JP5692284B2 - 補強型電解質膜の製造方法およびその製造装置 - Google Patents

補強型電解質膜の製造方法およびその製造装置 Download PDF

Info

Publication number
JP5692284B2
JP5692284B2 JP2013107082A JP2013107082A JP5692284B2 JP 5692284 B2 JP5692284 B2 JP 5692284B2 JP 2013107082 A JP2013107082 A JP 2013107082A JP 2013107082 A JP2013107082 A JP 2013107082A JP 5692284 B2 JP5692284 B2 JP 5692284B2
Authority
JP
Japan
Prior art keywords
electrolyte polymer
shaped
reinforcing member
strip
back sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013107082A
Other languages
English (en)
Other versions
JP2014229433A (ja
Inventor
広樹 木藤
広樹 木藤
浩志 原田
浩志 原田
岡 憲俊
憲俊 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013107082A priority Critical patent/JP5692284B2/ja
Priority to EP14728629.8A priority patent/EP3000147B1/en
Priority to CN201480029651.1A priority patent/CN105264702B/zh
Priority to US14/892,784 priority patent/US10374245B2/en
Priority to PCT/IB2014/000862 priority patent/WO2014188265A1/en
Priority to KR1020157033245A priority patent/KR101857854B1/ko
Publication of JP2014229433A publication Critical patent/JP2014229433A/ja
Application granted granted Critical
Publication of JP5692284B2 publication Critical patent/JP5692284B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/14Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor using multilayered preforms or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • H01M8/0293Matrices for immobilising electrolyte solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/18Fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/02Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by a sequence of laminating steps, e.g. by adding new layers at consecutive laminating stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/16Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating
    • B32B37/20Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating involving the assembly of continuous webs only
    • B32B37/203One or more of the layers being plastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/10Removing layers, or parts of layers, mechanically or chemically
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、燃料電池に関する。
従来から、固体高分子形燃料電池(以下、単に「燃料電池」と呼ぶ)に用いられる電解質膜として、内部に多孔質の補強部材を包含させた補強型電解質膜が知られている(下記特許文献1,2等)。特許文献1の技術では、互いに貼り合わされるように搬送されている2枚の帯状の多孔質補強膜の合流点において、2枚の多孔質補強膜の間に電解質樹脂を流入させて圧着することにより、補強型電解質膜が製造される。特許文献2の技術では、搬送されている帯状の補強膜の両側から帯状の電解質膜を重ね合わせて熱圧着することにより、補強型電解質膜が製造される。
特開2008−004344号公報 特開2008−277288号公報
ところで、帯状部材をその長手方向に搬送する際には、当該帯状部材が搬送方向の引張応力を付与されることによって幅方向に収縮変形してしまう、いわゆるネックインが生じる場合がある。補強型電解質膜の製造工程において、電解質膜や補強部材などの帯状部材の搬送中にそうしたネックインが生じると、当該帯状部材の強度等の機能が低下してしまい、補強型電解質膜や、それを用いた燃料電池の耐久性が低下してしまう可能性がある。ネックインの発生を抑制するために搬送中に帯状部材に付与される引張応力を制御しようとすると、搬送制御が複雑化してしまい、装置が高額になる可能性がある。
このように、補強型電解質膜の製造工程においては、電解質膜や補強部材などの帯状部材の搬送方法ついて依然として改良の余地があった。そのほか、従来の補強型電解質膜の製造工程においては、工程の容易化や簡易化、低コスト化、省資源化、装置の小型化や使い勝手の向上等が要求されてきた。
本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態として実現することが可能である。
[1]本発明の一形態によれば、燃料電池に用いられ、内部に多孔質の補強部材が配置されている補強型電解質膜の製造方法が提供される。この形態の製造方法は、(a)電解質ポリマーの帯状体である帯状電解質ポリマーをバックシートの表面に配置した状態で、前記帯状電解質ポリマーの長手方向を搬送方向として搬送する工程と、(b)前記補強部材の帯状体である第1の帯状補強部材をバックシートの表面に配置した状態で前記搬送方向に搬送して、前記帯状電解質ポリマーの表面に前記第1の帯状補強部材を配置する工程と、(c)前記工程(b)の後に、前記第1の帯状補強部材のバックシートと前記第1の帯状補強部材との間に存在する電解質ポリマーによって、前記第1の帯状補強部材のバックシートと前記第1の帯状補強部材との間の密着性が、前記帯状電解質ポリマーのバックシートと前記帯状電解質ポリマーとの間の密着性より高くなっている状態において、前記帯状電解質ポリマーから前記電解質ポリマーのバックシートを剥離する工程と、を備える。この形態の製造方法によれば、バックシートの使用によって、搬送中の帯状電解質ポリマーや帯状補強部材を保護できる。また、帯状電解質ポリマーからのバックシートの剥離が容易になり、その剥離に伴う搬送不良の発生が抑制される。
[2]上記形態の製造方法において、前記工程(c)は、前記帯状電解質ポリマーのバックシートと前記第1の帯状補強部材のバックシートとを介して、前記帯状電解質ポリマーと前記第1の帯状補強部材とを熱圧着することによって、前記帯状電解質ポリマーを構成する前記電解質ポリマーを、前記第1の帯状補強部材の内部に含浸させて、前記第1の帯状補強部材のバックシートと前記第1の帯状補強部材との界面まで到達させることにより、前記第1の帯状補強部材のバックシートと前記第1の帯状補強部材との間の密着性を前記帯状電解質ポリマーのバックシートと前記帯状電解質ポリマーとの間の密着性より高くする工程を含んでいても良い。この形態の製造方法によれば、帯状電解質ポリマーと第1の帯状補強部材の熱圧着工程によって、第1の帯状補強部材と第1の帯状補強部材のバックシートとの間の密着性を増大させることができるため、その後に実行される帯状電解質ポリマーからのバックシートの剥離が容易になる。
[3]上記形態の製造方法はさらに、(d)前記帯状電解質ポリマーのバックシートが剥離された前記帯状電解質ポリマーの面に、第2の帯状補強部材を配置して熱圧着する工程を備えていても良い。この形態の製造方法によれば、帯状電解質ポリマーの両面側に帯状補強部材を入り込ませた補強型電解質膜を得ることができる。
[4]上記形態の製造方法は、前記工程(c)の前においては、前記第1の帯状補強部材と前記第1の補強部材のバックシートとの間の密着性は、前記帯状電解質ポリマーと前記帯状電解質ポリマーのバックシートとの間の密着性より低くても良い。この形態の製造方法によれば、第1の帯状補強部材の表面にバックシートを配置するときに、それらの間の密着性を高く設定する必要がないため、第1の帯状補強部材に対するバックシートの配置が容易になる。
[5]上記形態の製造方法は、前記工程(a)の前には、前記第1の帯状補強部材は、前記工程(c)における熱圧着の温度より低い耐熱温度を有する搬送用バックシートの表面に配置されており、前記工程(a)は、前記搬送用バックシートを、前記工程(c)における熱圧着の温度より高い耐熱温度を有する耐熱性バックシートに交換する工程を含むものとしても良い。この製造方法によれば、第1の帯状補強部材を帯状電解質ポリマーの表面に配置する前に使用される第1の帯状補強部材のバックシートとして耐熱性の低いものを採用することができる。従って、第1の帯状補強部材を帯状電解質ポリマーの表面に配置する前に使用される第1の帯状補強部材のバックシートについては、第1の帯状補強部材に対する密着性を重視した材料選択ができる。
