JP5655816B2 - 蓄電システム及び車両制御装置 - Google Patents

蓄電システム及び車両制御装置 Download PDF

Info

Publication number
JP5655816B2
JP5655816B2 JP2012119797A JP2012119797A JP5655816B2 JP 5655816 B2 JP5655816 B2 JP 5655816B2 JP 2012119797 A JP2012119797 A JP 2012119797A JP 2012119797 A JP2012119797 A JP 2012119797A JP 5655816 B2 JP5655816 B2 JP 5655816B2
Authority
JP
Japan
Prior art keywords
charging
storage device
power storage
leakage
relay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012119797A
Other languages
English (en)
Other versions
JP2013247771A (ja
Inventor
修 弓田
修 弓田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012119797A priority Critical patent/JP5655816B2/ja
Publication of JP2013247771A publication Critical patent/JP2013247771A/ja
Application granted granted Critical
Publication of JP5655816B2 publication Critical patent/JP5655816B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、動力源として二次電池等を搭載する車両の制御装置に関し、特に、外部電源用の充電リレーに異常が検出された際の漏電状況に応じた車両制御に関する。
例えば、プラグインハイブリッド車両や電気自動車は、搭載する二次電池に対して外部電源からの充電を行うことができ、外部電源の充電ケーブルと接続される充電インレットが、車両に設けられている。
充電インレットは、車両の動力源である二次電池と電気的に接続して外部電源からの電力を二次電池に供給する接続部であり、外部電源から延びる充電ケーブルと接続する際、ガソリン等の給油口と同じようにユーザが触れることができる。
特許文献1では、充電インレット又は充電器の漏電を検出し、漏電が検出された場合に充電インレットを収容する充電リッドの蓋部を閉状態にロックすることで、充電インレットの電極部にユーザが接触することを防止している。また、充電中に漏電が検出された場合は、充電器を停止させて充電を安全に終了させている。
特開2010−098845号公報
特許文献1は、漏電が検出された場合に充電を終了させる、すなわち、二次電池の充放電を停止するようにしているが、漏電の状況によっては、充放電を継続させて(充放電を停止させずに)二次電池の電力を用いた車両走行を許可したり、充電を許可することができる場合がある。しかしながら、特許文献1には、そのような記載、示唆がない。
一方、DC充電スタンドなどの直流電流を直接供給可能な外部電源と充電ケーブルを接続して充電する急速充電(DC急速充電)では、充電インレットと二次電池の間に設けられる充電リレーに異常(例えば、溶着)が生じることがある。充電リレーに異常が生じると、充電インレットの電極部に二次電池の高電圧が露出してしまうおそれがある。
例えば、二次電池の正極端子に接続される充電リレーと負極端子に接続される充電リレーそれぞれに異常が生じると、充電インレットの電極部に二次電池の高電圧が露出してしまうとともに、一方の充電リレーのみに異常が生じた場合であっても漏電が起こると、充電インレット及び車体を通じて二次電池の高電圧は露出されることがある。
充電リレーの少なくとも一方に異常が検出された場合、特許文献1のように漏電有無に応じて二次電池の充放電を停止して二次電池の電力を用いた車両走行を禁止するように制御することが考えられるが、車両走行ができなくなってしまうため、車両走行の継続と二次電池の高電圧に対する安全性とを両立させることができない。
特に、充電リレーの一方のみに異常が検出された場合に漏電が検出されても、漏電の状況によっては充電インレットと車体との間に電圧が生じない、言い換えれば、充電インレット及び車両を通じて二次電池の高電圧が露出されないことがあり、このような場合にも車両走行ができなくなってしまうことは、車両走行の継続と二次電池の高電圧に対する安全の向上とを両立させる観点から好ましくない。
そこで、本発明は、DC急速充電システムを備える電池システムを搭載した車両において、充電リレーの一方のみに異常が検出された場合に漏電が検出されても、漏電の状況に応じて二次電池の高電圧が露出されない場合には、車両走行の継続を可能にして、車両走行の継続と二次電池の高電圧に対する安全性とを両立させることが可能な蓄電システム及び車両制御装置を提供することを目的とする。
本願第1の発明である蓄電システムは、車両の走行動力源として電力を供給する蓄電装置を備えた蓄電システムであり、車両外部の直流電源の充電ケーブルと接続する接続部と、蓄電装置と接続部を接続する接続ラインであって蓄電装置の正極端子と接続される正極側充電ライン及び蓄電装置の負極端子に接続される負極側充電ラインと、接続部と蓄電装置との間の接続を許容する充電リレーであって正極側充電ラインに設けられる正極側充電リレー及び負極側充電ラインに設けられる負極側充電リレーと、を備える充電システムを備えている。
そして、蓄電システムは、正極側充電リレー及び負極側充電リレーの異常状態を判定する異常判定部と、蓄電装置の漏電の検出及び検出される蓄電装置の漏電が蓄電装置の正極側であるのか負極側であるのかを判定する漏電判定部と、蓄電装置の充放電を制御する制御部と、を有しており、制御部が、正極側充電リレー及び負極側充電リレーのいずれか一方に異常が検出された場合に、漏電が、異常が検出された正極充電リレー又は負極充電リレーに対して同一極側であれば、蓄電装置の充放電を許容するように制御する。
本願第1の発明によれば、充電リレーの一方のみに異常が検出された場合に漏電が検出されても、漏電の状況を考慮して二次電池の高電圧が露出されない場合には、車両走行の継続を可能にするように蓄電装置の充放電を許容するので、車両走行の継続と蓄電装置の高電圧に対する安全性とを両立させることができる。
蓄電システムは、蓄電装置の漏電検出部を備えることができ、漏電検出部は、直列に接続される第1検出抵抗及び第2検出抵抗と、第1検出抵抗及び第2検出抵抗の中性点電圧を検出する電圧センサとを備えることができる。このとき、第1検出抵抗は、蓄電装置に正極端子に接続され、第2検出抵抗は、蓄電装置の負極端子に接続されている。そして、電判定部は、中性点電圧の所定の基準値に対して電圧センサの検出値が大きい場合に、蓄電装置の正極側で漏電が生じた正極側漏電と判定し、電圧センサの検出値が所定の基準値よりも小さい場合に、蓄電装置の負極側で漏電が生じた負極側漏電と判定することができる。
異常判定部は、一方の充電リレーのみをオフにした場合の、接続部に印加される電圧の変化に基づいて、他方の充電リレーが異常状態であるか否かを検出することができる。
本願第2の発明である車両制御装置は、車両の走行動力源として電力を供給する蓄電装置を備えた蓄電システムを搭載した車両の制御装置である。蓄電システムは、車両外部の直流電源の充電ケーブルと接続する接続部と、蓄電装置と接続部を接続する接続ラインであって蓄電装置の正極端子と接続される正極側充電ライン及び蓄電装置の負極端子に接続される負極側充電ラインと、接続部と蓄電装置との間の接続を許容する充電リレーであって正極側充電ラインに設けられる正極側充電リレー及び負極側充電ラインに設けられる負極側充電リレーと、を備える充電システムを備えている。車両制御装置は、正極側充電リレー及び負極側充電リレーの異常状態を判定する異常判定部と、蓄電装置の漏電の検出及び検出される蓄電装置の漏電が蓄電装置の正極側であるのか負極側であるのかを判定する漏電判定部と、正極側充電リレー又は負極側充電リレーのいずれか一方に異常が検出された場合、蓄電装置の漏電が、異常が検出された正極充電リレー又は負極充電リレーに対して同一極側であれば、蓄電装置の充放電を許容するように制御する制御部と、を有する。本願第1の発明同様に、車両走行の継続と蓄電装置の高電圧に対する安全性とを両立させることができる。
