KR102612436B1 - 광전 소자, 이미지 센서 및 전자 장치 - Google Patents

광전 소자, 이미지 센서 및 전자 장치 Download PDF

Info

Publication number
KR102612436B1
KR102612436B1 KR1020160138671A KR20160138671A KR102612436B1 KR 102612436 B1 KR102612436 B1 KR 102612436B1 KR 1020160138671 A KR1020160138671 A KR 1020160138671A KR 20160138671 A KR20160138671 A KR 20160138671A KR 102612436 B1 KR102612436 B1 KR 102612436B1
Authority
KR
South Korea
Prior art keywords
photoelectric
light
type semiconductor
visible light
conversion layer
Prior art date
Application number
KR1020160138671A
Other languages
English (en)
Other versions
KR20180044761A (ko
Inventor
윤성영
이계황
박경배
이광희
임동석
자비에 불리아드
진용완
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020160138671A priority Critical patent/KR102612436B1/ko
Priority to US15/478,580 priority patent/US10546897B2/en
Publication of KR20180044761A publication Critical patent/KR20180044761A/ko
Application granted granted Critical
Publication of KR102612436B1 publication Critical patent/KR102612436B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/32Organic image sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14623Optical shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14629Reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14685Process for coatings or optical elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/10Organic photovoltaic [PV] modules; Arrays of single organic PV cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/30Doping active layers, e.g. electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/32Stacked devices having two or more layers, each emitting at different wavelengths
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

서로 마주하는 제1 전극과 제2 전극, 상기 제1 전극과 상기 제2 전극 사이에 위치하고 380nm 이상 500nm 미만의 청색 파장 영역의 가시광, 500nm 내지 600nm의 녹색 파장 영역의 가시광 및 600nm 초과 700nm 이하의 적색 파장 영역의 가시광 중 어느 하나인 제1 가시광을 선택적으로 흡수하는 흡광물질을 포함하는 광전변환층, 그리고 상기 제1 전극과 상기 광전변환층 사이에 위치하고 상기 제1 가시광을 선택적으로 반사하는 복수의 나노구조체를 포함하는 광전 소자, 이를 포함하는 이미지 센서 및 전자 장치에 관한 것이다.