[6]上記形態の製造方法において、前記第1の帯状補強部材と前記第1の帯状補強部材のバックシートとの間に電解質ポリマーを含む中間層が予め配置されていることによって、前記工程(b)の前から、前記第1の帯状補強部材のバックシートと前記第1の帯状補強部材との間の密着性が前記帯状電解質ポリマーのバックシートと前記帯状電解質ポリマーとの間の密着性より予め高くなっており、前記工程(b)は、前記帯状電解質ポリマーと前記第1の帯状補強部材との間の密着性が前記帯状電解質ポリマーのバックシートと前記帯状電解質ポリマーとの間の密着性より高くなるように、前記帯状電解質ポリマーと前記第1の帯状補強部材とを圧着する工程を含んでいても良い。この形態の製造方法によれば、帯状電解質ポリマーと第1の帯状補強部材とが一体化される前であっても、帯状電解質ポリマーからバックシートを容易に剥離することができる。また、帯状電解質ポリマーと第1の帯状補強部材とが一体化された後の補強型電解質膜の表面性状を良好にすることができる。
[7]上記形態の製造方法は、さらに、(e)前記バックシートが剥離された前記帯状電解質ポリマーの面に、第2の帯状補強部材を配置して、前記帯状電解質ポリマーと、前記第1と第2の帯状補強部材とを熱圧着する工程を備えていても良い。この製造方法によれば、両面側に第1と第2の帯状補強部材が圧着された補強型電解質膜を得ることができる。
上述した本発明の各形態の有する複数の構成要素はすべてが必須のものではなく、上述の課題の一部又は全部を解決するため、あるいは、本明細書に記載された効果の一部又は全部を達成するために、適宜、前記複数の構成要素の一部の構成要素について、その変更、削除、新たな他の構成要素との差し替え、限定内容の一部削除を行うことが可能である。また、上述の課題の一部又は全部を解決するため、あるいは、本明細書に記載された効果の一部又は全部を達成するために、上述した本発明の一形態に含まれる技術的特徴の一部又は全部を上述した本発明の他の形態に含まれる技術的特徴の一部又は全部と組み合わせて、本発明の独立した一形態とすることも可能である。
本発明は、補強型電解質膜の製造方法以外の種々の形態で実現することも可能である。例えば、補強型電解質膜の製造装置や、上記製造方法や前記製造装置によって製造された補強型電解質膜、それらの製造方法や製造装置を実現するためのコンピュータプログラム、そのコンピュータプログラムを記録した一時的でない記録媒体等の形態で実現することができる。
第1実施形態としての補強型電解質膜の製造装置の構成を示す概略図。 加工部によって実行される工程の手順を示す工程図。 第1の貼合部における工程を示す模式図。 第1の熱圧着部および第1の剥離部における工程を示す模式図。 第2の貼合部と、第2の熱圧着部と、第2の剥離部における工程を示す模式図。 加水分解処理部における工程を示す模式図。 補強型電解質膜のサンプルの性能評価試験の結果をまとめた表を示す説明図。 製造装置の工程途中における各部材間の密着性の90°剥離試験による測定結果を示す説明図。 90°剥離試験の方法を説明するための模式図。 第2実施形態の補強型電解質膜の製造装置の構成を示す概略図。 第2実施形態の補強型電解質膜の製造装置の構成を示す概略図。 第2実施形態の加工部によって実行される工程の手順を示す工程図。 第1の貼合部と第1の剥離部における工程の内容を示す模式図。 第2の貼合部と第1の熱圧着部と第2の剥離部における工程の内容を示す模式図。 第3の貼合部と第3の剥離部における工程の内容を示す模式図。 第4の貼合部と第2の熱圧着部と第4の剥離部における工程の内容を示す模式図。 第1の剥離部において搬送用バックシートを剥離する前の各部材間の密着性を90°剥離試験によって測定した結果を示す説明図。 第3実施形態としての補強型電解質膜の製造装置の構成を示す概略図。 第3実施形態の加工部によって実行される工程の手順を示す工程図。 第1の貼合部と第1の剥離部における工程の内容を示す模式図。 第2の貼合部における工程の内容を示す模式図。 熱圧着部と第2の剥離部における工程の内容を示す模式図。
A.第1実施形態:
図1は、本発明の第1実施形態としての補強型電解質膜の製造装置100の構成を示す概略図である。この製造装置100は、内部に多孔質補強部材が包含されている補強型電解質膜を帯状部材の連続搬送によって製造する。製造装置100は、電解質ポリマー供給部10と、第1の補強膜供給部20と、第2の補強膜供給部21と、加工部30と、加水分解処理部40と、を備える。
電解質ポリマー供給部10は、バックシート1bに配置されている帯状電解質ポリマー1を、加工部30に供給する。より具体的には、電解質ポリマー供給部10は、バックシート1bに配置された状態でロール状に巻かれている帯状電解質ポリマー1を、送出ローラー(図示は省略)によって加工部30に送り出す。なお、電解質ポリマー供給部10は、別々にロール状に巻かれている帯状電解質ポリマー1とバックシート1bとを互いに貼り合わせた上で加工部30に送り出す構成であっても良い。
帯状電解質ポリマー1は、加水分解処理によってプロトン伝導性が付与される前の電解質ポリマーが帯状に成形された部材である。電解質ポリマーは、燃料電池用の電解質膜を構成するフッ素系のイオン交換樹脂であり、例えば、ナフィオン(登録商標)などのパーフルオロスルホン酸系ポリマーによって構成される。帯状電解質ポリマー1の厚みは、例えば、5〜15μm程度であることが好ましく、5〜10μm程度であることがより好ましい。帯状電解質ポリマー1の厚みがこれらの範囲内であれば、燃料電池において十分なプロトン伝導性を確保することができる。
帯状電解質ポリマー1のバックシート1bは、搬送による帯状電解質ポリマー1の損傷・劣化を抑制できる程度の厚みや剛性を有することが望ましい。また、バックシート1bは、加工部30における熱圧着工程(後述)に耐えることができる程度の耐熱性を有することが好ましい。具体的には、バックシート1bの連続最高使用温度は230°より高いことが好ましい。また、バックシート1bの表面は比較的粗くても良く、その表面粗さ(Ra)は400〜2000nm程度であっても良い。
本実施形態では、バックシート1bは、下記のポリテトラフルオロエチレン(PTFE)によって構成される。
<バックシート1bを構成するPTFE>
弾性率: 0.3〜0.5GPa程度
厚み: 45〜55μm程度
表面粗さ(Ra):900〜1100nm程度
連続最高使用温度:250〜270℃程度
ここで、帯状電解質ポリマー1とバックシート1bとの間の密着性は、帯状電解質ポリマー1の支持性が確保されることが好ましい。また、帯状電解質ポリマー1とバックシート1bとの間の密着性は、帯状電解質ポリマー1と第1の補強膜2とが熱圧着された後の第1の補強膜2とバックシート2bとの間の密着性より高くならないように調整されていることが好ましい。この理由については後述する。
帯状電解質ポリマー1とバックシート1bとの間の密着性は、バックシート1bの種類や表面性状、貼り合わせの際の加圧力や加圧時間、温度によって調整することができる。具体的に、帯状電解質ポリマー1とバックシート1bとの間の密着性は、90°剥離試験において、0.8〜1.2N/cmの測定結果が得られる程度に調整されるものとしても良い。
第1の補強膜供給部20は、バックシート2bに配置された状態の帯状の第1の補強膜2を加工部30に供給し、第2の補強膜供給部21は、バックシート3bに配置された状態の帯状の第2の補強膜3を加工部30に供給する。より具体的には、第1と第2の補強膜供給部20,21はそれぞれ、バックシート2b,3bに配置された状態でロール状に巻かれている第1と第2の補強膜2,3を、送出ローラー(図示は省略)によって加工部30に送り出す。なお、第1と第2の補強膜供給部20,21は、別体として準備された第1と第2の補強膜2,3と、バックシート2b,3bと、を互いに貼り合わせた上で加工部30に送り出す構成であっても良い。
第1と第2の補強膜2,3は、溶融した電解質ポリマーを内部に含浸させることができる多孔質の帯状補強部材である。本実施形態では、第1と第2の補強膜2,3はそれぞれ、下記の延伸PTFE(ePTFE)によって構成される。第1と第2の補強膜2,3を下記のePTFEによって構成すれば、好適な厚みと強度とを両立する補強型電解質膜を容易に製造することができる。
<第1と第2の補強膜2,3を構成するePTFE>
目付:0.1〜0.3mg/cm2程度
強度:0.5〜2.0N/mm(@10%ひずみ)程度
第1と第2の補強膜2,3のバックシート2b,3bはそれぞれ、第1と第2の補強膜2,3の搬送による損傷・劣化を抑制できる程度の厚みや剛性を有することが望ましい。また、バックシート2b,3bは、加工部30における熱圧着工程(後述)に耐えることができる程度の耐熱性を有することが好ましい。具体的には、バックシート2b,3bの連続最高使用温度は230°より高いことが好ましい。また、バックシート2b,3bの表面は、比較的滑らかであることが好ましく、例えば、その表面粗さ(Ra)が、100〜200nm程度であることが好ましい。これによって、バックシート2b,3bが剥離された後の補強型電解質膜の表面性状の劣化を抑制できる。
ところで、本実施形態において第1と第2の補強膜2,3を構成するePTFEは、一般に、バックシートとの間の密着性を確保することは容易ではない。これは、ePTFEを構成するフッ素樹脂が他の部材との密着性を確保しにくい性質を有していることや、ePTFEが多孔質に構成されていることに起因する。
しかし、本実施形態の製造装置100および製造方法では、加工部30に供給されるときの、第1と第2の補強膜2,3とバックシート2b,3bとの間の密着性は比較的低くても良い。第1と第2の補強膜2,3とバックシート2b,3bとの間の密着性は、第1と第2の補強膜2,3とバックシート2b,3bとがかろうじて付着している程度であっても良い。
この理由は、加工部30に供給されるときの第1と第2の補強膜2,3とバックシート2b,3bとの間の密着性が低い場合であっても、熱圧着工程を経ることによって、両者の間の密着性を高くすることができるためである(詳細は後述)。具体的に、加工部30に供給されるときの第1と第2の補強膜2,3とバックシート2b,3bとの間の密着性は、90°剥離試験において、0.01〜0.05N/cm程度の測定値が得られる程度であっても良い。
本実施形態では、バックシート2b,3bは、下記のパーフルオロアルコキシアルカン(PFA)によって構成される。下記のPFAであれば、第1と第2の補強膜2,3がePTFEによって構成されている場合であっても、少なくとも、第1と第2の補強膜2,3の支持性を確保できる密着性と、熱圧着工程に耐えうる耐熱性とを確保することができる。
