JP5637257B2 - 非水二次電池 - Google Patents

非水二次電池 Download PDF

Info

Publication number
JP5637257B2
JP5637257B2 JP2013110901A JP2013110901A JP5637257B2 JP 5637257 B2 JP5637257 B2 JP 5637257B2 JP 2013110901 A JP2013110901 A JP 2013110901A JP 2013110901 A JP2013110901 A JP 2013110901A JP 5637257 B2 JP5637257 B2 JP 5637257B2
Authority
JP
Japan
Prior art keywords
secondary battery
silicon
compound
metal
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2013110901A
Other languages
English (en)
Other versions
JP2013191578A (ja
Inventor
義雄 井戸田
義雄 井戸田
松藤 明博
明博 松藤
森 信文
信文 森
興勝 香川
興勝 香川
晃 加瀬
晃 加瀬
肇 宮元
肇 宮元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2013110901A priority Critical patent/JP5637257B2/ja
Publication of JP2013191578A publication Critical patent/JP2013191578A/ja
Application granted granted Critical
Publication of JP5637257B2 publication Critical patent/JP5637257B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、非水二次電池、特に高容量でサイクル寿命の長いリチウム二次電池に関する。
リチウム金属を含まない負極材料とリチウムを含有する正極活物質を用いるリチウム二次電池では、まず、正極活物質に含まれるリチウムを負極材料に挿入して負極材料の活性を上げる。これが充電反応であり、その逆の負極材料からリチウムイオンを正極活物質へ挿入させる反応が放電反応である。このタイプのリチウム電池負極材料として、カーボンが用いられている。カーボン(C6Li)の理論容量は372mAh/gであり、さらなる高容量負極材料が望まれている。一方、リチウムと金属間化合物を形成するケイ素の理論容量は4000mAh/gをこえ、カーボンのそれより大きいことはよく知られている。例えば、特許文献1では、単結晶のケイ素を開示しており、特許文献2では、非晶質ケイ素を開示している。また、ケイ素を含んだ合金では、Li−Al合金にケイ素を含む例が、特許文献3(ケイ素が19重量%)、特許文献4(ケイ素が0.05〜1.0重量%)、特許文献5(ケイ素が1〜5重量%)に開示されている。ただし、これらの合金特許出願はいずれもリチウムを主体としているため、正極活物質にはリチウムを含有しない化合物が用いられていた。また、特許文献6では、ケイ素が0.05〜1.0重量%の合金が開示されている。特許文献7では、リチウムと合金可能な金属と黒鉛粉末を混合する方法が開示されている。しかし、いずれもサイクル寿命が劣り、実用されるには至っていない。ケイ素のサイクル寿命が劣る理由として、その電子伝導性が低いこと、リチウム挿入により体積が膨張し、粒子が微粉化されることが推測されている。
特開平5−74463号公報 特開平7−29602号公報 特開昭63−66369号公報 特開昭63−174275号公報 特開昭63−285865号公報 特開平4−109562号公報 特開昭62−226563号公報
本発明の目的は、リチウム二次電池のエネルギー量を高め、かつサイクル寿命を高めることにある。
本発明の課題は、正極活物質を有する正極、負極材料を有する負極および非水電解質を構成要素とする非水二次電池に於いて、該正極活物質がリチウムの挿入放出可能な遷移金属酸化物であり、該負極材料がリチウムの挿入放出可能なケイ素原子を含む化合物特徴とする非水二次電池により解決できた。
本発明によれば、エネルギー量やサイクル寿命の向上した非水二次電池を得ることができる。
実施例に使用したシリンダー電池の断面図を示したものである。
以下に本発明の態様について説明するが、本発明はこれらに限定されるものではない。(1)正極活物質を有する正極、負極材料を有する負極および非水電解質を構成要素とする非水二次電池に於いて、該正極活物質は、リチウムを挿入放出できる遷移金属酸化物であり、かつ該負極材料を特徴とする非水二次電池。
(2)項(1)のケイ素化合物の平均粒子サイズが0.01〜50μmである非水二次電池。
(3)項(1)のケイ素化合物が合金である非水二次電池。
(4)項(3)の合金において、ケイ素以外の金属の少なくとも1種がアルカリ土類金属、遷移金属、半金属である非水二次電池。
(5)項(3)または(4)の金属の少なくとも1種がGe、Be、Ag、Al、Au、Cd、Ga、In、Sb、Sn、Znである非水二次電池。
(6)項(5)において、更にMg、Fe、Ni、Co、Ti、Mo、Wから選ばれる少なくとも1種を含有する非水二次電池。
(7)項(6)に記載される金属の珪素に対する原子比率が0を越えて、20%以下である非水二次電池。
(8)項(3)〜(7)に記載のケイ素に対する該金属の原子比率が5〜90%である非水二次電池。
(9)項(3)〜(8)に記載の合金が焼成して得られたものである非水二次電池。
(10)項(9)において、焼成温度が1000℃以上、1800℃以下である非水二次電池。
(11)項(9)または(10)において、合金の焼成後の冷却温度が10℃/分以上である非水二次電池。
(12)項(1)に記載のケイ素化合物が金属ケイ化物から金属を除去したケイ素である非水二次電池。
(13)項(12)に記載の金属ケイ化物がリチウムケイ化物である非水二次電池。
(14)項(13)に記載のリチウムケイ化物のリチウム含量は、ケイ素に対して、100〜420原子%である非水二次電池。
(15)項(1)に記載のケイ素化合物が脱水したアルコールでリチウムケイ素化物を処理することによってリチウムを除去したケイ素である非水二次電池。
(16)項(1)に記載のケイ素化合物がリチウムと反応しないセラミックと付着している非水二次電池。
(17)項(16)に記載のセラミックがAl23、SiO2、TiO2、SiC、Si34から選ばれる少なくとも1種である非水二次電池。
(18)項(17)に記載のセラミックがSiO2である非水二次電池。
(19)項(18)に記載のSiO2は、コロイド状のSiO2である非水二次電池。
(20)項(16)〜(19)に記載のケイ素化合物に対する該セラミックの重量比は2〜50%である非水二次電池。
(21)項(16)〜(20)に記載のケイ素化合物に該セラミックを付着させる方法が、300℃以上1600℃以下で加熱する工程を含む非水二次電池の製造方法。
(22)項(1)記載のケイ素化合物が少なくとも1種の金属で被覆されている非水二次電池。
(23)項(22)の金属で被覆させる方法が無電解めっき法、蒸着法、スパッタリング法、化学気相成長法、金属押しつけ法から選ばれる少なくとも1種である非水二次電池の製造方法。
(24)項(22)及び(23)の被覆される金属がNi、Cu、Ag、Co、Fe、Cr、W、Ti、Au、Pt、Pd、Sn、Znの少なくとも1種である非水二次電池。
(25)項(22)及び(23)の被覆される金属がNi、Cu、Agの少なくとも1種である非水二次電池。
(26)項(22)〜(25)の金属で被覆されたケイ素化合物の比伝導度が被覆されていないケイ素化合物の比伝導度の10倍以上である非水二次電池。
(27)項(22)〜(26)の金属の被覆量がケイ素に対して、1〜80原子%である非水二次電池。
(28)項(1)のケイ素化合物はあらかじめ熱可塑性樹脂で部分的に被覆されている非水二次電池。
(29)項(28)のあらかじめ熱可塑性樹脂で部分的に被覆する方法が、熱可塑性樹脂を溶媒に溶解あるいは分散後、ケイ素化合物を混合、混練する工程を含む方法である非水二次電池の製造方法。
(30)項(28)及び(29)の熱可塑性樹脂がポリフッ化ビニリデン、ポリテトラフルオロエチレンから選ばれる少なくとも1種である非水二次電池。
(31)項(28)〜(30)のケイ素化合物に対する熱可塑性樹脂の重量比が2〜30%である非水二次電池。
(32)項(28)〜(31)の熱可塑性樹脂の被覆率が5〜95%である非水二次電池。
(33)項(1)のケイ素化合物に対して炭素が重量比で5〜1900%共存する非水二次電池。
(34)項(1)のケイ素化合物に対して炭素が重量比で5〜400%共存する非水二次電池。
(35)項及び(34)の炭素が鱗片状天然黒鉛である非水二次電池。
(36)項(1)のケイ素化合物の充放電範囲が、ケイ素に挿入放出するリチウムの当量比として、LixSiで表すとxが0から4.2の範囲内である非水二次電池。
(37)項(1)のケイ素化合物の充放電範囲が、LixSiで表すとxが0から3.7の範囲内である非水二次電池。
(38)項(1)のケイ素化合物の充電を、1時間率電流の0.1%以上、10%以下の範囲で終止した非水二次電池。
(39)項(38)に記載の充電が、15分以上10時間以内に終了した非水二次電池。
(40)項(1)の正極活物質はLiyMO2(M=Co、Ni、Fe、Mnの少なくとも1種 y=0〜1.2)を含む材料、またはLiz24(N=Mn z=0〜2)で表されるスピネル構造を有する材料の少なくとも1種を用いる非水二次電池。
(41)項(1)の正極活物質はLiya1-a2(M=Co、Ni、Fe、Mnの少なくとも1種、D=Co、Ni、Fe、Mn、Al、Zn、Cu、Mo、Ag、W、Ga、In、Sn、Pb、Sb、Sr、B、Pの中のM以外の少なくとも1種、y=0〜1.2、a=0.5〜1)を含む材料、またはLiz(Nb1-b)24(N=Mn、E=Co、Ni、Fe、Al、Zn、Cu、Mo、Ag、W、Ga、In、Sn、Pb、Sb、Sr、B、Pの少なくとも1種、b=0.2〜1、z=0〜2)で表されるスピネル構造を有する材料の少なくとも1種を用いる非水二次電池。
(42)項(3)〜(39)で用いるケイ素の平均粒子サイズが0.01〜50μmである非水二次電池。
(43)項(3)〜(39)で用いるケイ素の平均粒子サイズが0.05〜5μmである非水二次電池。
(44)項(42)または(43)に記載のケイ素が、リチウムと反応できるケイ素単体、ケイ素合金、ケイ化物から選ばれる少なくとも1種である非水二次電池。
(45)項(3)〜(11)に記載の合金が、項(16)〜(21)のセラミックを付着させた合金である非水二次電池。
(46)項(3)〜(11)に記載の合金が、項(22)〜(27)の金属を被覆した合金である非水二次電池。
(47)項(45)に記載の合金が、項(22)〜(27)の金属を被覆した合金である非水二次電池。
(48)項(46)に記載の合金が、項(16)〜(21)のセラミックを付着した合金である非水二次電池。
(49)項(3)〜(11)に記載の合金が、項(28)〜(32)の熱可塑性樹脂を被覆した合金である非水二次電池。
(50)項(49)の材料に項(22)〜(27)のメッキをした非水二次電池。
(51)項(45)〜(48)の材料が、項(28)〜(32)の熱可塑性樹脂を被覆した材料である非水二次電池。
(52)項(45)の材料が、項(28)〜(32)の熱可塑性樹脂を被覆した後、項(22)〜(27)の金属を被覆した材料である非水二次電池。
(53)項(3)〜(11)に記載の合金が、項(33)〜(35)の炭素を共存させた材料である非水二次電池。
(54)項(45)〜(52)に記載の材料が、項(33)〜(35)の炭素を共存させた材料である非水二次電池。
(55)項(3)〜(11)に記載の負極を、項(36)〜(39)に記載の充放電範囲で用いる非水二次電池。
(56)項(45)〜(54)に記載の材料を、項(36)〜(39)に記載の充放電範囲で用いる非水二次電池。
(57)負極材料に項(3)〜(11)に記載の合金、正極活物質として項(40)または(41)に記載の化合物を用いた非水二次電池。
(58)負極材料に項(42)〜(54)の材料、正極活物質として項(40)または(41)に記載の化合物を用いた非水二次電池。
(59)項(12)〜(15)に記載のケイ素が、項(16)〜(21)のセラミックを付着させたケイ素である非水二次電池。
(60)項(12)〜(15)に記載のケイ素が、項(22)〜(27)の金属を被覆したケイ素である非水二次電池。
(61)項(59)の材料が、項(22)〜(27)の金属を被覆した材料である非水二次電池。(62)項(60)の材料が、項(16)〜(21)のセラミックを付着させた材料である非水二次電池。
(63)項(12)〜(15)に記載のケイ素が、項(28)〜(32)の熱可塑性樹脂を被覆したケイ素である非水二次電池。
(64)項(63)に記載の材料に、項(22)〜(27)の金属を被覆した材料である非水二次電池。
(65)項(59)〜(62)の材料が、項(28)〜(32)の熱可塑性樹脂を被覆した材料である非水二次電池。
(66)項(59)の材料が、項(28)〜(32)の熱可塑性樹脂を被覆した後、項(22)〜(27)の金属を被覆した材料である非水二次電池。
(67)項(12)〜(15)に記載のケイ素が、項(33)〜(35)の炭素を共存させた材料である非水二次電池。
(68)項(59)〜(66)に記載の材料が、項(33)〜(35)の炭素を共存させた材料である非水二次電池。
(69)項(12)〜(15)に記載の負極を、項(36)〜(39)に記載の充放電範囲で用いる非水二次電池。
(70)項(59)〜(69)に記載の材料を、項(36)〜(39)に記載の充放電範囲で用いる非水二次電池。
(71)負極材料に項(12)〜(15)に記載のケイ素、正極活物質として項(40)または(41)に記載の化合物を用いた非水二次電池。
(72)負極材料に項(59)〜(68)の材料、正極活物質として項(40)または(41)に記載の化合物を用いた非水二次電池。
(73)項(16)〜(21)に記載のケイ素化合物が、項(22)〜(27)の金属を被覆したケイ素である非水二次電池。
(74)項(16)〜(21)に記載のケイ素化合物が、項(28)〜(32)の熱可塑性樹脂を被覆したケイ素化合物である非水二次電池。
(75)項(73)の材料が、項(28)〜(32)の熱可塑性樹脂を被覆した材料である非水二次電池。
(76)項(75)に記載の材料が、項(22)〜(27)の金属を被覆した材料である非水二次電池。
(77)項(16)〜(21)に記載のケイ素化合物が、(33)〜(35)の炭素を共存させたケイ素化合物である非水二次電池。
(78)項(73)〜(77)に記載の材料が、(33)〜(35)の炭素を共存させた材料である非水二次電池。
(79)項(16)〜(21)に記載のケイ素化合物を、項(36)〜(39)に記載の充放電方法で用いた非水二次電池。
(80)項(73)〜(78)に記載の材料を、項(36)〜(39)に記載の充放電方法で用いた非水二次電池。