本願第3の発明である制御方法は、車両の走行動力源として電力を供給する蓄電装置を備えた蓄電システムを搭載した車両の制御方法である。蓄電システムは、車両外部の直流電源の充電ケーブルと接続する接続部と、蓄電装置と接続部を接続する接続ラインであって蓄電装置の正極端子と接続される正極側充電ライン及び蓄電装置の負極端子に接続される負極側充電ラインと、接続部と蓄電装置との間の接続を許容する充電リレーであって正極側充電ラインに設けられる正極側充電リレー及び負極側充電ラインに設けられる負極側充電リレーと、を備える充電システムを備えている。本制御方法は、正極側充電リレー及び負極側充電リレーのいずれか一方が異常状態であるか否かを検出するステップと、蓄電装置の漏電の検出及び検出される蓄電装置の漏電が蓄電装置の正極側であるのか負極側であるのかを判定するステップと、正極側充電リレー及び負極側充電リレーのいずれか一方に異常が検出された場合に、漏電が異常が検出された正極充電リレー又は負極充電リレーに対して同一極側であれば、蓄電装置の充放電を許容するステップと、を含む。本願第1の発明同様に、車両走行の継続と蓄電装置の高電圧に対する安全性とを両立させることができる。
DC急速充電システムを搭載した車両の側面図である。 充電リッドの一例を示す図である。 DC急速充電システムを含む電池システムの一例を示す図である。 充電リレーの異常検出処理を説明する図である。 充電リレーの異常状態及び漏電の状況に応じた車両制御の処理フローを示す図である。 両側溶着検出処理の処理フローを示す図である。 片側溶着検出処理の処理フローを示す図である。 漏電検出回路及び正極側漏電の検出方法を説明するための図である。 漏電検出回路及び負極側漏電の検出方法を説明するための図である。 漏電検出処理の処理フローを示す図である。
以下、本発明の実施例について説明する。
(実施例1)
本発明の実施例1である電池システム(蓄電システムに相当する)を搭載した車両の充電制御について説明する。図1は、電池システムを搭載した車両100の側面図である。車両100としては、ハイブリッド自動車や電気自動車がある。ハイブリッド自動車は、車両を走行させるための動力源として、後述する組電池に加えて、エンジン又は燃料電池を備えている。電気自動車は、車両の動力源として、組電池だけを備えている。
図1に示すように、車両本体110のフロント側の側面には、外部電源から供給される電力を充電するための充電リッド120が設けられている。なお、充電リッド120は、車両本体110のリア側の側面やフロント前面など、任意の位置に設けることができる。
充電リッド120内部には、外部電源から延びる充電ケーブルのコネクタと接続する充電インレット122(接続部に相当する)が収容されており、蓋部121を開いて充電インレット122に充電ケーブルのコネクタを接続することができ、蓋121を閉じることで充電インレット122を覆い隠すことができる。
図2は、充電リッド120を示す図である。充電リッド120は、車両本体110の外表面に形成された凹状の収容部124を含み、収容部124に充電インレット122が収容される。充電インレット122は、接続スイッチ123が設けられ、充電ケーブルのコネクタが充電インレット122と接続された状態で、接続スイッチ123がオンとなり、充電インレット122から充電ケーブルのコネクタが取り外されると、オフになる。
蓋部121は、支持部125によって回転可能に支持され、その回動動作によって収容部124を閉塞し、もしくは開放する。蓋部121にはロック装置126が設けられる。ロック装置126は、蓋部121を閉状態に固定する。
図3は、本実施例の電池システムの構成を示す図である。本実施例の電池システムは、充電インレット122を含むDC急速充電システムを備えている。
組電池10(蓄電装置に相当する)は、直列に接続された複数の単電池11を有する。単電池11としては、ニッケル水素電池やリチウムイオン電池といった二次電池を用いることができる。また、二次電池の代わりに、電気二重層キャパシタ(コンデンサ)を用いることができる。組電池10を構成する単電池11の数は、要求出力などに基づいて、適宜設定することができる。また、組電池10は、並列に接続された複数の単電池11を含んでいてもよい。
組電池10は、正極ラインPL,負極ラインNLを介してインバータ41に接続されている。組電池10の正極端子とインバータ41との間の正極ラインPL上にシステムメインリレーSMR−Bが設けられ、組電池10の負極端子とインバータ41との間の負極ラインNL上にシステムメインリレーSMR−Gが設けられている。
また、システムメインリレーSMR−Gに対して並列に接続されるシステムメインリレーSMR−P及び電流制限抵抗Rが接続され、システムメインリレーSMR−P及び電流制限抵抗Rは直列に接続されている。システムメインリレーSMR−B,SMR−G及びSMR−Pは、後述する負荷との接続を許容し、コントローラ50からの制御信号を受けて、オン(接続状態)およびオフ(遮断状態)の間で切り替わる。
イグニッションスイッチがオンされると(IG−ON)、コントローラ50は、システムメインリレーSMR−B,SMR−Pをオンにし、電流制限抵抗Rに電流を流した後にシステムメインリレーSMR−Gをオンにし、その後システムメインリレーSMR−Pをオフにすることで、組電池10とインバータ41との接続が行われる。
インバータ41は、組電池10から出力された直流電力を交流電力に変換して、交流電力をモータ・ジェネレータ(MG)42に出力する。モータ・ジェネレータ42としては、例えば、三相交流モータを用いることができる。また、インバータ41は、モータ・ジェネレータ42から出力された交流電力を直流電力に変換して、直流電力を組電池10に出力することができる。
モータ・ジェネレータ42は、インバータ41からの交流電力を受けて、車両を走行させるための運動エネルギを生成する。モータ・ジェネレータ42は、車輪と接続されており、モータ・ジェネレータ42によって生成された運動エネルギは、車輪に伝達される。車両を減速させたり、停止させたりするとき、モータ・ジェネレータ42は、車両の制動時に発生する運動エネルギを電気エネルギ(交流電力)に変換する。モータ・ジェネレータ42によって生成された交流電力は、インバータ41に出力される。これにより、回生電力を組電池10に蓄えることができる。本実施例の電池システムでは、組電池10から電力を受けて動作する負荷としてモータ・ジェネレータ42を用いることができる。
また、組電池10とインバータ41との間に昇圧コンバータを設けてもよい。この場合、昇圧コンバータは、組電池10の出力電圧を昇圧して、昇圧後の電力をインバータ41に出力する。また、昇圧コンバータは、インバータ41の出力電圧を降圧して、降圧後の電力を組電池10に出力することができる。昇圧コンバータは、例えば、チョッパ回路で構成することができる。
電圧センサ20は、正極ラインPLと負極ラインNLとに接続され、組電池10の端子間電圧を検出して検出結果をコントローラ50に出力する。また、電圧センサ20は、組電池10を構成する直列に接続された各単電池11それぞれの電圧を検出するように構成してもよい。
電流センサ21は、正極ラインPL上に設けられ、充放電を行う組電池10の充放電電流を検出してコントローラ50に検出結果を出力する。例えば、組電池10を放電しているときには、電流センサ21によって検出された電流値として、正の値を用いることができる。また、組電池10を充電しているときには、電流センサ21によって検出された電流値として、負の値を用いることができる。なお、電流センサ21を負極ラインNL上に設けてもよい。
また、電流センサ21は、インレット60を通じて組電池10に流れる外部電源からの充電電流を検出し、コントローラ50に検出結果を出力する。本実施例の電流センサ21は、インレット60から組電池10に出力される充電電流の電流経路に設けられている。なお、インレット60を介して組電池10に流れる外部電源からの充電電流を検出する電流センサと、組電池10の充放電制御において組電池10を流れる電流を検出する電流センサとをそれぞれ個別に設けて別々に電流を検出するようにしてもよい。
コンデンサ22は、正極ラインPLおよび負極ラインNLに接続されており、正極ラインPLおよび負極ラインNLの間における電圧変動を平滑化する。