Description

광전 소자, 이미지 센서 및 전자 장치{PHOTOELECTRIC DEVICE AND IMAGE SENSOR AND ELECTRONIC DEVICE}
광전 소자, 이미지 센서 및 전자 장치에 관한 것이다.
광전 소자는 빛과 전기 신호를 변환시키는 소자로, 광 다이오드 및 광 트랜지스터 등을 포함하며, 이미지 센서, 태양 전지, 유기발광소자 등에 적용될 수 있다.
광 다이오드를 포함하는 이미지 센서는 날이 갈수록 해상도가 높아지고 있으며, 이에 따라 화소 크기가 작아지고 있다. 현재 주로 사용하는 실리콘 광 다이오드의 경우 화소의 크기가 작아지면서 흡수 면적이 줄어들기 때문에 감도 저하가 발생할 수 있다. 이에 따라 실리콘을 대체할 수 있는 유기 물질이 연구되고 있다.
유기 물질은 흡광 계수가 크고 분자 구조에 따라 특정 파장 영역의 빛을 선택적으로 흡수할 수 있으므로, 광 다이오드와 색 필터를 동시에 대체할 수 있어서 감도 개선 및 고집적에 유리하다.
그러나 유기 물질은 높은 결합 에너지(binding energy)와 재결합(recombination) 거동으로 인해 실리콘과 다를 수 있고, 이에 따라 유기 물질을 포함하는 유기 광전 소자는 실리콘 기반의 광전 소자에 비해 상대적으로 낮은 특성을 보일 수 있다.
일 구현예는 흡광 특성 및 파장 선택성을 높일 수 있는 광전 소자를 제공한다.
다른 구현예는 상기 광전 소자를 포함하는 이미지 센서를 제공한다.
또 다른 구현예는 상기 이미지 센서를 포함하는 전자 장치를 제공한다.
일 구현예에 따르면, 서로 마주하는 제1 전극과 제2 전극, 상기 제1 전극과 상기 제2 전극 사이에 위치하고 380nm 이상 500nm 미만의 청색 파장 영역의 가시광, 500nm 내지 600nm의 녹색 파장 영역의 가시광 및 600nm 초과 700nm 이하의 적색 파장 영역의 가시광 중 어느 하나인 제1 가시광을 선택적으로 흡수하는 흡광물질을 포함하는 광전변환층, 그리고 상기 제1 전극과 상기 광전변환층 사이에 위치하고 상기 제1 가시광을 선택적으로 반사하는 복수의 나노구조체를 포함하는 광전 소자를 제공한다.
상기 복수의 나노 구조체는 약 2nm 이상 6nm 미만의 반경을 가지는 반구(hemisphere) 또는 반타원(hemiellipse) 모양을 가질 수 있다.
상기 복수의 나노 구조체는 반사형 금속, 반사형 반금속, 반사형 산화물, 반사형 질화물, 반사형 유기물 또는 이들의 조합을 포함할 수 있다.
상기 복수의 나노구조체는 상기 제1 전극 위에 위치되어 있을 수 있고, 상기 복수의 나노구조체는 상기 제1 전극의 총 면적에 대하여 약 20% 내지 90%를 덮고 있을 수 있다.
상기 제1 가시광은 약 500nm 내지 600nm의 녹색 파장 영역의 가시광일 수 있다.
상기 복수의 나노구조체는 약 380nm 이상 500nm 미만의 청색 파장 영역의 가시광 및 약 600nm 초과 700nm 이하의 적색 파장 영역의 가시광을 투과시킬 수 있다.
상기 광전변환층은 pn 접합을 형성하는 p형 반도체와 n형 반도체를 포함할 수 있고, 상기 p형 반도체와 상기 n형 반도체 중 적어도 하나는 상기 제1 가시광을 선택적으로 흡수하는 흡광물질일 수 있다.
상기 p형 반도체는 상기 제1 가시광을 선택적으로 흡수하는 흡광 물질일 수 있다.
상기 n형 반도체는 플러렌 또는 플러렌 유도체일 수 있다.
상기 광전변환층의 n형 반도체에 대한 p형 반도체의 조성비(p/n)는 약 1.0 초과일 수 있다.
상기 광전변환층의 n형 반도체에 대한 p형 반도체의 조성비(p/n)는 약 1.5 이상일 수 있다.
상기 광전변환층의 n형 반도체에 대한 p형 반도체의 조성비(p/n)는 약 2.0 내지 3.0 일 수 있다.
상기 광전변환층은 약 100nm 이하의 두께를 가질 수 있다.
상기 광전변환층은 약 20nm 내지 80nm 두께를 가질 수 있다.
상기 광전 소자는 상기 광전변환층과 상기 복수의 나노구조체 사이에 위치하는 보조층을 더 포함할 수 있다.
다른 구현예에 따르면, 상기 광전 소자를 포함하는 이미지 센서를 제공한다.
또 다른 구현예에 따르면, 상기 이미지 센서를 포함하는 전자 장치를 제공한다.
흡광 특성 및 파장 선택성을 높일 수 있는 광전 소자를 제공한다.
도 1은 일 구현예에 따른 광전 소자를 보여주는 단면도이고,
도 2는 도 1의 광전 소자에서 나노구조체의 배열을 예시적으로 보여주는 평면도이고,
도 3은 도 1의 광전 소자에서 반구 모양의 나노구조체를 도시한 개략도이고,
도 4는 도 1의 광전 소자에서 반타원 모양의 나노구조체를 도시한 개략도이고,
도 5는 일 구현예에 따른 CMOS 이미지 센서를 개략적으로 도시한 평면도이고,
도 6은 도 5의 CMOS 이미지 센서의 일 예를 보여주는 단면도이고,
도 7은 CMOS 이미지 센서의 다른 예를 보여주는 단면도이고,
도 8은 또 다른 구현예에 따른 CMOS 이미지 센서를 개략적으로 도시한 평면도이고,
도 9는 도 8의 CMOS 이미지 센서의 단면도이고,
도 10은 실시예 1에 따른 광전 소자에서 은(Ag) 나노구조체의 투과전자현미경(transmission electronmicroscopy, TEM) 사진이고,
도 11은 실시예 1과 비교예 1에 따른 광전 소자의 파장에 따른 흡광도를 보여주는 그래프이고,
도 12는 실시예 2 내지 7에 따른 광전 소자의 파장에 따른 최대흡수파장(λmax)에서의 흡광도를 보여주는 그래프이고,
도 13은 실시예 2 내지 7에 따른 광전 소자의 은(Ag) 나노구조체 및 실시예 8 내지 14에 따른 광전 소자의 금(Au) 나노구조체의 반경에 따른 최대흡수파장(λmax)에서의 흡광도를 보여주는 그래프이고,
도 14는 실시예 15 내지 18에 따른 광전 소자의 은(Ag) 나노구조체의 반경에 따른 흡광도를 보여주는 그래프이다.
이하, 구현예들에 대하여 본 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 권리 범위는 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 구현예에 한정되지 않는다.
도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께를 확대하여 나타내었다. 명세서 전체를 통하여 유사한 부분에 대해서는 동일한 도면 부호를 붙였다. 층, 막, 영역, 판 등의 부분이 다른 부분 "위에" 있다고 할 때, 이는 다른 부분 "바로 위에" 있는 경우 뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 어떤 부분이 다른 부분 "바로 위에" 있다고 할 때에는 중간에 다른 부분이 없는 것을 뜻한다.
도면에서 본 구현예를 명확하게 설명하기 위하여 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성 요소에 대해서는 동일한 도면 부호를 사용하였다.
이하에서 ‘조합’이란 둘 이상의 혼합 및 둘 이상의 적층 구조를 포함한다.
이하 일 구현예에 따른 광전 소자에 대하여 도면을 참고하여 설명한다.
도 1은 일 구현예에 따른 광전 소자를 보여주는 단면도이다.
도 1을 참고하면, 일 구현예에 따른 광전 소자(100)는 서로 마주하는 제1 전극(10)과 제2 전극(20), 광전변환층(30), 복수의 나노구조체(40) 및 보조층(45)을 포함한다.
기판(도시하지 않음)은 제1 전극(10) 측에 배치될 수도 있고 제2 전극(20) 측에 배치될 수 있다. 기판은 예컨대 유리와 같은 무기 물질, 폴리카보네이트, 폴리메틸메타크릴레이트, 폴리에틸렌테레프탈레이트, 폴리에틸렌나프탈레이트, 폴리아미드, 폴리에테르술폰 또는 이들의 조합과 같은 유기 물질 또는 실리콘웨이퍼 등으로 만들어질 수 있다.
제1 전극(10)과 제2 전극(20) 중 어느 하나는 애노드(anode)이고 다른 하나는 캐소드(cathode)이다. 예컨대 제1 전극(10)은 애노드이고 제2 전극(20)은 캐소드일 수 있다.
제1 전극(10)과 제2 전극(20) 중 적어도 하나는 투광 전극일 수 있고, 투광 전극은 예컨대 인듐 주석 산화물(indium tin oxide, ITO), 인듐 아연 산화물(indium zinc oxide, IZO), 아연 산화물(ZnO), 주석 산화물(SnO), 알루미늄 주석 산화물(AlTO) 및 불소 도핑된 주석 산화물(FTO)과 같은 도전성 산화물, 또는 얇은 두께의 단일층 또는 복수층의 금속 박막으로 만들어질 수 있다. 제1 전극(10)과 제2 전극(20) 중 하나가 불투광 전극인 경우 예컨대 알루미늄(Al), 은(Ag) 또는 금(Au)과 같은 불투명 도전체로 만들어질 수 있다. 일 예로, 제1 전극(10)과 제2 전극(20)은 모두 투광 전극일 수 있다. 일 예로, 제2 전극(20)은 빛을 받는 측에 위치하는 수광 전극(light receiving electrode)일 수 있다.
광전변환층(30)은 p형 반도체와 n형 반도체가 pn 접합(pn junction)을 형성하는 층으로, 외부에서 빛을 받아 엑시톤(exciton)을 생성한 후 생성된 엑시톤을 정공과 전자로 분리할 수 있다.
광전변환층(30)은 적어도 하나의 흡광 물질을 포함할 수 있으며, 상기 흡광물질 중 하나는 예컨대 가시광선 파장 영역 중 적어도 일부 파장 영역의 광을 흡수할 수 있다. 예컨대 상기 흡광 물질 중 하나는 약 380nm 이상 500nm 미만의 청색 파장 영역의 가시광, 약 500nm 내지 600nm의 녹색 파장 영역의 가시광 및 약 600nm 초과 700nm 이하의 적색 파장 영역의 가시광 중 어느 하나(이하, "제1 가시광"이라 한다)를 선택적으로 흡수할 수 있다.