(81)負極材料として項(16)〜(21)のケイ素化合物、正極活物質として項(40)または(41)に記載の化合物を用いた非水二次電池。
(82)負極材料として項(73)〜(78)の材料、正極活物質として項(40)または(41)に記載の化合物を用いた非水二次電池。
(83)項(22)〜(27)に記載の材料が、項(16)〜(21)に記載のセラミックを付着させた材料である非水二次電池。
(84)項(22)〜(27)に記載の材料が、項(28)〜(32)に記載の熱可塑性樹脂を被覆した材料である非水二次電池。
(85)項(83)の材料が、項(28)〜(32)に記載の熱可塑性樹脂を被覆した材料である非水二次電池。
(86)項(22)〜(27)に記載の材料が、項(33)〜(35)の炭素を共存させた材料である非水二次電池。
(87)項(83)〜(85)に記載の材料が、項(33)〜(35)の炭素を共存させた材料である非水二次電池。
(88)項(22)〜(27)に記載の材料が、項(33)〜(35)の炭素を共存させた材料である非水二次電池。
(89)項(22)〜(27)に記載の材料を、項(36)〜(39)に記載の充放電方法で用いた非水二次電池。
(90)項(83)〜(88)に記載の材料を、項(36)〜(39)に記載の充放電方法で用いた非水二次電池。
(91)負極材料として項(22)〜(27)に記載の材料、正極活物質として項(40)または(41)に記載の化合物を用いた非水二次電池。
(92)負極材料として項(81)〜(88)に記載の材料、正極活物質として項(40)または(41)に記載の化合物を用いた非水二次電池。
(93)項(28)〜(32)に記載の材料が、(16)〜(21)のセラミックを付着させた材料である非水二次電池。
(94)項(28)〜(32)に記載の材料が、(22)〜(27)に記載の金属を被覆した材料である非水二次電池。
(95)項(93)に記載の材料が、項(22)〜(27)記載の金属を被覆した材料である非水二次電池。
(96)項(28)〜(32)に記載の材料が、項(33)〜(35)に記載の炭素を共存した材料である非水二次電池。
(97)項(93)に記載の材料が、項(33)〜(35)に記載の炭素を共存した材料である非水二次電池。
(98)項(94)に記載の材料が、項(33)〜(35)に記載の炭素を共存した材料である非水二次電池。
(99)項(28)〜(32)に記載の材料を、項(36)〜(39)に記載の充放電方法で用いた非水二次電池。
(100)項(93)〜(98)に記載の材料を、項(36)〜(39)に記載の充放電方法で用いた非水二次電池。
(101)負極材料として項(28)〜(32)に記載の材料、正極活物質として項(40)または(41)に記載の化合物を用いた非水二次電池。
(102)負極材料として項(93)〜(98)に記載の材料、正極活物質として項(40)または(41)に記載の化合物を用いた非水二次電池。
(103)負極材料として項(33)〜(35)に記載の材料、正極活物質として項(40)または(41)に記載の化合物を用いた非水二次電池。
(104)項(33)〜(35)に記載の材料を、項(36)〜(39)に記載の充放電方法で用いた非水二次電池。
(105)項(42)〜(44)に記載の材料を、項(36)〜(39)に記載の充放電方法で用いた非水二次電池。
本発明で用いられる正極(あるいは負極)は、正極合剤(あるいは負極合剤)を集電体上に塗設、成形して作ることができる。正極合剤(あるいは負極合剤)には、正極活物質(あるいは負極材料)の他、導電剤、結着剤、分散剤、フィラー、イオン導電剤、圧力増強剤や各種添加剤を含むことができる。これらの電極は、円盤状、板状であってもよいが、柔軟性のあるシート状であることが好ましい。
以下に本発明の構成および材料について詳述する。本発明の負極材料で用いられるリチウムの挿入放出できるケイ素原子を含む化合物は、ケイ素単体、ケイ素合金、ケイ化物を意味する。ケイ素化合物としては、単結晶、多結晶、非晶質のいずれも使用することができる。単体の純度は85重量%以上が好ましく、特に、95重量%以上が好ましい。さらに、99重量%以上が特に好ましい。不純物としては、おもに、Fe、Al、Ca、Mn、Mg、Ni、Crなどが含まれる。それらの含有量は0〜0.5重量%である。そケイ素化合物の平均粒子サイズは0.01〜50μmが好ましい。特に、0.02〜30μmが好ましい。さらに、0.05〜5μmが好ましい。またケイ素の表面は二酸化ケイ素で覆われていることがよく知られており、イオン導電性皮膜の役目もしていると考えられている。
ケイ素合金は、リチウムを挿入放出した際に生じるケイ素の膨張収縮による微粉化を抑制したり、ケイ素の伝導性の低さを改良するので有効であると考えられる。合金としては、アルカリ土類金属、遷移金属あるいは半金属との合金が好ましい。特に、固溶性合金や共融性合金が好ましい。固溶性合金は固溶体を形成する合金をいう。例えばGeの合金が固溶性合金である。共融性合金とは、ケイ素とどんな割合でも共融するが、冷却して得られる固体はケイ素と金属の混合体である合金を言う。Be、Ag、Al、Au、Cd、Ga、In、Sb、Sn、Znが共融性合金を形成する。これらの中では、Ge、Be、Ag、Al、Au、Cd、Ga、In、Sb、Sn、Znの合金が更に好ましい。また、これらの2種以上の合金も好ましい。とくに、Ge、Ag、Al、Cd、In、Sb、Sn、Znを含む合金が好ましい。これらの合金の混合比率は、ケイ素に対して5〜90重量%が好ましい。とくに、10〜80重量%が好ましい。さらに、20〜60重量%が特に好ましい。また、共融性合金の他Mg、Fe、Co、Ni、Ti、Mo、Wを含んでもよい。これらの金属の含有量としては、0〜20重量%が好ましい。ケイ素以外の金属の混合比率は、特に限定されない。この場合、電気伝導性が向上するが電池性能、とくに、放電容量、ハイレート特性、サイクル寿命の点で、比伝導度が合金前のケイ素またはケイ素化合物の比伝導度の10倍以上になることが好ましい。
合金の合成法としては、焼成法、メカニカルミリング法が用いられる。焼成法としては、原料の金属を混合し、それをるつぼに移し、不活性ガス中で、5〜100℃/minの昇温速度で昇温し、恒温としては、1000〜1800℃、特に好ましくは、1300〜1700℃に10分〜24時間、特に好ましくは30分〜5時間保ち、10℃/分以上の降温速度で冷却する。とくに、100℃/分以上で冷却することが好ましい。不活性ガスとしては、アルゴン、窒素、水素などのガスを単独か混合して用いることが好ましい。冷却後、アニールすることが好ましい。アニール条件としては、不活性ガス中で、200℃〜一部の合金が溶融しない温度の範囲内が好ましい。
メカニカルミリング法としては、ボールミル、遊星ボールミル、振動ミル等の粉砕機を用いて、複数の金属を超微細になるまで粉砕する方法が用いられる。ミルのセル内は不活性ガス、不活性液体、還元性気体、還元性液体で満たしておくことが好ましい。不活性ガスとしては、アルゴン、窒素、水素などのガスを単独か混合して用いることが好ましい。不活性液体としては、除酸素した水、アルコールなどが用いられる。還元性気体としては、アンモニア、亜硫酸ガスなどが用いられる。還元性液体としては、亜硫酸ナトリウム、チオ硫酸ナトリウム、ヒドロキシルアミン、ヒドロキノン等を含んだ水溶液やジメチルスルホキシド溶液を用いることができる。不活性ガスで粉砕することが特に好ましい。ミリング時間は、1時間〜48時間が好ましい。
合金の平均粒子サイズは0.01〜40μmが好ましい。特に、0.02〜20μmが好ましく、さらに0.03〜5μmが特に、好ましい。粉砕方法としては、振動ミル、ボールミル、遊星ボールミル、ジェットミル、自動乳鉢が用いられる。粉砕時間は、1分〜1時間が好ましい。粉砕の雰囲気は、メカニカルミリングの項で述べた方法が用いられる。
ケイ化物は、ケイ素と金属の化合物を言う。ケイ化物としては、CaSi、CaSi2、Mg2Si、BaSi2、SrSi2、Cu5Si、FeSi、FeSi2、CoSi2、Ni2Si、NiSi2、MnSi、MnSi2、MoSi2、CrSi2、TiSi2、Ti5Si3、Cr3Si、NbSi2、NdSi2、CeSi2、SmSi2、DySi2、ZrSi2、WSi2、W5Si3、TaSi2、Ta5Si3、TmSi2、TbSi2、YbSi2、YSi2、YSi2、ErSi、ErSi2、GdSi2、PtSi、V3Si、VSi2、HfSi2、PdSi、PrSi2、HoSi2、EuSi2、LaSi、RuSi、ReSi、RhSi等が用いられる。
該ケイ素化合物として、金属ケイ化物から金属を除去したケイ素を用いることが好ましい。このケイ素の形状としては、1μm以下の微粒子で多孔性のものや、微小粒子が凝集して多孔性の二次粒子を形成したものをあげることができる。このケイ素を用いるとサイクル寿命が改良される理由としては、微粉化されにくいと考えられる。該金属ケイ化物の金属はアルカリ金属、アルカリ土類金属であることが好ましい。なかでも、Li、Ca、Mgであることが好ましい。とくに、Liが好ましい。該金属ケイ化物の平均粒子サイズは0.01〜300μmであることが好ましく、0.01〜50μmがより好ましく、0.01〜10μmが最も好ましい。該リチウムケイ化物のリチウム含量は、ケイ素に対して、100〜420モル%が好ましい。特に、200〜420モル%が好ましい。
アルカリ金属やアルカリ土類金属のケイ化物からアルカリ金属やアルカリ土類金属を除去する方法は、アルカリ金属やアルカリ土類金属と反応する溶媒で処理させることが好ましい。溶媒としては、水、アルコール類が好ましい。リチウムケイ化物の場合は脱気し、かつ、脱水したアルコール類を用いることが反応中のケイ素の酸化を抑制できるのでが好ましい。脱水の程度としては、残存水量1000ppm以下が好ましく、200ppm以下が好ましく、50ppm以下が最も好ましい。
脱気および脱水の方法としては、該アルコールを環流させつつアルゴンなどの不活性ガスでバブリングすることが挙げられる。アルコールの種類としては、メチルアルコール、エチルアルコール、1−プロピルアルコール、2−プロピルアルコール、1−ブチルアルコール、2−ブチルアルコール、t−ブチルアルコール、1−ペンチルアルコール、2−ペンチルアルコール、3−ペンチルアルコールが好ましい。とくに、1−プロピルアルコール、2−プロピルアルコール、1−ブチルアルコール、2−ブチルアルコール、t−ブチルアルコールが好ましい。CaやMgの除去は、水が好ましい。中性付近に保つようなpH緩衝剤を用いると更に好ましい。溶媒量としては反応当量以上であればよいが特に約10倍が好ましい。反応温度は特に制限はないが、反応をマイルドかつ均一に進行させるために室温以下であることが好ましい。
反応終了後の残存ケイ素粉末は濾過、またはデカンテーションによって取り出した後、洗浄することが好ましい。洗浄液としては、前述の水、アルコール類が好ましい。このようにして得た粉末の金属残存量は1重量%以下であることが好ましく、0.1重量%以下であることがより好ましい。金属残存量を少なくするためには、反応時のケイ化物の粒子サイズを小さくすることが好ましい。具体的には、0.01〜300μmが好ましく、0.01〜50μmがより好ましく、0.01〜10μmが最も好ましい。他の方法として、反応終了後に得られた粉末を粉砕して粒子サイズを小さくしてから再度反応溶媒に投入することも好ましい。また、必要に応じ前記の粉砕、反応を繰り返すことも好ましい。このようにして得たケイ素粉末を後述の金属被覆することは放電容量、サイクル寿命をさらに改良できる点で好ましい。
ケイ素化合物に付着させるセラミックはケイ素の微粉化の抑制に有効であると考えられる。セラミックとしては、リチウムと原則的に反応しない化合物が好ましい。とくに、Al23、SiO2、TiO2、SiC、Si34が好ましい。ケイ素とセラミックを付着させる方法としては、混合、加熱、蒸着、CVDが用いられるが、とくに、混合と加熱の併用が好ましい。とくに、Al23やSiO2のコロイド溶液(コロイダルシリカ)とケイ素を分散混合させた後、加熱し、固溶した固まりを粉砕してケイ素とAl23やSiO2の付着物を得ることができる。
この場合、Al23やSiO2の付着物とは、Al23やSiO2等の表面がケイ素粉末に覆われていたり、Al23やSiO2等の固まりの内部に閉じこめられていたり、ケイ素の表面がそれらが覆われていたりする状態を言う。混合分散は、機械的撹拌、超音波、混練により達成できる。加熱は不活性ガス中で300℃〜1600℃の範囲で行うことが好ましいが、特に、400℃〜1500℃、さらに、500℃〜1300℃が特に好ましい。加熱時間は、0.5〜24時間が好ましい。不活性ガスはアルゴン、窒素、水素が上げられる。これらの混合ガスも用いられる。粉砕法はボールミル、振動ミル、遊星ボールミル、ジェットミル、自動乳鉢などよく知られた方法が用いられる。この粉砕もメカニカルミリングで述べた環境が好ましいが、特に、不活性ガス中で行われることが好ましい。
ケイ素に対するセラミックスの混合比は2〜50重量%の範囲が好ましいが、とくに3〜40%が好ましい。ケイ素の電子顕微鏡観察から求めた平均粒子サイズは、0.01〜40μmが好ましい。とくに、0.5〜20μmが好ましく、さらに、1〜10μmが好ましい。
本発明のケイ素化合物の金属被覆としては、電気めっき法、置換めっき法、無電解めっき法、抵抗加熱蒸着法、電子ビーム蒸着、クラスターイオン蒸着法などの蒸着法、スパッタリング法、化学気相成長法(CVD法)により達成できる。とくに、無電解めっき法、抵抗加熱蒸着法、電子ビーム蒸着、クラスターイオン蒸着法などの蒸着法、スパッタリング法、CVD法が好ましい。また、高速剪断ミル、スタンプミル、ロールミルによる金属の押しつけ法が用いられる。なかでも、無電解めっき法がとくに好ましい。
無電解めっき法は「無電解めっき 基礎と応用」電気鍍金研究会編 日刊工業新聞社刊(1994)に記載されている。その還元剤はホスフィン酸塩、ホスホン酸塩、水素化ホウ素化物、アルデヒド類、糖類、アミン類、金属塩が好ましい。ホスフィン酸水素ナトリウム、ホスホン酸水素ナトリウム、水素化ホウ素ナトリウム、ジメチルアミンボラン、ホルムアルデヒド、蔗糖、デキストリン、ヒドロキシルアミン、ヒドラジン、アスコルビン酸、塩化チタンが好ましい。めっき液の中には還元剤の他に、pH調節剤、錯形成剤を含ませることが好ましい。これらについても上記「無電解めっき基礎と応用」に記載されている化合物が用いられる。メッキ液組成についても上記単行本に記載されている。還元剤の濃度は水1リットル当たり10〜500gが好ましい。めっき液のpHはとくに限定されないが、4〜13が好ましい。液の温度は10℃〜100℃が好ましいが、とくに、20℃〜95℃がこのましい。めっき浴の他にSnCl2塩酸水溶液からなる活性化浴、PdCl2塩酸水溶液からなる核形成浴を用いたり、さらに濾過工程、水洗工程、粉砕工程、乾燥工程が用いられる。
また、被覆されるケイ素化合物の形態としては、粉体状、塊状、板状等のいずれもが用いられる。被覆される金属は導電性の高い金属であれば何でもよいが、とくに、Ni、Cu、Ag、Co、Fe、Cr、W、Ti、Au、Pt、Pd、Sn、Znが好ましい。とくに、Ni、Cu、Ag、Co、Fe、Cr、Au、Pt、Pd、Sn、Znが好ましく、さらに、Ni、Cu、Ag、Pd、Sn、Znがとくに好ましい。被覆される金属量はとくに限定がないが、比伝導度が、素地であるケイ素化合物の比伝導度の10倍以上になるように被覆することが好ましい。金属の被覆量はケイ素に対して、1〜80重量%、特に1〜50重量%が好ましく、さらに1〜30重量%が特に好ましい。
