JP5673674B2 - 透明電極及びそれを用いた有機電子素子 - Google Patents

透明電極及びそれを用いた有機電子素子 Download PDF

Info

Publication number
JP5673674B2
JP5673674B2 JP2012509433A JP2012509433A JP5673674B2 JP 5673674 B2 JP5673674 B2 JP 5673674B2 JP 2012509433 A JP2012509433 A JP 2012509433A JP 2012509433 A JP2012509433 A JP 2012509433A JP 5673674 B2 JP5673674 B2 JP 5673674B2
Authority
JP
Japan
Prior art keywords
layer
conductive layer
conductive
polymer
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012509433A
Other languages
English (en)
Other versions
JPWO2011125537A1 (ja
Inventor
竹田 昭彦
昭彦 竹田
博和 小山
博和 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2012509433A priority Critical patent/JP5673674B2/ja
Publication of JPWO2011125537A1 publication Critical patent/JPWO2011125537A1/ja
Application granted granted Critical
Publication of JP5673674B2 publication Critical patent/JP5673674B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/814Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/816Multilayers, e.g. transparent multilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • H10K71/611Forming conductive regions or layers, e.g. electrodes using printing deposition, e.g. ink jet printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Non-Insulated Conductors (AREA)

Description

本発明は、有機エレクトロルミネッセンス素子(以下、有機EL素子)、有機太陽電池といった有機電子素子に関し、特に、素子の駆動電圧や効率、寿命といった素子性能を向上させた有機電子素子に関する。
近年、有機EL素子や有機太陽電池といった有機電子素子が注目されており、このような素子において、透明電極は必須の構成技術となっている。
従来、透明電極は、ガラスや透明なプラスチックフィルム等の透明基板上に、インジウム−スズの複合酸化物(ITO)膜を真空蒸着法やスパッタリング法で製膜したITO透明電極が、その導電性や透明性といった性能の点から、主に使用されてきた。しかし、真空蒸着法やスパッタリング法を用いた透明電極は生産性が悪いため製造コストが高いことや、可撓性に劣るためフレキシブル性が求められる素子用途には適用できないことが問題であった。
これに対し、π共役系高分子に代表される導電性ポリマーを適当な溶媒に溶解または分散した塗液を用い、塗布や印刷によって透明導電体層を形成する方法(例えば特許文献1参照)が提案されている。しかし、真空成膜法によるITO等の金属酸化物透明電極に較べると、透明性、導電性とも著しく低下するという課題があった。さらに、これを用いて有機EL素子といった有機電子素子を形成した場合、透明導電体層自身の低導電性に加え、該透明導電体層上に設けられる機能層との界面抵抗が高いと思われる挙動(例えば、有機EL素子では駆動電圧の上昇)が見られ、素子としての性能が低下するという課題があった。
一方、金属細線パターンと導電性ポリマーを積層した透明導電フィルムが提案されている(例えば、特許文献2参照)。しかし、このような透明導電フィルムを用いて有機EL素子を形成した場合、導電性ポリマーによる金属細線の被覆が十分ではなく、金属細線のエッジ部に起因すると思われる、電流リークが生じ、素子性能が低下するという課題があった。
このような金属細線の形状について、電磁波シールド分野において、いくつかの提案(例えば、特許文献3、4参照)がなされている。しかし、これらの方法は、金属細線部のアスペクト比が高く、かつ金属細線部自体の高さが非常に高い形状を有する。本願用途である有機電子素子は、透明電極上に厚さ1μm以下の薄膜からなる機能層が何層も形成される。その際、金属細線の断面形状が錐状であったり、また、金属細線の高さが高すぎると、機能層の膜形成が困難となり、大きな膜厚分布の原因となる。これは、素子性能の低下をもたらし、場合によっては前述の電流リークを生じせしめ、素子形成が困難となる。また、金属細線からなる電磁波遮蔽パターンを、さらに別の導電性のベタ層で被覆する事が記載されているが、金属細線形状と導電層ベタ層との被覆状態については、言及されていない。従って、このような電磁波シールド分野における金属細線パターンを、有機電子素子の透明電極用途に用いることは不可能である。
特開平6−273964号公報 特開2009−87843号公報 特開平10−75087号公報 特開2009−88070号公報
本発明の目的は、前記事情に鑑みてなされたものであり、高い導電性と透明性を兼ね備えた電極を提供し、さらには、有機EL素子、有機太陽電池といった有機電子素子において、電流リークや電界集中を抑制し、素子の駆動電圧を低減し、効率に優れた有機電子素子を提供することにある。
前述のように、金属細線と導電性ポリマーとからなる透明電極を用いる従来技術では、有機電子素子の機能層形成において、問題があった。それに対して本発明者らは、透明電極として、基板上に、パターン状に形成された金属または金属酸化物細線からなる第一導電層と、該第一導電層を被覆してなり、かつ導電性ポリマーを含有する第二導電層とを有し、該第一導電層が、線幅Wを、20〜200μm、高さHを、0.2〜2.0μm、アスペクト比を、0.001<H/W≦0.1、断面形状係数を、0.6<S/(W・H)<0.9(S:導電層の断面積)である細線から形成される透明電極とすることで、有機電子素子の機能層形成が向上し、素子性能が向上することを見いだした。
本発明において、金属または金属酸化物細線からなる第一導電層の細線形状を特定の形状とすることで、第一導電層の上に積層される導電性ポリマーからなる第二導電層の形成が良好となり、さらに、その上に形成される有機電子素子の機能層が、局所的な膜厚分布を生じることなく、良好に形成される。
本発明の上記目的は、以下の構成により達成することができる。
1.基板上に、パターン状に形成された金属または金属酸化物の細線からなる第一導電層と、該第一導電層を被覆してなり、かつ導電性ポリマーを含有する第二導電層とからなる透明電極において、該第一導電層の細線が、下記条件を満足することを特徴とする透明電極。
線幅W:20〜200μm、
高さH:0.2〜2.0μm、
アスペクト比:0.001<H/W≦0.1、
断面形状係数:0.6<S/(W・H)<0.9、
但し、Sは導電層の断面積を表す。
2.前記第一導電層のパターンの高さが、0.5〜1.5μmであることを特徴とする前記1記載の透明電極。
3.前記第一導電層が、銀粒子からなることを特徴とする前記1または2記載の透明電極。
4.前記第二導電層が、下記ポリマー(A)を含むことを特徴とする前記1〜3のいずれか1項記載の透明電極。
(式中、X〜Xは、それぞれ独立に、水素原子またはメチル基を表し、R〜Rはそれぞれ独立に、炭素数5以下のアルキレン基を表す。l、m、nは構成率(mol%)を表し、50≦l+m+n≦100である。)
5.前記1〜4のいずれか1項記載の透明電極を用いたことを特徴とする有機電子素子。
6.前記有機電子素子が、有機エレクトロルミネッセンス素子または有機太陽電池素子であることを特徴とする前記5記載の有機電子素子。
本発明によれば、高い導電性と透明性を兼ね備えた電極を提供し、さらには、有機EL素子、有機太陽電池といった有機電子素子において、電流リークや電界集中を抑制し、素子の駆動電圧を低減し、効率に優れた有機電子素子を提供することができる。
本発明の有機電子素子の構成を示す断面図である。 本発明の金属または金属酸化物の細線の断面を示す図である。 本発明の金属または金属酸化物の細線の断面形状及び断面形状係数を示す図である。 本発明の第一電極の断面図である。 本発明の有機電子素子の製造方法を示す図である。 本発明に係る有機EL素子の構成を示す図である。
以下本発明を実施するための最良の形態について詳細に説明するが、本発明はこれらに限定されるものではない。
<基板>
本発明では、透明基板として、プラスチックフィルム、プラスチック板、ガラスなどを用いることができ、軽量性と柔軟性の観点から透明プラスチックフィルムを用いることが好ましい。
プラスチックフィルム及びプラスチック板の原料としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)などのポリエステル類、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン、EVAなどのポリオレフィン類、ポリ塩化ビニル、ポリ塩化ビニリデンなどのビニル系樹脂、ポリエーテルエーテルケトン(PEEK)、ポリサルホン(PSF)、ポリエーテルサルホン(PES)、ポリカーボネート(PC)、ポリアミド、ポリイミド、アクリル樹脂、トリアセチルセルロース(TAC)などを用いることができる。
本発明に係る透明電極及び有機電子素子において、基板は、表面平滑性に優れているものが好ましい。表面の平滑性は算術平均粗さRaが5nm以下かつ最大高さRzが50nm以下であることが好ましく、Raが2nm以下かつRzが30nm以下であることがより好ましく、さらに好ましくはRaが1nm以下かつRzが20nm以下である。基板の表面は、熱硬化性樹脂、紫外線硬化性樹脂、電子線硬化性樹脂、放射線硬化性樹脂等の下塗り層を付与して平滑化してもよいし、研磨などの機械加工によって平滑にすることもできる。ここで、表面の平滑性は、原子間力顕微鏡(AFM)等による測定から、表面粗さ規格(JIS B 0601−2001)に従い、求めることができる。