インレット60は、図2で示した充電インレット122であり、外部電源70から延びる充電ケーブル72の接続コネクタ73と接続する車両側の充電コネクタである。
インレット60は、充電ラインPL1(正極側充電ラインに相当する)及び充電ラインNL1(負極側充電ラインに相当する)を介して組電池10と接続されている。充電ラインPL1は、システムメインリレーSMR−Bとインバータ41との間の正極ラインPLに接続されている。充電ラインNL1は、システムメインリレーSMR−Gとインバータ41との間の負極ラインNLに接続されている。
充電ラインPL1上には、充電リレーDCR−B(正極側充電リレーに相当する)が設けられ、充電ラインNL1上に充電リレーDCR−G(負極側充電リレーに相当する)が設けられている。充電リレーDCR−B及びDCR−Gは、インレット60と組電池10との間の接続を許容し、コントローラ50からの制御信号を受けて、オン(接続状態)およびオフ(遮断状態)の間で切り替わる。
電圧センサ61は、インレット60に印加される電圧を検出して検出結果をコントローラ50に出力する。電圧センサ61は、インレット60と充電リレーDCR−B,DCR−Gとの間の充電ラインPL1と充電ラインNL1とに接続されている。
本実施例の電池システムは、インレット60、充電ラインPL1,NL1、充電リレーDCR−B,DCR−Gによって構成されるDC急速充電システムを含んで構成される。つまり、家庭用コンセントに充電ケーブルを接続し、商用電源を外部電源として充電するAC充電システムではなく、外部電源70からインレット60を介して充電ラインPL1,NL1に入力される直流電力を直接的に組電池10に充電するDC急速充電システムを含んで構成される。なお、本実施例の電池システムは、AC充電システムを別途含んだDC急速充電システム及びAC充電システムの両充電システムを備えていてもよい。
インレット60は、DCコネクタであり、充電ケーブル72と接続するとともに、充電ラインPL1,NL1を介して組電池10に接続されている。充電ケーブル72や接続コネクタ73もDC充電用のケーブル、コネクタで構成されている。
インレット60と接続される充電ケーブル72は、外部電源70に接続される。外部電源70は、DC充電スタンドである。DC充電スタンドは、車両100に搭載される組電池10を高速で充電するために専用に設けられた直流電源である。DC充電スタンドは、通常の電力線から供給された電力や太陽光発電装置で自然エネルギを用いて発電された電力を組電池10に直接的に充電可能な直流電力に変換し、充電ケーブル72が接続された車両100に供給する。
DC充電スタンドは、商用電源(AC100,AC200等)のコンセントに比べて許容電流値が大きく、AC充電に比べて大きな充電電流を組電池10に出力できるので、充電時間が短縮される。
DC充電スタンド(外部電源70)は、充電器71を備えている。充電器71は、通常の電力線から供給される交流電力を直流電力に変換する不図示のAC/DCコンバータやAC/DCコンバータから出力される直流電力を昇圧して組電池10に出力するDC/DCコンバータ等を含むことができる。
漏電検出回路30は、組電池10の漏電を検出する。漏電検出回路30は、直列に接続された2つの検出抵抗Rp,Rnと、検出抵抗Rp,Rnの中性点の電圧を検出する電圧センサ31を有している。2つの直列に接続された検出抵抗Rp、Rnにおいて、検出抵抗Rpは、組電池10の正極端子(正極ラインPL)に接続され、検出抵抗Rnは、組電池10の負極端子(負極ラインNL)に接続されている。電圧センサ31は、一端が車両本体(車両ボディ)に接地(グラント)され、他端が検出抵抗Rpと検出抵抗Rnとの間の接続ラインLに接続されている。電圧センサ31で検出された中性点電圧は、コントローラ50に出力される。
コントローラ50は、車両100全体で要求される車両要求出力を算出し、車両要求出力に基づいて組電池10の出力制御を行う制御装置である。コントローラ50は、車両出力要求に基づいてモータ・ジェネレータ42に組電池10の電力を出力する放電制御、車両100が減速したり、停止したりする際の車両制動時における回生電力を組電池10に充電する充電制御を行う。なお、ハイブリッド自動車の場合、コントローラ50は、車両全体で要求される車両要求出力を算出し、車両要求出力に基づいてエンジン及び/又は電池パックの出力制御を行う制御装置として構成される。
コントローラ50は、外部電源70からの直流電力を組電池10に充電する充電制御を行う制御装置(外部充電制御部)の機能を有することもできる。充電ケーブル72及び接続コネクタ73には、通信線が設けられており、接続コネクタ73がインレット60に接続されることで、コントローラ50は、外部電源70の充電器71に制御信号を出力して外部充電制御を行う。
例えば、コントローラ50は、外部電源70から延設された充電ケーブル72がインレット60に接続されたことを検出すると、外部電源70からの直流電力を直接に組電池10に充電する外部充電を開始することができる。コントローラ50は、図2に示したようにインレット60(充電インレット122)に接続コネクタ73が接続されると、接続スイッチ123がオンとなるので、接続スイッチ123がオンとなったことを検出することで、インレット60に接続コネクタ73が接続されたことを検出することができる。
インレット60に充電ケーブル72が接続されると、コントローラ50は、外部充電制御を開始する。コントローラ50は、外部電源70の充電器71との接続確認を行うとともに、充電リレーDCR−B,DCR−Gをオフからオンにし、インレット60と組電池10とを接続する。このとき、システムメインリレーSMR−B,SMR−Gはオンであり、SMR−Pはオフとなっている。
コントローラ50は、続いて組電池10のSOC(充電状態)や充電時間、充電中に検出される充電電流に基づいて、充電器71に制御信号を出力して直流電力を組電池10に充電させる。
充電器71は、コントローラ50から出力される制御信号に基づいて動作し、充電電流を制御する。コントローラ50は、電流センサ21によって検出される外部電源70(充電器71)から組電池10に出力される直流の充電電流値を充電開始から終了まで(充電中の間)積算して充電電流積算値を算出することもできる。
コントローラ50は、組電池10のSOCが所定SOCに到達すると、組電池10に対する外部電源70からの直流電力の供給を終了させ、外部電源70からの充電制御を終了させる。
コントローラ50は、外部電源70からの直流電力の供給を終了させて充電制御を終了させた後、所定の終了シーケンスを遂行して外部充電制御を終了する。コントローラ50は、終了シーケンスとして、例えば、充電リレーDCR−B,DCR−Gをオンからオフにし、インレット60と組電池10とを接続を遮断し、システムメインリレーSMR−B,SMR−Gもオンからオフにして、充電リレーDCR−B,DCR−Gを含むシステムメインリレーSMR−B,システムメインリレーSMR−G,SMR−P全てをオフ状態にすることができる。また、コントローラ50は、外部電源70による外部充電の終了に伴い、インレット60から充電ケーブル72を取り外し可能であることをランプ点滅や表示画面へのメッセージ出力等によって、ユーザに通知することができる。
なお、充電制御終了の際に終了シーケンス中に又は終了シーケンスとは個別に、例えば、演算処理や記憶処理も行うことができ、SOC、満充電容量などを算出したり、算出した各情報を充電時間や充電レートとともに、外部充電履歴として不図示のメモリに記憶したりすることもできる。
コントローラ50は、溶着判定部51及び漏電判定部52を含んで構成される。溶着判定部51(異常判定部に相当する)は、充電リレーDCR−B,DCR−Gの異常検出処理を遂行する。漏電判定部52は、漏電検出回路30で検出される中性点電圧に基づいて組電池10の漏電有無を検出するとともに、検出された漏電が組電池10の正極側で漏電したものか(正極側漏電)又は負極側で漏電したものか(負極側漏電)を判別する。
なお、充電リレーの異常検出処理(溶着判定部51)及び組電池10の漏電検出処理(漏電判定部52)それぞれは、コントローラ50とは個別の制御装置で構成することも可能である。また、外部充電制御部の機能もコントローラ50とは個別の制御装置で構成することも可能である。