<バックシート2b,3bを構成するPFA>
弾性率: 0.3〜0.5GPa程度
厚み: 45〜55μm程度
表面粗さ(Ra):100〜200μm程度
連続最高使用温度:250〜270℃程度
加工部30は、帯状電解質ポリマー1をその長手方向に搬送しつつ、第1と第2の補強膜2,3をそれぞれ、帯状電解質ポリマー1の各面に熱圧着によって入り込ませ、帯状電解質ポリマー1と第1と第2の補強膜2,3とを一体化する。加工部30では、第1の貼合部31と、第1の熱圧着部32と、第1の剥離部33と、第2の貼合部34と、第2の熱圧着部35と、第2の剥離部36とが、この順で、帯状電解質ポリマー1の搬送方向に配置されている。
図2は、加工部30によって実行される工程の手順を示す工程図である。図3〜図5は、図2に示されている加工部30において実行される各工程の内容を説明するための模式図である。図3〜図5にはそれぞれ、加工部30において加工されていく帯状部材の様子を、各帯状部材を幅方向に切断したときの概略断面図によって各工程ごとに模式的に図示してある。以下では、加工部30の各構成部31〜36における工程の内容を、図1とともに図2〜図5を参照図として用いて順に説明する。
加工部30は、電解質ポリマー供給部10からバックシート1bに配置されている帯状電解質ポリマー1の供給を受けるとともに、第1の補強膜供給部20からバックシート2bに配置されている第1の補強膜2の供給を受ける(図2の工程1)。帯状電解質ポリマー1および第1の補強膜2は第1の貼合部31へと搬送される。
図3は、第1の貼合部31において実行される工程の内容を示す模式図である。第1の貼合部31は、圧着ローラー31rによって帯状電解質ポリマー1と第1の補強膜2とを互いに面接触させて密着させる(工程2)。互いに貼り合わされた帯状電解質ポリマー1と第1の補強膜2とは2枚のバックシート1b,2bに挟まれた状態で第1の熱圧着部32へと搬送される。
図4は、第1の熱圧着部32および第1の剥離部33において実行される工程の内容を示す模式図である。第1の熱圧着部32は、ホットローラー32rによって、帯状電解質ポリマー1と第1の補強膜2とを熱圧着する(工程3)。この工程では、ホットローラー32rによる熱圧によって、帯状電解質ポリマー1を構成する電解質ポリマーが溶融し、第1の補強膜2の細孔に含浸する。これによって、第1の補強膜2が帯状電解質ポリマー1の内部に入り込み、第1の補強膜2と帯状電解質ポリマー1とが一体化される。以後、第1の補強膜2が一体化され、片面が補強された帯状電解質ポリマー1を「片面補強膜1r」と呼ぶ。
ホットローラー32rから繰り出された片面補強膜1rは、2枚のバックシート1b,2bに挟まれた状態で、第1の剥離部33へと搬送される。第1の剥離部33は、剥離ローラー33rによって、片面補強膜1rからバックシート1bを剥離して回収する(工程4)。
ここで、熱圧着工程では、帯状電解質ポリマー1の電解質ポリマーが第1の補強膜2とバックシート2bとの間まで染み出す。より具体的には、帯状電解質ポリマー1の電解質ポリマーは、第1の補強膜2とバックシート2bとの界面における第1の補強膜2の細孔まで染み出す。そして、この染み出した電解質ポリマーが接着剤として機能するため、第1の補強膜2とバックシート2bとの間の密着性が著しく高くなる。加えて、上述したように、帯状電解質ポリマー1とバックシート1bとの間の密着性は、ホットローラー32rから繰り出された後の第1の補強膜2とバックシート2bとの間の密着性よりも低くなるように予め調整されている。
そのため、第1の剥離部33では、バックシート2bによる片面補強膜1rの支持性が確保された状態で片面補強膜1rからバックシート1bを剥離することができる。従って、バックシート1bの剥離の際に、バックシート2bと片面補強膜1rとの剥離して片面補強膜1rが損傷・劣化するなどの搬送不良の発生が抑制される。第1の剥離部33においてバックシート1bが剥離された片面補強膜1rは、第2の貼合部34へと搬送される。
図5は、第2の貼合部34と、第2の熱圧着部35と、第2の剥離部36のそれぞれにおいて実行される工程の内容を示す模式図である。第2の貼合部34は、第2の補強膜供給部21から、バックシート3bが貼付された状態の第2の補強膜3の供給を受ける(工程5)。第2の貼合部34は、圧着ローラー34rによって、片面補強膜1rのバックシート1bが剥離された面と第2の補強膜3とを互いに面接触させて密着させる(工程6)。互いに貼り合わされた片面補強膜1rと第2の補強膜3とは2枚のバックシート2b,3bによって挟まれた状態で、第2の熱圧着部35へと搬送される。
第2の熱圧着部35は、ホットローラー35rによって、片面補強膜1rと第2の補強膜3とを熱圧着する(工程7)。この工程では、ホットローラー32rによる熱圧によって、工程3のときと同様に、第2の補強膜3が片面補強膜1rの内部に入り込み、片面補強膜1rと第2の補強膜3とが一体化される。以後、第2の熱圧着部35において、第2の補強膜3が一体化され、第1と第2の補強膜2,3によって両面が補強された帯状電解質ポリマー1を「両面補強膜1rr」と呼ぶ。
ホットローラー35rから繰り出された両面補強膜1rrは、2枚のバックシート2b,3bに挟まれた状態で、第2の剥離部36へと搬送される。第2の剥離部36は、剥離ローラー36rによって、両面補強膜1rrから、第1の補強膜2側のバックシート2bを剥離して回収する(工程8)。バックシート3bによって支持された状態の両面補強膜1rrは加水分解処理部40へと搬送される。なお、バックシート3bは、加水分解処理部40へ搬送される前に、加水分解処理に好適な他のバックシートに貼り替えられても良い。
図6は、加水分解処理部40における工程を示す、図3〜図5と同様な模式図である。加水分解処理部40では、両面補強膜1rrに対して加水分解処理が施され、両面補強膜1rrの電解質ポリマーにプロトン伝導性が付与され、補強型電解質膜1cが完成する。加水分解処理の具体的な内容は、以下の通りである。両面補強膜1rrを、アルカリ溶液に浸漬させ、電解質ポリマーが有する側鎖端末である−SO2F基を−SO3Na基に変性させる。そして、両面補強膜1rrを水洗した後に、酸性溶液に浸漬させて、前段階で変性された−SO3Na基を、さらに、−SO3H基へと変性させる。
以上のように、本実施形態の製造装置100および製造方法によれば、帯状電解質ポリマー1および第1と第2の補強膜2,3はそれぞれバックシート1b,2b,3bによって支持された状態で搬送されている。従って、帯状電解質ポリマー1や第1と第2の補強膜2,3が、搬送によって損傷・劣化してしまうことが抑制される。特に、本実施形態の製造装置100であれば、第1と第2の補強膜2,3が2.0N以下の引っ張り応力を付与されただけでも歪みを生じてしまうようなePTFEによって構成されている場合であっても、その損傷・劣化を抑制することができる。
また、本実施形態の製造装置100および製造方法によれば、片面補強膜1rからバックシート1bを剥離するときには、反対側のバックシート2bと片面補強膜1rとの間の密着性が高くなっていることによって片面補強膜1rの支持性が確保されている。従って、バックシート1bの剥離に伴う搬送不良の発生が抑制される。
図7は、補強型電解質膜のサンプルの性能評価試験の結果をまとめた表を示す説明図である。本発明の発明者は、模擬的に搬送中のネックインを生じさせた補強膜を用いて補強型電解質膜のサンプルs1〜s4を作成し、各サンプルs1〜s4の性能を評価するために、膨潤による寸法変化率と、限界サイクル数とを計測した。
表中の各サンプルs1〜s4の「ネックイン度数」は、各サンプルs1〜s4を作成する前に、各サンプルs1〜s4の補強膜に対して長手方向(MD方向)に引張応力を付与してネックインを生じさせたときの各補強膜の幅方向(TD方向)の寸法収縮率である。このネックイン度数は、各サンプルs1〜s4の補強膜に生じさせたネックインの度合いを表している。
膨潤による寸法変化率は以下のように計測された。
[1]8cm四方で切り出された各サンプルs1〜s4を、基準となる乾燥環境下(温度25°、相対湿度50%RH)に配置し、TD方向の寸法を測定した。以後、このとき測定された寸法を「乾燥寸法」と呼ぶ。
[2]次に、各サンプルs1〜s4を、100℃の熱水に1時間浸漬させて膨潤させた後に、TD方向の寸法を測定した。以後、このとき測定された寸法を「膨潤寸法」と呼ぶ。
[3]乾燥寸法の測定値Xと膨潤寸法の測定値Yとを用いて、膨潤による寸法変化率Rを下記の式(A)によって算出した。
寸法変化率R(%)=100(Y/X)−100 …(A)
限界サイクル数は、各サンプルs1〜s4を用いて作成された各膜電極接合体についての乾湿耐久試験において以下のように計測された。
<膜電極接合体の作成方法>
[1]各サンプルs1〜s4の両面に、触媒担持カーボンとフッ素系アイオノマーの分散溶液をスプレー法によって塗布することによって、触媒電極を形成した。
[2]各サンプルs1〜s4の触媒電極の上にガス拡散層としてカーボン繊維基材を配置した。
<乾湿耐久試験の条件>
[1]各サンプルs1〜s4の膜電極接合体に、湿潤窒素ガスと乾燥窒素ガスを5分周期で交互に切り替えて供給しつつ、所定のタイミングで各サンプルs1〜s4のガス透過性を検査した。
[2]ガス透過性の検査において計測されるガスの透過量(クロスリーク量)が規定値以上になったときに、それまでに湿潤窒素ガスと乾燥窒素ガスとを切り替えたサイクル数を限界サイクル数として取得した。
膨潤による寸法変化率Rは、ネックイン度数が大きいサンプルほど大きくなった。これは、ネックイン度が大きいほど、補強膜のTD方向における強度が低下したためである。また、乾湿耐久試験では、ネックイン度数が大きいサンプルほど、限界サイクル数が小さくなった。これは、ネックイン度数が大きいサンプルほど、補強膜の強度の低下によって、乾湿状態の変動による膨潤・収縮の変化量が大きくなったためである。
以上のように、補強膜の搬送中に生じるネックインの度合いが大きいほど補強型電解質膜の性能が低下する可能性が高いことが実験によって確認された。従って、補強型電解質膜の製造工程では、本実施形態の製造装置100のように、補強膜がバックシートで支持されて搬送されることが望ましい。