本発明で用いられるケイ素化合物は予め合成樹脂で部分的に被覆されていることがサイクル寿命の改良の観点から好ましい。サイクル寿命が改良される理由としては、リチウム挿入に伴うケイ素化合物の微粉化が抑制されるためであると考えられる。合成樹脂は熱可塑性樹脂と熱硬化性樹脂に大別されるが、サイクル寿命改良のためには熱可塑性樹脂がより好ましい。
熱可塑性樹脂は含フッ素高分子化合物、イミド系高分子、ビニル系高分子、アクリレート系高分子、エステル系高分子、ポリアクリロニトリルなどが用いられる。とくに、熱可塑性樹脂は電解液に膨潤しにくい樹脂が好ましい。具体例としては、ポリアクリル酸、ポリアクリル酸Na、ポリビニルフェノール、ポリビニルメチルエーテル、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリルアミド、ポリヒドロキシ(メタ)アクリレート、スチレン−マレイン酸共重合体等の水溶性ポリマー、ポリビニルクロリド、ポリテトラフルロロエチレン、ポリフッ化ビニリデン、テトラフロロエチレン−ヘキサフロロプロピレン共重合体、ビニリデンフロライド−テトラフロロエチレン−ヘキサフロロプロピレン共重合体、ポリエチレン、ポリプロピレン、エチレン−プロピレン−ジエンターポリマー(EPDM)、スルホン化EPDM、ポリビニルアセタール樹脂、メチルメタアクリレート、2−エチルヘキシルアクリレート等の(メタ)アクリル酸エステルを含有する(メタ)アクリル酸エステル共重合体、(メタ)アクリル酸エステル−アクリロニトリル共重合体、ビニルアセテート等のビニルエステルを含有するポリビニルエステル共重合体、スチレン−ブタジエン共重合体、アクリロニトリル−ブタジエン共重合体、ポリブタジエン、ネオプレンゴム、フッ素ゴム、ポリエチレンオキシド、ポリエステルポリウレタン樹脂、ポリエーテルポリウレタン樹脂、ポリカーボネートポリウレタン樹脂、ポリエステル樹脂、フェノール樹脂、エポキシ樹脂等のエマルジョン(ラテックス)あるいはサスペンジョンを挙げることが出来る。特にポリアクリル酸エステル系のラテックス、カルボキシメチルセルロース、ポリテトラフルオロエチレン、ポリフッ化ビニリデンが挙げられる。これらの化合物は単独または混合して用いることが出来る。これらの化合物の中では含フッ素高分子化合物が好ましい。なかでもポリテトラフルオロエチレン、ポリフッ化ビニリデンが好ましい。
あらかじめ被覆する方法としては、合成樹脂溶媒に溶解あるいは分散させておき、その溶液にケイ素化合物を混合、混練する。その溶液を乾燥し、得られた固形物を粉砕する方法が好ましい。ここで用いる溶剤としては合成樹脂を溶解できる溶剤ならば何でも用いることができるが、ポリフッ化ビニリデンの場合にはN−メチル−2−ピロリドンまたはジメチルホルムアミドが好ましい。あらかじめ被覆する別の方法として、合成樹脂粉末とケイ素化合物粉末を均一混合後加熱することにより、熱可塑性樹脂を融解させた後、得られた固形物を粉砕する方法も好ましい。得られた固形物を粉砕する際は、ケイ素化合物の酸化などの副反応の抑制のために、アルゴンなどの不活性ガス雰囲気下で粉砕することが好ましい。
上記に示された熱可塑性樹脂は、負極合剤層を構成する際の結着剤としての使用法が一般に知られている。結着剤としての使用法が、活物質、導電剤等と均一に混合して用いる方法であるのに対し、本発明の被覆剤としての使用法は熱可塑性樹脂を活物質表面に局在させる点で異なる。結着剤としての熱可塑性樹脂の使用量を増やすことでサイクル寿命が改良される方向であることは従来より知られているが、本発明の活物質表面に被覆させる方法のほうがサイクル性改良効果が大きい。
ケイ素化合物に対する合成樹脂の使用量としては、2〜30重量%が好ましい。とくに、3〜20重量%が好ましい。本発明において、合成樹脂は部分的に被覆されていることが好ましい。被覆率は5〜95%が好ましいが、とくに、5〜90%が好ましい。ここで被覆率とは、ケイ素化合物粒子の全表面積に対する、熱可塑性樹脂で被覆された部分の面積の百分比率で定義される。熱可塑性樹脂は一般に絶縁性であるため、ケイ素化合物表面に被覆する際、導電性を向上させる手段を併用することが好ましい。
導電性を向上させる手段としては、炭素微粒子との共存、金属微粒子との共存、金属メッキの併用、など公知の方法を用いることができる。被覆された粒子の平均サイズは、0.01μm〜40μmが好ましい。とくに、0.03〜5μmが好ましい。合成樹脂で被覆された粒子を導電剤、結着剤と混合して負極合剤を調製する際に用いる分散媒としては、合成樹脂が溶解しない分散媒を用いることが好ましい。たとえばポリフッ化ビニリデンで被覆した場合には、負極合剤調製時に用いる分散媒は水が好ましい。粉砕方法やその環境は前記の方法が用いられる。また、電子伝導性の付与のため、金属の被覆法を併用することが好ましい。
本発明では、ケイ素化合物と炭素質化合物を混合して用いることが好ましい。炭素質材料は導電剤や負極材料で用いられる材料が用いられる。炭素質材料としては、難黒鉛化炭素材料と黒鉛系炭素材料を挙げることができる。具体的には、特開昭62−122066号、特開平2−66856号、同3−245473号等の各公報に記載される面間隔や密度、結晶子の大きさの炭素材料、特開平5−290844号公報に記載の天然黒鉛と人造黒鉛の混合物、特開昭63−24555号、同63−13282号、同63−58763号、特開平6−212617号公報に記載の気相成長炭素材料、特開平5−182664号公報に記載の難黒鉛化炭素を2400℃を超える温度で加熱焼成された材料であり、かつ複数の002面に相当するX線回折のピークを持つ材料、特開平5−307957号、同5−307958号、同7−85862号、同8−315820号公報に記載のピッチ焼成により合成されたメソフェース炭素材料、特開平6−84516号公報に記載の被覆層を有する黒鉛、さらには、各種の粒状体、微小球体、平板状体、微小繊維、ウィスカーの形状の炭素材料、フェノール樹脂、アクリロニトリル樹脂、フルフリルアルコール樹脂の焼成体、水素原子を含むポリアセン材料などの炭素材料等を挙げることができる。
さらに、導電剤としての具体例としては、鱗状黒鉛、鱗片状黒鉛、土状黒鉛等の天然黒鉛、石油コークス、石炭コークス、セルロース類、糖類、メソフェーズピッチ等の高温焼成体、気相成長黒鉛等の人工黒鉛等のグラファイト類、アセチレンブラック、ファーネスブラック、ケッチェンブラック、チャンネルブラック、ランプブラック、サーマルブラック等のカーボンブラック類、アスファルトピッチ、コールタール、活性炭、メソフューズピッチ、ポリアセン等の炭素材料が好ましい。これらは単独で用いても良いし、混合物として用いても良い。
とくに、特開平5−182664号公報に記載の炭素材料や各種の粒状体、微小球体、平板状体、繊維、ウィスカーの形状の炭素材料、また、メソフェーズピッチ、フェノール樹脂、アクリロニトリル樹脂の焼成体、さらに、水素原子を含むポリアセン材料が好ましい。なかでも、鱗片状天然黒鉛が合剤膜を強固にさせるため好ましい。混合比は、ケイ素化合物に対して、5〜1900重量%が好ましい。とくに、20〜500重量%が好ましい。さらに、30〜400重量%が好ましい。炭素質材料の平均粒子サイズとしてはさまざまなものを用いることができるが、0.01〜50μmが好ましく、0.02〜30μmがより好ましく、0.05〜5μmがもっとも好ましい。
導電剤としては、下記のように炭素の他の材料も用いることができる。ケイ素化合物負極材料の充放電範囲としては、挿入放出できるリチウムとケイ素原子の比をLixSiで表すとき、x=0〜4.2が好ましい。ケイ素のサイクル寿命改良を鋭意検討した結果、x=0〜3.7の範囲に留めるとサイクル寿命が大きく改良することを見いだした。充電電位では、リチウム金属対極に対して、x=4.2では、過電圧を含めて、0.0Vであるのに対し、x=3.7では、約0.05Vであった。このとき、放電曲線の形状は変化し、0.0V充電折り返しでは0.5V(体リチウム金属)付近に平坦な放電曲線が得られるのに対し、0.05V以上、とくに0.08V以上(x=3.6)では、約0.4Vに平均電圧をもつなだらかな曲線が得られる。即ち、充電終始電圧を上げた方が放電電位が下がるという特異的な現象を見いだした。また、充放電反応の可逆性もあがった現象を見いだした。
本発明での充電終始方法としては、開回路定電圧、閉回路定電圧、電流、時間、大電流充電後小電流充電の組み合わせ等の方法が用いられるが、とくに、閉回路定電圧時の電流を設定し、合わせて、充電時間を設定する方法が好ましい。定電圧値は上記範囲で設定される。電流値は定電圧領域で1時間率電流の0.1〜10%の範囲に入ったときに充電を終止することが好ましい。
ケイ素化合物の高容量を維持しつつ、サイクル寿命を改良する効果を持つ方法を個々に記述してきたが、さらに好ましい態様は、上記方法の組み合わせによりさらに高い改良効果を得ることを見いだした。
本発明では、負極材料として、本発明のケイ素化合物の他炭素質材料、酸化物材料、窒化物材料、硫化物材料、リチウム金属、リチウム合金などリチウムを挿入放出できる化合物と組み合わせることができる。正極材料に遷移金属酸化物を用いる場合は特に、リチウム金属やリチウム合金と併用する。
本発明で用いられる正極材料はリチウムを挿入放出できる遷移金属酸化物が用いられるが、特に、リチウム含有遷移金属酸化物が好ましい。好ましくはTi、V、Cr、Mn、Fe、Co、Ni、Mo、Wから選ばれる少なくとも1種の遷移金属元素とリチウムとを主として含有する酸化物であって、リチウムと遷移金属のモル比が0.3乃至2.2の化合物である。より好ましくは、V、Cr、Mn、Fe、Co、Niから選ばれる少なくとも1種の遷移金属元素とリチウムとを主として含有する酸化物であって、リチウムと遷移金属のモル比が0.3乃至2.2の化合物である。なお主として存在する遷移金属に対し30モルパーセント未満の範囲でAl、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P、Bなどを含有していても良い。上記の正極活物質の中で、一般式LixMO2(M=Co、Ni、Fe、Mnの少なくとも1種 x=0〜1.2)、またはLiy24(N=Mn y=0〜2)で表されるスピネル構造を有する材料の少なくとも1種を用いることがこのましい。
具体的には、LixCoO2、LixNiO2、LixMnO2、LixCoaNi1-a2、LixCob1-bz、LixCobFe1-b2、LixMn24、LixMncCo2-c4、LixMncNi2-c4、LixMnc2-c4、LixMncFe2-c4(ここでx=0.02〜1.2、a=0.1〜0.9、b=0.8〜0.98、c=1.6〜1.96、z=2.01〜2.3)である。
さらに、正極活物質はLiya1-a2(M=Co、Ni、Fe、Mnの少なくとも1種 D=Co、Ni、Fe、Mn、Al、Zn、Cu、Mo、Ag、W、Ga、In、Sn、Pb、Sb、Sr、B、Pの中のM以外の少なくとも1種 y=0〜1.2、a=0.5〜1)を含む材料、またはLiz(Nb1-b24(N=Mn E=Co、Ni、Fe、Mn、Al、Zn、Cu、Mo、Ag、W、Ga、In、Sn、Pb、Sb、Sr、B、P Eは少なくとも1種 b=1〜0.2 z=0〜2)で表されるスピネル構造を有する材料の少なくとも1種を用いることが特に好ましい。最も好ましいリチウム含有遷移金属酸化物としては、LixCoO2、LixNiO2、LixMnO2、LixCoaNi1-a2、LixMn24、LixCob1-bz(x=0.02〜1.2、a=0.1〜0.9、b=0.9〜0.98、z=2.01〜2.3)があげられる。なおxの値は充放電開始前の値であり、充放電により増減する。
本発明で用いる正極活物質は、リチウム化合物と遷移金属化合物を混合、焼成する方法や溶液反応により合成することができるが、特に焼成法が好ましい。焼成の為の詳細は、特開平6−60,867号の段落35、特開平7−14,579号等に記載されており、これらの方法を用いることができる。焼成によって得られた正極活物質は水、酸性水溶液、アルカリ性水溶液、有機溶剤にて洗浄した後使用してもよい。更に、遷移金属酸化物に化学的にリチウムイオンを挿入する方法としては、リチウム金属、リチウム合金やブチルリチウムと遷移金属酸化物と反応させることにより合成する方法であっても良い。
本発明で用いる正極活物質の平均粒子サイズは特に限定されないが、0.1〜50μmが好ましい。0.5〜30μmの粒子の体積が95%以上であることが好ましい。粒径3μm以下の粒子群の占める体積が全体積の18%以下であり、かつ15μm以上25μm以下の粒子群の占める体積が、全体積の18%以下であることが更に好ましい。比表面積としては特に限定されないが、BET法で0.01〜50m2/gが好ましく、特に0.2m2/g〜1m2/gが好ましい。また正極活物質5gを蒸留水100mlに溶かした時の上澄み液のpHとしては7以上12以下が好ましい。
本発明の正極活物質を焼成によって得る場合、焼成温度としては500〜1500℃であることが好ましく、さらに好ましくは700〜1200℃であり、特に好ましくは750〜1000℃である。焼成時間としては4〜30時間が好ましく、さらに好ましくは6〜20時間であり、特に好ましくは6〜15時間である。
本発明の合剤に使用される導電剤は、構成された電池において化学変化を起こさない電子伝導性材料であれば何でもよい。具体例としては、鱗状黒鉛、鱗片状黒鉛、土状黒鉛等の天然黒鉛、石油コークス、石炭コークス、セルロース類、糖類、メソフェーズピッチ等の高温焼成体、気相成長黒鉛等の人工黒鉛等のグラファイト類、アセチレンブラック、ファーネスブラック、ケッチェンブラック、チャンネルブラック、ランプブラック、サーマルブラック等のカーボンブラック類、アスファルトピッチ、コールタール、活性炭、メソフューズピッチ、ポリアセン等の炭素材料、金属繊維等の導電性繊維類、銅、ニッケル、アルミニウム、銀等の金属粉類、酸化亜鉛、チタン酸カリウム等の導電性ウィスカー類、酸化チタン等の導電性金属酸化物等を挙げる事ができる。
黒鉛では、アスペクト比が5以上の平板状のものを用いると好ましい。これらの中では、グラファイトやカーボンブラックが好ましく、粒子の大きさは、0.01μm以上、20μm以下が好ましく、0.02μm以上、10μm以下の粒子がより好ましい。これらは単独で用いても良いし、2種以上を併用してもよい。併用する場合は、アセチレンブラック等のカーボンブラック類と、1〜15μmの黒鉛粒子を併用すると好ましい。導電剤の合剤層への添加量は、負極材料または正極材料に対し1〜50重量%であることが好ましく、特に2〜30重量%であることが好ましい。カーボンブラックやグラファイトでは、3〜20重量%であることが特に好ましい。