광전변환층(30)에 포함된 p형 반도체와 n형 반도체는 각각 흡광 물질일 수 있으며, 예컨대 가시광선 영역의 광을 흡수하는 흡광 물질일 수 있다. 광전변환층(30)에 포함된 p형 반도체와 n형 반도체 중 적어도 하나는 유기물일 수 있다.
일 예로, 광전변환층(30)에 포함된 p형 반도체와 n형 반도체 중 적어도 하나는 상기 제1 가시광을 선택적으로 흡수하는 흡광 물질일 수 있다. 일 예로, 광전변환층(30)에 포함된 p형 반도체와 n형 반도체 중 어느 하나는 상기 제1 가시광을 선택적으로 흡수하는 흡광 물질일 수 있다. 일 예로, 광전변환층(30)에 포함된 p형 반도체는 상기 제1 가시광을 선택적으로 흡수하는 흡광 물질일 수 있고 n형 반도체는 상기 제1 가시광과 상기 제1 가시광 이외의 가시광(이하 “제2 가시광”이라 한다)을 함께 흡수하는 흡광 물질일 수 있다. 일 예로, 광전변환층(30)에 포함된 p형 반도체는 상기 제1 가시광을 선택적으로 흡수하는 흡광 물질일 수 있고 n형 반도체는 플러렌 또는 플러렌 유도체일 수 있다.
일 예로, 광전변환층(30)에 포함된 p형 반도체와 n형 반도체 중 어느 하나는 약 520nm 내지 580nm에서 최대흡수파장(λmax)을 가지는 녹색 파장 영역의 가시광을 선택적으로 흡수하는 흡광 물질일 수 있고, p형 반도체와 n형 반도체 중 다른 하나는 약 500nm 내지 600nm의 녹색 파장 영역의 가시광과 약 380nm 이상 500nm 미만의 청색 파장 영역의 가시광을 함께 흡수하는 흡광 물질일 수 있다. 일 예로, p형 반도체와 n형 반도체 중 어느 하나는 약 520nm 내지 580nm에서 최대흡수파장(λmax)을 가지는 녹색 파장 영역의 가시광을 선택적으로 흡수하는 흡광 물질일 수 있고, p형 반도체와 n형 반도체 중 다른 하나는 플러렌 또는 플러렌 유도체일 수 있다. 일 예로, 광전변환층(30)에 포함된 p형 반도체는 약 520nm 내지 580nm에서 최대흡수파장(λmax)을 가지는 녹색 파장 영역의 가시광을 선택적으로 흡수하는 흡광 물질일 수 있고, n형 반도체는 플러렌 또는 플러렌 유도체일 수 있다.
일 예로, 광전변환층(30)에 포함된 p형 반도체와 n형 반도체 중 어느 하나는 약 380nm 이상 500nm 미만에서 최대흡수파장(λmax)을 가지는 청색 파장 영역의 가시광을 선택적으로 흡수하는 흡광 물질일 수 있고, p형 반도체와 n형 반도체 중 다른 하나는 약 380nm 이상 500nm 미만의 청색 파장 영역의 가시광과 약 500nm 내지 600nm 의 녹색 파장 영역의 가시광을 함께 흡수하는 흡광 물질일 수 있다. 일 예로, p형 반도체와 n형 반도체 중 어느 하나는 약 380nm 이상 500nm 미만에서 최대흡수파장(λmax)을 가지는 청색 파장 영역의 가시광을 선택적으로 흡수하는 흡광 물질일 수 있고, p형 반도체와 n형 반도체 중 다른 하나는 플러렌 또는 플러렌 유도체일 수 있다. 일 예로, 광전변환층(30)에 포함된 p형 반도체는 약 380nm 이상 500nm에서 최대흡수파장(λmax)을 가지는 청색 파장 영역의 가시광을 선택적으로 흡수하는 흡광 물질일 수 있고, n형 반도체는 플러렌 또는 플러렌 유도체일 수 있다.
일 예로, 광전변환층(30)에 포함된 p형 반도체와 n형 반도체 중 어느 하나는 약 630nm 내지 700nm에서 최대흡수파장(λmax)을 가지는 적색 파장 영역의 가시광을 선택적으로 흡수하는 흡광 물질일 수 있고, p형 반도체와 n형 반도체 중 다른 하나는 약 380nm 이상 500nm 미만의 청색 파장 영역의 가시광과 약 500nm 내지 600nm의 녹색 파장 영역의 가시광을 함께 흡수하는 흡광 물질일 수 있다. 일 예로, p형 반도체와 n형 반도체 중 어느 하나는 약 630nm 내지 700nm에서 최대흡수파장(λmax)을 가지는 적색 파장 영역의 가시광을 선택적으로 흡수하는 흡광 물질일 수 있고, p형 반도체와 n형 반도체 중 다른 하나는 플러렌 또는 플러렌 유도체일 수 있다. 일 예로, 광전변환층(30)에 포함된 p형 반도체는 약 630nm 내지 700nm에서 최대흡수파장(λmax)을 가지는 적색 파장 영역의 가시광을 선택적으로 흡수하는 흡광 물질일 수 있고, n형 반도체는 플러렌 또는 플러렌 유도체일 수 있다
일 예로, p형 반도체는 전자 공여 모이어티(electron donating moiety), 파이 공액 연결기(pi-conjugation linker) 및 전자 수용 모이어티(electron accepting moiety)를 포함하는 코어 구조를 가질 수 있다. 여기서 전자 공여 모이어티는 빛을 받을 때 전자를 공여하여 정공을 형성할 수 있는 모이어티이고 전자 수용 모이어티는 빛을 받을 때 전자를 받을 수 있는 모이어티이다.
광전변환층(30)은 p형 반도체와 n형 반도체가 벌크 이종접합(bulk heterojunction) 형태로 혼합된 진성층(intrinsic layer, I층)을 포함할 수 있다. 예컨대, 광전변환층(30)의 p형 반도체와 n형 반도체는 광전변환층(30)의 두께 방향을 따라 동일한 조성비로 균일하게 혼합되어 있을 수 있다. 예컨대, 광전변환층(30)의 p형 반도체와 n형 반도체는 광전변환층(30)의 두께 방향을 따라 다른 조성비를 가지는 부분을 포함할 수 있다.
일 예로, 광전변환층(30)에 포함된 p형 반도체가 상기 제1 가시광을 선택적으로 흡수하는 흡광 물질이고 n형 반도체가 예컨대 플러렌 또는 플러렌 유도체와 같이 상기 제1 가시광과 상기 제2 가시광을 흡수하는 넓은 파장 범위의 광을 흡수하는 흡광 물질인 경우, 광전변환층(30)은 상대적으로 p형 반도체를 많이 포함할 수 있다. 이와 같이 상대적으로 p형 반도체를 많이 포함함으로써 상기 제1 가시광에 대한 흡광도를 높일 수 있고 이에 따라 상기 제1 가시광에 대한 외부양자효율(EQE)을 높일 수 있다. 이에 따라 광전 소자(100)의 상기 제1 가시광에 대한 파장 선택성을 높일 수 있다.
예컨대 p형 반도체가 520nm 내지 580nm에서 최대흡수파장(λmax)을 가지는 녹색 파장 영역의 광을 선택적으로 흡수하는 흡광 물질이고 n형 반도체가 예컨대 플러렌 또는 플러렌 유도체인 경우, 광전변환층(30)은 상대적으로 p형 반도체를 많이 포함함으로써 녹색 파장 영역에 대한 광의 흡수를 높일 수 있고 이에 따라 녹색 파장 영역에 대한 외부양자효율(EQE)을 높일 수 있다. 이에 따라 광전 소자(100)의 녹색 파장 선택성을 높일 수 있다.
일 예로, 광전변환층(30)은 p형 반도체가 n형 반도체보다 많이 포함된 p형 리치층(p-type rich layer)일 수 있으며, 예컨대 광전변환층(30)의 n형 반도체에 대한 p형 반도체의 조성비(p/n)는 약 1.0 초과일 수 있다. 여기서 p형 반도체와 n형 반도체의 조성비는 n형 반도체의 부피(volume)에 대한 p형 반도체의 부피로 정의될 수 있으며, p/n으로 표시될 수 있다. 예컨대 광전변환층(30)의 n형 반도체에 대한 p형 반도체의 조성비(p/n)는 약 1.0 초과 10.0 이하일 수 있으며, 예컨대 약 1.2 내지 5.0일 수 있으며, 예컨대 약 1.5 이상일 수 있으며, 예컨대 약 1.5 내지 3.5일 수 있으며, 예컨대 약 2.0 내지 3.0일 수 있다.
광전변환층(30)은 예컨대 약 100nm 이하의 두께를 가질 수 있다. 예컨대 광전변환층(30)은 약 5nm 내지 100nm의 두께를 가질 수 있고, 상기 범위 내에서 약 10nm 내지 90nm의 두께를 가질 수 있고, 상기 범위 내에서 약 20nm 내지 80nm의 두께를 가질 수 있다. 상기 범위의 비교적 얇은 두께를 가짐으로써 p형 리치층인 광전변환층(30) 사용시 광전변환층(30)에 전계가 효과적으로 적용되어 광전 소자(100)의 효율을 높일 수 있다.
복수의 나노구조체(40)는 제1 전극(10)과 광전변환층(30) 사이에 위치하여 광전변환층(30)을 통과한 광의 일부를 광전변환층(30)으로 반사시킬 수 있다. 이에 따라 광전변환층(30)의 흡광도를 높일 수 있다.
복수의 나노구조체(40)는 광전변환층(30)에서 주로 흡수하는 파장 영역과 동일한 파장 영역의 광을 선택적으로 반사시키고 나머지 파장 영역의 광은 투과시킬 수 있다. 즉, 복수의 나노구조체(40)는 상기 제1 가시광을 선택적으로 반사시키고 상기 제2 가시광을 투과시킬 수 있다. 일 예로, 광전변환층(30)은 전술한 바와 같이 녹색 파장 영역의 가시광, 청색 파장 영역의 가시광 및 적색 파장 영역의 가시광 중 일부를 선택적으로 흡수할 수 있으며, 복수의 나노구조체(40)는 녹색 파장 영역의 가시광, 청색 파장 영역의 가시광 및 적색 파장 영역의 가시광 중 일부를 선택적으로 반사시킬 수 있다.
일 예로, 광전변환층(30)은 약 520nm 내지 580nm에서 최대흡수파장(λmax)을 가지는 녹색 파장 영역의 가시광을 선택적으로 주로 흡수할 수 있고, 복수의 나노구조체(40)는 약 520nm 내지 580nm에서 최대흡수파장(λmax)을 가지는 녹색 파장 영역의 가시광을 선택적으로 주로 반사할 수 있다. 복수의 나노구조체(40)는 녹색 파장 영역의 가시광을 제외한 청색 파장 영역의 가시광 및 적색 파장 영역의 가시광은 그대로 투과시킬 수 있다.