図8は、製造装置100の工程途中における各部材間の密着性を90°剥離試験によって測定した結果をまとめた表を示す説明図である。図9は、90°剥離試験の方法を説明するための模式図である。第1の補強膜2や、2つのバックシート1b,2bを以下に示す材料によって構成したときの製造装置100の工程途中における各部材間の密着性が90°引っ張り試験によって確認された。なお、弾性率は、東陽テクニカ社製のナノインテンダーG200による測定値である。また、表面粗さ(Ra)は、オリンパス社製レーザー顕微鏡OLS4000による測定値である。
<第1の補強膜2>
材料: ePTFE
<帯状電解質ポリマー1のバックシート1b>
材料: PTFE
弾性率: 0.4GPa
厚み: 50μm
表面粗さ(Ra): 1000nm
連続最高使用温度: 260℃
<第1の補強膜2のバックシート2b>
材料: PFA
弾性率: 0.4GPa
厚み: 50μm
表面粗さ(Ra): 160nm
連続最高使用温度: 260℃
加工部30に供給される前に、帯状電解質ポリマー1とバックシート1bとは以下の条件で貼り合わされた。また、第1の補強膜2とバックシート2bについても同様な条件で貼り合わされた。
温度: 25℃
加圧力: 0.4MPa
加圧時間: 10分
第1の貼合部31では、以下の条件下で第1の補強膜2と帯状電解質ポリマー1とが貼り合わされた。
温度: 25℃
加圧力: 0.4MPa
加圧時間: 10分
第1の熱圧着部32では、以下の条件下で第1の補強膜2と帯状電解質ポリマー1とが熱圧着された。
温度: 230℃
加圧力: 0.5MPa
加圧時間: 10分
<90°剥離試験の内容>
90°剥離試験では、試験対象である膜部材A,Bが互いに貼り合わされるとともに、膜部材Aが基台に固定され、部分的に剥離された膜部材Bの一端を垂直上方向に引っ張たときの引張力が計測される(図9)。表中の密着性の計測値は、表中の各材料A,Bの組み合わせについて、幅1cm、長さ10cmで切り出されたサンプルを用いて、90°剥離試験によって得られた計測値である。
90°剥離試験の結果、第1の補強膜供給部20から加工部30に供給されるときの第1の補強膜2(ePTFE)とバックシート2b(PFA)との間の密着性は0.02N/cmであった。一方、電解質ポリマー供給部10から加工部30に供給されたときの帯状電解質ポリマー1とバックシート1b(PTFE)との間の密着性は1.0N/cmであった。また、第1の貼合部31において貼り合わされた後の帯状電解質ポリマー1と第1の補強膜2(ePTFE)との間の密着性は、0.1N/cmであった。
第1の熱圧着部32における熱圧着工程を経た後の片面補強膜1rとバックシート2b(PFA)との間の密着性は、1.4N/cmであり、熱圧着工程の前段階よりも著しく高い値になった。一方、熱圧着工程を経た後の片面補強膜1rとバックシート1b(PTFE)との間の密着性は1.2N/cmであり、熱圧着工程によってわずかに上昇するにとどまった。
このように、熱圧着工程を経ることによって、第1の補強膜2とバックシート2bとの間の密着性が著しく高くなり、帯状電解質ポリマー1とバックシート1bとの間の密着性よりも高くなった。これは、既に説明したように、第1の補強膜2とバックシート2bとの間に染み出した電解質ポリマーが接着剤として機能したためである。この結果、帯状電解質ポリマー1とそのバックシート1bとの間の密着性が、片面補強膜1rとバックシート1bとの間の密着性よりも高くなった。
以上のように、本実施形態の製造装置100および製造方法によれば、第1の剥離部33において、片面補強膜1rとバックシート1bとの間の密着性が高くなるため、片面補強膜1rからのバックシート1bの剥離が容易に実行できる。従って、バックシート1bの剥離に伴う搬送不良の発生が抑制される。
B.第2実施形態:
図10,図11は、本発明の第2実施形態としての補強型電解質膜の製造装置100Aの構成を示す概略図である。図10,図11にはそれぞれ、製造装置100Aの前段側と後段側とを、便宜上分離して図示してある。第2実施形態の製造装置100Aでは、帯状電解質ポリマー1に対する第1と第2の補強膜2,3の熱圧着の前に、第1と第2の補強膜2,3のバックシートの貼り替えが実行される。
第2実施形態の製造装置100Aは、電解質ポリマー供給部10と、第1と第2の補強膜供給部20A,21Aと、第1と第2のバックシート供給部22,23と、加工部30Aと、加水分解処理部40と、を備える。電解質ポリマー供給部10は、第1実施形態で説明したのと同様な構成であり、バックシート1bに配置されている帯状電解質ポリマー1を加工部30Aに供給する。帯状電解質ポリマー1およびバックシート1bは第1実施形態で説明したのと同様な材料で構成される。
第1と第2の補強膜供給部20A,21Aはそれぞれ、加工部30Aに供給する第1と第2の補強膜2,3のバックシートが異なる点以外は、第1実施形態で説明した第1と第2の補強膜供給部20,21と同様な構成である。第1と第2の補強膜供給部20A,21Aはそれぞれ、供給用バックシート2bf,3bfに配置されている第1と第2の補強膜2,3を加工部30Aに供給する。第1と第2の補強膜2,3は第1実施形態で説明したものと同じであり、ePTFEなどの多孔質膜部材によって構成される。
本第2実施形態では、第1と第2の補強膜2,3のそれぞれが配置されている供給用バックシート2bf,3bfは、第1実施形態で説明したバックシート2b,3bよりも剛性が高い樹脂部材によって構成される。従って、加工部30Aへの搬送中に、第1と第2の補強膜2,3にネックインなどの歪みや劣化が生じることが、より確実に抑制される。
供給用バックシート2bf,3bfは、例えば、下記のポリエチレンテフタレート(PET)によって構成される。下記のPETであれば、第1と第2の補強膜2,3が樹脂材料との密着性を得にくいePTFEによって構成されている場合であっても、少なくとも、支持性を確保できる密着性を確保することができる。
<バックシート2bf,3bfを構成するPET>
弾性率: 3〜5GPa程度
厚み: 30〜50μm程度
表面粗さ(Ra): 20〜40nm程度
ここで、第1の補強膜2と供給用バックシート2bfとの間の密着性は、帯状電解質ポリマー1とバックシート1bとの間の密着性および熱圧着される前の第1の補強膜2と帯状電解質ポリマー1との間の密着性より低く調整される。また、第2の補強膜3と供給用バックシート3bfとの間の密着性は、片面補強膜1rとバックシート2bとの間の密着性より低く調整される。この理由については後述する。
このように、第1と第2の補強膜2,3と供給用バックシート2bf,3bfとの間の密着性は比較的低くても良い。具体的に、第1と第2の補強膜2,3と供給用バックシート2bf,3bfとの間の密着性は、90°剥離試験において、0.01〜0.03N/cmの測定結果が得られる程度であっても良い。
また、後述するように、第2実施形態の製造装置100Aでは、供給用バックシート2bf,3bfは、熱圧着工程の前に、耐熱性の高いバックシート2b,3bに貼り替えられる。そのため、供給用バックシート2bf,3bfは、耐熱性が低い材料によって構成されても良い。
第1と第2のバックシート供給部22,23はそれぞれ、加工部30Aに貼り替え用のバックシート2b,3bを供給する。バックシート2b,3bは、熱圧着工程における加熱温度に耐えることができる程度の耐熱性を有していることが望ましく、第1実施形態において第1と第2の補強膜2,3に貼り合わされていたものと同じもので良い。なお、以下では、バックシート2b,3bを特に、「耐熱性バックシート2b,3b」と呼ぶ。
加工部30Aは、第1と第2の補強膜2,3の供給用バックシート2bf,3bfを耐熱性バックシート2b,3bに貼り替えた上で、第1と第2の補強膜2,3と帯状電解質ポリマー1とを熱圧着によって一体化する。加工部30Aは、第1の貼合部50と、第1の剥離部51と、第2の貼合部52と、第1の熱圧着部53と、第2の剥離部54と、第3の貼合部55と、第3の剥離部56と、第4の貼合部57と、第2の熱圧着部58と、第4の剥離部59とが、この順で、帯状電解質ポリマー1の搬送方向に配置されている。
図12は、第2実施形態の加工部30Aによって実行される工程の手順を示す工程図である。図13〜図16は、図12に示されている加工部30Aにおいて実行される各工程の内容を説明するための模式図である。図13〜図16にはそれぞれ、第2実施形態の加工部30Aにおいて加工されていく帯状部材の様子を、各帯状部材を幅方向に切断したときの概略断面図によって各工程ごとに模式的に図示してある。以下では、第2実施形態の加工部30Aの各構成部50〜59において実行される工程の内容を、図10,図11とともに図12〜図16を参照図として用いて順に説明する。
加工部30Aは、電解質ポリマー供給部10からバックシート1bに配置されている帯状電解質ポリマー1の供給を受けるとともに、第1の補強膜供給部20Aから供給用バックシート2bfに配置されている第1の補強膜2の供給を受ける(図12の工程11)。帯状電解質ポリマー1および第1の補強膜2は第1の貼合部50へと搬送される。
図13は、第1の貼合部50と第1の剥離部51における工程の内容を示す模式図である。第1の貼合部50は、圧着ローラー50rによって帯状電解質ポリマー1と第1の補強膜2とを互いに面接触させて密着させる(工程12)。第1の貼合部50は、帯状電解質ポリマー1と第1の補強膜2との間の密着性が、少なくとも、第1の補強膜2と供給用バックシート2bfとの間の密着性よりも高くなるように、圧着ローラー50rによって加圧する。第1の貼合部50において加圧された後の帯状電解質ポリマー1と第1の補強膜2との間の密着性は、90°剥離試験において、0.05〜0.15N/cmの測定値が得られる程度であっても良い。
互いに貼り合わされた帯状電解質ポリマー1と第1の補強膜2とは2枚のバックシート1b,2bfに挟まれた状態で第1の剥離部51へと搬送される。第1の剥離部51は、剥離ローラー51rによって、第1の補強膜2の表面から供給用バックシート2bfを剥離して回収する(工程13)。上述したように、第1の補強膜2と供給用バックシート2bfとの間の密着性は、帯状電解質ポリマー1とバックシート1bとの間の密着性および第1の補強膜2と帯状電解質ポリマー1との間の密着性より低くなるように調整されている。即ち、この段階では、第1の補強膜2と供給用バックシート2bfとの間の密着力が、他の部材同士の密着力よりも小さい。従って、第1の補強膜2から供給用バックシート2bfを容易に剥離することができる。
供給用バックシート2bfが剥離された後の第1の補強膜2および帯状電解質ポリマー1は、バックシート1bに配置された状態で第2の貼合部52に搬送される。なお、このとき、第1の補強膜2は、帯状電解質ポリマー1およびそのバックシート1bによって支持されているため、ネックインなどの搬送不良の発生が抑制されている。
図14は、第2の貼合部52と第1の熱圧着部53と第2の剥離部54における工程の内容を示す模式図である。第2の貼合部52は、第1のバックシート供給部22から耐熱性バックシート2bの供給を受けるとともに、圧着ローラー52rによって、当該バックシート2bを第1の補強膜2の表面に貼り合わせる(工程14)。
前述したように、第1の補強膜2は帯状電解質ポリマー1およびそのバックシート1bによって支持されているため、第2の貼合部52において付与される耐熱性バックシート2bと第1の補強膜2との間の密着性は比較的低くても良い。具体的に、耐熱性バックシート2bと第1の補強膜2との間の密着性は、90°剥離試験において、0.01〜0.03N/cmの測定結果が得られる程度であっても良い。帯状電解質ポリマー1と第1の補強膜2とは、耐熱性の高い2枚のバックシート1b,2bに挟まれた状態で、第1の熱圧着部53に搬送される。
第1の熱圧着部53は、ホットローラー53rによって、帯状電解質ポリマー1と第1の補強膜2とを熱圧着し、片面補強膜1rを生成する(工程15)。第1実施形態でも説明したように、この熱圧着工程では、第1の補強膜2と耐熱性バックシート2bとの間に電解質ポリマーが染み出してくる。そのため、第1の補強膜2と耐熱性バックシート2bとの間の密着性が著しく高くなり、帯状電解質ポリマー1とバックシート1bとの間の密着性より高くなる。2枚のバックシート1b,2bに挟まれた状態の片面補強膜1rは、第2の剥離部54へと搬送される。
第2の剥離部54は、剥離ローラー54rによって、片面補強膜1rからバックシート1bを剥離して回収する(工程16)。なお、前述したように、第1の補強膜2と耐熱性バックシート2bとの間の密着性が著しく高くなっているため、第2の剥離部54では、片面補強膜1rの支持性が確保された状態でバックシート1bを剥離することができる。バックシート1bが剥離された片面補強膜1rは、耐熱性バックシート2bに支持された状態で第3の貼合部55へと搬送される。
図15は、第3の貼合部55と第3の剥離部56における工程の内容を示す模式図である。第3の貼合部55は、第2の補強膜供給部21Aから供給用バックシート3bfに配置されている第2の補強膜3の供給を受ける(工程17)。そして、第3の貼合部55は、圧着ローラー55rによって第2の補強膜3を片面補強膜1rの露出面(第1の補強膜2とは反対側の面)に密着させる(工程18)。なお、第3の貼合部55における圧着条件は、第1の貼合部50における圧着条件と同じで良い。
第3の剥離部56は、剥離ローラー56rによって、第2の補強膜3から供給用バックシート3bfを剥離する(工程19)。上述したように、第2の補強膜3と供給用バックシート3bfとの密着性は、第3の貼合部55において付与された第2の補強膜3と片面補強膜1rとの密着性より低くなるように調整されている。そのため、供給用バックシート3bfの剥離が容易に実行でき、供給用バックシート3bfの剥離に伴って搬送不良が発生してしまうことが抑制される。供給用バックシート3bfが剥離された片面補強膜1rは、第4の貼合部57に搬送される。
図16は、第4の貼合部57と第2の熱圧着部58と第4の剥離部59における工程の内容を示す模式図である。第4の貼合部57は、第2のバックシート供給部23から耐熱性バックシート3bの供給を受けるとともに、圧着ローラー57rによって、当該バックシート3bを第1の補強膜2の表面に貼り合わせる(工程20)。第4の貼合部57における圧着条件は、第2の貼合部52における圧着条件と同じで良い。第2の補強膜3が貼り合わされた片面補強膜1rは、2枚の耐熱性バックシート2b,3bに挟まれた状態で、第2の熱圧着部58に搬送される。
第2の熱圧着部58は、ホットローラー58rによって、片面補強膜1rと第2の補強膜3とを熱圧着し、両面補強膜1rrを生成する(工程21)。両面補強膜1rrは、2枚の耐熱性バックシート2b,3bに挟まれた状態で第4の剥離部59に搬送される。第4の剥離部59は、剥離ローラー59rによって、両面補強膜1rrから、第1の補強膜2側に配置されている耐熱性バックシート2bを剥離する(工程22)。
両面補強膜1rrは、耐熱性バックシート3bに支持された状態で、加水分解処理部40へと搬送される。加水分解処理部40において両面補強膜1rrにプロトン伝導性が付与されることによって補強型電解質膜が完成する。なお、加水分解処理部40において実行される工程は、第1実施形態で説明したのと同じである(図6)。
以上のように、第2実施形態の製造装置100Aでは、第1と第2の補強膜2,3の供給用バックシート2bf,3bfが、加工部30Aにおける熱圧着工程の前に耐熱性バックシート2b,3bに貼り替えられる。従って、第2実施形態の製造装置100Aによれば、第1と第2の補強膜2,3の供給用バックシート2bf,3bfとして耐熱性の低い材料を採用することができ、バックシート材料の選択の幅が広がる。
図17は、加工部30Aの第1の剥離部51において供給用バックシート2bfを剥離する前の各部材間の密着性を90°剥離試験によって測定した結果をまとめた表を示す説明図である。この実験では、帯状電解質ポリマー1と、そのバックシート2bと、第1の補強膜2は、図8で説明した90°引っ張り試験のときと同じ材料によって構成された。また、供給用バックシート2bfは以下に示す材料によって構成された。なお、弾性率は、東陽テクニカ社製のナノインテンダーG200による測定値であり、表面粗さ(Ra)は、オリンパス社製レーザー顕微鏡OLS4000による測定値である。
<供給用バックシート2bf>
材料: PET
弾性率: 4GPa
厚み: 38μm
表面粗さ(Ra): 30nm
加工部30Aに供給される前に、第1の補強膜2と供給用バックシート2bfとは、以下の条件で貼り合わされた。
温度: 25℃
加圧力: 0.4MPa
加圧時間: 10分
第1の貼合部50では、帯状電解質膜1と第1の補強膜2とは、以下の条件で貼り合わされた。
温度: 25℃
加圧力: 0.4MPa
加圧時間: 10分
90°剥離試験は、図8で説明した90°引っ張り試験のときと同じ条件で実施された。この結果、加工部30Aに供給されるときの第1の補強膜2(ePTFE)と供給用バックシート2bf(PET)との間の密着性は0.02N/cmであった。なお、第1の貼合部50での圧着工程の後においても、第1の補強膜2(ePTFE)と供給用バックシート2bf(PET)との間の密着性はほとんど変わらなかった。
これに対して、第1の剥離部51において供給用バックシート2bfが剥離される前の帯状電解質ポリマー1と第1の補強膜2(ePTFE)との間の密着性は0.1N/cmであった。また、帯状電解質ポリマー1とバックシート2b(PTFE)との間の密着性は1.0N/cmであった。
このように、第1の補強膜2としてePTFEを採用したときに、供給用バックシート2bfとして上記のようなPETを採用すれば、第1の剥離部51において、第1の補強膜2と供給用バックシート2bfとの間の密着力が、他の帯状部材同士の密着力よりも小さくなる。従って、供給用バックシート2bfを第1の補強膜2から容易に剥離することができる。
C.第3実施形態:
図18は、本発明の第3実施形態としての補強型電解質膜の製造装置100Bの構成を示す概略図である。第3実施形態の製造装置100Bでは、第1と第2の補強膜2,3が同一の熱圧着工程において帯状電解質ポリマー1と一体化される。第3実施形態の製造装置100Bは、電解質ポリマー供給部10Bと、第1と第2の補強膜供給部20B,21Bと、加工部30Bと、加水分解処理部40と、を備える。
電解質ポリマー供給部10Bは、加工部30Bに帯状電解質ポリマー1を送り出すときのバックシートの材料が異なる点以外は、第2実施形態で説明した電解質ポリマー供給部10と同様な構成である。電解質ポリマー供給部10Bが供給する帯状電解質ポリマー1は第2実施形態で説明したものと同じである。本第3実施形態において、帯状電解質ポリマー1が配置されるバックシート1bBは、第2実施形態で説明したバックシート1bよりも帯状電解質ポリマー1との密着性が低く調整できる材料で構成されることが望ましい。また、第3実施形態のバックシート1bBは、第2実施形態で説明したバックシート1bよりも耐熱性が低くても良い。
第3実施形態のバックシート1bBは、例えば、下記のポリプロピレン(PP)によって構成される。
<バックシート1bBを構成するPP>
弾性率: 0.6〜0.8GPa程度
厚み: 40〜60μm程度
表面粗さ(Ra): 400〜600nm程度
連続使用最高温度: 120〜140°程度
本第3実施形態では、帯状電解質ポリマー1とバックシート1bBとの間の密着性は、第1の貼合部60において互いに貼り合わされた帯状電解質ポリマー1と第1の補強膜2との間の密着性より低くなるように予め調整される。具体的に、帯状電解質ポリマー1とバックシート1bBとの間の密着性は、90°引っ張り試験において、0.02〜0.10N/cmの測定結果が得られる程度であっても良い。なお、下記のPPによってバックシート1bBを構成し、下記の加圧条件によって帯状電解質ポリマー1とバックシート1bとを貼り合わせれば、上記範囲内の密着性が得られることが実験的に確認されている。
<バックシート1bBを構成するPPの実施例>
弾性率: 0.7GPa
厚み: 50μm
表面粗さ(Ra): 500nm
連続使用最高温度: 130°
<帯状電解質ポリマー1とバックシート1bBとの加圧条件>
温度: 25℃
加圧力: 0.4MPa
第1と第2の補強膜供給部20B,21Bはそれぞれ、加工部30B送り出す帯状部材の構成が異なる点以外は、第2実施形態で説明した第1と第2の補強膜供給部20A,21Aと同様な構成である。第1と第2の補強膜供給部20B,21Bはそれぞれ、中間層5を挟んで耐熱性バックシート2b,3bに配置されている第1と第2の補強膜2,3を加工部30Bに供給する。
第1と第2の補強膜2,3は第2実施形態で説明したものと同じであり、ePTFEなどの多孔質膜部材によって構成される。第1と第2の補強膜2,3のそれぞれが配置されている耐熱性バックシート2b,3bは第2実施形態で説明したものと同じであり、PFAなどの耐熱性の高い樹脂フィルムによって構成される。
中間層5は、第1と第2の補強膜2,3と耐熱性バックシート2b,3bとの間に密着性を付与する接着層として機能する。中間層5は、帯状電解質ポリマー1を構成する電解質ポリマーと同種または類似の電解質ポリマーによって構成される。中間層5を構成する電解質ポリマーは、各補強膜2,3と各耐熱性バックシート2b,3bとの界面において、各補強膜2,3の細孔内に入り込んでいる。中間層5は、第1と第2の補強膜2,3または耐熱性バックシート2b,3bの接着面に、前記の電解質ポリマーの溶液をダイコーターなどの塗工具を用いて塗布することによって形成される。なお、第1と第2の補強膜供給部20B,21Bはそれぞれ、第1と第2の補強膜2,3と耐熱性バックシート2b,3bとを、中間層5を設けた上で貼り合わせる貼合部を有していても良い。
ここで、中間層5によって付与される第1と第2の補強膜2,3と耐熱性バックシート2b,3bとの間に密着性は、ポリマー供給部10から供給される帯状電解質ポリマー1とそのバックシート1bとの間の密着性よりも高くなるように調整される。具体的に、第1と第2の補強膜2,3と耐熱性バックシート2b,3bとの間に密着性は、90°剥離試験において、0.1〜0.5N/cm計測値が得られる程度であるとしても良い。これによって、後述する加工部30Bにおいて実行される帯状電解質ポリマー1からのバックシート2bの剥離が容易となる。
加工部30Bは、搬送されている帯状電解質ポリマー1の両面に第1と第2の補強膜2,3を配置して熱圧着することによってそれらを一体化して両面補強膜1rrを形成する。加工部30Bは、第1の貼合部60と、第1の剥離部61と、第2の貼合部62と、熱圧着部63と、第2の剥離部64とが、この順で、帯状電解質ポリマー1の搬送方向に配置されている。
図19は、第3実施形態の加工部30Bによって実行される工程の手順を示す工程図である。図20〜図22は、図19に示されている加工部30Aにおいて実行される各工程の内容を説明するための模式図である。図20〜図22にはそれぞれ、第3実施形態の加工部30Bにおいて加工されていく帯状部材の様子を、各帯状部材を幅方向に切断したときの概略断面図によって各工程ごとに模式的に図示してある。以下では、第3実施形態の加工部30Bの各構成部60〜64における工程の内容を、図18とともに図19〜図22を参照図として用いて順に説明する。
加工部30Bは、電解質ポリマー供給部10からバックシート1bBに配置されている帯状電解質ポリマー1の供給を受ける(図19の工程31)。また、加工部30Bは、第1の補強膜供給部20Bから、中間層5を介して耐熱性バックシート2bの上に配置されている第1の補強膜2の供給を受ける。帯状電解質ポリマー1および第1の補強膜2は第1の貼合部60へと搬送される。
図20は、第1の貼合部60と第1の剥離部61における工程の内容を示す模式図である。第1の貼合部60は、圧着ローラー60rによって帯状電解質ポリマー1と第1の補強膜2とを互いに面接触させて密着させる(工程32)。互いに貼り合わされた帯状電解質ポリマー1と第1の補強膜2とは、バックシート1bBと耐熱性バックシート2bとに挟まれた状態で、第1の剥離部61へと搬送される。
第1の剥離部61は、剥離ローラー61rによって、帯状電解質ポリマー1からそのバックシート1bBを剥離して回収する(工程33)。上述したように、帯状電解質ポリマー1とバックシート1bBとの密着性は、帯状電解質ポリマー1と第1の補強膜2との間の密着性および第1の補強膜2と耐熱性バックシート2bとの間の密着性よりも低くなるように予め調整されている。従って、第1の剥離部61では、バックシート1bBを容易に剥離することができる。バックシート1bBが剥離された帯状電解質ポリマー1は、第1の補強膜2および耐熱性バックシート2bに支持された状態で第2の貼合部62に搬送される。
図21は、第2の貼合部62における工程の内容を示す模式図である。第2の貼合部62は、第2の補強膜供給部21Bから、中間層5を介して耐熱性バックシート3bの上に配置されている第2の補強膜3の供給を受ける(工程34)。第2の貼合部62は、圧着ローラー62rによって帯状電解質ポリマー1の露出面(第1の補強膜2とは反対側の面)に密着させる(工程35)。第2の貼合部62における圧着条件は、第1の貼合部60における圧着条件と同じで良い。第1と第2の補強膜2,3と帯状電解質ポリマー1の積層部材は、耐熱性バックシート2b,3bに挟まれた状態で、熱圧着部63へと搬送される。
図22は、熱圧着部63と第2の剥離部64における工程の内容を示す模式図である。熱圧着部63は、ホットローラー63rによって帯状電解質ポリマー1と第1と第2の補強膜2,3とを熱圧着し、両面補強膜1rrを生成する(工程36)。この熱圧着工程では、溶融した帯状電解質ポリマー1の電解質ポリマーが第1と第2の補強膜2,3に含浸するとともに、溶融した中間層5の電解質ポリマーが第1と第2の補強膜2,3に含浸する。従って、第3実施形態の製造装置100Bでは、両面補強膜1rrの両面に中間層5の電解質ポリマーによって構成される薄膜層が形成されるため、両面補強膜1rrにおいて良好な表面性状が確保される。
両面補強膜1rrは2枚の耐熱性バックシート2b,3bに挟まれた状態で第2の剥離部64へと搬送される。第2の剥離部64は、剥離ローラー64rによって、第1の補強膜2側の耐熱性バックシート2bを両面補強膜1rrから剥離する(工程37)。耐熱性バックシート3bに配置されている両面補強膜1rrは加水分解処理部40へと搬送される。加水分解処理部40において両面補強膜1rrにプロトン伝導性が付与されることによって、補強型電解質膜が完成する。なお、加水分解処理部40において実行される工程は、第1実施形態で説明したのと同じである(図6)。
以上のように、第3実施形態の製造装置100Bによれば、第1と第2の補強膜2,3を耐熱性バックシート2b,3bとの密着性を確保した上で搬送することができる。また、第1と第2の補強膜2,3と耐熱性バックシート2b,3bとの間に電解質ポリマーを含む中間層5が設けられていることによって、表面性状が良好な両面補強膜1rrを得ることができる。さらに、第3実施形態の製造装置100Bであれば、第1と第2の補強膜2,3を同一の工程内で帯状電解質ポリマー1に熱圧着できるため、第1と第2の補強膜2,3を別々に熱圧着する構成に比較して工程数を低減することができる。
D.変形例:
D1.変形例1:
上記各実施形態では、第1と第2の補強膜2,3がePTFEによって構成された。しかし、第1と第2の補強膜2,3はePTFE以外の材料によって構成されても良い。また、上記各実施形態では、第1と第2の補強膜2,3のバックシートは、PFAやPETによって構成された。しかし、第1と第2の補強膜2,3のバックシートは、PFAやPET以外の材料によって構成されても良い。
D2.変形例2:
上記各実施形態では、各バックシート1b,2b,3b,2bf,3bf,2bB,3bBはいずれも単層のフィルム部材によって構成されていた。しかし、各バックシート1b,2b,3b,2bf,3bf,2bB,3bBは複数の異なる材料層が積層された多層構造を有していても良い。この場合において、熱圧着工程を経るバックシートについては、両最外層が、高い耐熱性(例えば、連続使用最高温度が200〜270℃程度)を有し、かつ、滑らかな表面性状(例えば、表面粗さ(Ra)が10〜800nm程度)を有することが好ましい。これによって、帯状電解質ポリマー1と第1と第2の補強膜2,3との熱圧着工程にも対応でき、熱圧着工程後の片面補強膜1rや両面補強膜1rrの良好な表面性状を確保することができる。
D3.変形例3:
上記各実施形態の製造装置100,100A,100Bは、帯状電解質ポリマー1の両面に第1と第2の補強膜2,3を入り込ませた両面側が補強された補強型電解質膜を製造した。しかし、上記各実施形態の製造装置100,100A,100Bは、帯状電解質ポリマー1の一方の面に第1の補強膜2のみを入り込ませた片面側のみが補強された補強型電解質膜を製造しても良い。
D4.変形例4:
上記第3実施形態の製造装置100Bは、第1と第2の補強膜2,3を、帯状電解質ポリマー1に対して、同一工程内において同時に熱圧着していた。しかし、第3実施形態の製造装置100Bは、第1と第2の補強膜2,3の帯状電解質ポリマー1に対する熱圧着工程を、それぞれ別個に実行しも良い。
D5.変形例5:
上記第3実施形態では、中間層5は、各補強膜2,3と各耐熱性バックシート2b,3bとの界面全体を被覆するように形成されていた。しかし、中間層5は各補強膜2,3と各耐熱性バックシート2b,3bの界面全体を被覆するように形成されていなくても良い。中間層5は、各補強膜2,3と各耐熱性バックシートの間の複数の箇所に点在するように形成されていても良い。
本発明は、上述の実施形態や実施例、変形例に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態、実施例、変形例中の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。
1…帯状電解質ポリマー
1b…バックシート
1c…補強型電解質膜
1r…片面補強膜
1rr…両面補強膜
2…第1の補強膜
2b…バックシート(耐熱性バックシート)
2bf…供給用バックシート
3…第2の補強膜
3b…バックシート(耐熱性バックシート)
3bf…供給用バックシート
5…中間層
10…ポリマー供給部
10,10B…電解質ポリマー供給部
20,20A,20B…第1の補強膜供給部
21,21A,21B…第2の補強膜供給部
22…第1のバックシート供給部
23…第2のバックシート供給部
30,30A,30B…加工部
31…第1の貼合部
31r…圧着ローラー
32…第1の熱圧着部
32r…ホットローラー
33…第1の剥離部
33r…剥離ローラー
34…第2の貼合部
34r…圧着ローラー
35…第2の熱圧着部
35r…剥離ローラー
36…第2の剥離部
36r…ホットローラー
40…加水分解処理部
50…第1の貼合部
50r…圧着ローラー
51…第1の剥離部
51r…剥離ローラー
52…第2の貼合部
52r…圧着ローラー
53…第1の熱圧着部
53r…ホットローラー
54…第2の剥離部
54r…剥離ローラー
55…第3の貼合部
55r…圧着ローラー
56…第3の剥離部
56r…剥離ローラー
57…第4の貼合部
57r…圧着ローラー
58…第2の熱圧着部
58r…ホットローラー
59…第4の剥離部
59r…剥離ローラー
60…第1の貼合部
60r…圧着ローラー
61…第1の剥離部
61r…剥離ローラー
62…第2の貼合部
62r…圧着ローラー
63…熱圧着部
63r…ホットローラー
64…第2の剥離部
64r…剥離ローラー
100,100A,100B…製造装置

Claims (10)

  1. 燃料電池に用いられ、内部に補強部材が配置されている補強型電解質膜の製造方法であって、
    (a)電解質ポリマーの帯状体である帯状電解質ポリマーをバックシートの表面に配置した状態で、前記帯状電解質ポリマーの長手方向を搬送方向として搬送する工程と、
    (b)前記補強部材の帯状体である第1の帯状補強部材をバックシートの表面に配置した状態で前記搬送方向に搬送して、前記帯状電解質ポリマーの表面に前記第1の帯状補強部材を配置する工程と、
    (c)前記第1の帯状補強部材のバックシートと前記第1の帯状補強部材とに接する位置に電解質ポリマーを位置させる工程と、
    )前記工程(b)の後に、前記第1の帯状補強部材のバックシートと前記第1の帯状補強部材とに接する位置に存在する前記電解質ポリマーによって、前記第1の帯状補強部材のバックシートと前記第1の帯状補強部材との間の密着性が、前記帯状電解質ポリマーのバックシートと前記帯状電解質ポリマーとの間の密着性より高くなっている状態において、前記帯状電解質ポリマーから前記電解質ポリマーのバックシートを剥離する工程と、
    を備える、製造方法。
  2. 請求項1記載の製造方法であって、
    前記工程(c)は、前記工程(b)の後に、前記帯状電解質ポリマーのバックシートと前記第1の帯状補強部材のバックシートとを介して、前記帯状電解質ポリマーと前記第1の帯状補強部材とを熱圧着することによって、前記帯状電解質ポリマーを構成する前記電解質ポリマーを、前記第1の帯状補強部材の内部に含浸させて、前記第1の帯状補強部材のバックシートと前記第1の帯状補強部材とに接する位置まで到達させることにより、前記第1の帯状補強部材のバックシートと前記第1の帯状補強部材との間の密着性を前記帯状電解質ポリマーのバックシートと前記帯状電解質ポリマーとの間の密着性より高くする工程を含む、製造方法。
  3. 請求項2記載の製造方法であって、さらに、
    )前記帯状電解質ポリマーのバックシートが剥離された前記帯状電解質ポリマーの面に、第2の帯状補強部材を配置して熱圧着する工程を備える、製造方法。
  4. 請求項2または3記載の製造方法であって、
    前記工程(c)の前においては、前記第1の帯状補強部材と前記第1の補強部材のバックシートとの間の密着性は、前記帯状電解質ポリマーと前記帯状電解質ポリマーのバックシートとの間の密着性より低い、製造方法。
  5. 請求項2から4のいずれか一項に記載の製造方法であって、
    前記工程(a)の前には、前記第1の帯状補強部材は、前記工程(c)における熱圧着の温度より低い耐熱温度を有する搬送用バックシートの表面に配置されており、
    前記工程(a)は、前記搬送用バックシートを、前記工程(c)における熱圧着の温度より高い耐熱温度を有する耐熱性バックシートに交換する工程を含む、製造方法。
  6. 請求項1記載の製造方法であって、
    前記工程(c)は、前記工程(b)の前に、前記第1の帯状補強部材と前記第1の帯状補強部材のバックシートとの間に電解質ポリマーを含む中間層配置ることによって、前記第1の帯状補強部材のバックシートと前記第1の帯状補強部材との間の密着性前記帯状電解質ポリマーのバックシートと前記帯状電解質ポリマーとの間の密着性より高する工程を含み、
    前記工程(b)は、前記帯状電解質ポリマーと前記第1の帯状補強部材との間の密着性が前記帯状電解質ポリマーのバックシートと前記帯状電解質ポリマーとの間の密着性より高くなるように、前記帯状電解質ポリマーと前記第1の帯状補強部材とを圧着する工程を含む、製造方法。
  7. 請求項6記載の製造方法であって、さらに、
    )前記バックシートが剥離された前記帯状電解質ポリマーの面に、第2の帯状補強部材を配置して、前記帯状電解質ポリマーと、前記第1と第2の帯状補強部材とを熱圧着する工程を備える、製造方法。
  8. 燃料電池に用いられ、内部に補強部材が配置されている補強型電解質膜の製造装置であって、
    電解質ポリマーの帯状体である帯状電解質ポリマーをバックシートの表面に配置した状態で、前記帯状電解質ポリマーの長手方向を搬送方向として搬送する搬送部と、
    前記補強部材の帯状体である第1の帯状補強部材をバックシートの表面に配置した状態で、前記搬送方向に搬送し、前記第1の帯状補強部材を前記帯状電解質ポリマーの表面に配置する補強部材配置部と、
    前記第1の帯状補強部材のバックシートと前記第1の帯状補強部材とに接する位置に電解質ポリマーを位置させる電解質ポリマー処理部と、
    前記補強部材配置部の後段に設けられ、前記第1の帯状補強部材のバックシートと前記第1の帯状補強部材との間に存在する電解質ポリマーによって、前記第1の帯状補強部材のバックシートと前記第1の帯状補強部材との間の密着性が、前記帯状電解質ポリマーのバックシートと前記帯状電解質ポリマーとの間の密着性より高くなっている状態において、前記帯状電解質ポリマーから前記帯状電解質ポリマーのバックシートを剥離するバックシート剥離部と、
    を備える、製造装置。
  9. 請求項8の製造装置であって、さらに、
    前記電解質ポリマー処理部は、前記補強部材配置部の後段に設けられ、補強部材配置部と前記バックシート剥離部との間において、前記帯状電解質ポリマーのバックシートおよび前記帯状補強部材のバックシートを介して、前記帯状電解質ポリマーと前記第1の帯状補強部材とを熱圧着することによって、前記帯状電解質ポリマーを構成する前記電解質ポリマーを、前記第1の帯状補強部材に含浸させることによって、前記第1の帯状補強部材のバックシートと前記第1の帯状補強部材とに接する位置まで到達させることにより、前記第1の帯状補強部材のバックシートと前記第1の帯状補強部材との間の密着性を前記帯状電解質ポリマーのバックシートと前記帯状電解質ポリマーとの間の密着性より高くする熱圧着部を含む、製造装置。
  10. 請求項8の製造装置であって、
    前記電解質ポリマー処理部は、前記補強部材配置部の前段に設けられ、前記第1の帯状補強部材と前記第1の帯状補強部材のバックシートとの間に電解質ポリマーを含む中間層配置ることによって、前記補強部材配置部に搬送される前から、前記第1の帯状補強部材のバックシートと前記第1の帯状補強部材との間の密着性前記帯状電解質ポリマーのバックシートと前記帯状電解質ポリマーとの間の密着性より予め高くする中間層配置部を含み
    前記補強部材配置部は、前記帯状電解質ポリマーと前記第1の帯状補強部材との間の密着性が前記帯状電解質ポリマーのバックシートと前記帯状電解質ポリマーとの間の密着性より高くなるように、前記帯状電解質ポリマーと前記第1の帯状補強部材とを圧着する、製造装置。
JP2013107082A 2013-05-21 2013-05-21 補強型電解質膜の製造方法およびその製造装置 Active JP5692284B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2013107082A JP5692284B2 (ja) 2013-05-21 2013-05-21 補強型電解質膜の製造方法およびその製造装置
EP14728629.8A EP3000147B1 (en) 2013-05-21 2014-05-15 Manufacturing method for reinforced electrolyte membrane and manufacturing apparatus of manufacturing the same
CN201480029651.1A CN105264702B (zh) 2013-05-21 2014-05-15 用于增强电解质膜的制造方法和制造增强电解质膜的制造设备
US14/892,784 US10374245B2 (en) 2013-05-21 2014-05-15 Manufacturing method for reinforced electrolyte membrane and manufacturing apparatus of manufacturing the same
PCT/IB2014/000862 WO2014188265A1 (en) 2013-05-21 2014-05-15 Manufacturing method for reinforced electrolyte membrane and manufacturing apparatus of manufacturing the same
KR1020157033245A KR101857854B1 (ko) 2013-05-21 2014-05-15 보강형 전해질 막의 제조 방법 및 그것을 제조하는 제조 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013107082A JP5692284B2 (ja) 2013-05-21 2013-05-21 補強型電解質膜の製造方法およびその製造装置

Publications (2)

Publication Number Publication Date
JP2014229433A JP2014229433A (ja) 2014-12-08
JP5692284B2 true JP5692284B2 (ja) 2015-04-01

Family

ID=50896349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013107082A Active JP5692284B2 (ja) 2013-05-21 2013-05-21 補強型電解質膜の製造方法およびその製造装置

Country Status (6)

Country Link
US (1) US10374245B2 (ja)
EP (1) EP3000147B1 (ja)
JP (1) JP5692284B2 (ja)
KR (1) KR101857854B1 (ja)
CN (1) CN105264702B (ja)
WO (1) WO2014188265A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5674986B1 (ja) * 2013-08-12 2015-02-25 加川 清二 放熱フィルム、並びにその製造方法及び装置
JP6131973B2 (ja) * 2014-03-14 2017-05-24 トヨタ自動車株式会社 補強型電解質膜の製造方法、膜電極接合体の製造方法、及び、膜電極接合体
JP6277982B2 (ja) * 2015-03-19 2018-02-14 トヨタ自動車株式会社 電解質膜の製造方法
GB201515870D0 (en) * 2015-09-08 2015-10-21 Johnson Matthey Fuel Cells Ltd Process
JP6515830B2 (ja) * 2016-01-28 2019-05-22 トヨタ自動車株式会社 膜電極接合体の製造方法
JP6751629B2 (ja) * 2016-09-09 2020-09-09 株式会社Screenホールディングス 塗工装置およびフィルム回収方法
JP6428741B2 (ja) 2016-10-06 2018-11-28 トヨタ自動車株式会社 膜検査装置
JP6673241B2 (ja) * 2017-02-02 2020-03-25 トヨタ自動車株式会社 帯状の部材の貼り合わせ方法、および、帯状の部材の貼り合わせ装置
JP2019168486A (ja) * 2018-03-22 2019-10-03 富士ゼロックス株式会社 画像形成装置
JP7258726B2 (ja) * 2019-11-15 2023-04-17 株式会社Screenホールディングス サブガスケット付膜電極接合体の製造方法および製造装置、サブガスケット付膜電極接合体
CN111180771B (zh) * 2019-12-31 2021-04-20 无锡先导智能装备股份有限公司 卷料贴合设备及用于膜电极的制备系统
US20230343979A1 (en) * 2020-08-19 2023-10-26 W. L. Gore & Associates, Inc. Composite electrolyte membrane
JP7223810B2 (ja) * 2021-06-10 2023-02-16 本田技研工業株式会社 接合体製造装置及び接合体製造方法
CN117501486A (zh) * 2021-06-14 2024-02-02 W.L.戈尔及同仁股份有限公司 聚合物电解质膜、膜电极组件和氧化还原液流电池

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3020597A (en) * 1953-07-03 1962-02-13 S J Chemical Company Method of making microporous film
DE69023283T2 (de) * 1989-06-16 1996-04-18 Canon Kk Ausgabeblatt für Bilderzeugungsvorrichtung und Bilderzeugungsvorrichtung mit Nutzung des Blattes.
US6699351B2 (en) * 2000-03-24 2004-03-02 3M Innovative Properties Company Anisotropically conductive adhesive composition and anisotropically conductive adhesive film formed from it
JP2002340106A (ja) * 2001-05-15 2002-11-27 Tsubakimoto Chain Co 転動体を組み込んだチェーン
JP2006116816A (ja) * 2004-10-21 2006-05-11 Sumitomo Chemical Co Ltd 積層体の製造方法及び製造装置
JP5023570B2 (ja) 2006-06-21 2012-09-12 トヨタ自動車株式会社 補強型電解質膜および膜電極接合体の製造方法
US20080152992A1 (en) * 2006-12-20 2008-06-26 Canon Kabushiki Kaisha Constituent member for membrane electrode assembly, membrane electrode assembly, polymer electrolyte fuel cell, and method for producing constituent member and membrane electrode assembly
US8192896B2 (en) * 2007-03-14 2012-06-05 Panasonic Corporation Membrane-membrane reinforcing member assembly, membrane-catalyst layer assembly, membrane-electrode assembly, polymer electrolyte fuel cell, and method for manufacturing membrane-electrode assembly
JP2008277288A (ja) * 2007-04-05 2008-11-13 Toyota Motor Corp 複合高分子電解質膜の製造装置、複合高分子電解質膜の製造方法、機能性膜、及び燃料電池
JP2009016074A (ja) * 2007-07-02 2009-01-22 Toyota Motor Corp 電解質膜およびそれを用いた燃料電池
JP5262893B2 (ja) * 2008-04-24 2013-08-14 トヨタ自動車株式会社 膜電極接合体の製造方法および膜電極接合体製造装置
JP2010062009A (ja) * 2008-09-04 2010-03-18 Honda Motor Co Ltd 燃料電池用膜−電極構造体の製造方法
JP5336269B2 (ja) * 2009-06-16 2013-11-06 帝人株式会社 固体高分子電解質膜補強用二軸延伸フィルム
JP2011146256A (ja) * 2010-01-14 2011-07-28 Toyota Motor Corp 補強膜型電解質膜およびそれを用いた膜電極接合体
JP2013114887A (ja) * 2011-11-29 2013-06-10 Toyota Motor Corp 電解質膜の製造方法
JP5884704B2 (ja) * 2012-10-15 2016-03-15 トヨタ自動車株式会社 燃料電池用の膜電極接合体の製造方法と製造装置
JP5835238B2 (ja) * 2013-01-08 2015-12-24 トヨタ自動車株式会社 補強型電解質膜の製造方法および補強型電解質膜の製造装置

Also Published As

Publication number Publication date
KR101857854B1 (ko) 2018-05-14
EP3000147A1 (en) 2016-03-30
US10374245B2 (en) 2019-08-06
US20160093908A1 (en) 2016-03-31
WO2014188265A1 (en) 2014-11-27
EP3000147B1 (en) 2017-12-27
CN105264702B (zh) 2017-07-21
KR20160008197A (ko) 2016-01-21
CN105264702A (zh) 2016-01-20
JP2014229433A (ja) 2014-12-08

Similar Documents

Publication Publication Date Title
JP5692284B2 (ja) 補強型電解質膜の製造方法およびその製造装置
JP4600500B2 (ja) 燃料電池の製造方法
KR102325722B1 (ko) 도공 장치 및 도공 방법
US20130068371A1 (en) Method for manufacturing fuel cell membrane-electrode assembly ultrasonic vibration bonding
JP6098949B2 (ja) 電解質膜巻回体
JP2017142897A (ja) 膜・触媒層接合体の製造装置および製造方法
JP2019053871A (ja) 燃料電池の膜電極接合体の製造方法
JP2008159377A (ja) 燃料電池用電極の接合装置及びその接合方法
KR102272864B1 (ko) 지지 필름, 첩부 방법, 막·전극 접합체의 제조 방법 및 제조 장치
JP5954233B2 (ja) 転写ローラーと膜電極接合体の製造方法および製造装置
JP2010062009A (ja) 燃料電池用膜−電極構造体の製造方法
JP2021144854A (ja) 燃料電池および燃料電池の製造方法
JP5853194B2 (ja) 膜−触媒層接合体の製造方法及びその製造装置
JP5979100B2 (ja) 膜電極接合体の製造方法と電解質膜巻取ローラー
JP2018122974A (ja) 帯状の部材の貼り合わせ方法、および、帯状の部材の貼り合わせ装置
JP2020027792A (ja) 燃料電池用セルの接合体の製造装置
JP2006339062A (ja) 燃料電池用電極構造体の製造方法
JP5533688B2 (ja) 燃料電池用の電解質膜の製造方法
JP6859881B2 (ja) 膜電極接合体の製造方法
JP2011060665A (ja) 固体高分子形燃料電池用部材の製造方法及び製造装置
JP2010120293A (ja) 膜−保護層連続接合方法
JP5055567B2 (ja) 触媒電極層、膜電極複合体およびその製造方法
JP5201349B2 (ja) 燃料電池用膜−電極接合体製造方法
JP2016108083A (ja) 熱転写方法およびシートロール交換方法
JP2017117786A (ja) 接合体の製造方法および製造装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150119

R151 Written notification of patent or utility model registration

Ref document number: 5692284

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151