本発明では電極合剤を保持するために結着剤を用いる。結着剤の例としては、多糖類、熱可塑性樹脂及びゴム弾性を有するポリマー等が挙げられる。好ましい結着剤としては、でんぷん、カルボキシメチルセルロース、セルロース、ジアセチルセルロース、メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、アルギン酸Na、ポリアクリル酸、ポリアクリル酸Na、ポリビニルフェノール、ポリビニルメチルエーテル、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリルアミド、ポリヒドロキシ(メタ)アクリレート、スチレン−マレイン酸共重合体等の水溶性ポリマー、ポリビニルクロリド、ポリテトラフルロロエチレン、ポリフッ化ビニリデン、テトラフロロエチレン−ヘキサフロロプロピレン共重合体、ビニリデンフロライド−テトラフロロエチレン−ヘキサフロロプロピレン共重合体、ポリエチレン、ポリプロピレン、エチレン−プロピレン−ジエンターポリマー(EPDM)、スルホン化EPDM、ポリビニルアセタール樹脂、メチルメタアクリレート、2−エチルヘキシルアクリレート等の(メタ)アクリル酸エステルを含有する(メタ)アクリル酸エステル共重合体、(メタ)アクリル酸エステル−アクリロニトリル共重合体、ビニルアセテート等のビニルエステルを含有するポリビニルエステル共重合体、スチレン−ブタジエン共重合体、アクリロニトリル−ブタジエン共重合体、ポリブタジエン、ネオプレンゴム、フッ素ゴム、ポリエチレンオキシド、ポリエステルポリウレタン樹脂、ポリエーテルポリウレタン樹脂、ポリカーボネートポリウレタン樹脂、ポリエステル樹脂、フェノール樹脂、エポキシ樹脂等のエマルジョン(ラテックス)あるいはサスペンジョンを挙げることが出来る。
特にポリアクリル酸エステル系のラテックス、カルボキシメチルセルロース、ポリテトラフルオロエチレン、ポリフッ化ビニリデンが挙げられる。これらの結着剤は、微小粉末を水に分散したものを用いるのが好ましく、分散液中の粒子の平均サイズが0.01〜5μmのものを用いるのがより好ましく、0.05〜1μmのものを用いるのが特に好ましい。これらの結着剤は単独または混合して用いることが出来る。結着剤の添加量が少ないと電極合剤の保持力・凝集力が弱い。多すぎると電極体積が増加し電極単位体積あるいは単位重量あたりの容量が減少する。このような理由で結着剤の添加量は1〜30重量%が好ましく、特に2〜10重量%が好ましい。
充填剤は、構成された電池において、化学変化を起こさない繊維状材料であれば何でも用いることができる。通常、ポリプロピレン、ポリエチレンなどのオレフィン系ポリマー、ガラス、炭素などの繊維が用いられる。フィラーの添加量は特に限定されないが、0〜30重量%が好ましい。イオン導電剤は、無機及び有機の固体電解質として知られている物を用いることができ、詳細は電解液の項に記載されている。圧力増強剤は、電池の内圧を上げる化合物であり、炭酸リチウム等の炭酸塩が代表例である。
本発明で使用できる集電体は正極はアルミニウム、ステンレス鋼、ニッケル、チタン、またはこれらの合金であり、負極は銅、ステンレス鋼、ニッケル、チタン、またはこれらの合金である。集電体の形態は箔、エキスパンドメタル、パンチングメタル、もしくは金網である。特に、正極にはアルミニウム箔、負極には銅箔が好ましい。箔の厚みとしては7μm〜100μmが好ましく、さらに好ましくは7μm〜50μmであり、特に好ましくは7μm〜20μmである。エキスパンドメタル、パンチングメタル、金網の厚みとしては7μm〜200μmが好ましく、さらに好ましくは7μm〜150μmであり、特に好ましくは7μm〜100μmである。集電体の純度としては98%以上が好ましく、さらに好ましくは99%以上であり、特に好ましくは99.3%以上である。集電体の表面は酸、アルカリ、有機溶剤などにより洗浄してもよい。
集電体は、厚さを薄くするため、プラスチックシートの両面上に金属層を形成したものがさらに好ましい。プラスチックは、延伸性及び耐熱性に優れたものが好ましく、例えばポリエチレンテレフタレートである。金属だけでは、弾性がほとんどないので、外力に弱い。プラスチック上に金属層を形成すれば、衝撃に強くなる。より具体的には、集電体は、合成樹脂フィルムや紙等の基材を電子伝導性の物質で被覆した複合集電体であっても良い。基材となる合成樹脂フィルムとしては、フッ素樹脂、ポリエチレンテレフタレート、ポリカーボネート、ポリ塩化ビニル、ポリスチレン、ポリエチレン、ポリプロピレン、ポリイミド、ポリアミド、セルロース誘電体、ポリスルホンを挙げることができる。基材を被覆する電子伝導性の物質としては、黒鉛やカーボンブラック等の炭素質材料、アルミニウム、銅、ニッケル、クロム、鉄、モリブデン、金、銀等の金属元素及びこれらの合金を挙げることができる。特に好ましい電子伝導性の物質は金属であり、アルミニウム、銅、ニッケル、ステンレス鋼である。複合集電体は、基材のシートと金属シートを張り合わせる形態であってもよいし、蒸着等により金属層を形成してもよい。
次に本発明における正負電極の構成について説明する。正負電極は集電体の両面に電極合剤を塗布した形態であることが好ましい。この場合、片面あたりの層数は1層であっても2層以上から構成されていても良い。片面あたりの層の数が2以上である場合、正極活物質(もしくは負極材料)含有層が2層以上であっても良い。より好ましい構成は、正極活物質(もしくは負極材料)を含有する層と正極活物質(もしくは負極材料)を含有しない層から構成される場合である。正極活物質(もしくは負極材料)を含有しない層には、正極活物質(もしくは負極材料)を含有する層を保護するための保護層、分割された正極活物質(もしくは負極材料)含有層の間にある中間層、正極活物質(もしくは負極材料)含有層と集電体との間にある下塗り層等があり、本発明においてはこれらを総称して補助層と言う。
保護層は正負電極の両方または正負電極のいずれかにあることが好ましい。負極において、リチウムを電池内で負極材料に挿入する場合は負極は保護層を有する形態であることが望ましい。保護層は、少なくとも1層からなり、同種又は異種の複数層により構成されていても良い。また、集電体の両面の合剤層の内の片面にのみ保護層を有する形態であっても良い。これらの保護層は、水不溶性の粒子と結着剤等から構成される。結着剤は、前述の電極合剤を形成する際に用いられる結着剤を用いることが出来る。水不溶性の粒子としては、種種の導電性粒子、実質的に導電性を有さない有機及び無機の粒子を用いることができる。水不溶性粒子の水への溶解度は、100PPM以下、好ましくは不溶性のものが好ましい。保護層に含まれる粒子の割合は2.5重量%以上、96重量%以下が好ましく、5重量%以上、95重量%以下がより好ましく、10重量%以上、93重量%以下が特に好ましい。
水不溶性の導電性粒子としては、金属、金属酸化物、金属繊維、炭素繊維、カーボンブラックや黒鉛等の炭素粒子を挙げることが出来る。これらの水不溶導電性粒子の中で、アルカリ金属特にリチウムとの反応性が低いものが好ましく、金属粉末、炭素粒子がより好ましい。粒子を構成する元素の20℃における電気抵抗率としては、5×109Ω・m以下が好ましい。
金属粉末としては、リチウムとの反応性が低い金属、即ちリチウム合金を作りにくい金属が好ましく、具体的には、銅、ニッケル、鉄、クロム、モリブデン、チタン、タングステン、タンタルが好ましい。これらの金属粉末の形は、針状、柱状、板状、塊状のいずれでもよく、最大径が0.02μm以上、20μm以下が好ましく、0.1μm以上、10μm以下がより好ましい。これらの金属粉末は、表面が過度に酸化されていないものが好ましく、酸化されているときには還元雰囲気で熱処理することが好ましい。
炭素粒子としては、従来電極活物質が導電性でない場合に併用する導電材料として用いられる公知の炭素材料を用いることが出来る。具体的には電極合剤を作る際に用いられる導電剤が用いられる。
実質的に導電性を持たない水不溶性粒子としては、テフロン(登録商標)の微粉末、SiC、窒化アルミニウム、アルミナ、ジルコニア、マグネシア、ムライト、フォルステライト、ステアタイトを挙げることが出来る。これらの粒子は、導電性粒子と併用してもよく、導電性粒子の0.01倍以上、10倍以下で使うと好ましい。
正(負)の電極シートは正(負)極の合剤を集電体の上に塗布、乾燥、圧縮する事により作成する事ができる。合剤の調製は正極活物質(あるいは負極材料)および導電剤を混合し、結着剤(樹脂粉体のサスペンジョンまたはエマルジョン状のもの)、および分散媒を加えて混練混合し、引続いて、ミキサー、ホモジナイザー、ディゾルバー、プラネタリミキサー、ペイントシェイカー、サンドミル等の攪拌混合機、分散機で分散して行うことが出来る。分散媒としては水もしくは有機溶媒が用いられるが、水が好ましい。このほか、適宜充填剤、イオン導電剤、圧力増強剤等の添加剤を添加しても良い。分散液のpHは負極では5〜10、正極では7〜12が好ましい。
塗布は種々の方法で行うことが出来るが、例えば、リバースロール法、ダイレクトロール法、ブレード法、ナイフ法、エクストルージョン法、スライド法、カーテン法、グラビア法、バー法、ディップ法及びスクイーズ法を挙げることが出来る。エクストルージョンダイを用いる方法、スライドコーターを用いる方法が特に好ましい。塗布は、0.1〜100m/分の速度で実施されることが好ましい。
この際、合剤ペーストの液物性、乾燥性に合わせて、上記塗布方法を選定することにより、良好な塗布層の表面状態を得ることが出来る。電極層が複数の層である場合にはそれらの複数層を同時に塗布することが、均一な電極の製造、製造コスト等の観点から好ましい。その塗布層の厚み、長さや巾は、電池の大きさにより決められる。典型的な塗布層の厚みは乾燥後圧縮された状態で10〜1000μmである。塗布後の電極シートは、熱風、真空、赤外線、遠赤外線、電子線及び低湿風の作用により乾燥、脱水される。これらの方法は単独あるいは組み合わせて用いることが出来る。
乾燥温度は80〜350℃の範囲が好ましく、特に100〜260℃の範囲が好ましい。乾燥後の含水量は2000ppm以下が好ましく、500ppm以下がより好ましい。電極シートの圧縮は、一般に採用されているプレス方法を用いることが出来るが、特に金型プレス法やカレンダープレス法が好ましい。プレス圧は、特に限定されないが、10kg/cm2〜3t/cm2が好ましい。カレンダープレス法のプレス速度は、0.1〜50m/分が好ましい。プレス温度は、室温〜200℃が好ましい。
本発明で使用できるセパレータは、イオン透過度が大きく、所定の機械的強度を持ち、絶縁性の薄膜であれば良く、材質として、オレフィン系ポリマー、フッ素系ポリマー、セルロース系ポリマー、ポリイミド、ナイロン、ガラス繊維、アルミナ繊維が用いられ、形態として、不織布、織布、微孔性フィルムが用いられる。特に、材質として、ポリプロピレン、ポリエチレン、ポリプロピレンとポリエチレンの混合体、ポリプロピレンとテフロン(登録商標)の混合体、ポリエチレンとテフロン(登録商標)の混合体が好ましく、形態として微孔性フィルムであるものが好ましい。特に、孔径が0.01〜1μm、厚みが5〜50μmの微孔性フィルムが好ましい。これらの微孔性フィルムは単独の膜であっても、微孔の形状や密度等や材質等の性質の異なる2層以上からなる複合フィルムであっても良い。例えば、ポリエチレンフィルムとポリプロピレンフィルムを張り合わせた複合フィルムを挙げることができる。
電解液は一般に支持塩と溶媒から構成される。リチウム二次電池における支持塩はリチウム塩が主として用いられる。本発明で使用出来るリチウム塩としては、例えば、LiClO4、LiBF4、LiPF6、LiCF3CO2、LiAsF6、LiSbF6、LiB10Cl10、LiOSO2n2n+1で表されるフルオロスルホン酸(nは6以下の正の整数)、LiN(SO2n2n+1)(SO2m2m+1)で表されるイミド塩(m、nはそれぞれ6以下の正の整数)、LiC(SO2p2p+1)(SO2q2q+1)(SO2r2r+1)で表されるメチド塩(p、q、rはそれぞれ6以下の正の整数)、低級脂肪族カルボン酸リチウム、LiAlCl4、LiCl、LiBr、LiI、クロロボランリチウム、四フェニルホウ酸リチウムなどのLi塩を上げることが出来、これらの一種または二種以上を混合して使用することができる。なかでもLiBF4及び/あるいはLiPF6を溶解したものが好ましい。支持塩の濃度は、特に限定されないが、電解液1リットル当たり0.2〜3モルが好ましい。
本発明で使用できる溶媒としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネート、炭酸トリフルオロメチルエチレン、炭酸ジフルオロメチルエチレン、炭酸モノフルオロメチルエチレン、六フッ化メチルアセテート、三フッ化メチルアセテート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、γ−ブチロラクトン、ギ酸メチル、酢酸メチル、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジメチルスルホキシド、1,3−ジオキソラン、2,2−ビス(トリフルオロメチル)−1,3−ジオキソラン、ホルムアミド、ジメチルホルムアミド、ジオキソラン、ジオキサン、アセトニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、ホウ酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、3−メチル−2−オキサゾリジノン、3−アルキルシドノン(アルキル基はプロピル、イソプロピル、ブチル基等)、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、1,3−プロパンサルトンなどの非プロトン性有機溶媒を挙げることができ、これらの一種または二種以上を混合して使用する。
これらのなかでは、カーボネート系の溶媒が好ましく、環状カーボネートと非環状カーボネートを混合して用いるのが特に好ましい。環状カーボネートとしてはエチレンカーボネート、プロピレンカーボネートが好ましい。また、非環状カーボネートとしては、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネートをが好ましい。本発明で使用できる電解液としては、エチレンカーボネート、プロピレンカーボネート、1,2−ジメトキシエタン、ジメチルカーボネートあるいはジエチルカーボネートを適宜混合した電解液にLiCF3SO3、LiClO4、LiBF4および/またはLiPF6を含む電解液が好ましい。特にプロピレンカーボネートもしくはエチレンカーボネートの少なくとも一方とジメチルカーボネートもしくはジエチルカーボネートの少なくとも一方の混合溶媒に、LiCF3SO3、LiClO4、もしくはLiBF4の中から選ばれた少なくとも一種の塩とLiPF6を含む電解液が好ましい。これら電解液を電池内に添加する量は特に限定されず、正極材料や負極材料の量や電池のサイズに応じて用いることができる。
また、電解液の他に次の様な固体電解質も併用することができる。固体電解質としては、無機固体電解質と有機固体電解質に分けられる。無機固体電解質には、Liの窒化物、ハロゲン化物、酸素酸塩などがよく知られている。なかでも、Li3N、LiI、Li5NI2、Li3N−LiI−LiOH、Li4SiO4、Li4SiO4−LiI−LiOH、xLi3PO4(1-X)Li4SiO4、Li2SiS3、硫化リン化合物などが有効である。