일 예로, 광전변환층(30)은 약 380nm 이상 500nm 미만에서 최대흡수파장(λmax)을 가지는 청색 파장 영역의 가시광을 선택적으로 주로 흡수할 수 있고, 복수의 나노구조체(40)는 약 380nm 이상 500nm 미만에서 최대흡수파장(λmax)을 가지는 청색 파장 영역의 가시광을 선택적으로 주로 반사할 수 있다. 복수의 나노구조체(40)는 청색 파장 영역의 가시광을 제외한 녹색 파장 영역의 가시광 및 적색 파장 영역의 가시광은 그대로 투과시킬 수 있다.
일 예로, 광전변환층(30)은 약 630nm 내지 700nm에서 최대흡수파장(λmax)을 가지는 적색 파장 영역의 가시광을 선택적으로 주로 흡수할 수 있고, 복수의 나노구조체(40)는 약 630nm 내지 700nm에서 최대흡수파장(λmax)을 가지는 적색 파장 영역의 가시광을 선택적으로 주로 반사할 수 있다. 복수의 나노구조체(40)는 적색 파장 영역의 가시광을 제외한 청색 파장 영역의 가시광 및 녹색 파장 영역의 가시광은 그대로 투과시킬 수 있다.
이에 따라 광전변환층(30)에서 흡수되지 못한 소정 파장 영역의 광이 복수의 나노구조체(40)에 의해 반사되어 광전변환층(30)에 재흡수됨으로써 광전변환층(30)의 흡광도를 높일 수 있다.
복수의 나노구조체(40)는 소정 파장 영역의 광을 선택적으로 반사하고 선택적으로 투과하는 구조이면 특별히 한정되지 않으며, 예컨대 반구(hemisphere) 또는 반타원(hemiellipse) 모양을 가질 수 있다.
도 2는 도 1의 광전 소자에서 나노구조체의 배열을 예시적으로 보여주는 평면도이고, 도 3은 도 1의 광전 소자에서 반구 모양의 나노구조체를 도시한 개략도이고, 도 4는 도 1의 광전 소자에서 반타원 모양의 나노구조체를 도시한 개략도이다.
도 2를 참고하면, 복수의 나노 구조체(40)는 제1 전극(10) 위에 직접 형성되거나 다른 층을 개재하여 형성될 수 있으며, 예컨대 제1 전극(10) 위에 직접 형성될 수 있다. 일 예로, 복수의 나노구조체(40)는 제1 전극(10) 위에 행 및/또는 열을 따라 배열되어 있거나 또는 랜덤하게 배열되어 있을 수 있다. 각 나노구조체(40)는 인접한 나노구조체(40)와 소정 간격을 두고 분리되어 있으며, 이에 따라 나노구조체(40)는 제1 전극(10)의 전면(whole surface)을 덮고 있지 않으며 제1 전극(10)의 일부를 덮고 있을 수 있다. 예컨대 복수의 나노 구조체(40)는 제1 전극(10)의 총 면적에 대하여 약 20% 내지 90%를 덮고 있을 수 있다. 상기 범위 내에서 예컨대 약 30% 내지 85%를 덮고 있을 수 있으며, 상기 범위 내에서 예컨대 약 30% 내지 80%를 덮고 있을 수 있으며, 상기 범위 내에서 예컨대 약 30% 내지 70%를 덮고 있을 수 있다. 상기 범위의 커버리지(coverage)를 가짐으로써 전술한 소정 파장 영역의 광을 효과적으로 반사시킬 수 있다.
도 3을 참고하면, 나노구조체(40)는 반구 모양을 가질 수 있다. 반구 모양의 나노구조체(40)는 나노 수준의 반경(radius, r)을 가질 수 있으며, 예컨대 약 2nm 이상 6nm 미만의 반경을 가질 수 있다. 상기 범위의 반경을 가짐으로써 소정 파장 영역의 광을 상부 측, 즉 광전변환층(30) 측으로 선택적으로 반사시킬 수 있다. 상기 범위 내에서 예컨대 약 2nm 내지 5.5nm의 반경을 가질 수 있고, 상기 범위 내에서 예컨대 약 2nm 내지 5nm의 반경을 가질 수 있고, 상기 범위 내에서 예컨대 약 2nm 내지 4.5nm의 반경을 가질 수 있고, 상기 범위 내에서 예컨대 약 2nm 내지 4nm의 반경을 가질 수 있다.
도 4를 참고하면, 나노구조체(40)는 반타원 모양을 가질 수 있다. 반타원 모양의 나노구조체(40)는 나노 수준의 반경(r)을 가질 수 있으며, 예컨대 약 2nm 이상 6nm 미만의 반경을 가질 수 있다. 상기 범위 내에서 예컨대 약 2nm 내지 5.5nm의 반경을 가질 수 있고, 상기 범위 내에서 예컨대 약 2nm 내지 5nm의 반경을 가질 수 있고, 상기 범위 내에서 예컨대 약 2nm 내지 4.5nm의 반경을 가질 수 있고, 상기 범위 내에서 예컨대 약 2nm 내지 4nm의 반경을 가질 수 있다. 반타원 모양의 나노구조체(40)의 경우, 반경(r)은 중심점으로부터 가장 긴 부분의 지름, 즉 장경의 반(half)일 수 있다. 반타원 모양의 나노구조체(40)는 반경 외에, 중심점으로부터 가장 짧은 부분의 지름, 즉 단경의 반(half)인 두께(h)를 가질 수 있으며, 두께(h)는 약 1nm 내지 3nm 일 수 있다.
복수의 나노 구조체(40)는 빛을 반사시킬 수 있는 물질, 즉 반사형 물질을 포함할 수 있으며, 예컨대 반사형 금속, 반사형 반금속, 반사형 산화물, 반사형 질화물, 반사형 유기물 또는 이들의 조합을 포함할 수 있다. 예컨대, 복수의 나노 구조체(40)는 은(Ag), 금(Au), 알루미늄(Al), 이들의 합금 또는 이들의 조합일 수 있으나, 이에 한정되는 것은 아니다.
복수의 나노 구조체(40)는 다양한 방법으로 구현될 수 있다. 예컨대 제1 전극(10) 위에 약 10nm 이하의 초박막 반사층을 증착한 후 약 80℃ 내지 200℃의 온도에서 열처리하여 나노구조체를 형성하거나, 약 10nm 이하의 초박막 반사층을 증착한 후 마스크(mask)를 사용하여 나노구조체를 형성하거나, 임프린팅(imprinting)으로 나노구조체를 형성하는 방법 등이 있으나, 이에 한정되는 것은 아니다.
보조층(45)은 예컨대 전하 보조층일 수 있으며, 복수의 나노 구조체(40)를 덮고 있을 수 있다.
보조층(45)은 예컨대 광전변환층(30)과 제1 전극(10) 사이에서 분리된 정공과 전자의 이동을 용이하게 할 수 있으며, 예컨대 정공의 주입을 용이하게 하는 정공 주입층(hole injecting layer, HIL), 정공의 수송을 용이하게 하는 정공 수송층(hole transporting layer, HTL), 전자의 이동을 저지하는 전자 차단층(electron blocking layer, EBL), 전자의 주입을 용이하게 하는 전자 주입층(electron injecting layer, EIL), 전자의 수송을 용이하게 하는 전자 수송층(electron transporting layer, ETL) 및 정공의 이동을 저지하는 정공 차단층(hole blocking layerm HBL)에서 선택된 적어도 하나일 수 있으나, 이에 한정되는 것은 아니다.
보조층(45)은 예컨대 유기물, 무기물 또는 유무기물을 포함할 수 있다. 상기 유기물은 정공 또는 전자 특성을 가지는 유기 화합물일 수 있고, 상기 무기물은 예컨대 몰리브덴 산화물, 텅스텐 산화물, 니켈 산화물과 같은 금속 산화물일 수 있다.
제2 전극(20)과 광전변환층(30) 사이에 보조층(도시하지 않음)이 형성되어 있을 수 있다. 보조층 또한 정공 주입층, 정공 수송층, 전자 차단층, 전자 주입층, 전자 수송층 및/또는 정공 차단층일 수 있으나, 이에 한정되는 것은 아니다.
제2 전극(20)의 외측에는 반사방지층(도시하지 않음)을 더 포함할 수 있다. 반사방지층은 광이 입사되는 측에 배치되어 입사 광의 반사도를 낮춤으로써 광 흡수도를 더욱 개선할 수 있다.
반사방지층은 예컨대 약 1.6 내지 2.5의 굴절률을 가지는 물질을 포함할 수 있으며, 예컨대 상기 범위의 굴절률을 가지는 금속 산화물, 금속 황화물 및 유기물 중 적어도 하나를 포함할 수 있다. 반사방지층은 예컨대 알루미늄 함유 산화물, 몰리브덴 함유 산화물, 텅스텐 함유 산화물, 바나듐 함유 산화물, 레늄 함유 산화물, 니오븀 함유 산화물, 탄탈륨 함유 산화물, 티타늄 함유 산화물, 니켈 함유 산화물, 구리 함유 산화물, 코발트 함유 산화물, 망간 함유 산화물, 크롬 함유 산화물, 텔러륨 함유 산화물 또는 이들의 조합과 같은 금속 산화물; 아연설파이드와 같은 금속 황화물; 또는 아민 유도체와 같은 유기물을 포함할 수 있으나, 이에 한정되는 것은 아니다.
광전 소자(100)는 제2 전극(20) 측으로부터 입사된 빛 중 일부가 광전변환층(30)에서 흡수되고 복수의 나노구조체(40)에 의해 반사됨으로써 광전변환층(30)의 내부에서 엑시톤을 생성할 수 있다. 엑시톤은 광전변환층(30)에서 정공과 전자로 분리되고, 분리된 정공은 제1 전극(10)과 제2 전극(20) 중 하나인 애노드 측으로 이동하고 분리된 전자는 제1 전극(10)과 제2 전극(20) 중 다른 하나인 캐소드 측으로 이동하여 전류가 흐를 수 있게 된다.
광전 소자(100)는 태양 전지, 이미지 센서, 광 검출기, 광 센서 및 유기발광다이오드 등에 적용될 수 있으나, 이에 한정되는 것은 아니다.
상기 광전 소자는 예컨대 이미지 센서에 적용될 수 있다.
이하 상기 광전 소자를 적용한 이미지 센서의 일 예에 대하여 도면을 참고하여 설명한다. 여기서는 이미지 센서의 일 예로 CMOS 이미지 센서에 대하여 설명한다.
도 5는 일 구현예에 따른 CMOS 이미지 센서를 개략적으로 도시한 평면도이고, 도 6은 도 5의 CMOS 이미지 센서의 일 예를 보여주는 단면도이다.
도 5 및 도 6을 참고하면, 일 구현예에 따른 CMOS 이미지 센서(300)는 광 감지 소자(50a, 50b), 전송 트랜지스터(도시하지 않음) 및 전하 저장소(55)가 집적되어 있는 반도체 기판(110), 하부 절연층(60), 색 필터 층(70), 상부 절연층(80) 및 광전 소자(100)를 포함한다.