本発明に用いられる透明基板には、塗布液の濡れ性や接着性を確保するために、表面処理を施すことや易接着層を設けることができる。表面処理や易接着層については従来公知の技術を使用できる。例えば、表面処理としては、コロナ放電処理、火炎処理、紫外線処理、高周波処理、グロー放電処理、活性プラズマ処理、レーザー処理等の表面活性化処理を挙げることができる。また、易接着層としては、ポリエステル、ポリアミド、ポリウレタン、ビニル系共重合体、ブタジエン系共重合体、アクリル系共重合体、ビニリデン系共重合体、エポキシ系共重合体等を挙げることができる。易接着層は単層でもよいが、接着性を向上させるためには2層以上の構成にしてもよい。
また、大気中の酸素、水分を遮断する目的でガスバリア層を設けるのが好ましい。ガスバリア層の形成材料としては、酸化シリコン、窒化シリコン、酸化窒化シリコン、窒化アルミニウム、酸化アルミニウム等の金属酸化物、金属窒化物が使用できる。これらの材料は、水蒸気バリア機能のほかに酸素バリア機能も有する。特にバリア性、耐溶剤性、透明性が良好な窒化シリコン、酸化窒化シリコンが好ましい。また、バリア層は必要に応じて多層構成とすることも可能である。ガスバリア層の形成方法は、材料に応じて、抵抗加熱蒸着法、電子ビーム蒸着法、反応性蒸着法、イオンプレーティング法、スパッタリング法を用いることができる。前記ガスバリア層を構成する各無機層の厚みに関しては特に限定されないが、典型的には1層あたり5nm〜500nmの範囲内であることが好ましく、さらに好ましくは1層あたり10nm〜200nmである。ガスバリア層は基板の少なくとも一方の面に設けられ、両面に設けられるのがより好ましい。
<導電層>
本発明における導電層は、金属または金属酸化物細線パターン(以下、細線、または細線パターン)からなる第一導電層と、導電性ポリマーからなる第二導電層から構成される。
第一導電層の材料としては、金属または金属酸化物であるが、導電性の観点から金属が好ましく、例えば、金、銀、銅、鉄、ニッケル、クロム等が挙げられる。またこれらの合金でもよく、単層でも多層でもよい。細線パターンの形状に特に制限はないが、例えば、ストライプ状、あるいはメッシュ状等が挙げられ、電極の導電性及び透明性の観点から決めることができる。
導電層の形成方法としては、まず支持体上に第一導電層として、金属または金属酸化物からなる細線パターンを形成する。細線パターンは、金属または金属酸化物粒子とバインダーとからなる分散液を塗布、乾燥して膜形成した後、エッチング等によりパターニングすることができる。また、銀塩法により、ハロゲン化銀分散液を塗布、乾燥して膜形成した後、露光、現像処理を行いパターン形成してもよい。これらの膜形成方法としては、液相成膜法であれば特に制限はない。ロールコート法、バーコート法、ディップコーティング法、スピンコーティング法、キャスティング法、ダイコート法、ブレードコート法、バーコート法、グラビアコート法、カーテンコート法、スプレーコート法、ドクターコート法、インクジェット法等の塗布法を用いることができる。さらに、金属または金属酸化物ナノ粒子の分散液を用い、スプレーコート法やインクジェット法、グラビア、フレキソ印刷法により、あるいはマスクを用いて、直接パターン形成してもよい。
さらに、第二導電層として、パターン形成された第一導電層を被覆するように、導電性ポリマーからなる分散液を塗布、乾燥して膜形成する。第二導電層の塗布は、前述の液相成膜法を用いることができる。
第二導電層は、さらに導電性ポリマーの導電性増強効果を有する水酸基含有非導電性ポリマーを含むことができる。これにより、高い導電性、高い透明性、耐水性、平滑性を同時に満たすことができる。
このような積層構造を有する本発明の導電層を形成することで、金属または金属酸化物細線、あるいは導電性ポリマー層単独では得ることのできない高い導電性を、電極面内において均一に得ることができる。
本発明の透明電極は、さらに、第一導電層の隣接下層または、第一、第二導電層と隣接する中間層に第三導電層を設けることができる。第三導電層には、金属ナノ粒子層が好ましく、特に銀ナノワイヤ層が好ましい。第三導電層により、前述の電極面内の導電性が、より高くかつ均一に得ることができる。
支持体の表面は、ハードコート層等による平滑化処理がされていることが好ましい。第一の支持体の表面平滑性(凹凸)は算術平均粗さRaが5nm以下、かつ最大高さRzが50nm以下であることが好ましく、より好ましくはRaが1nm以下、かつRzが30nm以下である。
ここで、表面平滑性を表すRaとRzとは、Ra=算術平均粗さとRz=最大高さ(表面の山頂部と谷底部との高低差)を意味し、JIS B601(2001)に規定される表面粗さに準ずる値である。本発明においてRaとRzおよび段差の測定には、市販の原子間力顕微鏡(Atomic Force Microscopy:AFM)を用いることができ、例えば、以下の方法で測定できる。
AFMとして、セイコーインスツル社製SPI3800Nプローブステーション及びSPA400多機能型ユニットを使用し、約1cm角の大きさに切り取った試料を、ピエゾスキャナー上の水平な試料台上にセットし、カンチレバーを試料表面にアプローチし、原子間力が働く領域に達したところで、XY方向にスキャンし、その際の試料の凹凸をZ方向のピエゾの変位で捉える。ピエゾスキャナーは、XY150μm、Z5μmが走査可能なものを使用する。カンチレバーは、セイコーインスツル社製シリコンカンチレバーSI−DF20で、共振周波数120〜150kHz、バネ定数12〜20N/mのものを用い、DFMモード(Dynamic Force Mode)で測定する。測定領域80×80μmを、走査周波数0.1Hzで測定する。
金属または金属酸化物の細線(以後単に細線とも言う)の断面形状及び断面形状係数の例を図3に、第一導電層及び第二導電層からなる第一電極の断面形状の例を図4に示す。
第一導電層における細線の線幅Wは、20〜200μmであるが、40〜120μmが好ましく、40〜80μmがより好ましい。細線の線幅が20μm以下では、所望の導電性が得られず、また200μm以上では透過率が低下する。細線の高さHは、0.2〜2.0μmであるが、0.5〜1.5μmが好ましく、0.7〜1.2μmがより好ましい。細線の高さが0.2μm以下では、所望の導電性が得られず、また2μm以上では有機電子素子の形成において、電流リークや機能層の膜厚分布不良の要因となる。さらに細線のアスペクト比H/Wとして、0.001〜0.1であるが、0.01〜0.03がより好ましい。細線のアスペクト比が0.001より低いと導電性が低下し、0.1より高いと有機電子素子の形成において、性能低下要因となる。さらに、基板と垂直方向の細線の断面の断面積をSとし、S/(W・H)で表される断面形状係数が、0.6〜0.9であるが、0.7〜0.8がより好ましい。断面形状係数が、0.6より小さいと、細線の断面形状が錐に近く、また0.9より大きいと、矩形に近く、ともに細線エッジ部での電流リークの要因となり、素子形成が不良となる。
図2に、断面形状係数を算出する、W、H及びSの概念を示し、図3に形状の違いによる断面形状係数を示す。
このような断面形状を有する本願発明の細線及び細線パターンの作製は、前述のごとく、各種塗布方法を選択することができるが、生産性と、細線形状の制御の観点から、グラビア、フレキソ等のダイレクトパターニングが好ましい。細線形状は、使用する金属ナノ粒子または金属酸化物ナノ粒子の分散液濃度及び粘度と、それに応じて版の断面形状を変えることで、調整することができる。
第一導電層を形成した後、適宜乾燥、熱処理を施すことができる。乾燥処理の条件として特に制限はないが、基材や導電層が損傷しない範囲の温度で乾燥処理することが好ましい。例えば、80℃から150℃で10秒から10分の乾燥処理をすることができる。本発明において、乾燥終了後、さらに熱処理を行う事で、第一導電層の導電性を著しく向上することができ、素子性能が向上する。さらに、第一導電層の耐擦過性や耐水性、基材との接着性を向上することができる。熱処理は、50℃以上の温度で、5分以上行う事が好ましく、50℃未満では、導電性向上効果が小さくなる。また、150℃を超える温度であっても、基材や導電層が損傷しない範囲で、例えば0.001秒から数秒の処理を行ってもよい。熱処理は、第一導電層を形成した後、オンラインで行ってもよく、オフラインで行ってもよいが、塗布、乾燥後、直ちに行うことが導電性向上の点から好ましい。
本発明の透明電極は、高導電性である第一導電層と、第一導電層より比較的低導電性かつ高透明性である第二導電層とからなり、第一導電層の細線部の表面比抵抗は、100Ω/□以下であることが好ましく、10Ω/□以下であることがより好ましく、5Ω/□以下であることがさらに好ましい。
第二導電層の表面比抵抗は、10Ω/□以下であることが好ましく、10Ω/□以下であることがより好ましく、10Ω/□以下であることがさらに好ましい。
表面比抵抗は、例えば、JIS K6911、ASTM D257、等に準拠して測定することができ、また市販の表面抵抗率計を用いて簡便に測定することができる。
第二導電層の導電性ポリマーと水酸基含有非導電性ポリマーとの比率は、導電性ポリマーを100質量部とした時、水酸基含有非導電性ポリマーが30質量部から900質量部であることが好ましく、電流リーク防止、水酸基含有非導電性ポリマーの導電性増強効果、透明性の観点から、水酸基含有非導電性ポリマーが100質量部以上であることがより好ましい。
第二導電層の乾燥膜厚は30nmから2000nmであることが好ましい。導電性の点から、100nm以上であることがより好ましく、電極の表面平滑性の点から、200nm以上であることがさらに好ましい。また、透明性の点から、1000nm以下であることがより好ましい。
第二導電層を塗布した後、適宜乾燥処理を施すことができる。乾燥処理の条件として特に制限はないが、基材や導電層が損傷しない範囲の温度で乾燥処理することが好ましい。例えば、80℃から150℃で10秒から10分の乾燥処理をすることができる。本発明において、乾燥終了後、さらに熱処理を行う事で、水酸基含有非導電性ポリマーの架橋反応を促進、完了させることができる。これにより電極の洗浄耐性、溶媒耐性が著しく向上し、さらに素子性能が向上する。特に、有機EL素子においては、駆動電圧の低減、寿命の向上といった効果が得られる。
熱処理は、50℃以上200℃以下の温度で、30分以上行う事が好ましい。50℃未満では、反応促進効果が小さく、200℃を超える場合、素材への熱的ダメージが増えるためか、効果が小さくなる。処理温度としては80℃以上150℃以下であることがより好ましく、処理時間としては1時間以上であることがより好ましい。処理時間の上限は特にないが、生産性の観点から24時間以下であることが好ましい。熱処理は、導電層を塗布、乾燥した後、オンラインで行ってもよく、オフラインで行ってもよい。オフラインで行う場合、さらに減圧下で行う事が、水分の乾燥促進にもつながり、好ましい。
本発明において、酸触媒を用いて水酸基含有非導電性ポリマーの架橋反応を促進、完了させることができる。酸触媒としては、塩酸、硫酸や硫酸アンモニウムを用いることができる。また導電性ポリマーにドーパントとして用いるポリアニオンにおいて、スルホ基含有ポリアニオンを使用することで、ドーパントと触媒を兼用することができる。また、酸触媒の使用と合わせて、前述の熱処理を行う事ができ、処理時間の短縮にもつながり、好ましい。
本発明の導電性ポリマー及び水酸基含有非導電性ポリマーを含む分散液は、導電層の導電性、透明性、平滑性を同時に満たす範囲において、さらに他の透明な非導電性ポリマーや添加剤を含有してもよい。
透明な非導電性ポリマーとしては、天然高分子樹脂または合成高分子樹脂から広く選択して使用することができ、水溶性高分子又は水性高分子エマルジョンが特に好ましい。水溶性高分子としては、天然高分子のデンプン、ゼラチン、寒天等、半合成高分子のヒドロキシプロピルメチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース等のセルロース誘導体、合成高分子のポリビニルアルコール、ポリアクリル酸系高分子、ポリアクリルアミド、ポリエチレンオキシド、ポリビニルピロリドン等が、水性高分子エマルジョンとしては、アクリル系樹脂(アクリルシリコン変性樹脂、フッ素変性アクリル樹脂、ウレタン変性アクリル樹脂、エポキシ変性アクリル樹脂等)、ポリエステル系樹脂、ウレタン系樹脂、酢酸ビニル系樹脂等が、使用することができる。
また、合成高分子樹脂としては、透明な熱可塑性樹脂(例えば、ポリ塩化ビニル、塩化ビニル−酢酸ビニル共重合体、ポリメチルメタクリレート、ニトロセルロース、塩素化ポリエチレン、塩素化ポリプロピレン、フッ化ビニリデン)や、熱・光・電子線・放射線で硬化する透明硬化性樹脂(例えば、メラミンアクリレート、ウレタンアクリレート、エポキシ樹脂、ポリイミド樹脂、アクリル変性シリケート等のシリコーン樹脂)を使用することができる。
添加剤としては、可塑剤、酸化防止剤や硫化防止剤などの安定剤、界面活性剤、溶解促進剤、重合禁止剤、染料や顔料などの着色剤などが挙げられる。更に、塗布性などの作業性を高める観点から、溶媒(例えば、水や、アルコール類、グリコール類、セロソルブ類、ケトン類、エステル類、エーテル類、アミド類、炭化水素類等の有機溶媒)を含んでいてもよい。
〔金属ナノ粒子〕
本発明の導電層に使用される金属または金属酸化物としては、金属ナノ粒子または金属酸化物ナノ粒子が好ましく、金属ナノ粒子が特に好ましい。金属ナノ粒子または金属酸化物ナノ粒子(以下、金属ナノ粒子)とは、粒子径が原子スケールからnmサイズの微粒子状の金属または金属酸化物のことをいう。金属ナノ粒子の平均粒径としては10〜300nmが好ましく、30〜200nmであることがより好ましい。本発明に係る金属ナノ粒子に用いられる金属としては、導電性の観点から銀または銅が好ましく、銀または銅単独でもよいし、それぞれの組み合わせでもよく、銀と銅の合金、銀または銅が一方の金属でめっきされていてもよい。
本発明の金属ナノ粒子において、粒子径の短径がnmサイズであれば、形状として粒子状であってもよく、ロッド状やワイヤ状であってもよいが、第一導電層の細線としては導電性及び細線の平滑性の観点から粒子状が好ましく、第三導電層としては、導電性及び透明性の観点からワイヤ状の金属ナノワイヤであることが好ましい。
一般に、金属ナノワイヤとは、金属元素を主要な構成要素とする、原子スケールからnmサイズの直径を有する線状構造体のことをいう。
本発明に用いられる金属ナノワイヤとしては、1つの金属ナノワイヤで長い導電パスを形成するために、平均長さが3μm以上であることが好ましく、さらには3〜500μmが好ましく、特に3〜300μmであることが好ましい。併せて、長さの相対標準偏差は40%以下であることが好ましい。また、平均短径には特に制限はないが、透明性の観点からは小さいことが好ましく、一方で、導電性の観点からは大きい方が好ましい。本発明においては、金属ナノワイヤの平均短径として10〜300nmが好ましく、30〜200nmであることがより好ましい。併せて、短径の相対標準偏差は20%以下であることが好ましい。導電層の金属ナノワイヤは相互に接触していることが好ましく、さらにメッシュ状に接触していることが好ましい。金属ナノワイヤを相互に接触、またはメッシュ状に接触させた導電層は、上記の液相成膜法を用いれば容易に得ることができる。金属ナノワイヤの目付け量は0.005g/m〜0.5g/mであるのが好ましく、0.01g/m〜0.2g/mであるのがより好ましい。
本発明において金属ナノワイヤの製造手段には特に制限はなく、例えば、液相法や気相法等の公知の手段を用いることができる。また、具体的な製造方法にも特に制限はなく、公知の製造方法を用いることができる。例えば、銀ナノワイヤの製造方法としては、Adv.Mater.,2002,14,833〜837;Chem.Mater.,2002,14,4736〜4745、銅ナノワイヤの製造方法としては特開2002−266007号公報等を参考にすることができる。銀ナノワイヤの製造方法は、水溶液中で簡便に銀ナノワイヤを製造することができ、また銀の導電率は金属中で最大であることから、本発明に係る金属ナノワイヤの製造方法として好ましく適用することができる。
<導電性ポリマー>
本発明の導電性ポリマーはπ共役系導電性高分子とポリアニオンとを含んで成る導電性ポリマーである。こうした導電性ポリマーは、後述するπ共役系導電性高分子を形成する前駆体モノマーを、適切な酸化剤と酸化触媒と後述のポリアニオンの存在下で化学酸化重合することによって容易に製造できる。
<π共役系導電性高分子>
本発明に用いるπ共役系導電性高分子としては、特に限定されず、ポリチオフェン(基本のポリチオフェンを含む、以下同様)類、ポリピロール類、ポリインドール類、ポリカルバゾール類、ポリアニリン類、ポリアセチレン類、ポリフラン類、ポリパラフェニレンビニレン類、ポリアズレン類、ポリパラフェニレン類、ポリパラフェニレンサルファイド類、ポリイソチアナフテン類、ポリチアジル類の鎖状導電性ポリマーを利用することができる。中でも、導電性、透明性、安定性等の観点からポリチオフェン類やポリアニリン類が好ましい。ポリエチレンジオキシチオフェンであることが最も好ましい。
<π共役系導電性高分子前駆体モノマー>
前駆体モノマーは、分子内にπ共役系を有し、適切な酸化剤の作用によって高分子化した際にもその主鎖にπ共役系が形成されるものである。例えば、ピロール類及びその誘導体、チオフェン類及びその誘導体、アニリン類及びその誘導体等が挙げられる。
前駆体モノマーの具体例としては、ピロール、3−メチルピロール、3−エチルピロール、3−n−プロピルピロール、3−ブチルピロール、3−オクチルピロール、3−デシルピロール、3−ドデシルピロール、3,4−ジメチルピロール、3,4−ジブチルピロール、3−カルボキシルピロール、3−メチル−4−カルボキシルピロール、3−メチル−4−カルボキシエチルピロール、3−メチル−4−カルボキシブチルピロール、3−ヒドロキシピロール、3−メトキシピロール、3−エトキシピロール、3−ブトキシピロール、3−ヘキシルオキシピロール、3−メチル−4−ヘキシルオキシピロール、チオフェン、3−メチルチオフェン、3−エチルチオフェン、3−プロピルチオフェン、3−ブチルチオフェン、3−ヘキシルチオフェン、3−ヘプチルチオフェン、3−オクチルチオフェン、3−デシルチオフェン、3−ドデシルチオフェン、3−オクタデシルチオフェン、3−ブロモチオフェン、3−クロロチオフェン、3−ヨードチオフェン、3−シアノチオフェン、3−フェニルチオフェン、3,4−ジメチルチオフェン、3,4−ジブチルチオフェン、3−ヒドロキシチオフェン、3−メトキシチオフェン、3−エトキシチオフェン、3−ブトキシチオフェン、3−ヘキシルオキシチオフェン、3−ヘプチルオキシチオフェン、3−オクチルオキシチオフェン、3−デシルオキシチオフェン、3−ドデシルオキシチオフェン、3−オクタデシルオキシチオフェン、3,4−ジヒドロキシチオフェン、3,4−ジメトキシチオフェン、3,4−ジエトキシチオフェン、3,4−ジプロポキシチオフェン、3,4−ジブトキシチオフェン、3,4−ジヘキシルオキシチオフェン、3,4−ジヘプチルオキシチオフェン、3,4−ジオクチルオキシチオフェン、3,4−ジデシルオキシチオフェン、3,4−ジドデシルオキシチオフェン、3,4−エチレンジオキシチオフェン、3,4−プロピレンジオキシチオフェン、3,4−ブテンジオキシチオフェン、3−メチル−4−メトキシチオフェン、3−メチル−4−エトキシチオフェン、3−カルボキシチオフェン、3−メチル−4−カルボキシチオフェン、3−メチル−4−カルボキシエチルチオフェン、3−メチル−4−カルボキシブチルチオフェン、アニリン、2−メチルアニリン、3−イソブチルアニリン、2−アニリンスルホン酸、3−アニリンスルホン酸等が挙げられる。
(ポリアニオン)
ポリアニオンは、置換若しくは未置換のポリアルキレン、置換若しくは未置換のポリアルケニレン、置換若しくは未置換のポリイミド、置換若しくは未置換のポリアミド、置換若しくは未置換のポリエステル及びこれらの共重合体であって、アニオン基を有する構成単位とアニオン基を有さない構成単位とからなるものである。
このポリアニオンは、π共役系導電性高分子を溶媒に可溶化させる可溶化高分子である。また、ポリアニオンのアニオン基は、π共役系導電性高分子に対するドーパントとして機能して、π共役系導電性高分子の導電性と耐熱性を向上させる。
ポリアニオンのアニオン基としては、π共役系導電性高分子への化学酸化ドープが起こりうる官能基であればよいが、中でも、製造の容易さ及び安定性の観点からは、一置換硫酸エステル基、一置換リン酸エステル基、リン酸基、カルボキシ基、スルホ基等が好ましい。さらに、官能基のπ共役系導電性高分子へのドープ効果の観点より、スルホ基、一置換硫酸エステル基、カルボキシ基がより好ましい。
ポリアニオンの具体例としては、ポリビニルスルホン酸、ポリスチレンスルホン酸、ポリアリルスルホン酸、ポリアクリル酸エチルスルホン酸、ポリアクリル酸ブチルスルホン酸、ポリ−2−アクリルアミド−2−メチルプロパンスルホン酸、ポリイソプレンスルホン酸、ポリビニルカルボン酸、ポリスチレンカルボン酸、ポリアリルカルボン酸、ポリアクリルカルボン酸、ポリメタクリルカルボン酸、ポリ−2−アクリルアミド−2−メチルプロパンカルボン酸、ポリイソプレンカルボン酸、ポリアクリル酸等が挙げられる。これらの単独重合体であってもよいし、2種以上の共重合体であってもよい。また、化合物内にフッ素を有するポリアニオンであっても良い。具体的には、パーフルオロスルホン酸基を含有するナフィオン(Dupont社製)、カルボン酸基を含有するパーフルオロ型ビニルエーテルからなるフレミオン(旭硝子社製)などをあげることができる。これらのうち、スルホ基を有する化合物であると、導電性ポリマー含有層を塗布、乾燥することによって形成した後に、100℃以上200℃以下の温度で加熱処理を施した場合、この塗布膜の洗浄耐性や溶媒耐性が著しく向上することから、より好ましい。さらに、これらの中でも、ポリスチレンスルホン酸、ポリイソプレンスルホン酸、ポリアクリル酸エチルスルホン酸、ポリアクリル酸ブチルスルホン酸が好ましい。これらのポリアニオンは、バインダー樹脂との相溶性が高く、また、得られる導電性ポリマーの導電性をより高くできる。
ポリアニオンの重合度は、モノマー単位が10〜100000個の範囲であることが好ましく、溶媒溶解性及び導電性の点からは、50〜10000個の範囲がより好ましい。
ポリアニオンの製造方法としては、例えば、酸を用いてアニオン基を有さないポリマーにアニオン基を直接導入する方法、アニオン基を有さないポリマーをスルホ化剤によりスルホン酸化する方法、アニオン基含有重合性モノマーの重合により製造する方法が挙げられる。
アニオン基含有重合性モノマーの重合により製造する方法は、溶媒中、アニオン基含有重合性モノマーを、酸化剤及び/又は重合触媒の存在下で、酸化重合又はラジカル重合によって製造する方法が挙げられる。具体的には、所定量のアニオン基含有重合性モノマーを溶媒に溶解させ、これを一定温度に保ち、それに予め溶媒に所定量の酸化剤及び/又は重合触媒を溶解した溶液を添加し、所定時間で反応させる。その反応により得られたポリマーは溶媒によって一定の濃度に調整される。この製造方法において、アニオン基含有重合性モノマーにアニオン基を有さない重合性モノマーを共重合させてもよい。アニオン基含有重合性モノマーの重合に際して使用する酸化剤及び酸化触媒、溶媒は、π共役系導電性高分子を形成する前駆体モノマーを重合する際に使用するものと同様である。得られたポリマーがポリアニオン塩である場合には、ポリアニオン酸に変質させることが好ましい。アニオン酸に変質させる方法としては、イオン交換樹脂を用いたイオン交換法、透析法、限外ろ過法等が挙げられ、これらの中でも、作業が容易な点から限外ろ過法が好ましい。
こうした導電性ポリマーは市販の材料も好ましく利用できる。例えば、ポリ(3,4−エチレンジオキシチオフェン)とポリスチレンスルホン酸からなる導電性ポリマー(PEDOT:PSSと略す)が、H.C.Starck社からCleviosシリーズとして、Aldrich社からPEDOT:PSSの483095、560596として、Nagase Chemtex社からDenatronシリーズとして市販されている。また、ポリアニリンが、日産化学社からORMECONシリーズとして市販されている。本発明において、こうした剤も好ましく用いることが出来る。
2nd.ドーパントとして水溶性有機化合物を含有してもよい。本発明で用いることができる水溶性有機化合物には特に制限はなく、公知のものの中から適宜選択することができ、例えば、酸素含有化合物が好適に挙げられる。前記酸素含有化合物としては、酸素を含有する限り特に制限はなく、例えば、水酸基含有化合物、カルボニル基含有化合物、エーテル基含有化合物、スルホキシド基含有化合物などが挙げられる。前記水酸基含有化合物としては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、トリメチレングリコール、1,4−ブタンジオール、グリセリンなどが挙げられ、これらの中でも、エチレングリコール、ジエチレングリコールが好ましい。前記カルボニル基含有化合物としては、例えば、イソホロン、プロピレンカーボネート、シクロヘキサノン、γ−ブチロラクトンなどが挙げられる。前記エーテル基含有化合物としては、例えば、ジエチレングリコールモノエチルエーテル、などが挙げられる。前記スルホキシド基含有化合物としては、例えば、ジメチルスルホキシドなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよいが、ジメチルスルホキシド、エチレングリコール、ジエチレングリコールから選ばれる少なくとも1種を用いることが好ましい。
<水系溶媒>
本発明において、水系溶媒とは、50質量%以上が水である溶媒を表す。もちろん、他の溶媒を含有しない純水であっても良い。水系溶媒の水以外の成分は、水に相溶する溶剤であれば特に制限はないが、アルコール系の溶媒を好ましく用いることができ、中でも、沸点が比較的水に近いイソプロピルアルコールを用いることが形成する膜の平滑性などには有利である。
<水酸基含有非導電性ポリマー>
本発明における水酸基含有非導電性ポリマーとは、主たる共重合成分が下記モノマーM1、M2、M3からなり、共重合成分の50mol%以上の成分が該モノマーのいずれか、あるいは、合計が50mol%以上ある共重合ポリマーである。該モノマー成分の合計が80mol%以上であることがより好ましく、さらに、いずれか単独のモノマーから形成されたホモポリマーであっても良く、また、好ましい実施形態である。
ポリマー(A)においては、水系溶媒に可溶である範囲において、他のモノマー成分が共重合されていてもかまわないが、親水性の高いモノマー成分であることがより好ましい。また、ポリマー(A)は数平均分子量1000以下の含有量が0〜5%であることが好ましい。低分子成分が少ないことで、素子の保存性や、導電層に対して垂直方向の導電性に障壁があるような挙動をより低下させることができる。
このポリマー(A)の数平均分子量1000以下の含有量を0〜5%とする方法としては、再沈殿法、分取GPCに、リビング重合による単分散のポリマーを合成等により、低分子量成分を除去する、または低分子量成分の生成を抑制する方法を用いることができる。再沈殿法は、ポリマーが溶解可能な溶媒へ溶解し、ポリマーを溶解した溶媒より溶解性の低い溶媒中へ滴下することにより、ポリマーを析出させ、モノマー、触媒、オリゴマー等の低分子量成分を除去する方法である。また、分取GPCは例えばリサイクル分取GPCLC−9100(日本分析工業社製)、ポリスチレンゲルカラムで、ポリマーを溶解した溶液をカラムに通すことにより分子量で分けることができ、所望の低分子量をカットすることができる方法である。リビング重合は、開始種の生成が経時で変化せず、また停止反応等の副反応が少なく、分子量の揃ったポリマーが得られる。分子量はモノマーの添加量により調整できるため、例えば分子量を2万のポリマーを合成すれば、低分子量体の生成を抑制することができる。生産適性から、再沈殿法、リビング重合が好ましい。
本発明のポリマー(A)の数平均分子量は3,000〜2,000,000の範囲が好ましく、より好ましくは4,000〜500,000、更に好ましくは5000〜100000の範囲内である。本発明のポリマー(A)の分子量分布((重量平均分子量)/(数平均分子量))は1.01〜1.30が好ましく、より好ましくは1.01〜1.25である。数平均分子量1000以下の含有量はGPCにより得られた分布において、数平均分子量1000以下の面積を積算し、分布全体の面積で割ることで割合を換算した。リビングラジカル重合溶剤は、反応条件化で不活性であり、モノマー、生成するポリマーを溶解できれば特に制限はないが、アルコール系溶媒と水の混合溶媒が好ましい。リビングラジカル重合温度は、使用する開始剤によって異なるが、一般に−10〜250℃、好ましくは0〜200℃、より好ましくは10〜100℃で実施される。
<有機電子素子の構成>
有機電子素子の構成を、図1を用いて説明する。
透明基板11の上に対向する第一電極14と第二電極16を有し、第一電極14と第二電極16の両電極間に少なくとも1層の有機機能層15を有する。本発明において第一電極14は、金属または金属酸化物の細線からなる第一導電層12と、導電性ポリマーからなる第二導電層13を含み、第二導電層は、第一導電層を被覆している。
本発明の有機機能層15としては、有機発光層、有機光電変換層、液晶ポリマー層など特に限定無く挙げることができるが、本発明は、機能層が薄膜でかつ電流駆動系の素子である有機発光層、有機光電変換層である場合において、特に有効である。
<有機機能層構成>
(有機EL素子)
〔有機発光層〕
本発明において有機発光層を有する有機電子素子は、有機発光層に加えて、ホール注入層、ホール輸送層、電子輸送層、電子注入層、ホールブロック層、電子ブロック層などの有機発光層と併用して発光を制御する層を有しても良い。本発明の導電性ポリマー含有層はホール注入層として働くことも可能であるので、ホール注入層を兼ねることも可能だが、独立にホール注入層を設けても良い。
構成の好ましい具体例を以下に示すが、本発明はこれらに限定されない。
(i)(第一電極部)/発光層/電子輸送層/(第二電極部)
(ii)(第一電極部)/正孔輸送層/発光層/電子輸送層/(第二電極部)
(iii)(第一電極部)/正孔輸送層/発光層/正孔ブロック層/電子輸送層/(第二電極部)
(iv)(第一電極部)/正孔輸送層/発光層/正孔ブロック層/電子輸送層/陰極バッファー層/(第二電極部)
(v)(第一電極部)/陽極バッファー層/正孔輸送層/発光層/正孔ブロック層/電子輸送層/陰極バッファー層/(第二電極部)
ここで、発光層は、発光極大波長が各々430〜480nm、510〜550nm、600〜640nmの範囲にある単色発光層であってもよく、また、これらの少なくとも3層の発光層を積層して白色発光層としたものであってもよく、さらに発光層間には非発光性の中間層を有していてもよい。本発明の有機EL素子としては、白色発光層であることが好ましい。
また、本発明において有機発光層に使用できる発光材料またはドーピング材料としては、アントラセン、ナフタレン、ピレン、テトラセン、コロネン、ペリレン、フタロペリレン、ナフタロペリレン、ジフェニルブタジエン、テトラフェニルブタジエン、クマリン、オキサジアゾール、ビスベンゾキサゾリン、ビススチリル、シクロペンタジエン、キノリン金属錯体、トリス(8−ヒドロキシキノリナート)アルミニウム錯体、トリス(4−メチル−8−キノリナート)アルミニウム錯体、トリス(5−フェニル−8−キノリナート)アルミニウム錯体、アミノキノリン金属錯体、ベンゾキノリン金属錯体、トリ−(p−ターフェニル−4−イル)アミン、1−アリール−2,5−ジ(2−チエニル)ピロール誘導体、ピラン、キナクリドン、ルブレン、ジスチルベンゼン誘導体、ジスチルアリーレン誘導体、及び各種蛍光色素及び希土類金属錯体、燐光発光材料等があるが、これらに限定されるものではない。またこれらの化合物のうちから選択される発光材料を90〜99.5質量部、ドーピング材料を0.5〜10質量部含むようにすることも好ましい。有機発光層は上記の材料等を用いて公知の方法によって作製されるものであり、蒸着、塗布、転写などの方法が挙げられる。この有機発光層の厚みは0.5〜500nmが好ましく、特に、0.5〜200nmが好ましい。
〔第二電極部〕
本発明の第二電極は有機EL素子においては陰極となる。本発明の第二電極部は導電材単独層であっても良いが、導電性を有する材料に加えて、これらを保持する樹脂を併用してもよい。第二電極部の導電材としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム−カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。
これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm〜5μm、好ましくは50〜200nmの範囲で選ばれる。
第二電極部の導電材として金属材料を用いれば第二電極側に来た光は反射されて第一電極部側にもどる。第一電極部の金属ナノワイヤは光の一部を後方に散乱、あるいは反射するが第二電極部の導電材として金属材料を用いることで、この光が再利用可能となりより取り出しの効率が向上する。
<有機光電変換素子>
有機光電変換素子は、第一電極部、バルクヘテロジャンクション構造(p型半導体層およびn型半導体層)を有する光電変換層(以下、バルクヘテロジャンクション層とも呼ぶ)、第二電極部が積層された構造を有する。
光電変換層と第二電極部との間に電子輸送層などの中間層を有しても良い。
〔光電変換層〕
光電変換層は、光エネルギーを電気エネルギーに変換する層であって、p型半導体材料とn型半導体材料とを一様に混合したバルクヘテロジャンクション層を構成している。p型半導体材料は、相対的に電子供与体(ドナー)として機能し、n型半導体材料は、相対的に電子受容体(アクセプター)として機能する。ここで、電子供与体及び電子受容体は、“光を吸収した際に、電子供与体から電子受容体に電子が移動し、正孔と電子のペア(電荷分離状態)を形成する電子供与体及び電子受容体”であり、電極のように単に電子を供与あるいは受容するものではなく、光反応によって、電子を供与あるいは受容するものである。
p型半導体材料としては、種々の縮合多環芳香族化合物や共役系化合物が挙げられる。
縮合多環芳香族化合物としては、例えば、アントラセン、テトラセン、ペンタセン、ヘキサセン、ヘプタセン、クリセン、ピセン、フルミネン、ピレン、ペロピレン、ペリレン、テリレン、クオテリレン、コロネン、オバレン、サーカムアントラセン、ビスアンテン、ゼスレン、ヘプタゼスレン、ピランスレン、ビオランテン、イソビオランテン、サーコビフェニル、アントラジチオフェン等の化合物、及びこれらの誘導体や前駆体が挙げられる。
共役系化合物としては、例えば、ポリチオフェン及びそのオリゴマー、ポリピロール及びそのオリゴマー、ポリアニリン、ポリフェニレン及びそのオリゴマー、ポリフェニレンビニレン及びそのオリゴマー、ポリチエニレンビニレン及びそのオリゴマー、ポリアセチレン、ポリジアセチレン、テトラチアフルバレン化合物、キノン化合物、テトラシアノキノジメタン等のシアノ化合物、フラーレン及びこれらの誘導体あるいは混合物を挙げることができる。
また、特にポリチオフェン及びそのオリゴマーのうち、チオフェン6量体であるα−セクシチオフェンα,ω−ジヘキシル−α−セクシチオフェン、α,ω−ジヘキシル−α−キンケチオフェン、α,ω−ビス(3−ブトキシプロピル)−α−セクシチオフェン、等のオリゴマーが好適に用いることができる。
その他、高分子p型半導体の例としては、ポリアセチレン、ポリパラフェニレン、ポリピロール、ポリパラフェニレンスルフィド、ポリチオフェン、ポリフェニレンビニレン、ポリカルバゾール、ポリイソチアナフテン、ポリヘプタジイン、ポリキノリン、ポリアニリンなどが挙げられ、更には特開2006−36755号公報などの置換−無置換交互共重合ポリチオフェン、特開2007−51289号公報、特開2005−76030号公報、J.Amer.Chem.Soc.,2007,p4112、J.Amer.Chem.Soc.,2007,p7246などの縮環チオフェン構造を有するポリマー、WO2008/000664、Adv.Mater.,2007,p4160、Macromolecules,2007,Vol.40,p1981などのチオフェン共重合体などを挙げることができる。
さらに、ポルフィリンや銅フタロシアニン、テトラチアフルバレン(TTF)−テトラシアノキノジメタン(TCNQ)錯体、ビスエチレンジチオテトラチアフルバレン(BEDTTTF)−過塩素酸錯体、BEDTTTF−ヨウ素錯体、TCNQ−ヨウ素錯体、等の有機分子錯体、C60、C70、C76、C78、C84等のフラーレン類、SWNT等のカーボンナノチューブ、メロシアニン色素類、ヘミシアニン色素類等の色素等、さらにポリシラン、ポリゲルマン等のσ共役系ポリマーや特開2000−260999号に記載の有機・無機混成材料も用いることができる。
これらのπ共役系材料のうちでも、ペンタセン等の縮合多環芳香族化合物、フラーレン類、縮合環テトラカルボン酸ジイミド類、金属フタロシアニン、金属ポルフィリンよりなる群から選ばれた少なくとも1種が好ましい。また、ペンタセン類がより好ましい。
ペンタセン類の例としては、国際公開第03/16599号パンフレット、国際公開第03/28125号パンフレット、米国特許第6,690,029号明細書、特開2004−107216号公報等に記載の置換基をもったペンタセン誘導体、米国特許出願公開第2003/136964号明細書等に記載のペンタセンプレカーサ、J.Amer.Chem.Soc.,vol127.No14.4986等に記載の置換アセン類及びその誘導体等が挙げられる。
これらの化合物の中でも、溶液プロセスが可能な程度に有機溶剤への溶解性が高く、かつ乾燥後は結晶性薄膜を形成し、高い移動度を達成することが可能な化合物が好ましい。そのような化合物としては、J.Amer.Chem.Soc.,vol.123、p9482、J.Amer.Chem.Soc.,vol.130(2008)、No.9、2706等に記載のトリアルキルシリルエチニル基で置換されたアセン系化合物、及び米国特許出願公開第2003/136964号明細書等に記載のペンタセンプレカーサ、特開2007−224019号公報等に記載のポルフィリンプレカーサー等のような、プレカーサータイプの化合物(前駆体)が挙げられる。
これらの中でも、後者のプリカーサータイプの方が好ましく用いることができる。
これは、プリカーサータイプの方が、変換後に不溶化するため、バルクヘテロジャンクション層の上に正孔輸送層・電子輸送層・正孔ブロック層・電子ブロック層等を溶液プロセスで形成する際に、バルクヘテロジャンクション層が溶解してしまうことがなくなるため、前記の層を構成する材料とバルクヘテロジャンクション層を形成する材料とが混合することがなくなり、一層の効率向上・寿命向上を達成することができるためである。
p型半導体材料としては、p型半導体材料前駆体に熱・光・放射線・化学反応を引き起こす化合物の蒸気に晒す、等の方法によって化学構造変化を起こし、p型半導体材料に変換された化合物であることが好ましい。中でも熱によって科学構造変化を起こす化合物が好ましい。
n型半導体材料の例としては、フラーレン、オクタアザポルフィリン、p型半導体のパーフルオロ体(パーフルオロペンタセンやパーフルオロフタロシアニン等)、ナフタレンテトラカルボン酸無水物、ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸無水物、ペリレンテトラカルボン酸ジイミド等の芳香族カルボン酸無水物やそのイミド化物を骨格として含む、高分子化合物が挙げられる。
中でも、フラーレン含有高分子化合物が好ましい。フラーレン含有高分子化合物としては、フラーレンC60、フラーレンC70、フラーレンC76、フラーレンC78、フラーレンC84、フラーレンC240、フラーレンC540、ミックスドフラーレン、フラーレンナノチューブ、多層ナノチューブ、単層ナノチューブ、ナノホーン(円錐型)等を骨格に持つ高分子化合物が挙げられる。フラーレン含有高分子化合物では、フラーレンC60を骨格に持つ高分子化合物(誘導体)が好ましい。
フラーレン含有ポリマーとしては、大別してフラーレンが高分子主鎖からペンダントされたポリマーと、フラーレンが高分子主鎖に含有されるポリマーとに大別されるが、フラーレンがポリマーの主鎖に含有されている化合物が好ましい。
これは、フラーレンが主鎖に含有されているポリマーは、ポリマーが分岐構造を有さないため、固体化した際に高密度なパッキングができ、結果として高い移動度を得ることができるためではないかと推定される。
電子受容体と電子供与体とが混合されたバルクヘテロジャンクション層の形成方法としては、蒸着法、塗布法(キャスト法、スピンコート法を含む)等を例示することができる。
本発明の光電変換素子を、太陽電池などの光電変換材料として用いる形態としては、光電変換素子を単層で利用してもよいし、積層して(タンデム型)利用してもよい。
また、光電変換材料は、環境中の酸素、水分等で劣化しないために、公知の手法によって封止することが好ましい。
以下、実施例により本発明を具体的に説明するが、本発明はこれにより限定されるものではない。なお、実施例において「%」の表示を用いるが、特に断りがない限り「質量%」を表す。
合成例
<ATRP(Atom Transfer Radical Polymerization )法を用いたリビングラジカル重合>
「開始剤の合成」
合成例1(メトキシキャップされたオリゴエチレングリコールメタクリレート1の合成)
50ml三口フラスコに2−ブロモイソブチリルブロミド(7.3g、35mmol)とトリエチルアミン(2.48g、35mmol)及びTHF(20ml)を加え、アイスバスにより内温を0℃に保持した。この溶液内にオリゴエチレングリコール(10g、23mmol、エチレングリコールユニット7〜8、Laporte Specialties社製)の33%THF溶液30mlを滴下した。30分攪拌後、溶液を室温にし、更に4時間攪拌した。THFをロータリーエバポレーターにより減圧除去後、残渣をジエチルエーテルに溶解し、分液ロートに移した。水を加えエーテル層を3回洗浄後、エーテル層をMgSOにより乾燥させた。エーテルをロータリーエバポレーターにより減圧留去し、開始剤1を8.2g(収率73%)得た。
「リビング重合(ATRP)による水酸基含有非導電性ポリマーの合成」
合成例2(ポリ(2−ヒドロキシエチルアクリレート)の合成)
開始剤1(500mg、1.02mmol)、2−ヒドロキシエチルアクリレート(4.64g、40mmol、東京化成社製)、50:50 v/v%メタノール/水混合溶媒を5mlをシュレンク管に投入し、減圧下液体窒素に10分間シュレンク管を浸した。シュレンク管を液体窒素から出し、5分後に窒素置換を行った。この操作を3回行った後、窒素下で、ビピリジン(400mg、2.56mmol)、CuBr(147mg、1.02mmol)を加え、20℃で攪拌した。30分後、ろ紙とシリカを敷いた4cm桐山ロート上に反応溶液を滴下し、減圧で反応溶液を回収した。ロータリーエバポレーターにより溶媒を減圧留去後、50℃で3時間減圧乾燥した。その結果、数平均分子量13100、分子量分布1.17、数平均分子量<1000の含量0%、の水酸基含有非導電性ポリマー P−1を2.60g(収率84%)得た。構造、分子量は各々H−NMR(400MHz、日本電子社製)、GPC(Waters2695、Waters社製)で測定した。
<GPC測定条件>
装置:Wagers2695(Separations Module)
検出器:Waters 2414 (Refractive Index Detector)
カラム:Shodex Asahipak GF−7M HQ
溶離液:ジメチルホルムアミド(20mM LiBr)
流速:1.0ml/min
温度:40℃
同様にして、水酸基含有非導電性ポリマーのホモポリマーとして、ポリヒドロキシブチルアクリレート(P−2)、ポリヒドロキシエチルビニルエーテル(P−3)、ポリヒドロキシエチルアクリルアミド(P−4)(数平均分子量約2万、数平均分子量<1000の含量0%)を、ヒドロキシエチルアクリレート(60mol%)、メチルアクリレート(40mol%)の共重合ポリマーとしてP−5を合成した。
<銀ナノワイヤの調製>
金属ナノ粒子として、Adv.Mater.,2002,14,833〜837に記載の方法を参考に、PVP K30(分子量5万;ISP社製)を利用して、平均短径75nm、平均長さ35μmの銀ナノワイヤを作製し、限外濾過膜を用いて銀ナノワイヤを濾別、水洗処理した後、ヒドロキシプロピルメチルセルロース60SH−50(信越化学工業社製)を銀に対し25質量%加えた水溶液に再分散し、銀ナノワイヤ分散液を調製した。
<第一導電層の作製>
東洋紡社製PETフィルム(A4100)を透明基材とし、銀ナノインク(三ツ星ベルト社製;MDot−SLP)を用い、細線幅300μm、細線深さ50μm、線間隔2000μmの形状を有するグラビア版にてグラビア印刷を行い、銀細線パターンを作製した。
電極1〜9及び13〜30の第一導電層について、インクの濃度、粘度及びグラビア版の形状(細線幅、深さ、線間隔、断面形状)を変更し、グラビア印刷にて作製した。
また、電極10〜12は、アプリケーターを用いて銀インクをベタ印刷した後、エッチングにより作製した。得られた、第一導電層の、線幅、高さ、断面形状係数、及び線間隔を表1に示す。
<第二導電層の作製>
第一導電層をパターニングした基板に、表1記載の導電性ポリマー又は導電性ポリマー及び非導電性ポリマーの1:1の混合液を、所定の乾燥膜厚となるように、スピンコーターを用いて塗設した。
導電性ポリマー
PH510:PEDOT:PSS分散液(PH510(固形分1.89%)(H.C.Starck社製))
P4083:PEDOT:PSS分散液(Clevios P AI 4083(固形分1.5%)(H.C.Starck社製))
水酸基含有非導電性ポリマー
CMC:カルボキシメチルセルロース 低粘度型(シグマ−アルドリッチ社製)
PVA:ポリビニルアルコール PVA−235(クラレ社製)
P−1:ポリヒドロキシエチルアクリレート(合成例2)
P−2:ポリヒドロキシブチルアクリレート(合成例2)
P−3:ポリヒドロキシエチルビニルエーテル(合成例2)
P−4:ポリヒドロキシエチルアクリルアミド(合成例2)
P−5:ヒドロキシエチルアクリレート(60mol%)、メチルアクリレート(40mol%)の共重合ポリマー(合成例2)
電極1〜30の第二導電層の厚さ、使用した導電性ポリマー及び非導電性ポリマーは、表1に示した。尚、電極16、20、21、24、26及び28は第三導電層として、PETフィルム上に、予め銀ナノワイヤ分散液を、銀ナノワイヤの目付量が0.06g/mとなるようにスピンコーターを用いて塗布、乾燥した後、第一、第二導電層を形成した。
第一導電層の形状評価として、レーザー顕微鏡を用いて、細線の高さ、幅、断面形状について測定し、20点の平均値にて評価した。
電極の評価として、第一導電層、第二導電層、及び第三導電層が重なる部分の導電性、及び透明性について、下記により評価した。
(透明性)
透明性の評価として、東京電色社製HAZE METER NDH5000を用いて、全光線透過率を測定し、以下の指標で評価した。素子での光ロスから、70%以上であることが好ましい。
5:80%以上
4:70%以上 80%未満
3:60%以上 70%未満
2:50%以上 60%未満
1:0%以上 50%未満
(導電性)
導電性の評価として、抵抗率計(ロレスタGP(MCP−T610型):(株)三菱化学アナリテック製)を用いて表面抵抗を測定し、以下の指標で評価した。4以上が好ましく、5がより好ましい。
5:10Ω/□未満
4:10Ω/□以上 10Ω/□未満
3:10Ω/□以上 10Ω/□未満
2:10Ω/□以上 10Ω/□未満
1:10Ω/□以上
(有機EL素子の作製)
〈取出し電極の形成〉
両面にガスバリア層を設けた60mm×80mm×0.1mmのPET基板上に、ITOを平均膜厚150nmで蒸着した基板を、フォトリソ法により図5(5a)のパターニングを行った後、2−プロパノールに基板を浸漬し、超音波洗浄器ブランソニック3510J−MT(日本エマソン社製)により10分間の超音波洗浄処理を施した。
〈第一導電層の形成〉
超音波洗浄処理した基板上に、グラビア印刷機(RKプリントコートインスツルメンツ社製;K303マルチコータ)を用い、銀ナノインク(三ツ星ベルト社製;MDot−SLP)を図5(5b)の領域に、格子状にパターン印刷した。次いで、80℃×1分及び130℃×15分の乾燥、熱処理を行い、第一導電層を形成した。
〈第二導電層の形成〉
第一導電層を形成した基板上に、グラビア印刷機(K303)を用い、PEDOT−PSS CLEVIOS P AI 4083(固形分1.5%)(H.C.Starck社製)を、図5(5c)の領域にベタ塗布した後、80℃×1分及び130℃×15分の乾燥、熱処理を行い、第二導電層を形成した。
〈有機機能層の形成〉
正孔輸送層以降は蒸着により形成した。市販の真空蒸着装置内の蒸着用るつぼの各々に、各層の構成材料を各々素子作製に最適の量を充填した。蒸着用るつぼは、モリブデン製またはタングステン製の抵抗加熱用材料で作製されたものを用いた。
〈正孔輸送層の形成〉
真空度1×10−4Paまで減圧した後、化合物1の入った前記蒸着用るつぼに通電して加熱し、蒸着速度0.1nm/秒で第1電極上の図5(5d)の領域に蒸着し、30nmの正孔輸送層を設けた。
〈発光層の形成〉
次に、以下の手順で各発光層を設けた。
形成した正孔輸送層上に、化合物2が13質量%、化合物3が3.7質量%の濃度になるように、化合物2、化合物3及び化合物5を蒸着速度0.1nm/秒で図5(5d)の領域に共蒸着し、発光極大波長が622nm、厚さ10nmの緑赤色燐光発光層を形成した。
次いで、化合物4が10質量%になるように、化合物4及び化合物5を蒸着速度0.1nm/秒で図5(5d)の領域に共蒸着し、発光極大波長が471nm、厚さ15nmの青色燐光発光層を形成した。
〈正孔ブロック層の形成〉
さらに、形成した発光層上、図5(5d)の領域に、化合物6を膜厚5nmに蒸着して正孔阻止層を形成した。
〈電子輸送層の形成〉
引き続き、形成した正孔阻止層上図5(5d)の領域に、CsFを膜厚比で10%になるように化合物6と共蒸着し、厚さ45nmの電子輸送層を形成した。
〔第2電極の形成〕
〈カソード電極の形成〉
形成した電子輸送層の上に、Alを5×10−4Paの真空下にて図5(5e)の領域に蒸着し、厚さ100nmのカソード電極を形成した。
〈封止膜の形成〉
形成した電子輸送層の上に、ポリエチレンテレフタレートを基材とし、Alを厚さ300nmで蒸着した可撓性封止部材を使用した。接着剤を塗り、可撓性封止部材を図5(5f)の領域に貼合した後、熱処理で接着剤を硬化させて封止した。封止部材の外に出たITO及びAlをそれぞれアノード電極及びカソード電極の外部取り出し端子とし、有機EL素子−1を作製した。
有機EL素子−1の作製の際、第一導電層、第二導電層及び第三導電層を表1記載のように変えた以外は、有機EL素子−1と同様にして、有機EL素子−2〜30を作製した。
(EL素子評価)
得られた、各有機EL素子について、KEITHLEY製ソースメジャーユニット2400型を用いて、直流電圧を印加して1000cd/mで発光させた。
各基板5個作製した。基板1個につき2個の発光部があるので、計10個の発光部で評価した。
(駆動電圧)
発光した素子の平均値を各素子の駆動電圧とし、有機EL素子−3の駆動電圧に対する比率を求め、以下の指標で評価した。3以上が好ましく、4以上であることがより好ましい。
5:80%未満
4:80%以上90%未満
3:90%以上110%未満
2:110%以上130%未満
1:130%以上または発光しない
本発明の電極は、透明性が高くかつ導電性に優れることがわかる。さらに、本発明の電極を用いた有機EL素子は、電極の高透明性と高導電性から、駆動電圧を下げることができ、エネルギー効率に優れることがわかる。
10 有機電子素子
11 透明基板
12 第一導電層
13 第二導電層
14 第一電極
15 有機機能層
16 第二電極補助電極
17 取り出し電極
18 封止部材

Claims (6)

  1. 基板上に、パターン状に形成された金属または金属酸化物の細線からなる第一導電層と、該第一導電層を被覆してなり、かつ導電性ポリマーを含有する第二導電層とからなる透明電極において、該第一導電層の細線が、下記条件を満足することを特徴とする透明電極。
    線幅W:20〜200μm、
    高さH:0.2〜2.0μm、
    アスペクト比:0.001<H/W≦0.1、
    断面形状係数:0.6<S/(W・H)<0.9、
    但し、Sは導電層の断面積を表す。
  2. 前記第一導電層のパターンの高さが、0.5〜1.5μmであることを特徴とする請求項1記載の透明電極。
  3. 前記第一導電層が、銀粒子からなることを特徴とする請求項1または2記載の透明電極。
  4. 前記第二導電層が、下記ポリマー(A)を含むことを特徴とする請求項1〜3のいずれか1項記載の透明電極。

    (式中、X〜Xは、それぞれ独立に、水素原子またはメチル基を表し、R〜Rはそれぞれ独立に、炭素数5以下のアルキレン基を表す。l、m、nは構成率(mol%)を表し、50≦l+m+n≦100である。)
  5. 請求項1〜4のいずれか1項記載の透明電極を用いたことを特徴とする有機電子素子。
  6. 前記有機電子素子が、有機エレクトロルミネッセンス素子または有機太陽電池素子であることを特徴とする請求項5記載の有機電子素子。
JP2012509433A 2010-04-05 2011-03-25 透明電極及びそれを用いた有機電子素子 Active JP5673674B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012509433A JP5673674B2 (ja) 2010-04-05 2011-03-25 透明電極及びそれを用いた有機電子素子

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010086726 2010-04-05
JP2010086726 2010-04-05
PCT/JP2011/057317 WO2011125537A1 (ja) 2010-04-05 2011-03-25 透明電極及びそれを用いた有機電子素子
JP2012509433A JP5673674B2 (ja) 2010-04-05 2011-03-25 透明電極及びそれを用いた有機電子素子

Publications (2)

Publication Number Publication Date
JPWO2011125537A1 JPWO2011125537A1 (ja) 2013-07-08
JP5673674B2 true JP5673674B2 (ja) 2015-02-18

Family

ID=44762491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012509433A Active JP5673674B2 (ja) 2010-04-05 2011-03-25 透明電極及びそれを用いた有機電子素子

Country Status (4)

Country Link
US (2) US9005747B2 (ja)
EP (1) EP2557899B1 (ja)
JP (1) JP5673674B2 (ja)
WO (1) WO2011125537A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008150867A2 (en) 2007-05-29 2008-12-11 Innova Materials, Llc Surfaces having particles and related methods
KR101660813B1 (ko) * 2008-08-21 2016-10-10 티피케이 홀딩 컴퍼니 리미티드 개선된 표면, 코팅 및 관련 방법
JP5988974B2 (ja) 2010-08-07 2016-09-07 ティーピーケイ ホールディング カンパニー リミテッド 表面埋込添加物を有する素子構成要素および関連製造方法
EP2748827A4 (en) * 2011-08-24 2015-05-27 Innova Dynamics Inc TEXTURED TRANSPARENT CONDUCTORS AND METHODS OF MANUFACTURING THE SAME
JP5741366B2 (ja) * 2011-10-17 2015-07-01 コニカミノルタ株式会社 透明電極の製造方法
JP6287834B2 (ja) * 2012-05-31 2018-03-07 コニカミノルタ株式会社 透明電極、電子デバイス及び有機エレクトロルミネッセンス素子
JP5983173B2 (ja) * 2012-08-14 2016-08-31 コニカミノルタ株式会社 透明電極の製造方法および有機電子素子の製造方法
JP2014154213A (ja) * 2013-02-04 2014-08-25 Toshiba Corp 有機電界発光素子、照明装置及び照明システム
KR20150001528A (ko) * 2013-06-27 2015-01-06 삼성전자주식회사 수직형 유기 발광 트랜지스터 및 이를 구비한 유기 엘이디 조명장치
JP6563811B2 (ja) * 2013-08-22 2019-08-21 昭和電工株式会社 透明電極及びその製造方法
WO2015090395A1 (de) * 2013-12-19 2015-06-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Transparente nanodrahtelektrode mit funktionaler organischer schicht
WO2015111715A1 (ja) * 2014-01-24 2015-07-30 トッパン・フォームズ株式会社 配線板
US9793268B2 (en) 2014-01-24 2017-10-17 Taiwan Semiconductor Manufacturing Company, Ltd. Method and structure for gap filling improvement
JP6185109B2 (ja) * 2016-03-31 2017-08-23 パイオニア株式会社 有機エレクトロルミネッセンスパネル及びその製造方法
KR102612436B1 (ko) * 2016-10-24 2023-12-08 삼성전자주식회사 광전 소자, 이미지 센서 및 전자 장치
JP7063596B2 (ja) * 2017-12-14 2022-05-09 株式会社アルバック 透明電極シートの製造方法
CN113437236B (zh) * 2021-06-23 2023-09-01 合肥鑫晟光电科技有限公司 显示面板及其制备方法
JP2023180535A (ja) * 2022-06-09 2023-12-21 株式会社ジャパンディスプレイ 表示装置、導光板、および表示装置の製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997034447A1 (fr) * 1996-03-12 1997-09-18 Idemitsu Kosan Co., Ltd. Element electroluminescent organique et affichage electroluminescent organique
WO2000067531A1 (fr) * 1999-04-30 2000-11-09 Idemitsu Kosan Co., Ltd. Dispositif organique electroluminescent et procede de fabrication
JP2004504693A (ja) * 2000-06-26 2004-02-12 アグフア−ゲヴエルト,ナームローゼ・フエンノートシヤツプ 導電性パターンの作製のための材料及び方法
JP2006089554A (ja) * 2004-09-22 2006-04-06 Shin Etsu Polymer Co Ltd 導電性組成物およびその製造方法
JP2006093123A (ja) * 2004-09-21 2006-04-06 Samsung Sdi Co Ltd 発光素子用の基板、その製造方法、発光素子用の電極、及びこれを備えた発光素子
JP2008130449A (ja) * 2006-11-22 2008-06-05 Alps Electric Co Ltd 発光装置およびその製造方法
JP2009059666A (ja) * 2007-09-03 2009-03-19 Sumitomo Metal Mining Co Ltd 透明導電層付フィルムとフレキシブル機能性素子、およびそれらの製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100689229B1 (ko) * 2002-10-03 2007-03-02 가부시키가이샤후지쿠라 전극 기판, 광전변환 소자, 도전성 글래스 기판 및 그 제조방법, 및 색소증감 태양전지
CA2618794A1 (en) * 2005-08-12 2007-02-22 Cambrios Technologies Corporation Nanowires-based transparent conductors

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997034447A1 (fr) * 1996-03-12 1997-09-18 Idemitsu Kosan Co., Ltd. Element electroluminescent organique et affichage electroluminescent organique
WO2000067531A1 (fr) * 1999-04-30 2000-11-09 Idemitsu Kosan Co., Ltd. Dispositif organique electroluminescent et procede de fabrication
JP2004504693A (ja) * 2000-06-26 2004-02-12 アグフア−ゲヴエルト,ナームローゼ・フエンノートシヤツプ 導電性パターンの作製のための材料及び方法
JP2006093123A (ja) * 2004-09-21 2006-04-06 Samsung Sdi Co Ltd 発光素子用の基板、その製造方法、発光素子用の電極、及びこれを備えた発光素子
JP2006089554A (ja) * 2004-09-22 2006-04-06 Shin Etsu Polymer Co Ltd 導電性組成物およびその製造方法
JP2008130449A (ja) * 2006-11-22 2008-06-05 Alps Electric Co Ltd 発光装置およびその製造方法
JP2009059666A (ja) * 2007-09-03 2009-03-19 Sumitomo Metal Mining Co Ltd 透明導電層付フィルムとフレキシブル機能性素子、およびそれらの製造方法

Also Published As

Publication number Publication date
US20150189732A1 (en) 2015-07-02
US9402299B2 (en) 2016-07-26
JPWO2011125537A1 (ja) 2013-07-08
US9005747B2 (en) 2015-04-14
EP2557899A4 (en) 2015-10-21
US20130014980A1 (en) 2013-01-17
WO2011125537A1 (ja) 2011-10-13
EP2557899B1 (en) 2016-08-17
EP2557899A1 (en) 2013-02-13

Similar Documents

Publication Publication Date Title
JP5673674B2 (ja) 透明電極及びそれを用いた有機電子素子
JP5720671B2 (ja) 有機電子デバイスおよびその製造方法
JP5515789B2 (ja) 透明パターン電極、該電極の製造方法、該電極を用いた有機電子デバイスおよびその製造方法
JP5609307B2 (ja) 透明導電性支持体
WO2011052468A1 (ja) 有機電子デバイス
JP2012009240A (ja) 透明電極とその製造方法、及び透明電極を用いた有機電子素子
JPWO2012002113A1 (ja) 透明導電体、有機el素子及び有機光電変換素子
JP5673675B2 (ja) 透明電極の製造方法、透明電極および有機電子素子
JP5720680B2 (ja) 有機電子デバイス用電極
WO2012053520A1 (ja) 有機電子デバイス
JP5245128B2 (ja) 有機電子素子及びその製造方法
WO2011055663A1 (ja) 透明電極および有機電子デバイス
JP2011171214A (ja) 有機電子デバイス
JP2011243529A (ja) 透明導電性基板
JP5402447B2 (ja) 有機電子デバイスの製造方法
JP2012248383A (ja) 透明電極及びそれを用いた有機電子素子
JP6032271B2 (ja) 透明電極の製造方法および有機電子素子の製造方法
JP5741366B2 (ja) 透明電極の製造方法
JP5245127B2 (ja) 有機電子素子
JP5600964B2 (ja) 透明導電フィルム
JP2012138311A (ja) 透明導電膜基板および有機エレクトロルミネッセンス素子
JP2012022959A (ja) 透明電極の製造方法
JP2013171864A (ja) タンデム型有機光電変換素子およびこれを用いた太陽電池
JP2012079953A (ja) 有機太陽電池
JP2012256552A (ja) 透明電極および有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130819

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141215

R150 Certificate of patent or registration of utility model

Ref document number: 5673674

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250