有機固体電解質では、ポリエチレンオキサイド誘導体か該誘導体を含むポリマー、ポリプロピレンオキサイド誘導体あるいは該誘導体を含むポリマー、イオン解離基を含むポリマー、イオン解離基を含むポリマーと上記非プロトン性電解液の混合物、リン酸エステルポリマー、非プロトン性極性溶媒を含有させた高分子マトリックス材料が有効である。さらに、ポリアクリロニトリルを電解液に添加する方法もある。また、無機と有機固体電解質を併用する方法も知られている。
また、放電や充放電特性を改良する目的で、他の化合物を電解質に添加しても良い。例えば、ピリジン、ピロリン、ピロール、トリフェニルアミン、フェニルカルバゾール、トリエチルフォスファイト、トリエタノールアミン、環状エーテル、エチレンジアミン、n−グライム、ヘキサリン酸トリアミド、ニトロベンゼン誘導体、硫黄、キノンイミン染料、N−置換オキサゾリジノンとN,N’−置換イミダリジノン、エチレングリコールジア
ルキルエーテル、第四級アンモニウム塩、ポリエチレングリコール、ピロール、2−メトキシエタノール、AlCl3、導電性ポリマー電極活物質のモノマー、トリエチレンホス
ホルアミド、トリアルキルホスフィン、モルホリン、カルボニル基を持つアリール化合物、12−クラウン−4のようなクラウンエーテル類、ヘキサメチルホスホリックトリアミドと4−アルキルモルホリン、二環性の三級アミン、オイル、四級ホスホニウム塩、三級スルホニウム塩などを挙げることができる。特に好ましいのはトリフェニルアミン、フェニルカルバゾールを単独もしくは組み合わせて用いた場合である。
また、電解液を不燃性にするために含ハロゲン溶媒、例えば、四塩化炭素、三弗化塩化エチレンを電解液に含ませることができる。また、高温保存に適性をもたせるために電解液に炭酸ガスを含ませることができる。
電解液は、水分及び遊離酸分をできるだけ含有しないことが望ましい。このため、電解液の原料は充分な脱水と精製をしたものが好ましい。また、電解液の調整は、露点がマイナス30℃以下の乾燥空気中もしくは不活性ガス中が好ましい。電解液中の水分及び遊離酸分の量は、0.1〜500ppm、より好ましくは0.2〜100ppmである。
電解液は、全量を1回で注入してもよいが、2回以上に分けて注入することが好ましい。2回以上に分けて注入する場合、それぞれの液は同じ組成でも、違う組成(例えば、非水溶媒あるいは非水溶媒にリチウム塩を溶解した溶液を注入した後、前記溶媒より粘度の高い非水溶媒あるいは非水溶媒にリチウム塩を溶解した溶液を注入)でも良い。また、電解液の注入時間の短縮等のために、電池缶を減圧したり、電池缶に遠心力や超音波をかけることを行ってもよい。
本発明で使用できる電池缶および電池蓋は材質としてニッケルメッキを施した鉄鋼板、ステンレス鋼板(SUS304、SUS304L,SUS304N、SUS316、SUS316L、SUS430、SUS444等)、ニッケルメッキを施したステンレス鋼板(同上)、アルミニウムまたはその合金、ニッケル、チタン、銅であり、形状として、真円形筒状、楕円形筒状、正方形筒状、長方形筒状である。特に、外装缶が負極端子を兼ねる場合は、ステンレス鋼板、ニッケルメッキを施した鉄鋼板が好ましく、外装缶が正極端子を兼ねる場合は、ステンレス鋼板、アルミニウムまたはその合金が好ましい。電池缶の形状はボタン、コイン、シート、シリンダー、角などのいずれでも良い。電池缶の内圧上昇の対策として封口板に安全弁を用いることができる。この他、電池缶やガスケット等の部材に切り込みをいれる方法も利用することが出来る。この他、従来から知られている種々の安全素子(例えば、過電流防止素子として、ヒューズ、バイメタル、PTC素子等)を備えつけても良い。
本発明で使用するリード板には、電気伝導性をもつ金属(例えば、鉄、ニッケル、チタン、クロム、モリブデン、銅、アルミニウム等)やそれらの合金を用いることが出来る。電池蓋、電池缶、電極シート、リード板の溶接法は、公知の方法(例、直流又は交流の電気溶接、レーザー溶接、超音波溶接)を用いることが出来る。封口用シール剤は、アスファルト等の従来から知られている化合物や混合物を用いることが出来る。
本発明で使用できるガスケットは、材質として、オレフィン系ポリマー、フッ素系ポリマー、セルロース系ポリマー、ポリイミド、ポリアミドであり、耐有機溶媒性及び低水分透過性から、オレフィン系ポリマーが好ましく、特にプロピレン主体のポリマーが好ましい。さらに、プロピレンとエチレンのブロック共重合ポリマーであることが好ましい。
以上のようにして組み立てられた電池は、エージング処理を施すのが好ましい。エージング処理には、前処理、活性化処理及び後処理などがあり、これにより高い充放電容量とサイクル性に優れた電池を製造することができる。前処理は、電極内のリチウムの分布を均一化するための処理で、例えば、リチウムの溶解制御、リチウムの分布を均一にするための温度制御、揺動及び/または回転処理、充放電の任意の組み合わせが行われる。活性化処理は電池本体の負極に対してリチウムを挿入させるための処理で、電池の実使用充電時のリチウム挿入量の50〜120%を挿入するのが好ましい。後処理は活性化処理を十分にさせるための処理であり、電池反応を均一にするための保存処理と、判定のための充放電処理当があり、任意に組み合わせることができる。
本発明の活性化前の好ましいエージング条件(前処理条件)は次の通りである。温度は30℃以上70℃以下が好ましく、30℃以上60℃以下がより好ましく、40℃以上60℃以下がさらに好ましい。また、開路電圧は2.5V以上3.8V以下が好ましく、2.5V以上3.5V以下がより好ましく、2.8V以上3.3V以下がさらに好ましい。エージング期間は1日以上20日以下が好ましく、1日以上15日以下が特に好ましい。活性化の充電電圧は4.0V以上が好ましく、4.05V以上4.3V以下がより好ましく、4.1V以上4.2V以下が更に好ましい。活性化後のエージング条件としては、開路電圧が3.9V以上4.3V以下が好ましく、4.0V以上4.2V以下が特に好ましく、温度は30℃以上70℃以下が好ましく、40℃以上60℃以下が特に好ましい。エージング期間は0.2日以上20日以下が好ましく、0.5日以上5日以下が特に好ましい。
本発明の電池は必要に応じて外装材で被覆される。外装材としては、熱収縮チューブ、粘着テープ、金属フィルム、紙、布、塗料、プラスチックケース等がある。また、外装の少なくとも一部に熱で変色する部分を設け、使用中の熱履歴がわかるようにしても良い。
本発明の電池は必要に応じて複数本を直列及び/または並列に組み電池パックに収納される。電池パックには正温度係数抵抗体、温度ヒューズ、ヒューズ及び/または電流遮断素子等の安全素子の他、安全回路(各電池及び/または組電池全体の電圧、温度、電流等をモニターし、必要なら電流を遮断する機能を有す回路)を設けても良い。また電池パックには、組電池全体の正極及び負極端子以外に、各電池の正極及び負極端子、組電池全体及び各電池の温度検出端子、組電池全体の電流検出端子等を外部端子として設けることもできる。また電池パックには、電圧変換回路(DC−DCコンバータ等)を内蔵しても良い。また各電池の接続は、リード板を溶接することで固定しても良いし、ソケット等で容易に着脱できるように固定しても良い。さらには、電池パックに電池残存容量、充電の有無、使用回数等の表示機能を設けても良い。
本発明の電池は様々な機器に使用される。特に、ビデオムービー、モニター内蔵携帯型ビデオデッキ、モニター内蔵ムービーカメラ、デジタルカメラ、コンパクトカメラ、一眼レフカメラ、レンズ付きフィルム、ノート型パソコン、ノート型ワープロ、電子手帳、携帯電話、コードレス電話、ヒゲソリ、電動工具、電動ミキサー、自動車等に使用されることが好ましい。
以下に具体例をあげ、本発明をさらに詳しく説明するが、本発明は実施例に限定されるものではない。
実施例−1
負極材料として多結晶ケイ素単体(化合物−1)、冶金学的に合成した以下の合金化合物として、Si−Ag合金(化合物−2 原子比60−40、化合物−3 原子比80−20、化合物−4 原子比30−70)、Si−Al(化合物−5 原子比60−40)、Si−Ag−Cd(化合物−6 60−30−10)、Si−Zn(化合物−7 原子比60−40)、Si−Au(化合物−8 原子比60−40)、Si−Ag−In(化合物−9 原子比60−30−10)、Si−Ge(化合物−10 原子比60−40)、Si−Ag−Sn(化合物−11 原子比60−30−10)、Si−Ag−Sb(化合物−12 原子比60−30−10)、Si−Ag−Ni(化合物−13 原子比60−30−10)、冶金学的に合成したLi4Siからイソプロピルアルコールを用いてLiを100%溶出させたケイ素をアルゴンガス中で粉砕して得られたケイ素(化合物−14)、化合物−1のケイ素とコロイダルシリカを混合し、1000℃で加熱して得られた固形物をアルゴンガス中で振動ミルにて粉体にしたSi−SiO2 (化合物−15 重量比80−20、化合物−16 重量比90−10、化合物−17 重量比60−400)、同様の方法でアルミナゾルを用いて得られたSi−Al23 (化合物−18 重量比90−10)、化合物−2に化合物−16と同じ方法でSiO2を付着させた化合物(化合物−19 化合物−2−SiO2 重量比 90−10)、無電解めっき法にて化合物−1のケイ素表面にめっきした化合物として、Agめっきした(還元剤としてデキストリン、Ag源としてはAgNO3 )ケイ素(化合物−20 Si−Agの原子比 60−40)、同じくNiめっきした(還元剤としてNaH2 PO2、Ni源としてNiSO4)ケイ素(化合物−21 Si−Niの原子比 60−40、化合物−22 原子比80−20、化合物−23 原子比30−70)、同じくZnめっきした(還元剤としてNaBH4、Zn源としてZnO)ケイ素(化合物−24 Si−Znの原子比 60−40)、化合物−2を無電解メッキ法にてNiをめっきした化合物(化合物−25 化合物−2−Ni 重量比80−20)ポリフッ化ビニリデン3gをN−メチルピロリドン50gに溶かした液に化合物−1のケイ素を30g添加し、混合混練した後、乾燥し、自動乳鉢にて粉砕した粉体(化合物−26)を用いた。化合物ー2を上記方法でポリフッ化ビニリデンを被覆した化合物(化合物−27 化合物−2−ポリフッ化ビニリデンの重量比 90−10)、さらに化合物−14を無電解めっき法にてAgを被覆した化合物(化合物−28 Si−Agの原子比率60−40)、同じくNiを被覆した化合物(化合物−29 Si−Niの原子比率 60−40)、化合物−14を化合物−30と同じ方法でポリフッ化ビニリデンを被覆した化合物(化合物−30 Si−ポリフッ化ビニリデン 重量比90−10)、化合物−30に無電解めっき法にてNiを被覆した化合物(化合物−31 化合物−30−Ni 重量比70−30)、化合物−15を無電解めっき法にてAgを被覆した化合物(化合物−32 化合物−15−Agの重量比率70−30)、同じくNiを被覆した化合物(化合物−33 化合物−15−Niの重量比率 70−30)、同じく化合物−15を用いてポリフッ化ビニリデンで被覆した化合物(化合物−34 化合物−15−ポリフッ化ビニリデンの重量比90−10)を用いた。化合物−34を無電解メッキ法にてAgを被覆した化合物(化合物−35 化合物−34−Ag 重量比80−20)、同じくNiめっきした化合物(化合物−36 化合物−34−Ni 重量比80−20)
上記負極材料(化合物1〜36)の平均粒子サイズはいずれも0.05〜4μmの範囲の粒子を用いた。次に上記負極材料(化合物1〜36)と等重量の鱗片状天然黒鉛を十分に混合して得られた粉体を190g、結着剤としてポリ沸化ビニリデン10gをN−メチル−2−ピロリドン 500mlに分散して、負極ペーストを作成した。
正極活物質LiCoO2を200gとアセチレンブラック10gとをホモジナイザーで
混合し、続いて結着剤としてポリ沸化ビニリデン5gを混合し、N−メチル−2−ピロリドン 500mlを加え混練混合し、正極合剤ペーストを作成した。
上記で作成した正極合剤ペーストをブレードコーターで厚さ30μmのアルミニウム箔集電体の両面に塗布、150℃乾燥後ローラープレス機で圧縮成型し所定の大きさに裁断し、帯状の正極シートを作成した。さらにドライボックス(露点;−50℃以下の乾燥空気)中で遠赤外線ヒーターにて充分脱水乾燥し、正極シートを作成した。同様に、負極合剤ペーストを20μmの銅箔集電体に塗布し、上記正極シート作成と同様の方法で負極シートを作成した。正負極の塗布量は、正極活物質がリチウム金属に対して4.2Vになる第1サイクルの充電容量と上記負極材料が0.0Vになる第1サイクルの充電容量が合うようにそれぞれの電極合剤の塗布量を調整した。
次に電解液は次のようにして作成した。アルゴン雰囲気で、200ccの細口のポリプロピレン容器に65.3gの炭酸ジエチルをいれ、これに液温が30℃を越えないように注意しながら、22.2gの炭酸エチレンを少量ずつ溶解した。次に、0.4gのLiBF4、12.1gのLiPF6 を液温が30℃を越えないように注意しながら、それぞれ順番に、上記ポリプロピレン容器に少量ずつ溶解した。得られた電解液は比重1.135で無色透明の液体であった。水分は18ppm(京都電子製 商品名MKC−210型カールフィシャー水分測定装置で測定)、遊離酸分は24ppm(ブロムチモールブルーを指示薬とし、0.1規定NaOH水溶液を用いて中和滴定して測定)であった。
シリンダー電池は次のようにして作成した。図1に従い電池の作り方を説明する。上記で作成した正極シート、微孔性ポリエチレンフィルム製セパレーター、負極シートさらにセパレーターを順に積層し、これを渦巻き状に巻回した。この巻回した電極群(2)を負極端子を兼ねるニッケルめっきを施した鉄製の有底円筒型電池缶(1)に収納し、上部絶縁板(3)を更に挿入した。この電池缶内に上記電解液を注入した後、正極端子(6)、絶縁リング、PTC素子(63)、電流遮断体(62)、圧力感応弁体(61)を積層したものをガスケット(5)を介してかしめて円筒型電池を作成した。
上記の円筒形電池を1.5Aで充電する。この場合、充電は4.2Vまで定電流で充電し、充電開始から2.5時間が経過するまで4.2Vで一定に保つように充電電流を制御した。放電は0.2C電流にて3.0Vまで定電流で実施した。そのときの第1サイクルの放電容量、平均放電電圧、エネルギー量(放電容量×平均放電電圧)また、充放電を繰り返した30サイクル目の容量維持率を表1に示した。
Figure 0005637257
実施例−2
実施例−1の化合物1、2、14、15、19、21、26、29、32、34、36について、実施例−1のうち、正極活物質がリチウム金属に対して4.2Vになる第1サイクルの充電容量と上記負極材料が0.1Vになる第1サイクルの充電容量が合うようにそれぞれの電極合剤の塗布量を調整した。充放電試験は、充電終始電圧が4.1Vになる以外は実施例−1と同じ条件で実施した。ケイ素へのリチウム挿入量は約3.2モルであった。(LixSiで表すと x=3.2を意味している。)
Figure 0005637257
実施例−3
実施例−1の化合物1、2、14、15、19、21、26、29、32、34、36について、実施例−1のうち導電剤の黒鉛との重量比率を80(負極材料)と20(黒鉛)にした以外は同じ条件にて試験した。
Figure 0005637257
実施例−4
実施例−1の化合物1、2、14、15、19、21、26、29、32、34、36について、実施例−1のN−メチルピロリドン系の代わりに水系にて試験した。具体的に

は、負極シートは負極材料と鱗片状黒鉛の等重量95%と結着剤としてポリフッ化ビニリデンの水分散物4重量%およびカルボキシメチルセルロース1重量%からなる混合物に水を加えてホモジナーザーで10000回転で10分以上混練し負極合剤スラリーを調製した。得られたスラリーを厚さ18μmの銅フィルムの両面に塗布して、負極シートを作製した。正極合剤として、正極活物質LiCoO2を90重量%、アセチレンブラック6重量%、そして結着剤としてポリフッ化ビニリデンの水分散物3重量%とポリアクリル酸ナトリウム1重量%からなる混合物に水を加えて混練し、得られたスラリーを厚さ30μmのアルミニウムフィルムの両面に塗布して、正極シートを作製した。次に、負極シートの活物質層の表面に、鱗片状黒鉛と酸化アルミニウム(平均粒径2μm)の1:4(重量比)の混合物からなる保護層(平均厚さ5μm)を塗設した。充放電試験は実施例−1と同じ条件にて実施した。
Figure 0005637257
比較例−1
多結晶ケイ素の70μmを用いた以外は実施例−1や実施例−2と同じ試験をした。
比較例−2
多結晶ケイ素の2μmを用い、負極合剤の該ケイ素と鱗片状黒鉛の添加重量比を96−4%にした以外は実施例−1と実施例−2と同じで試験した。
比較例−3
負極材料としてメソフェーズピッチコークスを用い、導電補助剤としてアセチレンブラックを2重量%加えた以外は実施例−1と同様に電池を作成し、充放電試験を実施した。
Figure 0005637257
本発明の化合物を用いた実施例−1の電池と比較例−1の電池性能を比較すると、本発明の平均粒子サイズの小さな化合物はサイクル寿命に優れている。また、実施例−1で比較すると、合金、リチウムケイ化物からリチウムを除去したケイ素、コロイダルシリカを付着させたケイ素、めっきにより金属を被覆したケイ素、ポリフッ化ビニリデンにて被覆したケイ素、また、それらの組み合わせ化合物は何も処理を施さないケイ素よりサイクル寿命が改良されている。さらに、本発明の処理を組み合わせることにより、単独処理よりサイクル寿命が改良されている。また、実施例−2の試験では、ケイ素へのリチウム挿入量を低減させることにより、放電容量は低下するが、平均放電電圧があがり、サイクル寿命が改良されている。実施例−3から金属と共存するケイ素化合物は放電容量が大きくなるほかサイクル寿命は実施例−1とほぼ同等であった。実施例−4では、N−メチルピロリドンのような非水溶媒塗布系と比較して水塗布系もほぼ同等の性能が得られた。比較例−3から炭素質材料より放電容量が高く、エネルギー量も高い。以上の結果は、正極活物質LiCoO2をLiNiO2やLiMn24に変えても同様な効果が得られた。さらに、これらの正極活物質に20頁記載の添加物Eを含む化合物も同様の結果が得られた。
1 負極を兼ねる電池缶
2 巻回電極群
3 上部絶縁板
4 正極リード
5 ガスケット
6 正極端子を兼ねる電池蓋
61 圧力感応弁体
62 電流遮断素子(スイッチ)
63 PTC素子

Claims (12)

  1. 正極活物質を有する正極、リチウムの挿入放出可能なケイ素原子を含む化合物及び黒鉛系炭素材料が混合された負極材料を有する負極並びに非水電解質を構成要素とする非水二次電池に於いて、
    該正極活物質がリチウムの挿入放出可能な遷移金属酸化物であり、
    該ケイ素原子を含む化合物がケイ素単体、及びケイ素合金から選ばれる少なくとも一種であり、
    該ケイ素原子を含む化合物がセラミック、金属及び熱可塑性樹脂のうち少なくとも一種で付着又は被覆されており、
    該正極中の正極活物質量と該負極中の負極材料の量を調整することにより、該ケイ素原子を含む負極材料の充放電範囲を、ケイ素に挿入放出するリチウムの当量比としてLiXSiで表すと、xが0以上3.7以下の範囲内に留められており、
    正負電極の両方又は正負電極のいずれかが、実質的に導電性を有さない水不溶性の粒子を含む保護層を有していることを特徴とする非水二次電池。
  2. 該黒鉛系炭素材料が鱗片状天然黒鉛であることを特徴とする請求項1に記載の非水二次電池。
  3. 該黒鉛系炭素材料のケイ素原子を含む化合物に対する混合比が5〜1900重量%であることを特徴とする請求項1または2に記載の非水二次電池。
  4. 該ケイ素原子を含む化合物に少なくともセラミックが付着しており、該セラミックが、Al23、SiO2、TiO2、SiC及びSi34から選ばれる少なくとも1種であることを特徴とする請求項1〜3のいずれか1項に記載の非水二次電池。
  5. 該セラミックがAl23又はSiO2の少なくとも一方であり、
    該セラミックが該ケイ素原子を含む化合物と付着する状態が、下記(1)〜(3)の何れかであることを特徴とする請求項4に記載の非水二次電池。
    (1)該セラミックの表面が該ケイ素原子を含む化合物に覆われている
    (2)該セラミックの固まりの内部に該ケイ素原子を含む化合物が閉じ込められている
    (3)該ケイ素原子を含む化合物の表面が該セラミックに覆われている。
  6. 該ケイ素原子を含む化合物が少なくとも導電性の高い金属で被覆されており、該金属がNi、Cu、Ag、Co、Fe、Cr、W、Ti、Au、Pt、Pd、Sn及びZnから選ばれる少なくとも1種であることを特徴とする請求項1〜5のいずれか1項に記載の非水二次電池。
  7. 該金属の被覆量がケイ素に対して1〜80重量%であることを特徴とする請求項6に記載の非水二次電池。
  8. 該ケイ素原子を含む化合物が少なくとも電解液に膨潤しにくい熱可塑性樹脂で被覆されており、該熱可塑性樹脂がポリアクリル酸エステル系のラテックス、カルボキシルメチルセルロース、ポリテトラフルオロエチレン及びポリフッ化ビニリデンから選ばれる少なくとも一種であることを特徴とする請求項1〜7のいずれか1項に記載の非水二次電池。
  9. 該保護層を少なくとも負極に有することを特徴とする請求項1〜8のいずれか1項に記載の非水二次電池。
  10. 該実質的に導電性を有さない水不溶性の粒子がテフロン(登録商標)の微粉末、SiC、窒化アルミニウム、アルミナ、ジルコニア、マグネシア、ムライト、フォルステライト及びステアタイトから選ばれる少なくとも1種であることを特徴とする請求項1〜9のいずれか1項に記載の非水二次電池。
  11. 該保護層が、構成元素の20℃における電気抵抗率が5×109Ω・m以下である金属粉末又は炭素粒子から選ばれる少なくとも一種の水不溶性導電性粒子を含むことを特徴とする請求項1〜10のいずれか1項に記載の非水二次電池。
  12. 該導電性粒子が銅、ニッケル、鉄、クロム、モリブデン、チタン、タングステン、タンタル、カーボンブラック及び黒鉛から選ばれる少なくとも一種であることを特徴とする請求項1〜11のいずれか1項に記載の非水二次電池。
JP2013110901A 1998-05-13 2013-05-27 非水二次電池 Expired - Lifetime JP5637257B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013110901A JP5637257B2 (ja) 1998-05-13 2013-05-27 非水二次電池

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP13083698 1998-05-13
JP1998130836 1998-05-13
JP2013110901A JP5637257B2 (ja) 1998-05-13 2013-05-27 非水二次電池

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010006938A Division JP2010108945A (ja) 1998-05-13 2010-01-15 非水二次電池

Publications (2)

Publication Number Publication Date
JP2013191578A JP2013191578A (ja) 2013-09-26
JP5637257B2 true JP5637257B2 (ja) 2014-12-10

Family

ID=42298134

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2010006938A Pending JP2010108945A (ja) 1998-05-13 2010-01-15 非水二次電池
JP2013110901A Expired - Lifetime JP5637257B2 (ja) 1998-05-13 2013-05-27 非水二次電池
JP2013110902A Expired - Lifetime JP5637258B2 (ja) 1998-05-13 2013-05-27 非水二次電池

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2010006938A Pending JP2010108945A (ja) 1998-05-13 2010-01-15 非水二次電池

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2013110902A Expired - Lifetime JP5637258B2 (ja) 1998-05-13 2013-05-27 非水二次電池

Country Status (1)

Country Link
JP (3) JP2010108945A (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013235789A (ja) * 2012-05-11 2013-11-21 Hitachi Ltd リチウムイオン二次電池用電極保護剤、リチウムイオン二次電池用正極材料、リチウムイオン二次電池用電解液、リチウムイオン二次電池およびそれらの製造方法
KR101511822B1 (ko) 2012-05-30 2015-04-13 주식회사 엘지화학 리튬 이차전지용 음극 활물질 및 이를 포함하는 리튬 이차전지
KR101579641B1 (ko) * 2012-05-30 2015-12-22 주식회사 엘지화학 리튬 이차전지용 음극 활물질 및 이를 포함하는 리튬 이차전지
US9685678B2 (en) * 2013-02-05 2017-06-20 A123 Systems, LLC Electrode materials with a synthetic solid electrolyte interface
US20160260973A1 (en) 2013-10-28 2016-09-08 Zeon Corporation Slurry composition for negative electrodes of lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
KR102290315B1 (ko) * 2013-11-25 2021-08-19 삼성에스디아이 주식회사 리튬 이차 전지
JP6406813B2 (ja) * 2013-11-25 2018-10-17 三星エスディアイ株式会社Samsung SDI Co., Ltd. 非水電解質二次電池用負極活物質層及びこれを用いた非水電解質二次電池
US20150147627A1 (en) * 2013-11-25 2015-05-28 Samsung Sdi Co., Ltd. Rechargeable lithium battery
JP6474548B2 (ja) * 2014-01-16 2019-02-27 信越化学工業株式会社 非水電解質二次電池用負極材及び負極活物質粒子の製造方法
JP6211961B2 (ja) * 2014-03-13 2017-10-11 山陽特殊製鋼株式会社 蓄電デバイスの負極材料
JP6589513B2 (ja) * 2015-09-28 2019-10-16 株式会社豊田自動織機 シリコン材料の製造方法
CN111095618B (zh) 2017-08-31 2023-03-24 日本电气株式会社 蓄电装置用电极和其制造方法
JP6816696B2 (ja) * 2017-10-13 2021-01-20 トヨタ自動車株式会社 負極、およびそれを備える非水電解質二次電池
CN108288705B (zh) * 2018-02-06 2020-08-18 深圳市普锐能源科技有限公司 一种锂离子电池用硅碳负极材料及其制备方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3019402B2 (ja) * 1990-11-09 2000-03-13 松下電器産業株式会社 非水電解液二次電池
JPH04179069A (ja) * 1990-11-09 1992-06-25 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP3331669B2 (ja) * 1992-12-14 2002-10-07 株式会社デンソー 非水電解質電池用電極
JP3079343B2 (ja) * 1993-07-13 2000-08-21 セイコーインスツルメンツ株式会社 非水電解質二次電池及びその製造方法
JPH07288127A (ja) * 1994-04-18 1995-10-31 Fuji Photo Film Co Ltd 非水電解質電池
CA2122770C (en) * 1994-05-03 2000-10-03 Moli Energy (1990) Limited Carbonaceous host compounds and use as anodes in rechargeable batteries
JPH08138744A (ja) * 1994-11-16 1996-05-31 Fuji Photo Film Co Ltd 非水二次電池
ATE310321T1 (de) * 1995-06-28 2005-12-15 Ube Industries Nichtwässrige sekundärbatterie
JP3719277B2 (ja) * 1995-11-20 2005-11-24 宇部興産株式会社 非水二次電池
JP3713900B2 (ja) * 1996-07-19 2005-11-09 ソニー株式会社 負極材料及びこれを用いた非水電解液二次電池
JP3937515B2 (ja) * 1996-08-02 2007-06-27 宇部興産株式会社 非水二次電池
JP3887849B2 (ja) * 1996-08-22 2007-02-28 松下電器産業株式会社 非水電解液二次電池および非水電解液二次電池用負極の製造方法
JPH1092424A (ja) * 1996-09-11 1998-04-10 Mitsubishi Cable Ind Ltd リチウム二次電池用負極およびそれを用いたリチウム二次電池

Also Published As

Publication number Publication date
JP2013191578A (ja) 2013-09-26
JP2010108945A (ja) 2010-05-13
JP5637258B2 (ja) 2014-12-10
JP2013201138A (ja) 2013-10-03

Similar Documents

Publication Publication Date Title
JP3941235B2 (ja) 非水二次電池
JP5637257B2 (ja) 非水二次電池
JP3661417B2 (ja) 非水二次電池
JP4085473B2 (ja) 非水二次電池の充電方法
JP4329743B2 (ja) 非水二次電池とその製造方法
JP4728458B2 (ja) 非水二次電池
US6235427B1 (en) Nonaqueous secondary battery containing silicic material
JP3945023B2 (ja) 非水二次電池
JP4844550B2 (ja) 非水二次電池
JP5229239B2 (ja) 非水二次電池
JP3627516B2 (ja) 非水二次電池
JP4078714B2 (ja) 非水二次電池の充電或いは放電方法
JP2005166684A (ja) 非水二次電池
JP5000979B2 (ja) 非水二次電池
JP2000012091A (ja) 非水二次電池とその製造方法
JP3899684B2 (ja) 非水二次電池
JP4967839B2 (ja) 非水二次電池
JP4055254B2 (ja) 非水二次電池
JP4003298B2 (ja) 非水二次電池
JP4075109B2 (ja) 非水二次電池
JP4725489B2 (ja) 非水二次電池
JP4725562B2 (ja) 非水二次電池
JP4078698B2 (ja) 非水二次電池用負極材料とその製造方法および電池
JP4702321B2 (ja) 非水二次電池
JP4221774B2 (ja) 非水二次電池

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130619

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130619

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20131024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141007

EXPY Cancellation because of completion of term