반도체 기판(110)은 실리콘 기판일 수 있으며, 광 감지 소자(50a, 50b), 전송 트랜지스터(도시하지 않음) 및 전하 저장소(55)가 집적되어 있다. 광 감지 소자(50a, 50b)는 광 다이오드(photodiode)일 수 있다.
광 감지 소자(50a, 50b), 전송 트랜지스터 및/또는 전하 저장소(55)는 각 화소마다 집적되어 있을 수 있으며, 일 예로 광 감지 소자(50a, 50b)는 청색 화소 및 적색 화소에 각각 포함될 수 있고 전하 저장소(55)는 녹색 화소에 포함될 수 있다.
광 감지 소자(50a, 50b)는 빛을 센싱하고 센싱된 정보는 전송 트랜지스터에 의해 전달될 수 있고, 전하 저장소(55)는 후술하는 광전 소자(100)와 전기적으로 연결되어 있고 전하 저장소(55)의 정보는 전송 트랜지스터에 의해 전달될 수 있다.
반도체 기판(110) 위에는 또한 금속 배선(도시하지 않음) 및 패드(도시하지 않음)가 형성되어 있다. 금속 배선 및 패드는 신호 지연을 줄이기 위하여 낮은 비저항을 가지는 금속, 예컨대 알루미늄(Al), 구리(Cu), 은(Ag) 및 이들의 합금으로 만들어질 수 있으나, 이에 한정되는 것은 아니다. 그러나 상기 구조에 한정되지 않고, 금속 배선 및 패드가 광 감지 소자(50a, 50b)의 하부에 위치할 수도 있다.
금속 배선 및 패드 위에는 하부 절연층(60)이 형성되어 있다. 하부 절연층(60)은 산화규소 및/또는 질화규소와 같은 무기 절연 물질 또는 SiC, SiCOH, SiCO 및 SiOF와 같은 저유전율(low K) 물질로 만들어질 수 있다. 하부 절연층(60)은 전하 저장소(55)를 드러내는 트렌치를 가진다. 트렌치는 충전재로 채워져 있을 수 있다.
하부 절연막(60) 위에는 색 필터 층(70)이 형성되어 있다. 색 필터 층(70)은 청색 화소에 형성되어 있는 청색 필터(70a)와 적색 화소에 형성되어 있는 적색 필터(70b)를 포함한다. 본 구현예에서는 녹색 필터를 구비하지 않은 예를 설명하지만, 경우에 따라 녹색 필터를 구비할 수도 있다.
색 필터 층(70) 위에는 상부 절연층(80)이 형성되어 있다. 상부 절연층(80)은 색 필터 층(70)에 의한 단차를 제거하고 평탄화한다. 상부 절연층(80) 및 하부 절연층(60)은 패드를 드러내는 접촉구(도시하지 않음)와 녹색 화소의 전하 저장소(55)를 드러내는 관통구(85)를 가진다.
상부 절연층(80) 위에는 전술한 광전 소자(100)가 형성되어 있다. 광전 소자(100)는 전술한 바와 같이 제1 전극(10), 복수의 나노구조체(40), 보조층(45), 광전변환층(30) 및 제2 전극(20)을 포함한다.
제1 전극(10)과 제2 전극(20)는 모두 투명 전극일 수 있으며, 광전변환층(30), 복수의 나노구조체(40) 및 보조층(45)은 전술한 바와 같다. 광전변환층(30)은 예컨대 녹색 파장 영역의 광을 선택적으로 흡수할 수 있으며 녹색 화소의 색 필터를 대체할 수 있다. 복수의 나노구조체(40)는 녹색 파장 영역의 광을 광전변환층(30)으로 선택적으로 반사하여 광전변환층(30)의 흡광도를 높일 수 있다. 제2 전극(20) 측으로부터 입사된 광은 광전변환층(30)에서 녹색 파장 영역의 빛이 주로 흡수되어 광전 변환될 수 있고 나머지 파장 영역의 빛은 제1 전극(10)을 통과하여 광 감지 소자(50a, 50b)에 센싱될 수 있다.
광전 소자(100) 위에는 집광 렌즈(도시하지 않음)가 더 형성되어 있을 수 있다. 집광 렌즈는 입사 광의 방향을 제어하여 광을 하나의 지점으로 모을 수 있다. 집광 렌즈는 예컨대 실린더 모양 또는 반구 모양일 수 있으나, 이에 한정되는 것은 아니다.
상기와 같이 광전 소자(100)가 적층된 구조를 가짐으로써 이미지 센서의 크기를 줄여 소형화 이미지 센서를 구현할 수 있다.
상기에서는 녹색 파장 영역의 광을 선택적으로 흡수하는 광전 소자가 적층된 구조를 예시적으로 설명하였지만 이에 한정되지 않고, 청색 파장 영역의 광을 선택적으로 흡수하는 광전 소자가 적층되고 녹색 광 감지 소자와 적색 광 감지 소자가 반도체 기판(110) 내에 집적된 구조를 가질 수도 있고, 적색 파장 영역의 광을 선택적으로 흡수하는 광전 소자가 적층되고 녹색 광 감지 소자와 청색 광 감지 소자가 반도체 기판(110) 내에 집적된 구조를 가질 수도 있다.
도 7은 CMOS 이미지 센서의 다른 예를 보여주는 단면도이다.
본 구현예에 따른 CMOS 이미지 센서(400)는 전술한 구현예와 마찬가지로 광 감지 소자(50a, 50b), 전송 트랜지스터(도시하지 않음) 및 전하 저장소(55)가 집적되어 있는 반도체 기판(110), 관통구(85)를 가진 상부 절연층(80) 및 광전 소자(100)를 포함한다.
그러나 본 구현예에 따른 CMOS 이미지 센서(400)는 전술한 구현예와 달리, 광 감지 소자(50a, 50b)가 수직 방향으로 적층되어 있고 색 필터 층(70)이 생략되어 있다. 광 감지 소자(50a, 50b)는 전하 저장소(도시하지 않음)와 전기적으로 연결되어 있고 전송 트랜지스터에 의해 전달될 수 있다. 광 감지 소자(50a, 50b)는 적층 깊이에 따라 각 파장 영역의 광을 선택적으로 흡수할 수 있다.
광전 소자(100) 위에는 집광 렌즈(도시하지 않음)가 더 형성되어 있을 수 있다. 집광 렌즈는 입사 광의 방향을 제어하여 광을 하나의 지점으로 모을 수 있다. 집광 렌즈는 예컨대 실린더 모양 또는 반구 모양일 수 있으나, 이에 한정되는 것은 아니다.
상기와 같이 녹색 파장 영역의 광을 선택적으로 흡수하는 광전 소자가 적층된 구조를 가지고 적색 광 감지 소자와 청색 광 감지 소자가 적층된 구조를 가짐으로써 이미지 센서의 크기를 더욱 줄여 소형화 이미지 센서를 구현할 수 있다.
도 7에서는 녹색 파장 영역의 광을 선택적으로 흡수하는 광전 소자가 적층된 구조를 예시적으로 설명하였지만 이에 한정되지 않고, 청색 파장 영역의 광을 선택적으로 흡수하는 광전 소자가 적층되고 녹색 광 감지 소자와 적색 광 감지 소자가 반도체 기판(110) 내에 집적된 구조를 가질 수도 있고, 적색 파장 영역의 광을 선택적으로 흡수하는 광전 소자가 적층되고 녹색 광 감지 소자와 청색 광 감지 소자가 반도체 기판(110) 내에 집적된 구조일 수도 있다.
도 8은 또 다른 구현예에 따른 CMOS 이미지 센서를 개략적으로 도시한 평면도이고, 도 9는 도 8의 CMOS 이미지 센서의 단면도이다.
본 구현예에 따른 CMOS 이미지 센서(500)는 녹색 파장 영역의 광을 선택적으로 흡수하는 녹색 광전 소자, 청색 파장 영역의 광을 선택적으로 흡수하는 청색 광전 소자 및 적색 파장 영역의 광을 선택적으로 흡수하는 적색 광전 소자가 적층되어 있는 구조이다.
본 구현예에 따른 CMOS 이미지 센서(500)는 반도체 기판(110), 하부 절연층(60), 중간 절연층(65), 상부 절연층(80), 제1 광전 소자(100a), 제2 광전 소자(100b) 및 제3 광전 소자(100c)를 포함한다.
반도체 기판(110)은 실리콘 기판일 수 있으며, 전송 트랜지스터(도시하지 않음) 및 전하 저장소(55a, 55b, 55c)가 집적되어 있다.
반도체 기판(110) 위에는 금속 배선(도시하지 않음) 및 패드(도시하지 않음)가 형성되어 있고, 금속 배선 및 패드 위에는 하부 절연층(60)이 형성되어 있다.
하부 절연층(60) 위에는 제1 광전 소자(100a)가 형성되어 있다.
제1 광전 소자(100a)는 서로 마주하는 제1 전극(10a)과 제2 전극(20a), 제1 전극(10a)과 제2 전극(20a) 사이에 위치하는 광전변환층(30a), 광전변환층(30a)과 제1 전극(10a) 사이에 위치하는 나노구조체(40a)와 보조층(45a)을 포함한다. 제1 전극(10a), 제2 전극(20a), 광전변환층(30a), 나노구조체(40a) 및 보조층(45a)은 전술한 바와 같으며, 광전변환층(30a)은 적색, 청색 및 녹색 중 어느 하나의 파장 영역의 광을 선택적으로 흡수할 수 있고 나노구조체(40a)는 적색, 청색 및 녹색 중 어느 하나의 광을 선택적으로 반사시킬 수 있다. 예컨대 제1 광전 소자(100a)는 적색 광전 소자일 수 있으며, 이 경우 광전변환층(30a)은 적색 파장 영역의 광을 선택적으로 흡수할 수 있으며 복수의 나노구조체(40a)는 적색 파장 영역의 광을 광전변환층(30a)으로 선택적으로 반사하여 광전변환층(30a)의 흡광도를 높일 수 있다.
제1 광전 소자(100a) 위에는 중간 절연층(65)이 형성되어 있다.
중간 절연층(65) 위에는 제2 광전 소자(100b)가 형성되어 있다.
제2 광전 소자(100b)는 서로 마주하는 제1 전극(10b)과 제2 전극(20b), 제1 전극(10b)과 제2 전극(20b) 사이에 위치하는 광전변환층(30b), 광전변환층(30b)과 제1 전극(10b) 사이에 위치하는 나노구조체(40b)와 보조층(45b)을 포함한다. 제1 전극(10b), 제2 전극(20b), 광전변환층(30b), 나노구조체(40b) 및 보조층(45b)은 전술한 바와 같으며, 광전변환층(30b)은 적색, 청색 및 녹색 중 어느 하나의 파장 영역의 광을 선택적으로 흡수할 수 있고 나노구조체(40b)는 적색, 청색 및 녹색 중 어느 하나의 파장 영역의 광을 선택적으로 반사시킬 수 있다. 예컨대 제2 광전 소자(100b)는 청색 광전 소자일 수 있으며, 이 경우 광전변환층(30b)은 청색 파장 영역의 광을 선택적으로 흡수할 수 있으며 복수의 나노구조체(40b)는 청색 파장 영역의 광을 광전변환층(30b)으로 선택적으로 반사하여 광전변환층(30b)의 흡광도를 높일 수 있다.