図4は、本実施例の異常検出処理を説明する図である。本実施例では、充電リレーDCR−B,DCR−Gの両方が共に(同時に)溶着した異常状態を検出する第1異常検出処理(両側溶着判定処理)と、充電リレーDCR−B,DCR−Gのいずれか一方のみが溶着した異常状態を検出する第2異常検出処理(片側溶着判定処理)と、を含む。
図4に示すように、第1異常検出処理は、外部充電制御における終了シーケンスにおいて行うことができる。上述のように終了シーケンス中は、充電ケーブル72がインレット60に接続している状態(接続中)となっているので、インレット60が外部に露出することなく、ユーザ等がインレット60に接触することを防止しつつ、充電リレーDCR−B,DCR−Gの異常検出(診断)を行うことができる。
第2異常検出処理は、組電池10への外部充電終了後の電池システム起動後に行うことができる。第2異常検出処理は、第1異常検出処理の両側溶着検出では検出できない、2つの各充電リレーDCR−B,DCR−Gのうちどちらの充電リレーが溶着しているかを検出する処理である。
特に、本実施例の第2異常検出処理は、第1異常検出処理後の最初に電池システムが起動された車両走行中に行うことができる。第2異常検出処理を、充電リッド120の蓋部121が開かれてインレット60が露出される可能性がある期間を避けてユーザがインレット60に触れることができない車両走行中(例えば、IG−ON後に車両が走行していることを速度計から検出し、車速が所定値以上の走行中)に行うことで、安全性を確保しつつ、迅速に充電リレーDCR−B,DCR−Gのどちらが溶着しているかを検出できる。
図5は、本実施例の電池システムの制御フローを示す図である。本実施例のコントローラ50は、充電リレーDCR−B,DCR−Gが共に異常状態(例えば、溶着)である場合、組電池10の電力を用いた車両100の走行を禁止させるように、組電池10の充放電を制御する。
図6は、充電リレーDCR−B,DCR−Gの第1異常検出処理を説明する図である。図6に示すように、コントローラ50は、外部充電制御の終了シーケンスにおいて(図4参照)、充電リレーDCR−B,DCR−G及びシステムメインリレーSMR−B,SMR−Gがオン状態であることを確認し、インレット60に印加されている電圧VDCを電圧センサ61から取得する(S301)。このときの検出電圧VDCは、充電リレーDCR−B,DCR−G及びシステムメインリレーSMR−B,SMR−Gがオン状態となっているので、組電池10の端子間電圧である。
コントローラ50は、電圧VDCを取得した後、充電リレーDCR−B,DCR−Gの両充電リレーをオンからオフに切り替える(S302)。
コントローラ50は、ステップS302で充電リレーDCR−B,DCR−Gの両充電リレーをオンからオフに切り替えた後の電圧センサ61の検出電圧VDCが電圧Vである場合(VDC=V)、オフ状態の充電リレーDCR−B,DCR−Gの両充電リレーが共に(同時に)溶着していないと判別し(S303のYES,S305)、電圧センサ61の検出電圧VDCが電圧Vより大きい場合(VDC>V)、オフ状態であるにも関わらずインレット60に印加される電圧が発生しているので、充電リレーDCR−B,DCR−Gの両充電リレーが共に溶着している異常状態であると判別する(S303のNO,S304)。
ここで、電圧Vは、0Vとすることができる。すなわち、充電リレーDCR−B,DCR−Gの両充電リレーがオフ状態であれば、電圧センサ61の検出電圧VDCは0Vとなる。このため、ステップS302で充電リレーDCR−B,DCR−Gの両充電リレーをオンからオフに切り替えた後の電圧センサ61の検出電圧VDCが電圧V(VDC=0)であれば、充電リレーDCR−B,DCR−Gの両充電リレーが正常状態であると判断でき、電圧センサ61の検出電圧VDCが電圧Vより大きければ(VDC≠0であり、例えば、電圧センサ61の検出電圧VDCが組電池10の端子間電圧と同じで場合)、充電リレーDCR−B,DCR−Gの両充電リレーが異常状態であると判断できる。
図5において、コントローラ50は、外部充電制御終了後の第1異常検出処理において充電リレーDCR−B,DCR−Gの両充電リレーが共に異常状態であると判別された場合(S201)、異常処理を遂行する(S202)。例えば、コントローラ50は、外部充電終了後の次の電池システム起動を禁止することができる。具体的には、ユーザによってイグニッションスイッチがオフからオンに操作されても組電池10のシステムメインリレーSMR−B,SMR−Gの接続を禁止(オフ状態に維持)して、組電池10の充放電を行わせないようにする。つまり、組電池10の電力がモータ・ジェネレータの供給されないように制御し、組電池10の電力を用いた車両100の走行を禁止する。なお、コントローラ50は、外部充電制御も禁止するように制御することもできる。
このとき、コントローラ50は、電池システム起動の禁止(車両走行の禁止)の処理とともに、充電リレーDCR−B,DCR−Gが異常状態であり、車両走行ができない旨のランプ点滅や表示画面へのメッセージ出力等を行うことでユーザに通知することができる。
図7は、本実施例の第2異常検出処理の処理フローを示す図である。コントローラ50は、外部充電制御後にイグニッションスイッチがオフからオンに切り替わると(図4参照)、電池システムを起動させ、システムメインリレーSMR−B,SMR−Gを共にオン状態とするとともに、第2異常検出処理を開始することができる。
コントローラ50は、第2異常検出処理を開始する際、充電リレーDCR−B,DCR−Gそれぞれがオフ状態であるか否かを確認する。コントローラ50は、充電リレーDCR−B,DCR−Gそれぞれがオフであり、システムメインリレーSMR−B,SMR−Gを共にオンである状態で、インレット60に印加されている電圧VDC(例えば、0V)を電圧センサ61から取得する(S501)。
図7に示す第2異常検出処理は、組電池10が車両100の走行動力源として負荷に電力を供給可能な状態で行われ、車両100が走行中に一方の充電リレーのみをオフにした場合の、インレット60に印加される電圧の変化に基づいて、他方の充電リレーが異常状態であるか否かを検出する。
コントローラ50は、電圧VDCを取得した後、充電リレーDCR−B,DCR−Gの両充電リレーがオフであるか否かを確認し、オン状態であればオフ状態に切り替える(S502)。
続いて、コントローラ50は、充電リレーDCR−Gの溶着検出を行うために、充電リレーDCR−Bをオン状態にし(S503)、電圧センサ61から取得される電圧VDCが電圧V(V>0)以上であるか否かを判別する(S504)。コントローラ50は、電圧センサ61の検出電圧VDCが電圧V以上である場合(VDC≧V)、充電リレーDCR−Gがオフ状態にあるにも関わらず、インレット60に印加される電圧に変動があるので、充電リレーDCR−Gに異常があると判別する(S505)。ここで、電圧Vは、例えば、組電池10の端子間電圧である。
一方、ステップS504において、電圧VDCが電圧V未満の場合(VDC<V)、すなわち、電圧VDCが0Vである場合、コントローラ50は、ステップS506に進み、充電リレーDCR−Bの異常検出を行う。
ステップS506において、コントローラ50は、充電リレーDCR−Bをオン状態からオフ状態に切り替えた後、充電リレーDCR−Gをオフ状態からオン状態に切り替える(S507)。コントローラ50は、充電リレーDCR−Gがオン状態で、電圧センサ61から取得される電圧VDCが電圧V(V>0)以上であるか否かを判別する(S508)。コントローラ50は、電圧センサ61の検出電圧VDCが電圧V以上である場合(VDC≧V)、充電リレーDCR−Bがオフ状態であるにもかかわらず、インレット60に印加される電圧に変動があるので、充電リレーDCR−Bに異常があると判別する(S509)。
ステップS508において、電圧VDCが電圧V未満の場合(VDC<V)、すなわち、電圧VDCが0Vである場合、コントローラ50は、ステップS510に進み、充電リレーDCR−B,DCR−Gが共に異常状態ではないと判別する。
コントローラ50は、車両走行中の第2異常検出処理の終了後、図5に示す制御フローを遂行し、充電リレーDCR−B,DCR−Gのいずれか一方が異常状態であると判別された場合、漏電の有無及び漏電の状況に応じて、組電池10の電力を用いた車両100の走行を停止又は継続させるように、組電池10の充放電を制御する。
外部充電制御終了後の次の電池システム起動時において、第1異常検出処理で両充電リレーが共に(同時に)異常状態でないと判別されているので、ステップS203に進む。コントローラ50は、ステップS203において、第2異常検出処理結果に基づいて、充電リレーDCR−B,DCR−Gのいずれか一方が異常状態であるか否かを判別する。
