本発明は、エポキシ基末端(メタ)アクリレートの製造方法に関する。
4−グリシジルオキシブチルアクリレート(以下「4HBAGE」と省略する)や、グリシジルメタクリレート等に代表されるエポキシ基末端(メタ)アクリレートは、塗料、樹脂などの改良のための原料として有用な化合物である(特許文献1及び2)。中でも4HBAGEは、架橋後にも可とう性が失われず、塗膜として優れた性質を発現するため、非常に有用な化合物である。
ところで、下記一般式(1)で表されるエポキシ基末端(メタ)アクリレートの一般的な製造方法としては、エステル交換反応触媒の存在下に、(メタ)アクリル酸低級アルキルエステルとジオールモノグリシジルエーテルとを常圧下でエステル交換反応させる方法がある(特許文献3)。
(上記一般式(1)中、Yは炭素数2〜8の飽和炭化水素基を、Rは水素原子またはメチル基を表す。)
エステル交換反応触媒としては、一般的にはチタンアルコラート等に代表される金属アルコラートの他、有機スズ、アルカリ金属またはアルカリ土類金属の弱酸塩(例えば炭酸塩、酢酸塩、リン酸塩)等が知られている。
エステル交換反応終了後は、使用した触媒を除去し、蒸留精製により、蒸留物として高純度のエポキシ基末端(メタ)アクリレートを得るのが一般的である。エステル交換反応触媒の金属アルコラートの除去方法としては、例えば、水を加えて室温で撹拌して触媒を加水分解し、その後、分液やろ過により除去する方法が知られている(特許文献4)。
ところで、エポキシ基末端(メタ)アクリレートは蒸留時の加熱などにより重合し易く、エステル交換反応触媒の金属アルコラートの加水分解および/または除去が不十分な場合には、金属アルコラート又はそれに由来する金属成分が系内に残存し、エポキシ基末端(メタ)アクリレートの重合を促進する。
特公昭48−22169号公報
特許第3645037号号公報
特許第3794029号号公報
特開2005−247810号公報
本発明の目的は、蒸留精製の際のエポキシ基末端(メタ)アクリレートの重合を防止し、結果として高収率かつ高純度で得ることが出来るエポキシ基末端(メタ)アクリレートの製造方法を提供することにある。
すなわち、本発明の要旨は、金属アルコラートの存在下、下記一般式(2)で表されるグリシジル基を有する化合物と(メタ)アクリレート化合物とのエステル交換反応を行った後、得られた下記一般式(1)で表されるエポキシ基末端(メタ)アクリレートを銅化合物である重合防止剤の存在下に蒸留精製するに際し、エステル交換反応終了後の反応液に水を加えて触媒を失活させ、不溶化した触媒を取り除く方法により金属アルコラート由来の金属含有量を500ppm以下にし且つ当該金属含有量を蒸留精製の際に存在する重合防止剤に対して2.5倍モル以下にすることを特徴とする、エポキシ基末端(メタ)アクリレートの製造方法に存する。
(上記一般式(1)及び(2)中、Yは炭素数2〜8の飽和炭化水素基を表す。上記一般式(1)中、Rは水素原子またはメチル基を表す。上記一般式(2)中、Zは、水素原子、水酸基の保護基または金属原子を表し、nは、Zが金属原子である場合の、対応する金属イオンの価数に等しい数を表す。)
本発明によれば、蒸留精製の際の重合が回避され、塗料、樹脂などの改良のための原料として有用な化合物であるエポキシ基末端(メタ)アクリレートを高収率かつ高品質で得ることが出来る。
以下、本発明を詳細に説明する。
本発明のエポキシ基末端(メタ)アクリレートの製造方法は、先ず、金属アルコラートの存在下、前記一般式(2)で表されるグリシジル基を有する化合物(以下、単に「グリシジル基を有する化合物」と略記する)と(メタ)アクリレート化合物とのエステル交換反応を行う。
エステル交換反応を適切に進行させる観点から、反応系内の水分の総量のモル比率は、金属アルコラートに対する割合として、通常5倍以下、好ましくは3倍以下、更に好ましくは1.5倍以下である。
反応系内の水分を低減する方法としては、例えば、原料の(メタ)アクリレート化合物や、エステル交換反応の際に溶剤を使用する場合の当該溶剤を過剰に使用し、金属アルコラートを加える前に蒸留することにより、予め反応系内の水分を系外に除去する方法が挙げられる。また、脱水剤との処理により水分の総量を低減する方法なども挙げられる。通常、水分の測定にはカールフィッシャー水分計が使用される。
原料として使用するグリシジル基を有する化合物は、公知の製造方法、例えば、前記の特許文献3に記載されている製造方法で得ることが出来る。一般的には、アルカリ化合物を使用し、目的とするグリシジル基を有する化合物の構造に対応したアルコールの水酸基とエピハロヒドリンとを直接脱ハロゲン付加反応させて得る。本発明の製造方法で得られるエポキシ基末端(メタ)アクリレートは優れた可とう性を有するが、前記一般式(2)における中間基Yの存在が優れた可とう性を付与する主要因であると推測される。なお、前記一般式(2)で表されるグリシジル基を有する化合物の末端基Zは、水素原子が特に好ましいが、反応によりエポキシ基末端(メタ)アクリレートが得られるのであれば、一般的に使用される水酸基の保護基で置換された構造であってもよい。または、末端基Zが金属原子、すなわち金属アルコキシドであってもよい。この場合、当該金属原子に対応する金属イオンの価数nと等しい数のアルコキシド残基が当該金属原子と結合する。
前記一般式(2)において、中間基のYは、炭素数2〜8の飽和炭化水素基であればよく、その一部または全部に、例えばシクロヘキサン環に代表されるような脂環式構造を有していてもよい。グリシジル基を有する化合物の具体例としては、末端基Zが水素原子である構造の化合物名で代表すると、エチレングリコールモノグリシジルエーテル、1,3−プロパンジオールモノグリシジルエーテル、1,4−ブタンジオールモノグリシジルエーテル、1,6−ヘキサンジオールモノグリシジルエーテル、1,8−オクタンジオールモノグリシジルエーテル、1,4−シクロヘキサンジメタノールモノグリシジルエーテル、1,4−シクロヘキサンンジオールモノグリシジルエーテル等のジオールモノグリシジルエーテルが挙げられる。また、前記一般式(2)において、末端基Zが水酸基の保護基である場合の具体例としては、ビニル基、メトキシメチル基、2−メトキシエトキシメチル基、ベンジルオキシメチル基、メチルチオメチル基、メチル基、エチル基などが挙げられる。更に、前記一般式(2)において、末端基Zが金属原子である場合、その金属種の具体例としては、リチウム、ナトリウム、カリウム、マグネシウム、カルシウム、アルミニウム、チタン等の、アルカリ金属やアルカリ土類金属、あるいはエステル交換反応触媒の金属アルコラートを構成することが出来る金属などが挙げられる。
原料として使用する(メタ)アクリレート化合物は、特に限定されず、一般的な(メタ)アクリル酸エステル化合物を広く使用することが出来るが、使用する(メタ)アクリレート化合物から生成するアルコールを、例えば、蒸留、抽出、不溶化などの方法により反応系外へ除去し、平衡を偏らせるのが好ましい。この際、蒸留を利用して生成するアルコールを反応系外へ除去する場合は、原料として使用するグリシジル基を有する化合物の反応系外への留出による損失を低く抑えるために、(メタ)アクリレート化合物からエステル交換反応で生成するアルコールの沸点が、当該エステル交換反応で使用するグリシジル基を有する化合物の沸点よりも低い化合物の群から選ばれた(メタ)アクリレート化合物を使用するのが好ましい。なお、生成するアルコールの不溶化などにより平衡を偏らせることが出来る場合は、生成するアルコールの沸点に制限を受けることなく、更に高沸点のアルコールから成る(メタ)アクリレート化合物を使用してもよい。(メタ)アクリレート化合物の具体例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−プロピル(メタ)アクリレート、i−プロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、i−ブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、メトキシエチル(メタ)アクリレート、エトキシエチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、グリシジル(メタ)アクリレート等が挙げられる。特に、製造効率の観点からは、低沸点のアルコールが生成するのが好ましく、従ってメタノールが生成するメチル(メタ)アクリレートが更に好ましい。なお、水酸基の競争反応のために反応効率は低下するが、反応系の平衡を偏らせることで、水酸基含有(メタ)アクリレート化合物や、ジ(メタ)アクリレート化合物を使用することも出来る。水酸基含有(メタ)アクリレート化合物や、ジ(メタ)アクリレート化合物の具体例としては、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート等が挙げられる。
(メタ)アクリレート化合物の使用割合は、使用するグリシジル基を有する化合物に対し、通常1〜10倍モル、好ましくは1.1〜5倍モルである。エステル交換反応は、(メタ)アクリレート化合物とグリシジル基を有する化合物との等モル反応であるため、(メタ)アクリレート化合物の使用割合が上記の範囲未満の場合は、エステル交換反応が完結せず、収率が低下する恐れがある。また、(メタ)アクリレート化合物の使用割合が上記の範囲を超える場合は、それによる効果がなく、実用的でない。なお、ジ(メタ)アクリレート化合物に関しては、1分子あたり2倍モルとして考慮する。
エステル交換反応触媒の金属アルコラートとしては、例えば、チタンアルコラート、ジルコニウムアルコラート、アルミニウムアルコラート、アンチモンアルコラート等が挙げられる。金属アルコラートを構成するアルコールは特に制限を受けない。斯かるアルコールとしては、例えば、メタノール、エタノール、n−プロパノール、i−プロパノール、n−ブタノール、t−ブタノール、n−オクタノール、2−エチルヘキサノール、ステアリルアルコール、シクロヘキサノール、フェノール、ベンジルアルコール等の一般的なアルコールが挙げられる。金属アルコラートの中では、チタンテトラメトキシド、チタンテトラエトキシド、チタンテトラ−n−プロポキシド、チタンテトラ−n−ブトキシド(以下「TBT」と省略する)等のチタンアルコラートが好ましく、特にTBTが好ましい。
金属アルコラートの使用割合は、グリシジル基を有する化合物に対し、通常0.001〜0.1倍モル、好ましくは0.005〜0.05倍モルである。金属アルコラートの使用割合が上記の範囲より少ない場合は、エステル交換反応の進行が遅くなったり反応が完結せず、上記の範囲より多い場合は、使用量に対する向上効果は期待できず、却って触媒の除去などの操作が困難となる恐れがある。
エステル交換反応時においては、(メタ)アクリロイル基の重合を防止する目的で、重合防止剤を使用するのが好ましい。重合防止剤としては、フェノチアジンやp−フェニレンジアミン等の芳香族アミン;2,2,6,6−テトラメチル−1−ピペリジニルオキシ(TEMPO)や4−ヒドロキシ−2,2,6,6−テトラメチル−1−ピペリジニルオキシ(HTEMPO)等のN−オキシルアミン;ヒドロキノンやp−メトキシフェノール(以下「MEHQ」と省略する)等のフェノール誘導体;ニトロソ化合物;芳香族ニトロソ化合物;ジブチルジチオカルバミン酸銅(以下「CBC」と省略する)やジメチルジチオカルバミン酸銅などのアルキル置換ジチオカルバミン酸銅、あるいは酢酸銅などの銅系化合物;ステアリン酸鉛などの鉛系化合物が挙げられる。これらの重合防止剤は2種類以上を併用してもよい。なお、重合防止剤の種類によっては、反応系内に酸素を導入することで、より高い重合防止効果を得られるものがある。この場合、反応系内が爆発範囲内に入らないように、不活性ガスで希釈された状態の酸素ガスを反応系内に導入するのが好ましく、反応液中に吹き込むようにして導入するのがより好ましい。
重合防止剤の使用割合は、グリシジル基を有する化合物100重量部に対し、通常0.01〜1重量部、好ましくは0.1〜0.3重量部である。
エステル交換反応は平衡反応であるために、高収率でエステル交換反応を行うためには、使用する(メタ)アクリレート化合物から生成するアルコールを、例えば、蒸留、抽出、不溶化などの方法により反応系外へ除去し、平衡を偏らせるのが好ましい。生成するアルコールを反応系外へ除去する方法は特に限定されないが、一般的には、その方法の簡便さから蒸留による除去が好ましく、原料として使用する(メタ)アクリレート化合物や各種の溶剤と、生成するアルコールとの共沸を利用して反応系外へ除去するのが更に好ましい。使用する溶剤は、生成するアルコールと共沸するものが好ましく、その共沸温度が、(メタ)アクリレート化合物と生成するアルコールとの共沸温度より低いものが更に好ましい。また、これらの溶剤は、原料の(メタ)アクリレート化合物やグリシジル基を有する化合物と反応しないものが好ましい。斯かる溶剤としては、例えば、n−ヘキサン、n−ヘプタン、n−オクタン、n−デカン、シクロヘキサン等の脂肪族炭化水素系溶剤;トルエン、キシレン、クメン、シメン、ピリジン、ルチジン等の芳香族系溶剤;テトラヒドロフラン、ジオキサン、ジブチルエーテル、シクロペンチルメチルエーテル等のエーテル系溶剤;メチルエチルケトン、メチルイソブチルケトン、シクロヘクサノン等のケトン系溶剤などが挙げられる。また、原料の(メタ)アクリレート化合物を過剰に使用し、溶剤として利用することも出来る。なお、溶剤と生成するアルコールが共沸しない条件で反応を行うことも出来る。これらの中では、メチル(メタ)アクリレートとn−ヘキサンの組み合わせ(メタノールとn−ヘキサンの共沸系)が好ましい。
溶剤の使用割合は、生成するアルコールの種類や、溶剤と共沸した場合の共沸組成の比率により変化するため、一概には言えないが、エステル交換反応を収率良く行うためには、生成するアルコールの全量(反応率100%の場合の理論計算量に基づく)を共沸により除去できる量の溶剤が必要であり、その理論計算量に対する重量比として、通常1倍〜10倍、好ましくは1.1倍〜5倍である。溶剤の使用割合が上記の範囲より少ない場合は、生成するアルコールの除去が不十分となり、反応が完結しない恐れがあり、上記の範囲を超える場合は、それによる効果がなく、実用的でない。
なお、共沸溶剤の不足などにより、生成するアルコールの除去が不十分となった場合には、後から溶剤を追加することも可能であるが、追加分の溶剤中に含まれる水分の総量を考慮する必要があるので注意を要する。あるいは、エステル交換反応中に反応が終了するまでの間、必要となる量の溶剤を反応系内に逐次投入する方法も可能であるが、反応系内に逐次投入される溶剤の積算量に含まれる水分を全て考慮する必要があるので注意を要する。
また、前記の溶剤は、反応溶媒を兼ねて使用することも出来る。反応溶媒の使用により、反応液の温度や濃度を制御し、液相での重合や副反応を抑制することが出来る。特に非水溶性の反応溶媒の場合には、後処理で有機層と水層を分離する際に分離を促進し抽出溶剤として働く等の効果も期待できる。沸点の低い共沸溶剤を多量に使用すると反応系の温度が低下し易いために、共沸溶剤と、それより高沸点の反応溶媒を複数組み合わせて使用するのがより好ましい。共沸溶剤と高沸点の反応溶媒を組み合わせる場合、水分の総量を予め考慮した上で、共沸を維持しつつ反応温度が低下し過ぎない量の共沸溶剤を、反応系内に逐次投入する方法が更に好ましい。共沸溶剤と反応溶媒の組み合わせとしては、例えば、メチル(メタ)アクリレートとn−ヘキサンの組み合わせ(メタノールとn−ヘキサンの共沸系)に対し、更に反応溶媒としてトルエンを使用する方法などが挙げられる。なお、反応溶媒の沸点はエポキシ基末端(メタ)アクリレートの沸点よりも低いものが好ましいが、エポキシ基末端(メタ)アクリレートを蒸留精製し、蒸留物として回収する等によって高沸点の反応溶媒が共存しても問題がない場合には、エポキシ基末端(メタ)アクリレートよりも高沸点の反応溶媒を使用することも出来る。例えば、炭素数が10を超えるような石油系溶剤などが挙げられる。
反応溶媒を使用する場合には、共沸に必要な量の溶剤とは別に、反応溶媒分としての溶剤が必要であるが、その量は、使用するグリシジル基を有する化合物に対する容量比として、通常0.5〜20倍、好ましくは1〜5倍である。反応溶媒の使用割合が上記の範囲より少ない場合は反応溶媒としての効果が余り期待できず、上記の範囲より多い場合、それによる効果がないばかりか、却って、希釈されることにより反応速度が低下したり、水分の総量に対する濃度が低下する分、水分の制御が難しくなる恐れがある。
エステル交換反応時の反応温度は、使用する(メタ)アクリレート化合物や溶剤の種類にもよるが、通常50〜130℃、好ましくは60〜120℃であり、反応時間は、通常1〜24時間、好ましくは3〜12時間である。反応温度が低い場合にはエステル交換反応の進行が遅くなり、逆に反応温度が高すぎる場合には(メタ)アクリロイル基の重合の危険性が高くなる恐れがある。エステル交換反応は、共沸温度(共沸組成)を維持しつつ、可能な限り速やかに生成するアルコールを反応系外へ除去することにより反応時間を短縮することが出来る。なお、高沸点のアルコールが生成するような反応系では、生成するアルコールを反応系外へ除去するためには高温が必要となるが、反応温度が高くなるほど(メタ)アクリロイル基が重合する危険性が高くなるため、減圧下で反応を行い、上記の反応温度の範囲内となるように反応温度を下げることも出来る。従って、エステル交換反応時の圧力は、使用する(メタ)アクリレート化合物や溶剤の種類に応じて、所望する反応温度となるように圧力を制御し、常圧下、減圧下、加圧下の何れを選択してもよい。
エステル交換反応終了後は、反応液に水を加えて触媒を失活させ、例えば、ろ過などの方法により不溶化した触媒を取り除く。金属アルコラートの失活が不十分である場合は、ろ過されなかった触媒由来の金属成分が残存したり、ろ過の際に目詰まりを引き起こしてろ過性を低下させる等の不具合が発生する恐れがある。触媒由来の金属成分が残存した場合は、以降の工程での加熱などの際に(メタ)アクリロイル基の重合や不均化反応を引き起こす危険性が高くなる。
水の添加量は、触媒の分子量や使用量にもよるが、使用する触媒1重量部に対し、通常10〜200重量部、好ましくは20〜50重量部である。水の使用割合が上記の範囲より少ない場合は、触媒の加水分解が不十分となったり、有機層と水層を分離する際の分離性が悪化する恐れがある。また、水の使用割合が上記の範囲より多い場合は、それによる効果はなく、却って、有機層と水層を分離する際にエポキシ基末端(メタ)アクリレートの水層へのロスが増加する。なお、ろ過により不溶化した触媒を取り除く場合には、ろ過性を改善し、あるいは目漏れ等により不溶化した触媒の混入を防止する目的で、例えば、珪藻土などのろ過助剤を使用するのが好ましい。
金属アルコラートは水と容易に反応するため、通常は大過剰の水を加えただけでも加水分解を引き起こすが、前記の理由により触媒を充分に失活させることが好ましく、そのためには水を加えた後に反応液を加熱して加水分解するのが好ましい。加水分解の条件は、触媒の量にもよるが、通常30℃以上、好ましくは40〜100℃、更に好ましくは50〜80℃であり、加水分解時間は、通常5分〜24時間、好ましくは10分〜12時間、更に好ましくは15分〜6時間である。加水分解温度が低い場合や加水分解時間が短すぎる場合には、触媒の失活が不十分となる恐れがあり、また、低温では触媒を充分に失活させるためには長時間を要する。逆に、加水分解温度が高すぎる場合は、エポキシ基末端(メタ)アクリレート自身が加水分解して収率が低下する恐れがあるが、触媒の加水分解に要する時間は短くなる。
加水分解終了後に、エポキシ基末端(メタ)アクリレートを含む有機層と水層を分離する。実際には触媒が不溶化分散した状態での有機層と水層の分離は困難なことが多いため、ろ過などにより不溶化した触媒を取り除いた後に有機層と水層を分離するのが好ましい。この際、有機層と水層の分離を促進するため、非水溶性の溶剤を使用してもよい。使用する溶剤は、エステル交換反応時に使用した溶剤と同じでも異なっていてもよいが、一般的にはトルエン、キシレン等の芳香族系溶剤が好ましい。これらの溶剤は、予め、エステル交換反応の段階から使用することも出来る。
有機層と水層の分離を促進するために溶剤を使用する場合、その使用割合は、エポキシ基末端(メタ)アクリレートを含む有機層に対する容量比として、通常0.1〜10倍、好ましくは0.2〜5倍である。また、必要に応じ、分離したエポキシ基末端(メタ)アクリレートを含む有機層に更に水を加えて、抽出洗浄処理を行ってもよい。この抽出洗浄工程を加えることにより、有機層に残存する、例えば、原料や反応で生成したアルコールなどの親水性化合物を略完全に除去することが出来る。
上記のエポキシ基末端(メタ)アクリレートを含む有機層を濃縮し、溶剤、残存原料、残存アルコール、残存水分などの、当該エポキシ基末端(メタ)アクリレートよりも低沸点の成分を蒸留により除去することにより、エポキシ基末端(メタ)アクリレート粗成物を蒸留残分として得ることが出来る。なお、濃縮の条件は溶剤の種類などにもよるが、(メタ)アクリロイル基の重合を防止する観点からは、重合防止剤の存在下、エステル交換反応時の温度よりも低温で減圧濃縮を行うのが好ましい。
上記の生成液を蒸留精製し、蒸留物として回収することにより、本発明の目的物であるエポキシ基末端(メタ)アクリレート(4HBAGEなど)を得ることが出来るが、本発明においては、重合防止剤の存在下に蒸留精製する。そして、この際、金属アルコラート由来の金属含有量は500ppm以下にし且つ当該金属含有量を蒸留精製の際に存在する重合防止剤に対して2.5倍モル以下にする。斯かる条件を満足することにより、蒸留精製時の重合を回避し、高品質かつ高収率で、目的とするエポキシ基末端(メタ)アクリレートを得ることが出来る。
蒸留精製の条件として、液温は、通常180℃以下、好ましくは160℃以下であり、蒸留時間は、通常20時間以下、好ましくは12時間以下である。
蒸留精製時に使用する重合防止剤としては、エステル交換反応時に使用することが出来る重合防止剤群の中から選択することが出来るが、銅系重合防止剤が好ましく、中でもアルキル置換ジチオカルバミン酸銅、特にCBCが好ましい。また、他の重合防止剤と併用してもよい。特にp−メトキシフェノール等を併用することによりカラムでの重合防止効果も期待できる。なお、重合防止剤の種類によっては、蒸留系内に酸素を導入することにより、より高い重合防止効果を得られるものがある。この場合、蒸留系内が爆発範囲内に入らないように、不活性ガスで希釈された状態の酸素ガスを反応系内に導入するのが好ましく、蒸留液中に吹き込むようにして導入するのがより好ましい。上記の重合防止剤は、蒸留精製時に添加しても、蒸留工程よりも前の工程から共存させてもよい。
金属アルコラート由来の金属含有量は、蒸留精製時に存在する重合防止剤に対し、2.5倍モル以下であるが、好ましくは1.2倍モル以下、更に好ましくは0.6倍モル以下である。なお、金属アルコラート由来の金属とは、エステル交換触媒として使用した金属アルコラートを構成する金属種であり、原子吸光測定などにより定量することが出来る。エステル交換反応後に行われる金属アルコラートの失活と除去が充分に成された場合、通常、金属アルコラート由来の金属種は2ppm以下まで低減することが出来る。
以下、本発明を実施例により更に詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。
実施例1:
蒸留装置、温度計、攪拌装置を取り付けた500mlの四つ口フラスコに、1,4−ブタンジオールモノグリシジルエーテル100.0g(純度:98.3%、純度換算で0.67mol)、メチルアクリレート87.6g、トルエン70.3g、n−ヘキサン128.4g、MEHQ0.03gを加えて原料混合液(合計386.3g)を調整した。この原料混合液の水分をカールフィッシャー水分計で測定したところ840ppmであった。従ってこの原料混合液中に含まれる水分の総量は0.32g(0.018mol)となる。
上記の原料混合液にTBT4.6g(0.014mol)を加え、常圧、攪拌下で加熱昇温したところ、反応液温度72℃付近から速やかにメタノール/n−ヘキサンの共沸還流が始まった。ガスの温度は50〜52℃であった。この共沸温度(共沸組成)を維持しながらメタノール/n−ヘキサンの共沸液を抜き出した。なお、反応終了が近くなる頃からはメタノールの生成量が少なくなり、共沸温度(共沸組成)の維持が難しくなるために、ガスの温度が64℃まで上昇したが、そのまま抜き出しを継続した。最終的に8時間でメタノール/n−ヘキサン混合留分128.8gを抜き出し、反応液温度92℃で反応を終了して冷却し、4HBAGE(49.4重量%)を含む反応液258.5gを得た。4HBAGEの定量収率は94.8%である。この反応系における水分の総量のモル比率は使用したTBTの1.3倍である。
上記の反応液に水135.7gを加え、常圧、攪拌下で60℃まで加熱昇温し、そのまま60℃で30分間、加熱加水分解を行った。この反応液を冷却し、セライトを敷いたろ過器を使用して吸引ろ過し、不溶性の触媒を除去した。ろ液を有機層と水層に分離し、4HBAGE(47.6重量%)を含む有機層255.5gを得た。4HBAGEの定量収率は90.4%である。
上記の4HBAGEを含む有機層を、ロータリーエバポレーターを使用して減圧濃縮し、4HBAGE粗成物(純度97.7%)123.6gを得た。4HBAGEの純度換算定量収率は90.1%である。この4HBAGE粗成物は着色が殆ど見られない透明液体であり、また、触媒として使用したTBT由来のチタン含有率は原子吸光測定装置の検出限界(2ppm)以下であった。
4HBAGE粗液中にCBC0.6gを添加して蒸留精製を行った。留出条件100〜135℃/2.7〜5.3hPa、油浴温度120〜160℃、8時間で4HBAGEの蒸留精製を行った。4HBAGEは111.1g(純度98.6%)回収された。蒸留残渣中および系内には重合物は観察されなかった。
実施例2:
実施例1と同様の反応条件で反応を行った。触媒の加水分解処理を25℃で行った他は後処理も実施例1と同様に行ったところ、粗4HBAGE(97.2%)121.0gが回収された。この回収した液の中のチタン量を原子吸光測定装置で定量したところ28ppmであった。この粗4HBAGE液にCBC27.9mg(Ti/CBC=1.2モル/モルに相当する)を加え、実施例1と同様の蒸留条件で蒸留を行った。4HBAGEは110.7g(純度98.6%)回収された。蒸留残渣中および系内には重合物は観察されなかった。
実施例3:
蒸留装置、温度計、攪拌装置を取り付けた500mlの四つ口フラスコに、1,4−ブタンジオールモノグリシジルエーテル(以下「14BDMGE」と省略する)100.0g(純度:93.7%、純度換算で0.64mol)、2−メトキシエチルアクリレート125.1g(0.96mol)、o−キシレン200.0g、MEHQ0.03gを加えて原料混合液(合計425.1g)を調製した。この原料混合液の水分をカールフィッシャー水分計で測定したところ503ppmであり、含まれる水分の総量は0.21g(0.012mol)となる。
上記の原料混合液にTBT4.4g(0.013mol)を加え、100hPaに減圧しながら攪拌下で加熱昇温し、o−キシレンと、生成する2−メトキシエタノールを反応系外に留去しながら、反応液温度80〜90℃でエステル交換反応を行った。留出ガスの温度は57〜74℃であった。最終的に6時間で169.9gの留分を抜き出して反応を終了し、4HBAGE(46.3重量%)を含む反応液255.2gを得た。4HBAGEの純度換算定量収率は92.0%であり、この反応系における水分の総量のモル比率は、使用したTBTの0.9倍である。
上記の反応液に水140.0gを加え、常圧、攪拌下で60℃まで加熱昇温し、そのまま60℃で1時間、加熱加水分解を行った。この反応液を冷却し、セライトを敷いたろ過器を使用して吸引ろ過して、不溶性の触媒を除去した。ろ液は有機層と水層に分離した。この4HBAGEを含む有機層を、ロータリーエバポレーターを使用して減圧濃縮し、4HBAGE粗成物(純度94.0%)130.8gを得た。4HBAGEの純度換算定量収率は95.8%であり、触媒として使用したTBT由来のチタン含有率は2ppm以下であった。
上記の4HBAGE粗成物(130.8g)から50.0gを分取し、これにCBC0.08gを加えて、減圧下の単蒸留により精製を行ったところ、主留分として高純度4HBAGE(純度96.9%)42.4gを得た。4HBAGEの純度換算定量収率は、エステル交換反応からの一貫収率に換算して83.7%である。なお、主留分留出時の条件は、真空度が0.4〜0.6hPa、ボトム液温度が103〜114℃、留出ガス温度が93〜95℃、留出時間は約1時間であった。また蒸留残渣中および蒸留系内には重合物は観察されなかった。
実施例4:
蒸留装置、温度計、攪拌装置を取り付けた500mlの四つ口フラスコに、14BDMGE100.0g(純度:93.7%、純度換算で0.64mol)、テトラヒドロフルフリルアクリレート150.1g(0.96mol)、p−シメン200.0g、MEHQ0.03gを加えて原料混合液(合計450.1g)を調製した。この原料混合液の水分をカールフィッシャー水分計で測定したところ547ppmであり、含まれる水分の総量は0.25g(0.014mol)となる。
上記の原料混合液にTBT4.4g(0.013mol)を加え、40hPaに減圧しながら攪拌下で加熱昇温し、p−シメンと、生成するテトラヒドロフルフリルアルコールを反応系外に留去しながら、反応液温度89〜102℃でエステル交換反応を行った。留出ガスの温度は69〜78℃であった。最終的に11時間で196.6gの留分を抜き出して反応を終了し、4HBAGE(43.2重量%)を含む反応液252.2gを得た。4HBAGEの純度換算定量収率は84.9%であり、この反応系における水分の総量のモル比率は、使用したTBTの1.1倍である。
上記の反応液に水140.0gと追加のp−シメン100.0gを加え、常圧、攪拌下で60℃まで加熱昇温し、そのまま60℃で1時間、加熱加水分解を行った。この反応液を冷却し、セライトを敷いたろ過器を使用して吸引ろ過して、不溶性の触媒を除去した。ろ液は有機層と水層に分離した。この4HBAGEを含む有機層を、ロータリーエバポレーターを使用して減圧濃縮し、4HBAGE粗成物(純度88.2%)124.0gを得た。4HBAGEの純度換算定量収率は85.2%であり、触媒として使用したTBT由来のチタン含有率は2ppm以下であった。
上記の4HBAGE粗成物(124.0g)から50.0gを分取し、これにCBC0.08gを加えて、減圧下の単蒸留により精製を行ったところ、主留分として高純度4HBAGE(純度96.6%)37.7gを得た。4HBAGEの純度換算定量収率は、エステル交換反応からの一貫収率に換算して70.4%である。なお、主留分留出時の条件は、真空度が0.4〜0.5hPa、ボトム液温度が97〜112℃、留出ガス温度が89〜91℃、留出時間は約1時間30分であった。また蒸留残渣中および蒸留系内には重合物は観察されなかった。
実施例5:
蒸留装置、温度計、攪拌装置を取り付けた500mlの四つ口フラスコに、14BDMGE100.0g(純度:93.7%、純度換算で0.64mol)、エチルメタクリレート109.7g(0.96mol)、シクロペンチルメチルエーテル(以下「CPME」と省略する)200.0g、MEHQ0.03gを加えて原料混合液(合計409.7g)を調製した。この原料混合液の水分をカールフィッシャー水分計で測定したところ1372ppmであり、含まれる水分の総量は0.56g(0.031mol)となる。
上記の原料混合液にTBT6.5g(0.019mol)を加え、400hPaに減圧しながら攪拌下で加熱昇温し、CPMEと、生成するエタノールを反応系外に留去しながら6時間エステル交換反応を行ったが、反応の進行が若干遅いようであったため、追加のTBT4.4g(0.013mol)と、追加のCPME150.0g(水分は56ppmであり、水分の増加量は0.01gであった)を加え、引き続いて5時間エステル交換反応を行った。反応液の温度は84〜95℃、留出ガスの温度は57〜77℃であった。最終的に11時間で223.3gの留分を抜き出して反応を終了し、4−ヒドロキシブチルメタクリレートグリシジルエーテル(以下「4HBMAGE」と省略する)(28.0重量%)を含む反応液342.2gを得た。4HBMAGEの純度換算定量収率は69.8%である。なおこの反応系における水分の総量のモル比率は、エステル交換反応開始時点においては使用したTBTの1.6倍であったが、エステル交換反応の途中でTBTとCPMEを追加したため、最終的な水分の総量は0.57g(0.032mol)となり、最終的に使用したTBTの総量は10.9g(0.032mol)であり、最終的には使用したTBTの1.0倍である。
上記の反応液に水220.0gを加え、常圧、攪拌下で60℃まで加熱昇温し、そのまま60℃で1時間、加熱加水分解を行った。この反応液を冷却し、セライトを敷いたろ過器を使用して吸引ろ過して、不溶性の触媒を除去した。ろ液は有機層と水層に分離した。この4HBMAGEを含む有機層を、ロータリーエバポレーターを使用して減圧濃縮し、4HBMAGE粗成物(純度91.8%)110.3gを得た。4HBMAGEの純度換算定量収率は73.7%であり、触媒として使用したTBT由来のチタン含有率は2ppm以下であった。
上記の4HBMAGE粗成物(110.3g)から50.0gを分取し、これにCBC0.09gを加えて、減圧下の単蒸留により精製を行ったところ、主留分として高純度4HBMAGE(純度96.2%)38.7gを得た。4HBMAGEの純度換算定量収率は、エステル交換反応からの一貫収率に換算して59.8%である。なお、主留分留出時の条件は、真空度が0.4〜0.6hPa、ボトム液温度が106〜122℃、留出ガス温度が98〜100℃、留出時間は約1時間40分であった。また蒸留残渣中および蒸留系内には重合物は観察されなかった。
実施例6:
蒸留装置、温度計、攪拌装置を取り付けた500mlの四つ口フラスコに、14BDMGE100.0g(純度:93.7%、純度換算で0.64mol)、メチルメタクリレート77.0g(0.77mol)、メチルエチルケトン100.0g、トルエン100.0g、MEHQ0.03gを加えて原料混合液(合計377.0g)を調製した。この原料混合液の水分をカールフィッシャー水分計で測定したところ453ppmであり、含まれる水分の総量は0.17g(0.009mol)となる。
上記の原料混合液にTBT2.2g(0.006mol)を加え、常圧、攪拌下で加熱昇温し、メチルエチルケトンと、生成するメタノールを反応系外に留去しながら、反応液温度98〜111℃で5時間エステル交換反応を行った。留出ガスの温度は74〜81℃であった。この反応液には原料の14BDMGEがまだ残存しており(反応液をGC分析したところ、14BDMGEと4HBMAGEの面積値の合計を100%とした場合の、14BDMGEの面積比率は24.7%であった)、反応時間を延長することにより収率の向上も可能であったが、本実施例においては後段での抽出洗浄の効果をより顕著に明示するために、この時点で反応を終了した。最終的に5時間で96.5gの留分を抜き出して反応を終了し、4HBMAGE(29.2重量%)を含む反応液278.8gを得た。4HBMAGEの純度換算定量収率は59.2%であり、この反応系における水分の総量のモル比率は、使用したTBTの1.5倍である。
上記の反応液に水140.0gを加え、常圧、攪拌下で60℃まで加熱昇温し、そのまま60℃で1時間、加熱加水分解を行った。この反応液を冷却し、セライトを敷いたろ過器を使用して吸引ろ過して、不溶性の触媒を除去した。ろ液は有機層と水層に分離した。この4HBMAGEを含む有機層をGC分析したところ、14BDMGEと4HBMAGEの面積値の合計を100%とした場合の、14BDMGEの面積比率は5.4%であった。このままでは目的とする4HBMAGEの純度が低下してしまうため、4HBMAGEを含む有機層に水100.0gを加えて洗浄し、有機層と水層に分離した。この洗浄された4HBMAGEを含む有機層を再度GC分析したところ、14BDMGEと4HBMAGEの面積値の合計を100%とした場合の、14BDMGEの面積比率は1.2%に低減された。この洗浄された4HBMAGEを含む有機層を、ロータリーエバポレーターを使用して減圧濃縮し、4HBMAGE粗成物(純度92.4%)93.0gを得た。4HBMAGEの純度換算定量収率は62.6%であり、触媒として使用したTBT由来のチタン含有率は2ppm以下であった。なお、この4HBMAGE粗成物中の14BDMGE含量は、1.3%であった。
上記の4HBMAGE粗成物(93.0g)から50.0gを分取し、これにCBC0.11gを加えて、減圧下の単蒸留により精製を行ったところ、主留分として高純度4HBMAGE(純度95.2%)41.4gを得た。4HBMAGEの純度換算定量収率は、エステル交換反応からの一貫収率に換算して53.4%である。なお、主留分留出時の条件は、真空度が0.5〜0.6hPa、ボトム液温度が103〜113℃、留出ガス温度が96〜98℃、留出時間は約1時間15分であった。また蒸留残渣中および蒸留系内には重合物は観察されなかった。なお、この高純度4HBMAGE中の14BDMGE含量は、1.1%であった。従って抽出洗浄を実施しなかった場合、5%程度の14BDMGEが含まれる可能性があったと考えられ、その効果は大きい。
試験例1〜7:
製品4HBAGEに対してTBTを添加し、更に、重合防止剤としてCBCを加え、160℃での4HBAGE熱安定性試験を行って、重合性を比較した。条件は、4HBAGE:100g、CBC:0.2g(=0.424mmol)、窒素下であり、重合の確認方法は目視で行った。結果を表1に示す。「○」は重合なし、「×」は重合ありを意味する。試験例1〜3は比較のための試験例であり、試験例4〜7は本発明のための試験例である。
なお、上記の実施例1〜6で使用した原料などの沸点は以下の表2に記載の通りである。