제2 광전 소자(100b) 위에는 상부 절연층(80)이 형성되어 있다. 하부 절연층(60), 중간 절연층(65) 및 상부 절연층(80)은 전하 저장소(55a, 55b, 55c)를 드러내는 복수의 관통구를 가진다.
상부 절연층(80) 위에는 제3 광전 소자(100c)가 형성되어 있다. 제3 광전 소자(100c)는 서로 마주하는 제1 전극(10c)과 제2 전극(20c), 제1 전극(10c)과 제2 전극(20c) 사이에 위치하는 광전변환층(30c), 광전변환층(30c)과 제1 전극(10c) 사이에 위치하는 나노구조체(40c)와 보조층(45c)을 포함한다. 제1 전극(10c), 제2 전극(20c), 광전변환층(30c), 나노구조체(40c) 및 보조층(45c)은 전술한 바와 같으며, 광전변환층(30c)은 적색, 청색 및 녹색 중 어느 하나의 파장 영역의 광을 선택적으로 흡수할 수 있고 나노구조체(40c)는 적색, 청색 및 녹색 중 어느 하나의 파장 영역의 광을 선택적으로 반사시킬 수 있다. 예컨대 제3 광전 소자(100c)는 녹색 광전 소자일 수 있으며, 이 경우 광전변환층(30c)은 녹색 파장 영역의 광을 선택적으로 흡수할 수 있으며 복수의 나노구조체(40c)는 녹색 파장 영역의 광을 광전변환층(30c)으로 선택적으로 반사하여 광전변환층(30c)의 흡광도를 높일 수 있다.
제3 광전 소자(100c) 위에는 집광 렌즈(도시하지 않음)가 더 형성되어 있을 수 있다. 집광 렌즈는 입사 광의 방향을 제어하여 광을 하나의 지점으로 모을 수 있다. 집광 렌즈는 예컨대 실린더 모양 또는 반구 모양일 수 있으나, 이에 한정되는 것은 아니다.
도면에서는 제1 광전 소자(100a), 제2 광전 소자(100b) 및 제3 광전 소자(100c)로서 도 1의 광전 소자를 예시적으로 도시하였으나, 이에 한정되지 않고 제1 광전 소자(100a), 제2 광전 소자(100b) 및 제3 광전 소자(100c) 중 하나 또는 둘이 도 1의 광전 소자일 수 있다.
도면에서는 제1 광전 소자(100a), 제2 광전 소자(100b) 및 제3 광전 소자(100c)가 차례로 적층된 구조를 도시하였지만, 이에 한정되지 않고 적층 순서는 다양하게 바뀔 수 있다.
상기와 같이 서로 다른 파장 영역의 광을 흡수하는 제1 광전 소자(100a), 제2 광전 소자(100b) 및 제3 광전 소자(100c)가 적층된 구조를 가짐으로써 이미지 센서의 크기를 더욱 줄여 소형화 이미지 센서를 구현할 수 있다.
상기 이미지 센서는 다양한 전자 장치에 적용될 수 있으며, 예컨대 모바일 폰, 디지털 카메라 등에 적용될 수 있으나 이에 한정되는 것은 아니다.
이하 실시예를 통하여 상술한 구현예를 보다 상세하게 설명한다. 다만 하기의 실시예는 단지 설명의 목적을 위한 것이며 권리범위를 제한하는 것은 아니다.
광전 소자의 제작 I
실시예 1
유리 기판 위에 ITO를 스퍼터링으로 적층하여 150nm 두께의 애노드를 형성한다. 이어서 애노드 위에 약 2nm 두께의 은(Ag) 박막을 진공 열증착으로 형성한 후 약 150℃에서 열처리하여 약 2nm의 반경을 가지는 반구 모양의 복수의 은(Ag) 나노구조체를 형성한다. 이어서 복수의 은(Ag) 나노구조체 위에 하기 화학식 A로 표현되는 화합물을 증착하여 5nm 두께의 보조층을 형성한다. 이어서 보조층 위에 p형 반도체인 하기 화학식 B로 표현되는 화합물과 n형 반도체인 C60을 2:1의 부피비가 되도록 공증착하여 60nm 두께의 광전변환층을 형성한다. 이어서 광전변환층 위에 ITO를 스퍼터링하여 7nm 두께의 캐소드를 형성한다. 이어서 캐소드 위에 산화알루미늄(Al2O3)을 증착하여 50nm 두께의 반사방지층을 형성하고 유리판으로 봉지하여 광전 소자를 제작한다.
[화학식 A]
[화학식 B]
실시예 2
은(Ag) 나노구조체 대신 금(Au) 나노구조체를 사용한 것을 제외하고 실시예 1과 동일한 방법으로 광전 소자를 제작한다.
비교예 1
은(Ag) 나노구조체를 형성하지 않은 것을 제외하고 실시예 1과 동일한 방법으로 광전 소자를 제작한다.
평가 I
실시예 1에 따른 광전 소자의 은(Ag) 나노구조체의 형성을 확인한다.
도 10은 실시예 1에 따른 광전 소자에서 은(Ag) 나노구조체의 투과전자현미경(transmission electronmicroscopy, TEM) 사진이다.
도 10을 참고하면, 실시예 1에 따른 광전 소자에서 복수의 반구 모양의 은(Ag) 나노구조체가 비교적 균일하게 형성된 것을 확인할 수 있다.
평가 II
실시예 1과 비교예 1에 따른 광전 소자의 흡광 특성을 평가한다.
흡광 특성은 UV-Vis 분광측정기(UV2450, shimadzu사)로 측정하였다. 도 11은 실시예 1과 비교예 1에 따른 광전 소자의 파장에 따른 흡광도를 보여주는 그래프이다.
도 11을 참고하면, 실시예 1과 비교예 1에 따른 광전 소자는 약 520nm 내지 580nm의 녹색 파장 영역에서 최대흡수파장(λmax)을 가지며, 실시예 1에 따른 광전 소자는 비교예 1에 따른 광전 소자와 비교하여 최대흡수파장(λmax)에서 흡광도가 높아진 것을 확인할 수 있다.
이로부터 실시예 1에 따른 광전 소자는 은(Ag) 나노구조체에 의해 반사된 빛이 광전변환층에 재흡수됨으로써 흡광도가 높아지는 것을 확인할 수 있다.
광전 소자의 제작 II
반구 모양의 나노구조체의 반경(r)에 따른 광전 소자의 흡광 특성을 확인하기 위하여 시뮬레이션을 수행한다.
시뮬레이션은 실시예 1 또는 2에 따른 광전 소자의 구조를 설정하고 반구 모양의 은(Ag) 나노구조체 또는 금(Au) 나노구조체의 반경을 표 1 및 2와 같이 바꾸면서 흡광 특성을 평가한다.
시뮬레이션은 Lumerical FDTD solutions으로 진행한다.
No. Ag 나노구조체의 반경(r) (반구)
기준예 1 Ag 나노구조체 없음
실시예 2 1 nm
실시예 3 2 nm
실시예 4 3 nm
실시예 5 4 nm
실시예 6 5 nm
실시예 7 7.5 nm
No. Au 나노구조체의 반경(r) (반구)
기준예 2 Au 나노구조체 없음
실시예 8 1 nm
실시예 9 2 nm
실시예 10 3 nm
실시예 11 4 nm
실시예 12 5 nm
실시예 13 6 nm
실시예 14 7.5 nm
평가 III
반구 모양의 나노구조체의 반경에 따른 광전 소자의 흡광 특성을 확인한다.
도 12는 실시예 2 내지 7에 따른 광전 소자의 파장에 따른 흡광도를 보여주는 그래프이고, 도 13은 실시예 2 내지 7에 따른 광전 소자의 은(Ag) 나노구조체 및 실시예 8 내지 14에 따른 광전 소자의 금(Au) 나노구조체의 반경에 따른 최대흡수파장(λmax)에서의 흡광도를 보여주는 그래프이다.
도 12를 참고하면, 실시예 2 내지 7에 따른 광전 소자는 약 520nm 내지 580nm의 녹색 파장 영역에서 최대흡수파장(λmax)을 가지며, 반경이 약 2nm, 3nm, 4nm 및 5nm의 은(Ag) 나노구조체를 포함하는 실시예 3 내지 6에 따른 광전 소자가 기준예 1에 비해 최대흡수파장(λmax)에서 흡광도가 높아지는 것을 확인할 수 있다.
도 13을 참고하면, 반경이 약 2nm 이상 6nm 미만인 은(Ag) 나노구조체 또는 금(Au) 나노구조체를 사용한 광전 소자는 기준예 1 또는 2 (반경 0nm)에 따른 광전 소자와 비교하여 최대흡수파장(λmax)에서 흡광 특성이 개선되는 것을 확인할 수 있다.
이로부터 나노구조체의 반경에 따라 흡광 특성이 변화하는 것을 확인할 수 있으며, 약 2nm 이상 6nm 미만의 반경을 가지는 반구 모양의 나노구조체가 개선된 흡광 특성을 보이는 것을 확인할 수 있다.
광전 소자의 제작 III
반타원 모양의 나노구조체의 반경(r)에 따른 광전 소자의 흡광 특성을 확인하기 위하여 시뮬레이션을 수행한다.
시뮬레이션은 실시예 1에 따른 광전 소자의 구조를 설정하고 반타원 모양(높이(h=2nm)의 은(Ag) 나노구조체의 반경을 표 3과 같이 바꾸면서 흡광 특성을 평가한다.
No. Ag 나노구조체의 반경(r) (반타원, 높이(h)= 2nm)
실시예 15 2 nm
실시예 16 4 nm
실시예 17 6 nm
실시예 18 8 nm
평가 IV
반구 모양의 나노구조체의 반경에 따른 광전 소자의 흡광 특성을 확인한다.
도 14는 실시예 15 내지 18에 따른 광전 소자의 은(Ag) 나노구조체의 반경에 따른 최대흡수파장(λmax)에서의 흡광도를 보여주는 그래프이다.
도 14를 참고하면, 반경이 약 2nm 이상 6nm 미만인 은(Ag) 나노구조체를 사용한 광전 소자는 최대흡수파장(λmax)에서 흡광 특성이 높은 것을 확인할 수 있다.
이로부터 은(Ag) 나노구조체의 반경에 따라 흡광 특성이 변화하는 것을 확인할 수 있으며, 약 2nm 이상 6nm 미만의 반경을 가지는 반타원 모양의 나노구조체가 개선된 흡광 특성을 보이는 것을 확인할 수 있다.
이상에서 본 발명의 바람직한 실시예들에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구 범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.
10: 제1 전극 20: 제2 전극
30: 광전변환층 40: 나노구조체
45: 보조층 50a, 50b: 광 감지 소자
55: 전하 저장소 60, 65, 80: 절연층
70: 색 필터층 100: 광전 소자
110: 반도체 기판 300, 400, 500: 이미지 센서