ステップS203において、充電リレーDCR−B,DCR−Gのいずれも異常状態でないと判別された場合には、コントローラ50は、ステップS213に進み、走行中である車両100の走行を継続させる正常処理を遂行する。コントローラ50は、充電リレーDCR−B,DCR−Gそれぞれに異常が検出されていないので、上述した異常処理とは異なり、組電池10の充放電を停止したり、充電リレーDCR−B,DCR−Gが異常状態である旨や車両走行ができない旨をユーザにランプ点滅、表示画面へのメッセージ出力等で通知することなく、走行中の車両100が要求する車両要求出力に応じた組電池10の充放電制御を維持する。
一方、ステップS203において、充電リレーDCR−B,DCR−Gのいずれか一方が異常状態であると判別された場合には、コントローラ50は、ステップS204に進む。
ステップS204において、コントローラ50は、漏電検出回路30で検出される中性点電圧に基づいて、組電池10の漏電有無を検出するとともに、検出された漏電が組電池10の正極側で漏電したものか(正極側漏電)又は負極側で漏電したものか(負極側漏電)を判別する。
図8から図10は、本実施例の漏電検出を説明するための図であり、図8は、組電池10の正極側で生じた漏電検出、図9は、組電池10の負極側で生じた漏電検出を説明するための図である。
本実施例では、漏電検出回路30において2つの検出抵抗Rp,Rnの中性点電圧を電圧センサ31で検出し、中性点電圧に変化がある場合に組電池10に漏電が生じたものと検出することができる。
例えば、2つの検出抵抗Rp,Rnが同じ抵抗値である場合、電圧センサ31で検出される中性点電圧Vmは、組電池10の端子間電圧Vの半分となる。
(式1)Vm=0.5×V
しかしながら、図8及び図9に示すように、例えば、組電池10の電流経路と車両100のボディ(車両本体100)との間で絶縁破壊が生じると漏電電流が流れる。このとき、組電池10の電流経路には漏電電流に応じた漏電抵抗(絶縁破壊抵抗)rが付加される状態となる。このため、検出抵抗Rp,Rnに対する電圧のバランスが崩れ、中性点電圧Vmが変動する。
図8の例のように、組電池10の電流経路において正極側(例えば、正極ラインPL)で漏電が生じると、検出抵抗Rp及び漏電抵抗rの合成抵抗R1と検出抵抗Rnとが直列に接続された状態の中性点電圧Vmが検出されることになる。
(式2)R1=(r×Rp)/(r+Rp)
式2に示すように、直列に接続される合成抵抗R1と検出抵抗Rnにおいて、漏電抵抗rが存在しない状態の検出抵抗Rpよりも合成抵抗R1の抵抗値が小さくなるので、合成抵抗R1に印加される電圧は、漏電抵抗rが存在しない状態の検出抵抗Rpに印加される電圧よりも低くなる。漏電抵抗rが存在しても直列に接続される合成抵抗R1と検出抵抗Rnの両端に印加される電圧は、組電池10の端子間電圧Vとなるので、合成抵抗R1に対して検出抵抗Rnに印加される電圧は、漏電抵抗rが存在しない場合よりも高くなる。
したがって、組電池10の正極側で漏電が生じると、合成抵抗R1に印加される電圧が低くなり、中性点電圧Vmは、漏電抵抗rが存在していない状態よりも大きくなる。例えば、式1に示すように、検出抵抗Rp,Rnが同じ抵抗値であれば、漏電抵抗rが存在していない状態の中性点電圧Vmは、組電池10の端子間電圧Vの半分となる。端子間電圧Vの1/2値を基準値として、基準値よりも高い中性点電圧Vmが検出された場合は、組電池10の電流経路の正極側で漏電が生じたもの(正極側漏電)と検出することができる。
同様に、図9の例のように組電池10の電流経路において負極側(例えば、正極ラインNL)で漏電が生じると、検出抵抗Rpと検出抵抗Rn及び漏電抵抗rの合成抵抗R2とが直列に接続された状態の中性点電圧Vmが検出されることになる。
(式3)R2=(r×Rn)/(r+Rn)
したがって、式3に示すように、合成抵抗R2に印加される電圧は、漏電抵抗rが存在しない状態の検出抵抗Rnに印加される電圧よりも小さくなり、合成抵抗R2に対して検出抵抗Rpに印加される電圧が高くなる。このため、中性点電圧Vmは、漏電抵抗rが存在していない状態よりも小さくなり、例えば、端子間電圧Vの1/2値を基準値として、基準値よりも低い中性点電圧Vmが検出された場合は、組電池10の電流経路の負極側で漏電が生じたもの(負極側漏電)と検出することができる。
図10は、本実施例の漏電検出処理の処理フローを示す図である。図10に示すように、コントローラ50は、漏電検出回路30の電圧センサ31の検出値を中性点電圧Vmとして取得する(S701)。
コントローラ50は、取得した中性点電圧Vmと所定の基準値とを比較する。例えば、コントローラ50は、中性点電圧Vmが基準値Vnよりも小さいか否かを判別する(S702)。ここで、基準値Vnは、漏電抵抗rが存在していない状態における組電池10の端子間電圧Vと検出抵抗Rp,Rnとから求めることができ、電圧センサ31の検出誤差±αを含むように、基準値Vnを規定することができる。例えば、2つの検出抵抗Rp,Rnが同じ抵抗値であれば、0.5×Vに電圧センサ31の検出誤差αを考慮した値(=0.5×V−α)を基準値Vnとすることができる。
コントローラ50は、中性点電圧Vmが基準値Vnよりも小さいと判別した場合、負極側漏電が生じているものと判別する(S703)。
一方、ステップS702において、コントローラ50は、取得した中性点電圧Vmが基準値Vnよりも大きいと判別した場合は、ステップS704に進み、中性点電圧Vmが基準値Vpよりも大きいか否かを判別する。
基準値Vpは、基準値Vnと同様に、漏電抵抗rが存在していない状態における組電池10の端子間電圧Vと検出抵抗Rp,Rnとから求めることができ、電圧センサ31の検出誤差±αを含むように基準値Vpを規定することができる。例えば、2つの検出抵抗Rp,Rnが同じ抵抗値であれば、0.5×Vに電圧センサ31の検出誤差αを考慮した値(=0.5×V+α)を基準値Vpとすることができる。
コントローラ50は、中性点電圧Vmが基準値Vpよりも大きいと判別した場合、正極側漏電が生じているものと判別する(S705)。
また、ステップS704においてコントローラ50は、中性点電圧Vmが基準値Vpよりも小さい、すなわち、中性点電圧Vmが基準値Vnよりも大きく、基準値Vpよりも小さい値である場合、中性点電圧Vmに変動がないものと判別し、漏電が生じていない、すなわち、正極側漏電も負極側漏電も生じていないものと判別する(S706)。
なお、2つの基準値Vn,Vpを用いて中性点電圧Vmが漏電の発生によって変動したか否かを判別しているが、これに限るものではない。例えば、漏電抵抗rが存在していない状態において予め測定又は算出された1つの基準値に対し、電圧センサ31で検出される検出値が小さい場合には、負極側漏電、大きい場合には正極側漏電として判別するように構成することもできる。
図5に戻り、ステップS204において漏電が検出されない場合、コントローラ50は、ステップS212に進み、仮異常処理を遂行する。この仮異常処理は、充電リレーDCR−B,DCR−Gの一方に異常状態が検出されても、組電池10の充放電を停止せずに車両走行を継続させ、走行中の車両100が要求する車両要求出力に応じた組電池10の充放電制御を行いつつ、充電リレーDCR−B,DCR−Gに異常が発生した旨や異常が発生した状態の車両走行である旨をユーザにランプ点滅、表示画面へのメッセージ出力等で通知する。
そして、本実施例では、充電リレーがDCR−B,DCR−Gの一方に異常状態が検出され、かつ漏電が検出されても、異常状態が検出された充電リレーに対する漏電の状況に応じて、組電池10の電力を用いた車両100の車両走行を継続させるように、組電池10の充放電制御を行う。
具体的には、コントローラ50は、ステップS204で漏電が検出された場合、異常状態が検出された充電リレーの正負極と、漏電の正負極とが同一極である場合、組電池10の充放電を停止させずに充放電を許容して、車両走行を継続させるように制御する。一方、異常状態が検出された充電リレーの正負極と、漏電の正負極とが反対極である場合は、組電池10の充放電を停止して車両走行を継続させないように制御する。
例えば、図8の例を参照して説明すると、充電リレーDCR−B(正極側充電リレー)が異常状態であると判別された場合に、検出された漏電が正極側漏電だと、インレット60及び車両本体100との間に電圧が生じない。すなわち、インレット60の電極部の電位と車両本体100の電位が同じ組電池10の正極端子の電位となり、インレット60及び車両本体100との間に電圧が生じない。
このため、正極側充電リレーである充電リレーDCR−Bが異常状態であっても、漏電が正極側漏電であれば、組電池10の高電圧がインレット60及び車両本体100を通じて露出しないことになる。したがって、組電池10の充放電制御を停止させなくても、言い換えれば、車両走行を継続させても、組電池10の高電圧が露出しない状況が維持されるので、コントローラ50は、充電リレーDCR−Bのみが異常状態であり、検出された漏電が正極側漏電である場合には、組電池10の充放電を停止させずに充放電の継続を許容して、車両走行を維持させるように制御する。
一方、充電リレーDCR−B(正極側充電リレー)が異常状態であると判別された場合に、検出された漏電が負極側漏電である場合、インレット60及び車両本体100との間に電圧が生じる。すなわち、インレット60の電極部が組電池10の正極端子の電位となり、車両本体100の電位が組電池10の負極端子の電位となるため、インレット60及び車両本体100との間に組電池10の電圧が生じる。
このため、正極側充電リレーである充電リレーDCR−Bが異常状態である場合、漏電が負極側漏電であれば、組電池10の高電圧がインレット60及び車両本体100を通じて露出してしまうことになる。したがって、組電池10の充放電制御を停止させないと、組電池10の高電圧が露出しない状況が維持できないので、コントローラ50は、充電リレーDCR−Bのみが異常状態であり、検出された漏電が負極側漏電である場合には、組電池10の充放電を停止させて(充放電の継続を許容しないで)、車両走行を停止させるように制御する。
同様に、コントローラ50は、充電リレーDCR−G(負極側充電リレー)のみが異常状態であり、検出された漏電が負極側漏電である場合には、組電池10の充放電を停止させずに充放電の継続を許容して、車両走行を維持させるように制御し、検出された漏電が正極側漏電である場合には、組電池10の充放電を継続させずに停止させて、車両走行を停止させるように制御する。
図5において、コントローラ50は、ステップS204で漏電が検出された場合、ステップS205に進み、異常状態が検出された充電リレーが正極側充電リレーであるか否かを判別する。正極側充電リレーに異常がある場合には、検出された漏電が負極側漏電であるか否かを判別し(S206)、負極側漏電であれば、コントローラ50は、組電池10の充放電を停止させて、車両走行を停止させるように制御する異常処理を遂行する(S207)。
ステップS207における異常処理は、車両走行中であるので、例えば、異常状態が検出された充電リレーの正負極と漏電の正負極とが反対極であると検出されたときから緩やかに出力を低下させて組電池10の充放電を停止させ、充放電停止後には最終的に組電池10のシステムメインリレーSMR−B,SMR−Gをオフ状態にする。このとき、上述した異常処理と同様に、車両走行を禁止する旨を、充電リレーDCR−B,DCR−Gに異常が発生した旨や異常が発生した状態の車両走行である旨と共に又は個別に、ユーザに対してランプ点滅、表示画面へのメッセージ出力等で通知する。また、この通知には、漏電が発生した旨も含ませることができる。
コントローラ50は、ステップS206において、検出された漏電が正極側漏電であると判別された場合、仮異常処理を遂行する(S208)。ステップS208における仮異常処理は、組電池10の充放電を停止させずに充放電の継続を許容して、車両走行を維持させるように制御し、充電リレーDCR−B,DCR−Gに異常が発生した旨や異常が発生した状態の車両走行である旨、漏電が発生した旨等をユーザにランプ点滅、表示画面へのメッセージ出力等で通知する。
また、図5において、コントローラ50は、ステップS205で異常状態が検出された充電リレーが負極側充電リレーであると判別された場合、同様に、ステップS209に進み、検出された漏電が正極側漏電であるか否かを判別する。コントローラ50は、正極側漏電であれば、コントローラ50は、組電池10の充放電の継続せずに停止させて、車両走行を停止させるように制御する異常処理を、ステップS207と同様に行う(S210)。コントローラ50は、ステップS209において、検出された漏電が負極側漏電であると判別された場合、ステップS208と同様の仮異常処理を遂行する(S211)。
このように本実施例では、DC急速充電システムを備える電池システムを搭載した車両において、充電リレーの一方のみに異常が検出された場合に漏電が検出されても、単に組電池10の充放電を停止させたり、禁止するのではなく、漏電の状況を考慮して組電池10の高電圧が露出されない状態が維持できる場合には車両走行を継続させるように制御するので、車両走行の継続と組電池10の高電圧に対する安全性とを両立させることができる。
なお、上記説明では、充電リレーDCR−B,DCR−Gの第1異常検出処理と第2検出処理とが、個別の状況で行われる態様を示したが、これに限るものではない。例えば、外部充電制御において、第1異常検出処理と第2異常検出処理を共に行うこともできる。この場合、コントローラ50は、車両停止中に第2異常検出処理を遂行するので、ステップS208、S211において、車両走行中の車両100を停止させるように制御するのではなく、ステップS202と同様の異常処理を遂行することができる。
また、ステップS207、S210においては、コントローラ50は、外部充電後にイグニッションスイッチがオフからオン状態に切り替わっても、システムメインリレーSMR−B,SMR−Gをオンにして負荷と接続して組電池10の充放電を許容するとともに、車両走行が、充電リレーDCR−B,DCR−Gに異常が発生した状態、漏電が発生している状態である旨をユーザにランプ点滅、表示画面へのメッセージ出力等で通知することができる。
さらに、車両走行中に、第1異常検出処理と第2異常検出処理を共に行うこともできる。この場合、コントローラ50は、ステップS202において、ステップS207と同様の異常処理を遂行することができる。
また、本実施例では、充電リレーDCR−B,DCR−Gに異常が発生した場合に車両走行の継続又は禁止する車両制御について説明したが、例えば、外部充電制御にも適用することができる。例えば、外部充電制御を開始する際に、第1異常検出処理及び第2異常検出処理を遂行し、充電リレーDCR−B,DCR−Gが共に異常状態であれば、外部充電を禁止するように制御し、充電リレーDCR−B,DCR−Gのいずれか一方が異常状態であれば、漏電の状況に応じて外部充電を許容するように制御することができる。
より具体的には、充電リレーDCR−B,DCR−Gのいずれか一方が異常状態であると検出された場合に、コントローラ50は、異常状態が検出された充電リレーの正負極と、漏電の正負極とが同一極である場合、外部充電を禁止又は停止させずに許容して、外部電源70から供給される電力を組電池10に充電する。一方、異常状態が検出された充電リレーの正負極と、漏電の正負極とが反対極である場合は、外部充電を禁止又は停止させて、組電池10に外部電源70から供給される電力を充電させないようにする。なお、この場合においても、外部充電を禁止する旨、充電リレーに異常が発生した状態での外部充電である旨などをユーザに通知することができる。
また、図5のステップS202、S207、S210の異常処理において、例えば、充電リッド120の蓋部121に設けられたロック装置126を動作させて、強制的に蓋部121をロックさせて蓋部121を開けないようにし、インレット60を外部に露出させないようにすることもできる。この場合、インレット60から充電ケーブル72が取り外されて蓋部121が閉められたとき、コントローラ50は、ロック装置126をロック状態に動作させたり、蓋部121が閉められた状態では、ロック装置126をロック状態に動作させて蓋部121を開けないようにすることができる。
10 組電池
11 単電池
20 電圧センサ
21 電流センサ
22 コンデンサ
30 漏電検出回路
31 電圧センサ
41 インバータ
42 モータ・ジェネレータ
50 コントローラ
51 溶着判定部
52 漏電判定部
60(122) インレット
61 電圧センサ
70 外部電源(DC充電スタンド)
71 充電器
72 充電ケーブル
73 接続コネクタ
SMR−B,SMR−G,SMR−P システムメインリレー
DCR−B,DCR−G 充電リレー
Rp,Rn 検出抵抗

Claims (5)

  1. 車両の走行動力源として電力を供給する蓄電装置を備えた蓄電システムであって、
    車両外部の直流電源の充電ケーブルと接続する接続部と、
    前記蓄電装置と前記接続部を接続する接続ラインであって、前記蓄電装置の正極端子と接続される正極側充電ライン及び前記蓄電装置の負極端子に接続される負極側充電ラインと、
    前記接続部と前記蓄電装置との間の接続を許容する充電リレーであって、前記正極側充電ラインに設けられる正極側充電リレー及び前記負極側充電ラインに設けられる負極側充電リレーと、
    前記正極側充電リレー及び負極側充電リレーの異常状態を判定する異常判定部と、
    前記蓄電装置の漏電の検出及び検出される前記蓄電装置の漏電が前記蓄電装置の正極側であるのか負極側であるのかを判定する漏電判定部と、
    前記蓄電装置の充放電を制御する制御部と、を有し、
    前記制御部は、前記正極側充電リレー及び負極側充電リレーのいずれか一方に異常が検出された場合、前記漏電が、異常が検出された前記正極充電リレー又は負極充電リレーに対して同一極側であれば、前記蓄電装置の充放電を許容することを特徴とする蓄電システム。
  2. 直列に接続される第1検出抵抗及び第2検出抵抗と、前記第1検出抵抗及び第2検出抵抗の中性点電圧を検出する電圧センサとを備え、前記第1検出抵抗が前記蓄電装置の正極端子に接続され、前記第2検出抵抗が前記蓄電装置の負極端子に接続される漏電検出部をさらに含み、
    前記漏電判定部は、前記中性点電圧の所定の基準値に対して前記電圧センサの検出値が大きい場合に、前記蓄電装置の正極側で漏電が生じた正極側漏電と判定し、前記電圧センサの検出値が前記所定の基準値よりも小さい場合に、前記蓄電装置の負極側で漏電が生じた負極側漏電と判定することを特徴とする請求項1に記載の蓄電システム。
  3. 前記異常判定部は、一方の充電リレーのみをオフにした場合の、前記接続部に印加される電圧の変化に基づいて、他方の充電リレーが異常状態であるか否かを検出することを特徴とする請求項1又は2に記載の蓄電システム。
  4. 車両の走行動力源として電力を供給する蓄電装置と、車両外部の直流電源の充電ケーブルと接続する接続部と、前記蓄電装置と前記接続部を接続する接続ラインであって前記蓄電装置の正極端子と接続される正極側充電ライン及び前記蓄電装置の負極端子に接続される負極側充電ラインと、前記接続部と前記蓄電装置との間の接続を許容する充電リレーであって前記正極側充電ラインに設けられる正極側充電リレー及び前記負極側充電ラインに設けられる負極側充電リレーと、を備えた蓄電システムを搭載した車両の制御装置であって、
    前記正極側充電リレー及び負極側充電リレーの異常状態を判定する異常判定部と、
    前記蓄電装置の漏電の検出及び検出される前記蓄電装置の漏電が前記蓄電装置の正極側であるのか負極側であるのかを判定する漏電判定部と、
    前記正極側充電リレー又は負極側充電リレーのいずれか一方に異常が検出された場合、前記蓄電装置の漏電が、異常が検出された前記正極充電リレー又は負極充電リレーに対して同一極側であれば、前記蓄電装置の充放電を許容するように制御する制御部と、
    を有することを特徴とする車両制御装置。
  5. 車両の走行動力源として電力を供給する蓄電装置と、車両外部の直流電源の充電ケーブルと接続する接続部と、前記蓄電装置と前記接続部を接続する接続ラインであって、前記蓄電装置の正極端子と接続される正極側充電ライン及び前記蓄電装置の負極端子に接続される負極側充電ラインと、前記接続部と前記蓄電装置との間の接続を許容する充電リレーであって、前記正極側充電ラインに設けられる正極側充電リレー及び前記負極側充電ラインに設けられる負極側充電リレーと、を備えた蓄電システムを搭載した車両の制御方法であって、
    前記正極側充電リレー及び負極側充電リレーのいずれか一方が異常状態であるか否かを検出するステップと、
    前記蓄電装置の漏電の検出及び検出される前記蓄電装置の漏電が前記蓄電装置の正極側であるのか負極側であるのかを判定するステップと、
    前記正極側充電リレー及び負極側充電リレーのいずれか一方に異常が検出された場合に、前記漏電が、異常が検出された前記正極充電リレー又は負極充電リレーに対して同一極側であれば、前記蓄電装置の充放電を許容するステップと、
    を含むことを特徴とする車両の制御方法。
JP2012119797A 2012-05-25 2012-05-25 蓄電システム及び車両制御装置 Active JP5655816B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012119797A JP5655816B2 (ja) 2012-05-25 2012-05-25 蓄電システム及び車両制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012119797A JP5655816B2 (ja) 2012-05-25 2012-05-25 蓄電システム及び車両制御装置

Publications (2)

Publication Number Publication Date
JP2013247771A JP2013247771A (ja) 2013-12-09
JP5655816B2 true JP5655816B2 (ja) 2015-01-21

Family

ID=49847161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012119797A Active JP5655816B2 (ja) 2012-05-25 2012-05-25 蓄電システム及び車両制御装置

Country Status (1)

Country Link
JP (1) JP5655816B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103780158A (zh) * 2014-01-21 2014-05-07 中国矿业大学 一种电动汽车动力电池余热利用装置
CN105984355A (zh) * 2015-03-17 2016-10-05 丰田自动车株式会社 用于车辆的电源系统

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6287738B2 (ja) * 2014-09-30 2018-03-07 トヨタ自動車株式会社 車両
JP2016119741A (ja) * 2014-12-18 2016-06-30 三洋電機株式会社 車両用のバッテリシステム
JP6309886B2 (ja) * 2014-12-19 2018-04-11 トヨタ自動車株式会社 車両および充電システム
JP2017120191A (ja) * 2015-12-28 2017-07-06 三菱自動車工業株式会社 故障判定装置
JP6623937B2 (ja) 2016-05-31 2019-12-25 株式会社オートネットワーク技術研究所 リレー装置及び電源装置
KR102256094B1 (ko) * 2017-11-28 2021-05-25 주식회사 엘지에너지솔루션 배터리 팩
JP6962861B2 (ja) * 2018-05-17 2021-11-05 トヨタ自動車株式会社 充電システム
JP7107873B2 (ja) * 2019-03-05 2022-07-27 トヨタ自動車株式会社 車両
JP7338549B2 (ja) * 2020-05-01 2023-09-05 株式会社デンソー 車両電源装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3307173B2 (ja) * 1995-03-20 2002-07-24 松下電器産業株式会社 漏電検出装置
JP2010148213A (ja) * 2008-12-17 2010-07-01 Fujitsu Ten Ltd 充電制御システム、制御装置、充電制御方法及び制御方法
JP5471530B2 (ja) * 2010-02-03 2014-04-16 トヨタ自動車株式会社 車両

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103780158A (zh) * 2014-01-21 2014-05-07 中国矿业大学 一种电动汽车动力电池余热利用装置
CN103780158B (zh) * 2014-01-21 2015-12-02 中国矿业大学 一种电动汽车动力电池余热利用装置
CN105984355A (zh) * 2015-03-17 2016-10-05 丰田自动车株式会社 用于车辆的电源系统
US9929674B2 (en) 2015-03-17 2018-03-27 Toyota Jidosha Kabushiki Kaisha Power supply system for vehicle
CN105984355B (zh) * 2015-03-17 2018-07-13 丰田自动车株式会社 用于车辆的电源系统

Also Published As

Publication number Publication date
JP2013247771A (ja) 2013-12-09

Similar Documents

Publication Publication Date Title
JP5655816B2 (ja) 蓄電システム及び車両制御装置
JP5821715B2 (ja) 蓄電システム、車両の充電制御装置及び異常検出方法
JP5288041B1 (ja) 蓄電システムおよび、蓄電システムの制御方法
US9981567B2 (en) Battery controller
JP5575506B2 (ja) 車両用電源装置及びこの電源装置を備える車両
CN105811561B (zh) 蓄电系统
JP5450144B2 (ja) 車両用の電源装置及びこの電源装置を搭載する車両
JP5867483B2 (ja) 蓄電システム
JP5077376B2 (ja) 車両
JP5929332B2 (ja) 車両用電源装置
JP5435236B2 (ja) 電動車両の充電状態報知装置
JP2013099167A (ja) 蓄電システムを搭載した車両の制御装置及び制御方法
JP6007875B2 (ja) 給電車両及び給電システム
JP5691993B2 (ja) 蓄電システム及び電流センサ異常を検出する方法
US9365129B2 (en) Vehicle having an electric motor and method of controlling a display displaying a cruising distance of the vehicle
JP2015009654A (ja) 蓄電システム
JP2012110175A (ja) 蓄電装置の制御装置およびそれを搭載する車両、ならびに蓄電装置の制御方法
JP2014223003A (ja) 蓄電システム
JP2014087243A (ja) 蓄電システム
JP2020039220A (ja) 電動車両の電源装置
JP6504408B2 (ja) 絶縁抵抗測定方法
JP6003776B2 (ja) 電力供給システムおよびそれを備える車両、ならびに電力供給システムの制御方法
JP2016082691A (ja) 車両
JP2015012685A (ja) 蓄電システム
JP2018143032A (ja) 充電制御装置及び充電システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141110

R151 Written notification of patent or utility model registration

Ref document number: 5655816

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151