパッド電極との間に、ビッカース硬度をHV(Hv)、厚さをt(μm)としたときに、HV×t>630となる導電性硬質膜を配置したことにより、上記のような作用により、パッド電極による遮光は最小限としたまま、ワイヤーボンディングに伴うパッド部分の剥離を抑制することが可能となった。
100 半導体発光素子
101 n型半導体層(第1導電型半導体層)
102 発光層(発光部)
103 p型半導体層(第2導電型半導体層)
104 半導体層
105 パッド電極
106 透光性絶縁層
107 反射層
108 反射部
109 オーミック電極(コンタクト部)
110 導電性硬質膜
111 オーミック電極
112 絶縁膜
113 反射層
114 金属接合層
115 支持基板
116 下部電極

Claims (8)

  1. 発光部を含む半導体層と、該半導体層上に位置するパッド電極と、を有する半導体発光素子であって、
    前記半導体層と前記パッド電極との間に、
    前記半導体層上に位置する電流遮断層としての透光性絶縁層、および、該透光性絶縁層上に位置する反射層、を含む反射部と、
    前記半導体層上に位置し、前記反射部と接するオーミック電極からなるコンタクト部と、を有し、
    前記反射層と前記パッド電極との間にTiNからなる導電性硬質膜を有し、該導電性硬質膜のビッカース硬度をHV(Hv)、厚さをt(μm)としたときに、HV×t≧1000であることを特徴とする半導体発光素子。
  2. 前記導電性硬質膜が、前記パッド電極および前記反射層のいずれのビッカース硬度よりも高いビッカース硬度HVを有する請求項1に記載の半導体発光素子。
  3. 前記導電性硬質膜の厚さtが、0.μm以上である請求項1または2のいずれか1項に記載の半導体発光素子。
  4. 前記導電性硬質膜の厚さtが、2μm以下である請求項1〜3のいずれか1項に記載の半導体発光素子。
  5. 前記導電性硬質膜の通電時の電圧降下が、前記半導体層での閾値電圧以下である請求項1〜のいずれか1項に記載の半導体発光素子。
  6. 前記導電性硬質膜が、前記反射層の全ておよび前記オーミック電極の少なくとも一部を覆う請求項1〜のいずれか1項に記載の半導体発光素子。
  7. 前記オーミック電極が前記反射部を取り囲むように形成される請求項1〜のいずれか1項に記載の半導体発光素子。
  8. 発光部を含む半導体層と、該半導体層上に位置するパッド電極と、を有する半導体発光素子の製造方法であって、
    前記半導体層を形成する工程と、
    該半導体層上に所定パターンのオーミック電極からなるコンタクト部を形成する工程と、
    前記半導体層上に電流遮断層としての透光性絶縁層を形成し、該透光性絶縁層上に反射層を形成することにより、前記コンタクト部と接する反射部を形成する工程と、
    前記反射層上に、ビッカース硬度をHV(Hv)、厚さをt(μm)としたときに、HV×t≧1000となり、かつ、TiNからなる導電性硬質膜を形成する工程と、
    該導電性硬質膜上に、前記パッド電極を形成する工程と、と有する半導体発光素子の製造方法。
JP2013503400A 2011-03-10 2012-03-09 半導体発光素子およびその製造方法 Active JP5779642B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013503400A JP5779642B2 (ja) 2011-03-10 2012-03-09 半導体発光素子およびその製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011053399 2011-03-10
JP2011053399 2011-03-10
JP2013503400A JP5779642B2 (ja) 2011-03-10 2012-03-09 半導体発光素子およびその製造方法
PCT/JP2012/001634 WO2012120894A1 (ja) 2011-03-10 2012-03-09 半導体発光素子およびその製造方法

Publications (2)

Publication Number Publication Date
JPWO2012120894A1 JPWO2012120894A1 (ja) 2014-07-17
JP5779642B2 true JP5779642B2 (ja) 2015-09-16

Family

ID=46797865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013503400A Active JP5779642B2 (ja) 2011-03-10 2012-03-09 半導体発光素子およびその製造方法

Country Status (7)

Country Link
US (1) US9172005B2 (ja)
EP (1) EP2685511B1 (ja)
JP (1) JP5779642B2 (ja)
KR (1) KR101527669B1 (ja)
CN (1) CN103430335B (ja)
TW (1) TWI490927B (ja)
WO (1) WO2012120894A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10205059B2 (en) 2010-02-09 2019-02-12 Epistar Corporation Optoelectronic device and the manufacturing method thereof
US9640728B2 (en) * 2010-02-09 2017-05-02 Epistar Corporation Optoelectronic device and the manufacturing method thereof
US9136436B2 (en) * 2010-02-09 2015-09-15 Epistar Corporation Optoelectronic device and the manufacturing method thereof
JP5957358B2 (ja) * 2012-10-16 2016-07-27 昭和電工株式会社 発光ダイオード、発光ダイオードランプ及び照明装置
KR102042443B1 (ko) * 2013-04-29 2019-11-27 엘지이노텍 주식회사 발광소자, 발광소자 패키지 및 라이트 유닛
JP2015049965A (ja) * 2013-08-30 2015-03-16 三菱自動車工業株式会社 二次電池用の電極
JP6387780B2 (ja) * 2013-10-28 2018-09-12 日亜化学工業株式会社 発光装置及びその製造方法
JP6684541B2 (ja) 2014-01-20 2020-04-22 ローム株式会社 発光素子
EP3284112B1 (en) * 2015-04-15 2020-06-10 Lumileds Holding B.V. Light emitting device with reflector and a top contact
JP6738169B2 (ja) * 2016-03-11 2020-08-12 Dowaエレクトロニクス株式会社 半導体光デバイスおよびその製造方法
US10332839B2 (en) * 2017-01-06 2019-06-25 United Microelectronics Corp. Interconnect structure and fabricating method thereof
CN106972090A (zh) * 2017-04-14 2017-07-21 华南理工大学 一种弧线形n电极及垂直结构led芯片
US10937928B2 (en) 2017-11-09 2021-03-02 Asahi Kasei Kabushiki Kaisha Nitride semiconductor element, nitride semiconductor light emitting element, ultraviolet light emitting element
CN112909143A (zh) * 2021-02-04 2021-06-04 南昌大学 一种具有特定发光图形的AlGaInP薄膜LED芯片的制备方法
CN114171659B (zh) * 2021-11-03 2024-03-19 广东省科学院半导体研究所 具有高出光效率的深紫外薄膜led及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63148646A (ja) * 1986-12-12 1988-06-21 Toshiba Corp 半導体装置
JPH10225824A (ja) * 1997-02-17 1998-08-25 Kagaku Gijutsu Shinko Jigyodan 放電表面処理方法及びその処理装置
JP2002081508A (ja) * 2000-07-20 2002-03-22 Borgwarner Inc サイレントチェーン
JP2008223859A (ja) * 2007-03-12 2008-09-25 Honda Motor Co Ltd チェーン
JP2008300719A (ja) * 2007-06-01 2008-12-11 Nichia Corp 半導体発光素子およびその製造方法
JP2009010280A (ja) * 2007-06-29 2009-01-15 Nichia Corp 半導体発光素子
JP2009076490A (ja) * 2007-09-18 2009-04-09 Hitachi Cable Ltd 発光装置
JP2011066453A (ja) * 2010-12-27 2011-03-31 Toshiba Corp 半導体発光素子及び半導体発光装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS616880A (ja) 1984-06-20 1986-01-13 Rohm Co Ltd 発光半導体素子およびその製造方法
JP2527457B2 (ja) * 1988-02-29 1996-08-21 シャープ株式会社 半導体装置の電極構造
JP2002076051A (ja) * 2000-09-01 2002-03-15 Nec Corp 半導体装置のボンディングパッド構造及びボンディング方法
JP2002111153A (ja) * 2000-09-29 2002-04-12 Kyocera Corp 回路基板
JP3935026B2 (ja) * 2002-08-27 2007-06-20 京セラ株式会社 配線基板
JP2005203722A (ja) * 2003-12-16 2005-07-28 Kyocera Corp 配線基板
JP4224041B2 (ja) 2004-08-26 2009-02-12 シャープ株式会社 半導体レーザ素子、半導体レーザ素子の製造方法、光ディスク装置および光伝送システム
JP5224859B2 (ja) 2008-03-19 2013-07-03 Dowaエレクトロニクス株式会社 半導体発光素子およびその製造方法
JP2010278112A (ja) * 2009-05-27 2010-12-09 Hitachi Cable Ltd 半導体発光素子

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63148646A (ja) * 1986-12-12 1988-06-21 Toshiba Corp 半導体装置
JPH10225824A (ja) * 1997-02-17 1998-08-25 Kagaku Gijutsu Shinko Jigyodan 放電表面処理方法及びその処理装置
JP2002081508A (ja) * 2000-07-20 2002-03-22 Borgwarner Inc サイレントチェーン
JP2008223859A (ja) * 2007-03-12 2008-09-25 Honda Motor Co Ltd チェーン
JP2008300719A (ja) * 2007-06-01 2008-12-11 Nichia Corp 半導体発光素子およびその製造方法
JP2009010280A (ja) * 2007-06-29 2009-01-15 Nichia Corp 半導体発光素子
JP2009076490A (ja) * 2007-09-18 2009-04-09 Hitachi Cable Ltd 発光装置
JP2011066453A (ja) * 2010-12-27 2011-03-31 Toshiba Corp 半導体発光素子及び半導体発光装置

Also Published As

Publication number Publication date
KR20130125831A (ko) 2013-11-19
WO2012120894A1 (ja) 2012-09-13
KR101527669B1 (ko) 2015-06-09
EP2685511A4 (en) 2014-08-13
TWI490927B (zh) 2015-07-01
EP2685511B1 (en) 2017-04-26
TW201308406A (zh) 2013-02-16
US20140001508A1 (en) 2014-01-02
JPWO2012120894A1 (ja) 2014-07-17
US9172005B2 (en) 2015-10-27
EP2685511A1 (en) 2014-01-15
CN103430335B (zh) 2016-05-04
CN103430335A (zh) 2013-12-04

Similar Documents

Publication Publication Date Title
JP5779642B2 (ja) 半導体発光素子およびその製造方法
JP4183299B2 (ja) 窒化ガリウム系化合物半導体発光素子
JP5045336B2 (ja) 半導体発光素子
TWI274429B (en) Semiconductor light-emitting device and manufacturing method thereof
EP1821346A2 (en) Semiconductor light-emitting device and method of manufacturing the same
JP7049186B2 (ja) 半導体発光素子および半導体発光素子の製造方法
TWI524558B (zh) Semiconductor light emitting element and electrode film forming method
JP5148647B2 (ja) 半導体発光素子、半導体発光装置及び半導体発光素子の製造方法
WO2011077748A1 (ja) バーチカル型iii族窒化物半導体発光素子およびその製造方法
JP2004207508A (ja) 発光素子及びその製造方法
JP2010067890A (ja) 発光素子
US8597969B2 (en) Manufacturing method for optical semiconductor device having metal body including at least one metal layer having triple structure with coarse portion sandwiched by tight portions of a same material as coarse portion
JP2010067889A (ja) 発光素子
JP6462274B2 (ja) 半導体発光素子
KR101510382B1 (ko) 수직구조의 그룹 3족 질화물계 반도체 발광다이오드 소자및 제조방법
JP5224859B2 (ja) 半導体発光素子およびその製造方法
JP4867414B2 (ja) 窒化物半導体発光ダイオード
JP5520638B2 (ja) 半導体発光素子およびその製造方法
JP6738169B2 (ja) 半導体光デバイスおよびその製造方法
JP4985930B2 (ja) 窒化物系化合物半導体発光素子およびその製造方法
JP2018206818A (ja) 発光素子及びその製造方法
JP5438806B2 (ja) 半導体発光素子及び半導体発光装置
JP5802256B2 (ja) 半導体発光素子及び半導体発光装置
JP5334642B2 (ja) 発光装置
JP2011129621A (ja) 発光素子

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140704

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150106

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150114

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20150306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150713

R150 Certificate of patent or registration of utility model

Ref document number: 5779642

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250