Claims (17)

  1. 서로 마주하는 제1 전극과 제2 전극,
    상기 제1 전극과 상기 제2 전극 사이에 위치하고 380nm 이상 500nm 미만의 청색 파장 영역의 가시광, 500nm 내지 600nm의 녹색 파장 영역의 가시광 및 600nm 초과 700nm 이하의 적색 파장 영역의 가시광 중 어느 하나인 제1 가시광을 선택적으로 흡수하는 흡광물질을 포함하는 광전변환층, 그리고
    상기 제1 전극과 상기 광전변환층 사이에 위치하고 상기 제1 가시광을 선택적으로 반사하는 복수의 나노구조체
    를 포함하고, 상기 복수의 나노구조체 각각은 이웃하는 나노 구조체로부터 소정의 간격으로 분리되어 있고, 상기 복수의 나노구조체는 상기 제1 전극 총 면적의 20% 내지 90%를 커버하는 광전 소자.
  2. 제1항에서,
    상기 복수의 나노 구조체는 2nm 이상 6nm 미만의 반경을 가지는 반구(hemisphere) 또는 반타원(hemiellipse) 모양을 가지는 광전 소자.
  3. 제1항에서,
    상기 복수의 나노 구조체는 반사형 금속, 반사형 반금속, 반사형 산화물, 반사형 질화물, 반사형 유기물 또는 이들의 조합을 포함하는 광전 소자.
  4. 제1항에서,
    상기 복수의 나노구조체는 상기 제1 전극 위에 위치되어 있는 광전 소자.
  5. 제1항에서,
    상기 제1 가시광은 500nm 내지 600nm의 녹색 파장 영역의 가시광인 광전 소자.
  6. 제5항에서,
    상기 복수의 나노구조체는 380nm 이상 500nm 미만의 청색 파장 영역의 가시광 및 600nm 초과 700nm 이하의 적색 파장 영역의 가시광을 투과시키는 광전 소자.
  7. 제1항에서,
    상기 광전변환층은 pn 접합을 형성하는 p형 반도체와 n형 반도체를 포함하고,
    상기 p형 반도체와 상기 n형 반도체 중 적어도 하나는 상기 제1 가시광을 선택적으로 흡수하는 흡광물질인 광전 소자.
  8. 제7항에서,
    상기 p형 반도체는 상기 제1 가시광을 선택적으로 흡수하는 흡광 물질인 광전 소자.
  9. 제8항에서,
    상기 n형 반도체는 플러렌 또는 플러렌 유도체인 광전 소자.
  10. 제8항에서,
    상기 광전변환층의 n형 반도체에 대한 p형 반도체의 조성비(p/n)는 1.0 초과인 광전 소자.
  11. 제10항에서,
    상기 광전변환층의 n형 반도체에 대한 p형 반도체의 조성비(p/n)는 1.5 이상인 광전 소자.
  12. 제11항에서,
    상기 광전변환층의 n형 반도체에 대한 p형 반도체의 조성비(p/n)는 2.0 내지 3.0 인 광전 소자.
  13. 제1항에서,
    상기 광전변환층은 100nm 이하의 두께를 가지는 광전 소자.
  14. 제13항에서,
    상기 광전변환층은 20nm 내지 80nm 두께를 가지는 광전 소자.
  15. 제1항에서,
    상기 광전변환층과 상기 복수의 나노구조체 사이에 위치하는 보조층을 더 포함하는 광전 소자.
  16. 제1항 내지 제15항 중 어느 한 항에 따른 광전 소자를 포함하는 이미지 센서.
  17. 제16항에 따른 이미지 센서를 포함하는 전자 장치.
KR1020160138671A 2016-10-24 2016-10-24 광전 소자, 이미지 센서 및 전자 장치 KR102612436B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020160138671A KR102612436B1 (ko) 2016-10-24 2016-10-24 광전 소자, 이미지 센서 및 전자 장치
US15/478,580 US10546897B2 (en) 2016-10-24 2017-04-04 Photoelectric device and image sensor and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160138671A KR102612436B1 (ko) 2016-10-24 2016-10-24 광전 소자, 이미지 센서 및 전자 장치

Publications (2)

Publication Number Publication Date
KR20180044761A KR20180044761A (ko) 2018-05-03
KR102612436B1 true KR102612436B1 (ko) 2023-12-08

Family

ID=61970455

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160138671A KR102612436B1 (ko) 2016-10-24 2016-10-24 광전 소자, 이미지 센서 및 전자 장치

Country Status (2)

Country Link
US (1) US10546897B2 (ko)
KR (1) KR102612436B1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11151349B2 (en) * 2019-05-15 2021-10-19 Samsung Electronics Co., Ltd. Fingerprint sensors and fingerprint sensor arrays and devices
KR20200132537A (ko) 2019-05-17 2020-11-25 삼성전자주식회사 광전 변환 소자, 유기 센서 및 전자 장치
US12048172B2 (en) * 2021-09-03 2024-07-23 Visera Technologies Company Limited Solid-state image sensor

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100209756B1 (ko) 1996-05-27 1999-07-15 구본준 칼라 고체 촬상 소자의 구조 및 제조 방법
US7710026B2 (en) * 2005-12-08 2010-05-04 Global Oled Technology Llc LED device having improved output and contrast
EP2557899B1 (en) * 2010-04-05 2016-08-17 Konica Minolta Holdings, Inc. Transparent electrode and organic electronic element using same
JP5571525B2 (ja) 2010-10-20 2014-08-13 ローム株式会社 有機薄膜太陽電池およびその製造方法
EP3629392B1 (en) * 2012-10-11 2022-09-21 The Regents Of The University Of Michigan Organic photosensitive devices with reflectors
KR102149937B1 (ko) * 2013-02-22 2020-09-01 삼성전자주식회사 광전 소자 및 이미지 센서
CN105474338A (zh) * 2013-08-26 2016-04-06 日本瑞翁株式会社 光发电器件及其制造方法
CN105518870B (zh) * 2013-10-03 2017-05-17 夏普株式会社 光电转换装置
KR101646727B1 (ko) * 2013-10-10 2016-08-08 한양대학교 산학협력단 태양 전지 및 그 제조 방법
KR102345977B1 (ko) 2014-08-26 2021-12-30 삼성전자주식회사 유기 광전 소자 및 이미지 센서
KR102225508B1 (ko) * 2014-10-02 2021-03-08 삼성전자주식회사 유기 광전 소자 및 이미지 센서
JP2016092278A (ja) 2014-11-07 2016-05-23 住友化学株式会社 有機光電変換素子

Also Published As

Publication number Publication date
KR20180044761A (ko) 2018-05-03
US20180114814A1 (en) 2018-04-26
US10546897B2 (en) 2020-01-28

Similar Documents

Publication Publication Date Title
KR102642304B1 (ko) 광전자 소자 및 전자 장치
KR102589215B1 (ko) 유기 광전 소자, 이미지 센서 및 전자 장치
KR102356696B1 (ko) 유기 광전 소자 및 이미지 센서
KR102179331B1 (ko) 투광 전극, 광전 소자 및 이미지 센서
KR102673658B1 (ko) 유기 광전 소자 및 이미지 센서
KR102605375B1 (ko) 유기 광전 소자 및 이미지 센서
US10854832B2 (en) Photoelectric devices and image sensors and electronic devices
KR102285797B1 (ko) 유기 광전 소자, 이미지 센서 및 전자 장치
KR102529631B1 (ko) 유기 광전 소자 및 이미지 센서
TW201436267A (zh) 光電元件及影像感測器
KR102314127B1 (ko) 유기 광전 소자 및 이미지 센서
KR102612436B1 (ko) 광전 소자, 이미지 센서 및 전자 장치
KR102309885B1 (ko) 이미지 센서 및 이를 포함하는 전자 장치
KR20200056286A (ko) 광전 변환 소자, 유기 센서 및 전자 장치
US11855236B2 (en) Sensors and electronic devices
EP3739642A1 (en) Photoelectric conversion devices and organic sensors and electronic devices
CN113284914A (zh) 图像传感器和电子装置
CN111192962B (zh) 光电转换器件及有机传感器和电子设备
KR20210053141A (ko) 광전 소자, 센서 및 전자 장치
KR20200056289A (ko) 광전 변환 소자, 유기 센서 및 전자 장치
JP2020088386A (ja) 光電変換素子及びこれを含む有機センサ並びに電子装置
KR20200049272A (ko) 센서 및 전자 장치

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant