JP5616986B2 - 蒸気圧縮システム - Google Patents

蒸気圧縮システム Download PDF

Info

Publication number
JP5616986B2
JP5616986B2 JP2013005304A JP2013005304A JP5616986B2 JP 5616986 B2 JP5616986 B2 JP 5616986B2 JP 2013005304 A JP2013005304 A JP 2013005304A JP 2013005304 A JP2013005304 A JP 2013005304A JP 5616986 B2 JP5616986 B2 JP 5616986B2
Authority
JP
Japan
Prior art keywords
tube bundle
refrigerant
evaporator
hood
shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013005304A
Other languages
English (en)
Other versions
JP2013092365A (ja
Inventor
シュライバー,ジェブ
コーラー,ジェイ・エイ
ラルミナ,ポール ドゥ
ラルミナ,ポール ドゥ
ヤニック,ムスタファ・ケマル
マクウェイド,ウィリアム・エフ
カウフマン,ジャスティン
ポールセン,ソレン・ビエール
ウォン,リー・リ
クランカラ,サティーシュ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson Controls Technology Co
Original Assignee
Johnson Controls Technology Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson Controls Technology Co filed Critical Johnson Controls Technology Co
Publication of JP2013092365A publication Critical patent/JP2013092365A/ja
Application granted granted Critical
Publication of JP5616986B2 publication Critical patent/JP5616986B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0017Flooded core heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D3/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits
    • F28D3/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits with tubular conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D3/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits
    • F28D3/04Distributing arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F25/00Component parts of trickle coolers
    • F28F25/02Component parts of trickle coolers for distributing, circulating, and accumulating liquid
    • F28F25/06Spray nozzles or spray pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/02Details of evaporators
    • F25B2339/024Evaporators with refrigerant in a vessel in which is situated a heat exchanger
    • F25B2339/0242Evaporators with refrigerant in a vessel in which is situated a heat exchanger having tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/0071Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2280/00Mounting arrangements; Arrangements for facilitating assembling or disassembling of heat exchanger parts
    • F28F2280/02Removable elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Description

関連特許出願に対する相互参照
[0001]本願は、2008年1月11日に出願された「FALLING FILM EVAPORATOR SYSTEMS」という名称の米国仮特許出願番号第61/020,533号の優先権及び利益を主張し、参照としてここに組み込む。
[0002]本発明は、一般に冷却、空調及び冷液体システムにおける蒸気圧縮システムに関する。[0003]加熱、通気及び空調システムに使用されている従来の冷液体システムは、システムの冷媒と冷却すべき別の流体との間で熱エネルギの伝達を行うために蒸発器を含む。1つの形式の蒸発器は、シェル(殻体)を含み、シェルは、チューブ束を形成する複数のチューブ又は複数のチューブ束を備え、チューブ束を通って、冷却すべき液体が循環する。冷媒は、シェル内部のチューブ束の外側即ち外部表面と接触させられ、その結果、冷却すべき液体と冷媒との間で熱エネルギの伝達が生じる。
例えば、冷媒は、スプレー又は他の同様に技術によりチューブ束の外部表面上に付着させることができ、これは、「落下フィルム(falling film)」蒸発器として一般に参照される。更なる例においては、チューブ束の外部表面は、液体冷媒内へ全体的又は部分的に浸漬することができ、これは、「満液式(flooded)」蒸発器として一般に参照される。更に別の例においては、チューブ束の一部は、外部表面に付着した冷媒を有することができ、チューブ束の別の部分は、液体冷媒内に浸漬することができ、これは、「混成落下フィルム(hybrid falling film)」蒸発器として一般に参照される。
[0004]液体との熱エネルギの伝達の結果、冷媒は、加熱されて蒸気状態に変換され、次いで、コンプレッサに戻され、そこで、蒸気が圧縮され、別の冷媒サイクルを開始する。冷えた液体は、建物全体を通して配置された複数の熱交換器へ循環させることができる。建物からの暖まった空気は、熱交換器上を通過させられ、そこで、冷えた液体は、建物のための空気を冷却しながら、暖められる。建物の空気により暖められた液体は、蒸発器へ戻され、工程を繰り返す。
[0005]本発明は、コンプレッサと、凝縮器と、膨張装置と、冷媒ラインにより接続された蒸発器とを含む蒸気圧縮システムに関する。蒸発器は、シェル、第1のチューブ束、フード、分配器、第1の供給ライン、第2の供給ライン、第2の供給ライン内に位置する弁、及びセンサを含む。第1のチューブ束は、シェル内で実質上水平に延びる複数のチューブを含む。分配器は、第1のチューブ束の上方に位置する。第1の供給ラインは、分配器に接続され、第2の供給ラインの端部は、フードの近傍に位置する。センサは、シェル内の液体冷媒のレベルを感知するように構成され、位置決めされる。弁は、レベルセンサからの液体冷媒の感知されたレベルに応答して第2の供給ライン内の流れを規制するように構成され、位置決めされる。
[0006]本発明は、また、コンプレッサと、凝縮器と、膨張装置と、冷媒ラインにより接続された蒸発器とを含む蒸気圧縮システムに関する。蒸発器は、シェル、第1のチューブ束、フード、分配器、供給ライン、ポンプ、膨張装置、及びセンサを含み、第1のチューブ束は、シェル内で実質上水平に延びる複数のチューブを有する。分配器は、第1のチューブ束の上方に位置する。フードは、第1のチューブ束を覆う。供給ラインは、膨張装置に接続され、膨張装置は、ポンプの排出部に接続される。センサは、シェル内の液体冷媒のレベルを感知するように構成され、位置決めされる。ポンプは、膨張装置が開いた位置にあるときに所定のレベル以下に減少する液体冷媒の感知されたレベルに応答して作動する。この蒸気圧縮システムは、好ましくは、次の構成を備える。(1)更に第2のチューブ束と、第1のチューブ束及び第2のチューブ束を分離するギャップとを有し、第1のチューブ束が少なくとも部分的に第2のチューブ束の上方に位置する。(2)前記フードがギャップの方へ延び、ギャップの近傍で終端する。(3)前記第2のチューブ束がシェル内で実質上水平に延びる複数のチューブを有する。(4)前記第2の供給ラインの端部が第1のチューブ束の上に冷媒を分配するように構成され、位置決めされる。(5)前記ポンプが凝縮器又は中間容器のうちの1つに連通し、凝縮器又は中間容器のうちの1つから液体冷媒を受け取る。(6)前記中間容器がインタークーラー又はフラッシュタンクのうちの1つである。(7)更に可変速度でポンプを稼動するためにポンプに接続された可変速度ドライブを有する。
[0007]本発明は、更に、シェル;チューブ束;囲い;及び供給ラインを含む蒸発器に関する。チューブ束は、シェル内で実質上水平に延びる複数のチューブを含む。囲いは、供給ラインから冷媒を受け取り、チューブ束のための液体冷媒、及び、シェル内の出口接続部のための蒸気冷媒を提供する。この蒸発器は、好ましくは、次の構成を備える。(8)前記冷媒の流れを下方方向に囲い内へ導くように囲い内に位置するデフレクタを更に有する。(9)前記デフレクタが囲いから延びる湾曲した突出部を有する。(10)前記囲いが分配器を有し、分配器が液体冷媒をチューブ束に提供するように構成され、位置決めされる。(11)前記分配器が孔付きシートで構成される。(12)前記囲いの上方端部が囲いから蒸気冷媒を引き出すのを可能にするように構成される。(13)前記囲いの上方端部がメッシュ構造体を有する。
商業的な設定状態での加熱、通気及び空調システムの例示的な実施の形態を示す。 例示的な蒸気圧縮システムの斜視図。 蒸気圧縮システムの例示的な実施の形態を図式的に示す。 蒸気圧縮システムの例示的な実施の形態を図式的に示す。 例示的な蒸発器の分解部品部分破断図。 図5Aの蒸発器の上方から見た斜視図。 図5Bの5−5線における、冷媒を伴った、蒸発器の断面図。 例示的な蒸発器の上から見た斜視図。 図6Aの6−6線における、冷媒を伴った、例示的な蒸発器の実施の形態の断面図。 図6Aの6−6線における、冷媒を伴った、例示的な蒸発器の実施の形態の断面図。 付加的な冷媒分配供給ラインを有する別の例示的な蒸発器の断面図。 付加的な冷媒分配供給ラインに接続された分配器を有する更に別の例示的な蒸発器の断面図。 蒸発器に接続されたブースターポンプを有する例示的な蒸発器を示す図。 冷媒を再誘導するための内部囲い内のデフレクタを有する例示的な蒸発器を示す図である。
14:蒸気圧縮システム、32:コンプレッサ、34:凝縮器、36:膨張装置、38、128、138:蒸発器、52:可変速度ドライブ、76:シェル、78、140:チューブ束、80:分配器、82、96、106、110:冷媒、84:ポンプ、86 フード。
[0020]図1は、典型的な商業的設定状態としての建物12内の冷液体システムを組み込んだ加熱、通気及び空調(HVAC)システム10のための例示的な環境を示す。システム10は、建物12を冷却するために使用できる冷液体を供給できる蒸気圧縮システム14を含むことができる。システム10は、建物12を加熱するために使用できる加熱液体を供給するためのボイラー16と、建物12を通して空気を循環させる空気分配システムとを含むことができる。空気分配システムは、また空気帰還ダクト18と、空気供給ダクト20と、空気処理器22とを含むことができる。空気処理器22は、導管24によりボイラー16及び蒸気圧縮システム14に接続された熱交換器を含むことができる。空気処理器22内の熱交換器は、システム10の作動モードに応じて、ボイラー16からの加熱液体又は蒸気圧縮システム14からの冷液体のいずれかを受け取ることができる。システム10は、建物12の各床上の別個の空気処理器を伴って示すが、素子は、床間又は床の中で分配することができることを認識されたい。
[0021]図2、3は、HVACシステム10のようなHVACシステム内で使用できる例示的な蒸気圧縮システム14を示す。蒸気圧縮システム14は、モータ50により駆動されるコンプレッサ32、凝縮器34、膨張装置(単数又は複数)36及び液体チラー又は蒸発器38を通して冷媒を循環させることができる。蒸気圧縮システム14は、またアナログ/デジタル(A/D)コンバータ42、マイクロプロセッサ44、不揮発性メモリー46及びインターフェイスボード48を含むことのできる制御パネル40を含むことができる。蒸気圧縮システム14内で冷媒として使用できる流体のいくつかの例は、例えばR−410A、R−407、R−134aのようなは、イドロフルオロカーボン(HFC)基礎の冷媒、は、イドロフルオロオレフィン(HFO)、アンモニア(NH3)、R−717、二酸化炭素(CO2)、R−744に似た「天然」冷媒、又は炭化水素基礎の冷媒、水蒸気又は任意の他の適当な形式の冷媒である。例示的な実施の形態においては、蒸気圧縮システム14は、VSD52、モータ50、コンプレッサ32、凝縮器34及び/又は蒸発器38の各々の1又はそれ以上を使用することができる。
[0022]コンプレッサ32と一緒に使用するモータ50は、可変速度ドライブ(VSD)52により稼動することができるか、または、交流(AC)又は直流(DC)電源から直接稼動することができる。使用した場合、VSD52は、特定の固定のライン電圧及び固定のライン周波数を有するAC電力をAC電源から受け取り、可変の電圧及び周波数を有する電力をモータ50に提供する。モータ50は、VSDにより稼動できるか、または、AC又はDC電源から直接稼動できる任意の形式の電気モータを含むことができる。例えば、モータ50は、切換え磁気抵抗モータ、誘導モータ、電子的に整流される永久磁石モータ又は任意の他の適当なモータ形式とすることができる。代わりの例示的な実施の形態においては、コンプレッサ32を駆動するために、蒸気又はガスタービン又はエンジンのような他の駆動機構及び関連する素子を使用することができる。
[0023]コンプレッサ32は、冷媒蒸気を圧縮し、排出ラインを通して蒸気を凝縮器34へ送給する。コンプレッサ32は、遠心コンプレッサ、スクリューコンプレッサ、往復コンプレッサ、回転コンプレッサ、揺動リンクコンプレッサ、スクロールコンプレッサ、タービンコンプレッサ又は任意の他の適当なコンプレッサとすることができる。コンプレッサ32により凝縮器34へ送給された冷媒蒸気は、例えば水又は空気のような流体へ熱を伝達する。冷媒蒸気は、流体との熱伝達の結果、凝縮器34内で冷媒液体へと凝縮する。凝縮器34からの液体冷媒は、膨張装置36を通って蒸発器38へ流れる。図3に示す例示的な実施の形態においては、凝縮器34は、水冷であり、冷却塔56に接続されたチューブ束54を含む。
[0024]蒸発器38へ送給された液体冷媒は、凝縮器34のために使用される流体と同じ形式のものであってもなくてもよい別の流体から熱を吸収し、冷媒蒸気への位相変化を受ける。図3に示す例示的な実施の形態においては、蒸発器38は、冷却負荷62に接続された供給ライン60S及び帰還ライン60Rを有するチューブ束を含む。例えば水、エチレングリコール、塩化カルシウムブレイン、塩化ナトリウムブレイン又は任意の他の適当な液体のようなプロセス流体は、帰還ライン60Rを介して蒸発器38へ入り、供給ライン60Sを介して蒸発器38から出る。蒸発器38は、チューブ内のプロセス流体の温度を冷やす。蒸発器38内のチューブ束は、複数のチューブ及び複数のチューブ束を含むことができる。蒸気冷媒は、蒸発器38を出て、吸入ラインによりコンプレッサ32へ戻り、サイクルを完成させる。
[0025]図3と同様の図4は、増大した冷却容量、効率及び性能を提供するために凝縮器34と膨張装置36との間に組み込むことのできる中間回路64を備えた冷媒回路を示す。中間回路64は、凝縮器34に直接接続できるか又は凝縮器と流体連通できる入口ライン68を有する。図示のように、入口ライン68は、中間容器70の上流側に位置する膨張装置66を含む。例示的な実施の形態においては、中間容器70は、フラッシュインタークーラーとしても参照されるフラッシュタンクとすることができる。代わりの例示的な実施の形態においては、中間容器70は、熱交換器又は「表面エコノマーザー」として構成されることができる。フラッシュインタークーラーの構成においては、第1の膨張装置66は、凝縮器34から受け取る液体の圧力を低下させるように作動する。フラッシュインタークーラー内での膨張工程中、液体の一部は、蒸発する。中間容器70は、凝縮器から受け取った液体から蒸発蒸気を分離するために使用することができる。蒸発した液体は、吸入及び排出間の圧力で又は圧縮の中間段階で、ライン74を通してポートへ、コンプレッサ32により吸引することができる。蒸発しなかった液体は、膨張工程により冷却され、中間容器70の底部に集められ、そこで、液体は、第2の膨張装置36を有するライン72を通して蒸発器38へ流れるように再生される。
[0026]「表面インタークーラー」の構成においては、当業者にとって知られているように、履行は、若干異なる。中間回路64は、上述のものと同様の方法で作動できるが、違いは、凝縮器34から全体の量の冷媒を受け取る代わりに、図4に示すように、中間回路64が凝縮器34から冷媒の一部のみを受け取り、残りの冷媒が膨張装置36へ直接進むことである。
[0027]図5A乃至5Cは、「混成落下フィルム」蒸発器として構成された蒸発器の例示的な実施の形態を示す。図5A乃至5Cに示すように、蒸発器138は、実質上円筒状のシェル76を含み、シェルは、シェル76の長さに沿って実質上水平に延びるチューブ束78を形成する複数のチューブを備える。少なくとも1つの支持体116は、チューブ束78内で複数のチューブを支持するためにシェル76の内部に位置することができる。水、エチレン、エチレングリコール又は塩化カルシウムブレインのような適当な流体は、チューブ束78のチューブを通って流れる。チューブ束78の上方に位置する分配器80は、複数の位置からチューブ束78内のチューブ上へ冷媒110を分配し、付着させ、適用する。1つの例示的な実施の形態においては、分配器80により付着された冷媒は、全体的に液体冷媒とすることができるが、別の例示的な実施の形態においては、分配器80により付着される冷媒は、液体冷媒及び蒸気冷媒の双方を含むことができる。
[0028]状態を変えずにチューブ束78のチューブのまわりを流れる液体冷媒は、シェル76の下方部分に集められる。集められた液体冷媒は、液体冷媒82のプール又はリザーバを形成することができる。分配器80からの付着位置は、チューブ78に関する長手方向又は横方向の位置の任意の組み合わせを含むことができる。別の例示的な実施の形態においては、分配器80からの付着位置は、チューブ束78の上方のチューブ上へ付着させる位置に限定されない。分配器80は、冷媒の分散源により供給される複数のノズルを含むことができる。例示的な実施の形態においては、分散源は、凝縮器34のような冷媒源に接続するチューブである。ノズルは、スプレーノズルを含むが、また、チューブの表面上へ冷媒を案内又は誘導できる機械加工した開口を含む。ノズルは、チューブ束78の上方の列のチューブが覆われるように、ジェットパターンのような所定のパターンで冷媒を適用することができる。チューブ束78のチューブは、チューブ表面のまわりのフィルムの形として冷媒の流れを促進するように配列することができ、液体冷媒は、チューブ表面の底部で液滴または、ある例では、液体冷媒のカーテン又はシートを形成するように合体する。結果としてのシートは、チューブ表面の湿潤を促進させ、これは、チューブ束78のチューブの内部を流れる流体とチューブ束78のチューブの表面のまわりを流れる冷媒との間の熱伝達効率を向上させる。
[0029]液体冷媒82のプールにおいては、チューブ束140は、液体冷媒の82のプールを蒸発させるために冷媒とプロセス流体との間の付加的な熱エネルギ伝達を提供するように浸漬又は少なくとも部分的に浸漬することができる。例示的な実施の形態においては、チューブ束78は、チューブ束140の少なくとも部分的に上方で(即ち、少なくとも部分的に重なって)位置することができる。1つの例示的な実施の形態においては、蒸発器138は、2パスシステムを組み込んでおり、この場合、冷却すべきプロセス流体は、最初に、チューブ束140のチューブの内部を流れ、次いで、チューブ束78内の流れとは、反対の方向にチューブ束78のチューブの内部を流れるように誘導される。2パスシステムの第2のパスにおいては、チューブ束78内を流れる流体の温度が減少され、従って、プロセス流体の所望の温度を得るためにチューブ束78の表面上を流れる冷媒との熱伝達の量は、一層少なくて済む。
[0030]第1のパスがチューブ束140に関連し、第2のパスがチューブ束78に関連するような2パスシステムを説明したが、他の構成を考えることができることを理解すべきである。例えば、蒸発器138は、プロセス流体がチューブ束140及びチューブ束78の双方を通って同じ方向に流れるような1パスシステムを組み込むことができる。代わりに、蒸発器138は、2つのパスがチューブ束140に関連し、残りのパスがチューブ束78に関連するような、または、1つのパスがチューブ束140に関連し、残りの2つのパスがチューブ束78に関連するような3パスシステムを組み込むことができる。更に、蒸発器138は、1つのパスがチューブ束78及びチューブ束140の双方に関連し、第2のパスがチューブ束78及びチューブ束140の双方に関連するような交互2パスシステムを組み込むことができる。1つの例示的な実施の形態においては、チューブ束78は、チューブ束140からチューブ束78を分離するギャップを伴って、チューブ束140の少なくとも部分的に上方に位置する。更なる例示的な実施の形態においては、フード86は、チューブ束78の上に位置し、フード86は、ギャップの方に延び、ギャップの近傍で終端する。要約すると、各パスがチューブ束78及びチューブ束140の一方又は双方に関連できるような任意の数のパスが考えられる。
[0031]囲い即ちフード86は、チューブ束78のチューブ間での蒸気冷媒又は液体及び蒸気冷媒106のクロスフロー即ち横方向の流れを実質上阻止するようにチューブ束78の上方に位置する。フード86は、チューブ束78のチューブの上方に位置し、チューブを横方向で境界する。フード86は、シェル76の上方部分の近傍に位置する上方端部88を含む。分配器80は、フード86とチューブ束78との間に位置することができる。更に別の例示的な実施の形態においては、分配器80は、分配器80がフード86とチューブ束78との間に位置しないように、フード86の近傍では、あるが、その外部に位置することができる。しかし、分配器80がフード86とチューブ束78との間に位置しない場合、分配器80のノズルは、チューブの表面上へ冷媒を誘導又は適用するように更に構成される。フード86の上方端部88は、適用された冷媒110及び部分的に蒸発した冷媒の流れを実質上阻止するように構成され、即ち、液体及び/又は蒸気冷媒106は、出口104へ直接流れる。代わりに、適用された冷媒110及び冷媒106は、フード86により拘束され、一層詳細には、冷媒がフード86の開口端部94を通って出ることができる前に、壁92間で下方へ進むように強制される。フード86のまわりの蒸気冷媒96の流れは、また、液体冷媒82のプールから離れるように流れる蒸発した冷媒を含む。
[0032]少なくとも上述の相対用語は、この開示における他の例示的な実施の形態に関して限定的では、ないことを理解すべきである。例えば、フード86は、先に述べた他の蒸発器素子に関して回転することができ、即ち、壁92を含むフード86は、垂直方位に限定されない。チューブ束78のチューブに実質上平行な軸線のまわりでのフード86の十分な回転時に、フード86は、もは、やチューブ束78のチューブ「の上方に位置する」ことも「を横方向で境界する」こともないものと考えることができる。同様に、フード86の「上方」端部88は、シェル76の「上方部分」の近傍には、もは、や位置することがなく、他の例示的な実施の形態は、フードとシェルとの間のこのような構成に限定されない。例示的な実施の形態においては、フード86は、チューブ束78を覆った後に終端するが、別の例示的な実施の形態においては、フード86は、チューブ束78を覆った後に更に延びる。
[0033]フード86が壁92間で下方へ及び開口端部94を通して冷媒106を強制送給した後、蒸気冷媒は、シェル76の下方部分からシェル76の上方部分へシェル76と壁92との間の空間内で進行する前に、方向を急激に変化させる。重力の効果と組み合わさって、流れの急激な方向変化は、液体冷媒82又はシェル76のいずれかと衝突するある割合の冷媒の任意の随伴される液滴を生じさせ、それによって、蒸気冷媒96の流れからこのような液滴を除去する。また、壁92間でフード86の長さに沿って進行する冷媒ミスト(霧)は、一層大きな液滴となって合体し、このような液滴は、重力により一層容易に分離されるか、または、チューブ束78のごく近傍に維持されるか又はチューブ束に接触して維持され、チューブ束との熱伝達による冷媒ミストの蒸発を許容する。増大した液滴寸法の結果、重力による液体分離の効率が改善され、壁92とシェル76との間の空間内で蒸発器を通って流れる蒸気冷媒96の増大した上向き速度を許容する。開口端部94から流れるか又は液体冷媒82のプールから流れるかに拘わらず、蒸気冷媒96は、上方端部88の近傍で壁92から突出する一対の延長部98上でチャンネル100内へ流れる。蒸気冷媒96は、出口104で蒸発器138から出る前に、延長部98の端部とシェル76との間の空間である溝穴102を通ってチャンネル100内へ入る。別の例示的な実施の形態においては、蒸気冷媒96は、溝穴102の代わりに、延長部98に形成した開口又は孔を通してチャンネル100内へ入ることができる。更に別の例示的な実施の形態においては、溝穴102は、フード86とシェル76との間の空間により形成することができ、即ち、フード86は、延長部98を含まない。
[0034]別の方法で述べれば、冷媒106がフード86から出た後、蒸気冷媒96は、次いで上述の通路に沿ってシェル76の下方部分からシェル76の上方部分へ流れる。例示的な実施の形態においては、通路は、出口104に達する前に、フード86及びシェル76の表面間で実質上対称的にすることができる。例示的な実施の形態においては、延長部98のようなバッフルは、コンプレッサ入口への蒸気冷媒96の直接の経路を阻止するために蒸発器出口の近傍に設けられる。
[0035]1つの例示的な実施の形態においては、フード86は、対向する実質上平行な壁92を含む。別の例示的な実施の形態においては、壁92は、実質上垂直に延びることができ、上方端部88とは、実質上反対側に位置する開口端部94で終端することができる。上方端部88及び壁92は、チューブ束78のチューブのごく近傍に位置し、壁92は、チューブ束78のチューブを実質上横方向で境界するようにシェル76の下方部分に方へ延びる。例示的な実施の形態においては、壁92は、チューブ束78のチューブから約0.02インチ(0.5mm)乃至約0.8インチ(20mm)の間だけ離間することができる。更なる例示的な実施の形態においては、壁92は、チューブ束78のチューブから約0.1インチ(3mm)乃至約0.2インチ(5mm)の間だけ離間することができる。しかし、上方端部88とチューブ束78のチューブとの間の空間は、チューブとフードの上方部分との間に分配器80を位置させるのに十分な空間を提供するために、0.2インチ(5mm)よりもかなり大きくすることができる。フード86の壁92が実質上平行で、シェル76が円筒状であるような例示的な実施の形態においては、壁92は、また壁92を分離する空間を二分するシェルの中央の対称垂直面のまわりで対称的にすることができる。他の例示的な実施の形態においては、壁92は、チューブ束78の下方チューブを越えて垂直に延びる必要がないか、または、壁92は、平坦である必要がなく、壁92は、湾曲することができるか、または、他の平坦では、ない形状を有することができる。特定の構成とは、関係なく、フード86は、フード86の開口端部94を通して壁92の境界内で冷媒106を方向づけ(channel)するように構成される。
[0036]図6A乃至6Cは、「落下フィルム」蒸発器128として構成された蒸発器の例示的な実施の形態を示す。図6A乃至6Cに示すように、蒸発器128は、図5A乃至5Cに示す蒸発器138と同様であるが、違いは、蒸発器128がシェルの下方部分内に集められる冷媒82のプール内のチューブ束140を含まないことである。例示的な実施の形態においては、フード86は、チューブ束78を覆った後に、終端するが、別の例示的な実施の形態においては、フード86は、チューブ束78を覆った後に、冷媒82のプールの方へ更に延びる。更に別の例示的な実施の形態においては、フード86は、フードがチューブ束を全体的に覆わない、即ち、チューブ束を実質的に覆うように、終端する。
[0037]図6B及び6Cに示すように、ポンプ84は、ライン114を介してシェル76の下方部分から分配器80へ液体冷媒82のプールを循環させるために使用することができる。図6Bに更に示すように、ライン114は、凝縮器(図示せず)に流体連通することのできる規制装置112を含むことができる。別の例示的な実施の形態においては、凝縮器34からの加圧冷媒を使用してシェル76の下方部分から液体冷媒82を吸引するために、ベルヌーイ効果により作動するエジェクタ(図示せず)を使用することができる。エジェクタは、規制装置112及びポンプ84の機能を組み合わせたものである。
[0038]例示的な実施の形態においては、チューブ又はチューブ束の1つの構成は、実質上矩形となることのできる輪郭を形成する、垂直及び水平に整合した複数の均一に離間したチューブにより画定することができる。しかし、チューブ束の積み重ね構成は、チューブが垂直方向でも又は水平方向でも整合していない場合に、及び、均一に離間していない構成に、使用することができる。
[0039]別の例示的な実施の形態においては、異なるチューブ束の構造が考えられる。例えば、チューブ束の最上方の水平な列又は最上方の部分に沿って、一層細いチューブ(図示せず)をチューブ束内で使用できる。一層細いチューブの使用の可能性のほか、「満液式」蒸発器におけるような、プール沸騰応用のための一層効率的な作動のために開発されたチューブも使用することができる。加えて、または、一層細いチューブと組み合わせて、チューブ束のチューブの外側表面に多孔性のコーティングを適用することができる。
[0040]更なる例示的な実施の形態においては、蒸発器シェルの断面プロフィールは、非円形とすることができる。
[0041]例示的な実施の形態においては、フードの一部は、シェルの出口内へ部分的に延びることができる。
[0042]更に、システム14の膨張装置の膨張機能性を分配器80内に組み込むことが可能である。1つの例示的な実施の形態においては、2つの膨張装置を使用することができる。一方の膨張装置は、分配器80のスプレーノズル内に位置する。例えば膨張装置36である他方の膨張装置は、蒸発器の内部に位置するスプレーノズルにより提供される前に、冷媒の予備的な部分膨張を提供できる。例示的な実施の形態においては、他方の膨張装置即ち非スプレーノズル式膨張装置は、蒸発及び凝縮圧力のような作動条件における及び部分冷却負荷における変化を考慮するために蒸発器内の液体冷媒82のレベルにより制御することができる。代わりの例示的な実施の形態においては、膨張装置は、凝縮器内又は更なる例示的な実施の形態では、「フラッシュエコノマイザー」容器内の液体冷媒のレベルにより制御することができる。1つの例示的な実施の形態においては、膨張の大半は、ノズル内で生じることができ、ノズルの寸法減少を同時に許容しながら、それ故、ノズルの寸法及びコストを減少させながら、一層大きな圧力差を提供する。
[0020]図1は、典型的な商業的設定状態としての建物12内の冷液体システムを組み込んだ加熱、通気及び空調(HVAC)システム10のための例示的な環境を示す。システム10は、建物12を冷却するために使用できる冷液体を供給できる蒸気圧縮システム14を含むことができる。システム10は、建物12を加熱するために使用できる加熱液体を供給するためのボイラー16と、建物12を通して空気を循環させる空気分配システムとを含むことができる。空気分配システムは、また空気帰還ダクト18と、空気供給ダクト20と、空気処理器22とを含むことができる。空気処理器22は、導管24によりボイラー16及び蒸気圧縮システム14に接続された熱交換器を含むことができる。空気処理器22内の熱交換器は、システム10の作動モードに応じて、ボイラー16からの加熱液体又は蒸気圧縮システム14からの冷液体のいずれかを受け取ることができる。システム10は、建物12の各床上の別個の空気処理器を伴って示すが、構成要素は床間又は床の中で分配することができることを認識されたい。
[0021]図2、図3は、HVACシステム10のようなHVACシステム内で使用できる例示的な蒸気圧縮システム14を示す。蒸気圧縮システム14はモータ50により駆動されるコンプレッサ32、凝縮器34、膨張装置(単数又は複数)36及び液体チラー又は蒸発器38を通して冷媒を循環させることができる。蒸気圧縮システム14はまたアナログ/デジタル(A/D)コンバータ42、マイクロプロセッサ44、不揮発性メモリー46及びインターフェイスボード48を含むことのできる制御パネル40を含むことができる。蒸気圧縮システム14内で冷媒として使用できる流体のいくつかの例は、例えばR−410A、R−407、R−134aのようなハイドロフルオロカーボン(HFC)基礎の冷媒、ハイドロフルオロオレフィン(HFO)、アンモニア(NH3)、R−717、二酸化炭素(CO2)、R−744に似た「天然」冷媒、又は、炭化水素基礎の冷媒、水蒸気又は任意の他の適当な形式の冷媒である。例示的な実施の形態においては、蒸気圧縮システム14はVSD52、モータ50、コンプレッサ32、凝縮器34及び/又は蒸発器38の各々の1又はそれ以上を使用することができる。
[0022]コンプレッサ32と一緒に使用するモータ50は、可変速度ドライブ(VSD)52により稼動することができるか、又は交流(AC)又は直流(DC)電源から直接稼動することができる。使用した場合、VSD52は特定の固定のライン電圧及び固定のライン周波数を有するAC電力をAC電源から受け取り、可変の電圧及び周波数を有する電力をモータ50に提供する。モータ50はVSDにより稼動できるか、又は、AC又はDC電源から直接稼動できる任意の形式の電気モータを含むことができる。例えば、モータ50は切換え磁気抵抗モータ、誘導モータ、電子的に整流される永久磁石モータ又は任意の他の適当なモータ形式とすることができる。代わりの例示的な実施の形態においては、コンプレッサ32を駆動するために、蒸気又はガスタービン又はエンジンのような他の駆動機構及び関連する構成要素を使用することができる。
[0023]コンプレッサ32は、冷媒蒸気を圧縮し、排出ラインを通して蒸気を凝縮器34へ送給する。コンプレッサ32は、遠心コンプレッサ、スクリューコンプレッサ、往復コンプレッサ、回転コンプレッサ、揺動リンクコンプレッサ、スクロールコンプレッサ、タービンコンプレッサ又は、任意の他の適当なコンプレッサとすることができる。コンプレッサ32により凝縮器34へ送給された冷媒蒸気は、例えば水又は空気のような流体へ熱を伝達する。冷媒蒸気は、流体との熱伝達の結果、凝縮器34内で冷媒液体へと凝縮する。凝縮器34からの液体冷媒は、膨張装置36を通って蒸発器38へ流れる。図3に示す例示的な実施の形態においては、凝縮器34は水冷であり、冷却塔56に接続されたチューブ束54を含む。
[0024]蒸発器38へ送給された液体冷媒は、凝縮器34のために使用される流体と同じ形式のものであってもなくてもよい別の流体から熱を吸収し、冷媒蒸気への位相変化を受ける。図3に示す例示的な実施の形態においては、蒸発器38は、冷却負荷62に接続された供給ライン60S及び帰還ライン60Rを有するチューブ束を含む。例えば水、エチレングリコール、塩化カルシウムブレイン、塩化ナトリウムブレイン又は任意の他の適当な液体のようなプロセス流体は、帰還ライン60Rを介して蒸発器38へ入り、供給ライン60Sを介して蒸発器38から出る。蒸発器38は、チューブ内のプロセス流体の温度を冷やす。蒸発器38内のチューブ束は、複数のチューブ及び複数のチューブ束を含むことができる。蒸気冷媒は蒸発器38を出て、吸入ラインによりコンプレッサ32へ戻り、サイクルを完成させる。
[0025]図3と同様の図4は、増大した冷却容量、効率及び性能を提供するために凝縮器34と膨張装置36との間に組み込むことのできる中間回路64を備えた冷媒回路を示す。中間回路64は、凝縮器34に直接接続できるか又は凝縮器と流体連通できる入口ライン68を有する。図示のように、入口ライン68は、中間容器70の上流側に位置する膨張装置66を含む。例示的な実施の形態においては、中間容器70は、フラッシュインタークーラーとしても参照されるフラッシュタンクとすることができる。代わりの例示的な実施の形態においては、中間容器70は、熱交換器又は「表面エコノマーザー」として構成されることができる。
フラッシュインタークーラーの構成においては、第1の膨張装置66は、凝縮器34から受け取る液体の圧力を低下させるように作動する。フラッシュインタークーラー内での膨張工程中、液体の一部は蒸発する。中間容器70は、凝縮器から受け取った液体から蒸発蒸気を分離するために使用することができる。蒸発した液体は、吸入及び排出間の圧力で又は圧縮の中間段階で、ライン74を通してポートへ、コンプレッサ32により吸引することができる。蒸発しなかった液体は、膨張工程により冷却され、中間容器70の底部に集められ、そこで、液体は、第2の膨張装置36を有するライン72を通して蒸発器38へ流れるように再生される。
[0039]「表面インタークーラー」の構成においては、当業者にとって知られているように、履行は若干異なる。中間回路64は、上述のものと同様の方法で作動できるが、違いは、凝縮器34から全体の量の冷媒を受け取る代わりに、図4に示すように、中間回路64が凝縮器34から冷媒の一部のみを受け取り、残りの冷媒が膨張装置36へ直接進むことである。
[0040]図5A乃至5Cは、「混成落下フィルム」蒸発器として構成された蒸発器の例示的な実施の形態を示す。図5A乃至5Cに示すように、蒸発器138は、実質上円筒状のシェル76を含み、シェルは、シェル76の長さに沿って実質上水平に延びるチューブ束78を形成する複数のチューブを備える。少なくとも1つの支持体116は、チューブ束78内で複数のチューブを支持するためにシェル76の内部に位置することができる。水、エチレン、エチレングリコール又は塩化カルシウムブレインのような適当な流体は、チューブ束78のチューブを通って流れる。チューブ束78の上方に位置する分配器80は、複数の位置からチューブ束78内のチューブ上へ冷媒110を分配し、付着させ、適用する。1つの例示的な実施の形態においては、分配器80により付着された冷媒は、全体的に液体冷媒とすることができるが、別の例示的な実施の形態においては、分配器80により付着される冷媒は、液体冷媒及び蒸気冷媒の双方を含むことができる。
[0028]状態を変えずにチューブ束78のチューブのまわりを流れる液体冷媒は、シェル76の下方部分に集められる。集められた液体冷媒は、液体冷媒82のプール又はリザーバを形成することができる。分配器80からの付着位置は、チューブ78に関する長手方向又は横方向の位置の任意の組み合わせを含むことができる。別の例示的な実施の形態においては、分配器80からの付着位置は、チューブ束78の上方のチューブ上へ付着させる位置に限定されない。分配器80は、冷媒の分散源により供給される複数のノズルを含むことができる。例示的な実施の形態においては、分散源は、凝縮器34のような冷媒源に接続するチューブである。
ノズルはスプレーノズルを含むが、また、チューブの表面上へ冷媒を案内又は誘導できる機械加工した開口を含む。ノズルは、チューブ束78の上方の列のチューブが覆われるように、ジェットパターンのような所定のパターンで冷媒を適用することができる。チューブ束78のチューブは、チューブ表面のまわりのフィルムの形として冷媒の流れを促進するように配列することができ、液体冷媒は、チューブ表面の底部で液滴又はある例では液体冷媒のカーテン又はシートを形成するように合体する。結果としてのシートは、チューブ表面の湿潤を促進させ、これは、チューブ束78のチューブの内部を流れる流体とチューブ束78のチューブの表面のまわりを流れる冷媒との間の熱伝達効率を向上させる。
[0029]液体冷媒82のプールにおいては、チューブ束140は、液体冷媒の82のプールを蒸発させるために冷媒とプロセス流体との間の付加的な熱エネルギ伝達を提供するように浸漬又は少なくとも部分的に浸漬することができる。例示的な実施の形態においては、チューブ束78は、チューブ束140の少なくとも部分的に上方で(即ち、少なくとも部分的に重なって)位置することができる。1つの例示的な実施の形態においては、蒸発器138は、2パスシステムを組み込んでおり、この場合、冷却すべきプロセス流体は、最初に、チューブ束140のチューブの内部を流れ、次いで、チューブ束78内の流れとは反対の方向にチューブ束78のチューブの内部を流れるように誘導される。2パスシステムの第2のパスにおいては、チューブ束78内を流れる流体の温度が減少され、従って、プロセス流体の所望の温度を得るためにチューブ束78の表面上を流れる冷媒との熱伝達の量は、一層少なくて済む。
[0030]第1のパスがチューブ束140に関連し、第2のパスがチューブ束78に関連するような2パスシステムを説明したが、他の構成を考えることができることを理解すべきである。例えば、蒸発器138は、プロセス流体がチューブ束140及びチューブ束78の双方を通って同じ方向に流れるような1パスシステムを組み込むことができる。代わりに、蒸発器138は、2つのパスがチューブ束140に関連し、残りのパスがチューブ束78に関連するような、又は、1つのパスがチューブ束140に関連し、残りの2つのパスがチューブ束78に関連するような3パスシステムを組み込むことができる。更に、蒸発器138は、1つのパスがチューブ束78及びチューブ束140の双方に関連し、第2のパスがチューブ束78及びチューブ束140の双方に関連するような交互2パスシステムを組み込むことができる。
1つの例示的な実施の形態においては、チューブ束78は、チューブ束140からチューブ束78を分離するギャップを伴って、チューブ束140の少なくとも部分的に上方に位置する。更なる例示的な実施の形態においては、フード86は、チューブ束78の上に位置し、フード86は、ギャップの方に延び、ギャップの近傍で終端する。要約すると、各パスがチューブ束78及びチューブ束140の一方又は双方に関連できるような任意の数のパスが考えられる。
[0031]囲い即ちフード86は、チューブ束78のチューブ間での蒸気冷媒又は液体及び蒸気冷媒106のクロスフロー即ち横方向の流れを実質上阻止するようにチューブ束78の上方に位置する。フード86は、チューブ束78のチューブの上方に位置し、チューブを横方向で境界する。フード86は、シェル76の上方部分の近傍に位置する上方端部88を含む。分配器80は、フード86とチューブ束78との間に位置することができる。更に別の例示的な実施の形態においては、分配器80は、分配器80がフード86とチューブ束78との間に位置しないように、フード86の近傍ではあるが、その外部に位置することができる。しかし、分配器80がフード86とチューブ束78との間に位置しない場合、分配器80のノズルは、チューブの表面上へ冷媒を誘導又は適用するように更に構成される。
フード86の上方端部88は、適用された冷媒110及び部分的に蒸発した冷媒の流れを実質上阻止するように構成され、即ち、液体及び/又は蒸気冷媒106は、出口104へ直接流れる。代わりに、適用された冷媒110及び冷媒106は、フード86により拘束され、一層詳細には、冷媒がフード86の開口端部94を通って出ることができる前に、壁92間で下方へ進むように強制される。フード86のまわりの蒸気冷媒96の流れはまた、液体冷媒82のプールから離れるように流れる蒸発した冷媒を含む。
[0032]少なくとも上述の相対用語は、この開示における他の例示的な実施の形態に関して限定的ではないことを理解すべきである。例えば、フード86は、先に述べた他の蒸発器構成要素に関して回転することができ、即ち、壁92を含むフード86は、垂直方位に限定されない。チューブ束78のチューブに実質上平行な軸線のまわりでのフード86の十分な回転時に、フード86は、もはやチューブ束78のチューブ「の上方に位置する」ことも「を横方向で境界する」こともないものと考えることができる。同様に、フード86の「上方」端部88は、シェル76の「上方部分」の近傍にはもはや位置することがなく、他の例示的な実施の形態は、フードとシェルとの間のこのような構成に限定されない。例示的な実施の形態においては、フード86は、チューブ束78を覆った後に終端するが、別の例示的な実施の形態においては、フード86は、チューブ束78を覆った後に更に延びる。
[0033]フード86が壁92間で下方へ及び開口端部94を通して冷媒106を強制送給した後、蒸気冷媒は、シェル76の下方部分からシェル76の上方部分へシェル76と壁92との間の空間内で進行する前に、方向を急激に変化させる。重力の効果と組み合わさって、流れの急激な方向変化は、液体冷媒82又はシェル76のいずれかと衝突するある割合の冷媒の任意の随伴される液滴を生じさせ、それによって、蒸気冷媒96の流れからこのような液滴を除去する。また、壁92間でフード86の長さに沿って進行する冷媒ミスト(霧)は、一層大きな液滴となって合体し、このような液滴は、重力により一層容易に分離されるか、又は、チューブ束78のごく近傍に維持されるか又はチューブ束に接触して維持され、チューブ束との熱伝達による冷媒ミストの蒸発を許容する。
増大した液滴寸法の結果、重力による液体分離の効率が改善され、壁92とシェル76との間の空間内で蒸発器を通って流れる蒸気冷媒96の増大した上向き速度を許容する。開口端部94から流れるか又は液体冷媒82のプールから流れるかに拘わらず、蒸気冷媒96は、上方端部88の近傍で壁92から突出する一対の延長部98上でチャンネル100内へ流れる。蒸気冷媒96は、出口104で蒸発器138から出る前に、延長部98の端部とシェル76との間の空間である溝穴102を通ってチャンネル100内へ入る。別の例示的な実施の形態においては、蒸気冷媒96は、溝穴102の代わりに、延長部98に形成した開口又は孔を通してチャンネル100内へ入ることができる。更に別の例示的な実施の形態においては、溝穴102は、フード86とシェル76との間の空間により形成することができ、即ち、フード86は、延長部98を含まない。
[0034]別の方法で述べれば、冷媒106がフード86から出た後、蒸気冷媒96は次いで上述の通路に沿ってシェル76の下方部分からシェル76の上方部分へ流れる。例示的な実施の形態においては、通路は、出口104に達する前に、フード86及びシェル76の表面間で実質上対称的にすることができる。例示的な実施の形態においては、延長部98のようなバッフルは、コンプレッサ入口への蒸気冷媒96の直接の経路を阻止するために蒸発器出口の近傍に設けられる。
[0035]1つの例示的な実施の形態においては、フード86は、対向する実質上平行な壁92を含む。別の例示的な実施の形態においては、壁92は、実質上垂直に延びることができ、上方端部88とは実質上反対側に位置する開口端部94で終端することができる。上方端部88及び壁92は、チューブ束78のチューブのごく近傍に位置し、壁92は、チューブ束78のチューブを実質上横方向で境界(laterally border)するようにシェル76の下方部分に方へ延びる。例示的な実施の形態においては、壁92は、チューブ束78のチューブから約0.02インチ(0.5mm)乃至約0.8インチ(20mm)の間だけ離間することができる。更なる例示的な実施の形態においては、壁92は、チューブ束78のチューブから約0.1インチ(3mm)乃至約0.2インチ(5mm)の間だけ離間することができる。しかし、上方端部88とチューブ束78のチューブとの間の空間は、チューブとフードの上方部分との間に分配器80を位置させるのに十分な空間を提供するために、0.2インチ(5mm)よりもかなり大きくすることができる。
フード86の壁92が実質上平行で、シェル76が円筒状であるような例示的な実施の形態においては、壁92は、また壁92を分離する空間を二分するシェルの中央の対称垂直面のまわりで対称的にすることができる。他の例示的な実施の形態においては、壁92は、チューブ束78の下方チューブを越えて垂直に延びる必要がないか、又は、壁92は、平坦である必要がなく、壁92は、湾曲することができるか、又は、他の平坦ではない形状を有することができる。特定の構成とは関係なく、フード86は、フード86の開口端部94を通して壁92の境界内で冷媒106を方向づけ(channel)するように構成される。
[0036]図6A乃至図6Cは、「落下フィルム」蒸発器128として構成された蒸発器の例示的な実施の形態を示す。図6A乃至図6Cに示すように、蒸発器128は、図5A乃至図5Cに示す蒸発器138と同様であるが、違いは、蒸発器128がシェルの下方部分内に集められる冷媒82のプール内のチューブ束140を含まないことである。例示的な実施の形態においては、フード86は、チューブ束78を覆った後に、終端するが、別の例示的な実施の形態においては、フード86は、チューブ束78を覆った後に、冷媒82のプールの方へ更に延びる。更に別の例示的な実施の形態においては、フード86は、フードがチューブ束を全体的に覆わない、即ち、チューブ束を実質的に覆うように、終端する。
[0037]図6B及び図6Cに示すように、ポンプ84は、ライン114を介してシェル76の下方部分から分配器80へ液体冷媒82のプールを循環させるために使用することができる。図6Bに更に示すように、ライン114は、凝縮器(図示せず)に流体連通することのできる規制装置112を含むことができる。別の例示的な実施の形態においては、凝縮器34からの加圧冷媒を使用してシェル76の下方部分から液体冷媒82を吸引するために、ベルヌーイ効果により作動するエジェクタ(図示せず)を使用することができる。エジェクタは、規制装置112及びポンプ84の機能を組み合わせたものである。
[0038]例示的な実施の形態においては、チューブ又は、チューブ束の1つの構成は、実質上矩形となることのできる輪郭を形成する、垂直及び水平に整合した複数の均一に離間したチューブにより画定することができる。しかし、チューブ束の積み重ね構成は、チューブが垂直方向でも又は水平方向でも整合していない場合に、及び、均一に離間していない構成に、使用することができる。
[0039]別の例示的な実施の形態においては、異なるチューブ束の構造が考えられる。例えば、チューブ束の最上方の水平な列又は最上方の部分に沿って、一層細いチューブ(図示せず)をチューブ束内で使用できる。一層細いチューブの使用の可能性のほか、「満液式」蒸発器におけるような、プール沸騰応用のための一層効率的な作動のために開発されたチューブも使用することができる。加えて、又は、一層細いチューブと組み合わせて、チューブ束のチューブの外側表面に多孔性のコーティングを適用することができる。[0040]更なる例示的な実施の形態においては、蒸発器シェルの断面プロフィールは、非円形とすることができる。[0041]例示的な実施の形態においては、フードの一部は、シェルの出口内へ部分的に延びることができる。
[0042]更に、システム14の膨張装置の膨張機能性を分配器80内に組み込むことが可能である。1つの例示的な実施の形態においては、2つの膨張装置を使用することができる。一方の膨張装置は分配器80のスプレーノズル内に位置する。例えば膨張装置36である他方の膨張装置は、蒸発器の内部に位置するスプレーノズルにより提供される前に、冷媒の予備的な部分膨張を提供できる。例示的な実施の形態においては、他方の膨張装置即ち非スプレーノズル式膨張装置は、蒸発及び凝縮圧力のような作動条件における及び部分冷却負荷における変化を考慮するために蒸発器内の液体冷媒82のレベルにより制御することができる。代わりの例示的な実施の形態においては、膨張装置は、凝縮器内又は、更なる例示的な実施の形態では、「フラッシュエコノマイザー」容器内の液体冷媒のレベルにより制御することができる。1つの例示的な実施の形態においては、膨張の大半はノズル内で生じることができ、ノズルの寸法減少を同時に許容しながら、それ故、ノズルの寸法及びコストを減少させながら、一層大きな圧力差を提供する。
[0043]図7Aは、蒸発器168の例示的な実施の形態を示す。蒸発器は、供給ライン142及び供給ライン144を通して冷媒を受け取る。供給ライン142及び供給ライン144は、制御装置122において2つに分かれる。供給ライン142及び供給ライン144は、チューブ束78上に冷媒を分配するために上方端部88でフード86に侵入する。蒸発器168は、チューブ束78を実質的に取り囲んでこれを覆う下方に開口するフード86を含む。図7Aは、センサにより制御される膨張装置36を示す。供給ライン142は、分配器80を介して冷媒を分配する。供給ライン144は、チューブ束78上に冷媒を分配するための付加的な分配装置を提供する付加的な供給部である。供給ライン144は、例えば制御弁である制御装置122により制御することができる。
制御装置122は、凝縮器から一層の冷媒を提供するために、レベルセンサ150により感知されるような蒸発器168内の冷媒レベルの低下に応答して、実質上完全に開くことができる。制御装置122は、膨張装置36が開き、液体冷媒レベル82が減少し続けるときに、開く。レベルセンサ150は、蒸発器168内で所定の低い冷媒レベルに達した時期を感知し、次いで、制御装置122を開かせる信号を伝達し、供給ライン144を通して蒸発器168に冷媒を供給する。レベルセンサ150は、低冷媒(レベル)を決定するための例示的な手段である。これらに限定されないが、例えば、凝縮器34内の高冷媒レベル、システム14の増大したヘッド圧力又は副冷却の高い程度を含む、低蒸発器冷媒(レベル)を決定するための他の手段を使用することができる。蒸発器168内の冷媒レベルが所定のレベル以上になったとき、制御装置122は、閉じた位置となり、供給ライン144への冷媒の流れを阻止する。
蒸発器168の代わりの例示的な実施の形態を図7Bに示す。図7Bの代わりの実施の形態においては、供給ライン144は、チューブ束78上に冷媒を分配するように分配器80aに接続される。例示的な実施の形態においては、分配器80aは、1又はそれ以上の低圧力ノズルを含むことができる。別の例示的な実施の形態においては、供給ライン144は、液体冷媒82のリザーバに又はチューブ束78、140内の他の位置に冷媒を直接提供することができる。
[0044]図8は、蒸発器178の例示的な実施の形態を示す。蒸発器178は、チューブ束78を取り囲んでこれを覆う下方に開口したフード86を含む。チューブ束78は、分配器80から冷媒を受け取る。チューブ束140は、少なくとも部分的にチューブ束78の下方に位置する。チューブ束140は、蒸発器178の底部で液体冷媒82のプールに集められた液体冷媒を沸騰させる。ブースターポンプ152は、凝縮器から、または、インタークーラー又はフラッシュタンクのような中間容器から液体冷媒を受け取ることができる。ブースターポンプ152は、所定のヘッド圧力値よりも低い、システム14内のヘッド圧力の感知に応答して、作動することができる。ブースターポンプ152は、可変速度で作動することができる。ブースターポンプ152は、また、膨張装置36が完全に開いた位置にあるときに、レベルセンサ150により感知されるような、蒸発器178内の冷媒レベルの減少に応答して、オン/オフ作動できる。図7A、7B、8に示す蒸発器の実施の形態の各々は、第1のチューブ束78のみと一緒に、即ち、図6A、6Bに示すように、チューブ束140の無い状態で、配列することができる。
[0045]図9は、蒸発器188の別の例示的な実施の形態を示す。蒸発器188は、液体及び蒸気冷媒である2相冷媒の流れを、シェル76を通して内部囲い160内へ導く冷媒入口ライン154を含む。囲い160内への2相冷媒の流れは、膨張装置156により制御することができる。バッフル又はデフレクタ158は、冷媒の内向き流れを囲い160内へ下方に導くように囲い160内に位置する。例示的な実施の形態においては、デフレクタ158は、例えば、囲い160の壁から延びる下方に湾曲した突出部とすることができる。囲い160は、分配器162を含む。分配器162は、囲い160内に集められた液体冷媒が囲い160からチューブ束78へ進行するのを許容する。液体冷媒82は、囲い76内に蓄積することができ、図6B、6Cに関して上述したような排水パイプを介して除去される。分配器162は、孔付きシート又は他の構造的な素子又は囲い160から液体の規制された流れを提供できる装置とすることができる。囲い160の上方端部170は、囲い160内の蒸気冷媒166が囲い160から出口104内へ流れるのを許容し、一方、チューブ束78との熱伝達により発生した蒸気冷媒96は、囲い160の側壁のまわりの経路を追従する。例示的な実施の形態においては、上方端部170は、メッシュ構造体164とすることができる。
[0046]本発明のある特徴及び実施の形態のみを図示し、説明したが、当業者なら、特許請求の範囲に記載した要旨の新規な教示及び利点から本質的に逸脱することなく、多くの修正及び変更(例えば、規模、寸法、構造、形状及び種々の素子の割合の変更、パラメータ(例えば、温度、圧力等)の値、装着構成、材料、色彩、方位の使用等)を行うことができる。任意のプロセス又は方法工程の順番又は順序は、代わりの実施の形態に従って変更又は順番変えできる。
それ故、特許請求の範囲は、本発明の真の精神内に入るようなすべてのこのような修正及び変更をカバーすることを意図するものであることを理解すべきである。更に、例示的な実施の形態の簡潔な説明を提供する努力として、実際の履行のすべての特徴は、述べなかった(即ち、本発明を実行する現時点で考えられる最良のモードに関係しないもの、または、特許請求の範囲の発明を可能にすることに関係しないものは、述べなかった)。任意の技術的又は設計的プロジェクトにおけるような、任意のこのような実際の履行の開発において、多くの履行上の特定の決定を行うことができることを認識すべきである。このような開発努力は、複雑で時間を消費するかもしれないが、それにも係らず、過度な経験を伴わずにこの開示の利益を有する当業者にとっては、設計、製作及び製造の日常の仕事であろう。

Claims (7)

  1. 蒸気圧縮システムであって、
    コンプレッサ、凝縮器、膨張装置及び冷媒ラインにより接続された蒸発器を有し、
    前記蒸発器が、シェルと、第1のチューブ束と、フードと、分配器と、前記シェルに冷媒を新たに供給するためのみに設けられた供給ラインと、ポンプと、膨張装置と、センサと、第2のチューブ束と、前記第1のチューブ束及び前記第2のチューブ束を分離するギャップと、を有し、
    前記第1のチューブ束が少なくとも部分的に前記第2のチューブ束の上方に位置し、
    前記第1のチューブ束がシェル内で実質上水平に延びる複数のチューブを有し、
    前記分配器が第1のチューブ束の上方に位置し、
    前記フードが第1のチューブ束を覆い、
    前記供給ラインが膨張装置に接続され、該膨張装置がポンプの排出部に接続され、
    前記センサがシェル内の液体のレベルを感知するように構成され、位置決めされ、
    前記ポンプは、膨張装置が開いた位置にあるとき、所定レベル以下に減少した液体冷媒の感知されたレベルに応答して作動し、前記第2のチューブ束が少なくとも部分的に浸漬されるように前記液体のレベルを維持するように動作することを特徴とするシステム。
  2. 前記フードがギャップの方へ延び、ギャップの近傍で終端することを特徴とする請求項のシステム。
  3. 前記第2のチューブ束がシェル内で実質上水平に延びる複数のチューブを有することを特徴とする請求項のシステム。
  4. 記供給ラインの端部が第1のチューブ束の上に冷媒を分配するように構成され、位置決めされることを特徴とする請求項1のシステム。
  5. 前記ポンプが凝縮器又は中間容器のうちの1つに連通し、凝縮器又は中間容器のうちの1つから液体冷媒を受け取ることを特徴とする請求項1のシステム。
  6. 前記中間容器がインタークーラー又はフラッシュタンクのうちの1つであることを特徴とする請求項のシステム。
  7. 更に可変速度でポンプを稼動するためにポンプに接続された可変速度ドライブを有することを特徴とする請求項1のシステム。
JP2013005304A 2008-01-11 2013-01-16 蒸気圧縮システム Active JP5616986B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US2053308P 2008-01-11 2008-01-11
US61/020,533 2008-01-11

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010542372A Division JP5226807B2 (ja) 2008-01-11 2009-01-09 蒸気圧縮システム

Publications (2)

Publication Number Publication Date
JP2013092365A JP2013092365A (ja) 2013-05-16
JP5616986B2 true JP5616986B2 (ja) 2014-10-29

Family

ID=40403981

Family Applications (6)

Application Number Title Priority Date Filing Date
JP2010542383A Pending JP2011510249A (ja) 2008-01-11 2009-01-09 熱交換器
JP2010542372A Active JP5226807B2 (ja) 2008-01-11 2009-01-09 蒸気圧縮システム
JP2010542398A Pending JP2011510250A (ja) 2008-01-11 2009-01-11 熱交換器
JP2010269923A Pending JP2011080756A (ja) 2008-01-11 2010-12-03 熱交換器
JP2013005304A Active JP5616986B2 (ja) 2008-01-11 2013-01-16 蒸気圧縮システム
JP2013155856A Active JP5719411B2 (ja) 2008-01-11 2013-07-26 熱交換器

Family Applications Before (4)

Application Number Title Priority Date Filing Date
JP2010542383A Pending JP2011510249A (ja) 2008-01-11 2009-01-09 熱交換器
JP2010542372A Active JP5226807B2 (ja) 2008-01-11 2009-01-09 蒸気圧縮システム
JP2010542398A Pending JP2011510250A (ja) 2008-01-11 2009-01-11 熱交換器
JP2010269923A Pending JP2011080756A (ja) 2008-01-11 2010-12-03 熱交換器

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2013155856A Active JP5719411B2 (ja) 2008-01-11 2013-07-26 熱交換器

Country Status (7)

Country Link
US (6) US8863551B2 (ja)
EP (8) EP2232166B1 (ja)
JP (6) JP2011510249A (ja)
KR (1) KR101507332B1 (ja)
CN (5) CN101932893B (ja)
AT (1) ATE554355T1 (ja)
WO (4) WO2009089503A2 (ja)

Families Citing this family (135)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2232166B1 (en) 2008-01-11 2012-04-18 Johnson Controls Technology Company Vapor compression system
US20110056664A1 (en) * 2009-09-08 2011-03-10 Johnson Controls Technology Company Vapor compression system
JP5463106B2 (ja) * 2009-09-11 2014-04-09 日立造船株式会社 浸透気化膜分離用モジュール
JP5800894B2 (ja) 2010-05-27 2015-10-28 ジョンソン コントロールズ テクノロジー カンパニーJohnson Controls Technology Company 冷却塔を有する冷却装置のための熱サイフォン冷却器
US10209013B2 (en) * 2010-09-03 2019-02-19 Johnson Controls Technology Company Vapor compression system
CN103229007B (zh) 2010-11-30 2016-06-15 开利公司 喷射器循环
CN102564204B (zh) * 2010-12-08 2016-04-06 杭州三花微通道换热器有限公司 制冷剂分配装置和具有它的换热器
WO2012077143A1 (en) * 2010-12-09 2012-06-14 Provides Metalmeccanica S.R.L. Heat exchanger
US9816402B2 (en) 2011-01-28 2017-11-14 Johnson Controls Technology Company Heat recovery system series arrangements
JP5802397B2 (ja) * 2011-01-31 2015-10-28 独立行政法人石油天然ガス・金属鉱物資源機構 温度制御システム
WO2012106601A2 (en) 2011-02-04 2012-08-09 Lockheed Martin Corporation Radial-flow heat exchanger with foam heat exchange fins
US9464847B2 (en) 2011-02-04 2016-10-11 Lockheed Martin Corporation Shell-and-tube heat exchangers with foam heat transfer units
US9951997B2 (en) * 2011-02-04 2018-04-24 Lockheed Martin Corporation Staged graphite foam heat exchangers
FI20115125A0 (fi) * 2011-02-09 2011-02-09 Vahterus Oy Laite pisaroiden erottamiseksi
AU2012201798A1 (en) 2011-04-14 2012-11-01 Linde Aktiengesellschaft Heat exchanger with additional liquid control in shell space
AU2012201620B2 (en) * 2011-04-14 2015-04-30 Linde Aktiengesellschaft Heat exchanger with sections
CN103717980B (zh) * 2011-07-26 2016-08-17 开利公司 用于制冷系统的启动逻辑
US20130055755A1 (en) * 2011-08-31 2013-03-07 Basf Se Distributor device for distributing liquid to tubes of a tube-bundle apparatus, and also tube-bundle apparatus, in particular falling-film evaporator
JP5607006B2 (ja) * 2011-09-09 2014-10-15 三井海洋開発株式会社 流下液膜式熱交換器、吸収式冷凍機システム、及び船舶、洋上構造物、水中構造物
JP2013057484A (ja) * 2011-09-09 2013-03-28 Modec Inc 流下液膜式熱交換器、吸収式冷凍機システム、及び船舶、洋上構造物、水中構造物
CN103958996B (zh) * 2011-09-26 2016-06-08 特灵国际有限公司 Hvac系统中的制冷剂处理
WO2013049219A1 (en) * 2011-09-26 2013-04-04 Ingersoll Rand Company Refrigerant evaporator
US9746256B2 (en) 2011-11-18 2017-08-29 Carrier Corporation Shell and tube heat exchanger with a vapor port
US9683784B2 (en) 2012-01-27 2017-06-20 Carrier Corporation Evaporator and liquid distributor
CN102661638B (zh) * 2012-04-18 2014-03-12 重庆美的通用制冷设备有限公司 冷水机组用降膜式蒸发器的制冷剂分配器
US9541314B2 (en) * 2012-04-23 2017-01-10 Daikin Applied Americas Inc. Heat exchanger
US9513039B2 (en) 2012-04-23 2016-12-06 Daikin Applied Americas Inc. Heat exchanger
US20130277020A1 (en) * 2012-04-23 2013-10-24 Aaf-Mcquay Inc. Heat exchanger
JP5949375B2 (ja) * 2012-09-20 2016-07-06 三浦工業株式会社 蒸気発生装置
JP6003448B2 (ja) * 2012-09-20 2016-10-05 三浦工業株式会社 蒸気発生装置
DE102012019512A1 (de) * 2012-10-05 2014-04-10 Hochschule Coburg -Hochschule für angewandte Wissenschaften- Kältemittelkreislauf sowie Trennvorrichtung und Verdampfer für einen Kältemittelkreislauf
CN102914097A (zh) * 2012-11-05 2013-02-06 重庆美的通用制冷设备有限公司 全降膜式蒸发器及冷水机组
KR101352152B1 (ko) * 2012-11-15 2014-01-16 지에스건설 주식회사 해상 플랜트용 황 회수 폐열보일러
ITRM20120578A1 (it) * 2012-11-21 2014-05-22 Provides Metalmeccanica S R L Scambiatore di calore di tipo allagato.
EP2743578A1 (en) * 2012-12-12 2014-06-18 Nem B.V. Heat exchange system and method for start-up such a heat exchange system
WO2014094304A1 (en) * 2012-12-21 2014-06-26 Trane International Inc. Shell and tube evaporator
US10215458B2 (en) 2013-02-19 2019-02-26 Carrier Corporation Evaporator distribution system and method
EP2959240B1 (en) * 2013-02-19 2020-05-06 Carrier Corporation A heating, ventilation and air conditioning (hvac) system and a method of regulating flow of refrigerant to the falling film evaporator of the hvac system
WO2014144105A1 (en) * 2013-03-15 2014-09-18 Trane International Inc. Side mounted refrigerant distributor in a flooded evaporator and side mounted inlet pipe to the distributor
JP6110706B2 (ja) * 2013-03-29 2017-04-05 千代田化工建設株式会社 蒸気処理設備
EA029071B1 (ru) * 2013-04-10 2018-02-28 Оутотек (Финлэнд) Ой Теплообменник с псевдоожиженным слоем
US9915452B2 (en) * 2013-04-23 2018-03-13 Carrier Corporation Support sheet arrangement for falling film evaporator
EP2994623A4 (en) * 2013-05-01 2016-08-10 United Technologies Corp FLOW FLOW EVAPORATOR FOR ENERGY GENERATION SYSTEMS
WO2014179576A2 (en) * 2013-05-01 2014-11-06 United Technologies Corporation Falling film evaporator for mixed refrigerants
KR101458523B1 (ko) * 2013-05-02 2014-11-07 (주)힉스프로 기액 분리형 판형 열교환기
WO2014197002A1 (en) * 2013-06-07 2014-12-11 Johnson Controls Technology Company Distributor for use in a vapor compression system
US9658003B2 (en) * 2013-07-11 2017-05-23 Daikin Applied Americas Inc. Heat exchanger
US9677818B2 (en) * 2013-07-11 2017-06-13 Daikin Applied Americas Inc. Heat exchanger
US9759461B2 (en) * 2013-08-23 2017-09-12 Daikin Applied Americas Inc. Heat exchanger
EP3042127B1 (en) * 2013-09-06 2019-03-06 Carrier Corporation Integrated separator-distributor for falling film evaporator
EP2857782A1 (en) * 2013-10-04 2015-04-08 Shell International Research Maatschappij B.V. Coil wound heat exchanger and method of cooling a process stream
GB2534081B (en) * 2013-10-22 2020-01-22 Guentner Gmbh & Co Kg Control unit for a heat exchanger, heat exchanger, and a method for regulating a heat exchanger
JP6464502B2 (ja) * 2013-10-24 2019-02-06 パナソニックIpマネジメント株式会社 冷凍サイクル装置
CN104677176A (zh) * 2013-11-28 2015-06-03 湖南运达节能科技有限公司 可更换式滴淋管
US10429106B2 (en) 2013-12-04 2019-10-01 Carrier Corporation Asymmetric evaporator
KR102204612B1 (ko) 2013-12-17 2021-01-19 엘지전자 주식회사 분배 유닛 및 이를 포함하는 증발기
WO2015099872A1 (en) * 2013-12-24 2015-07-02 Carrier Corporation Distributor for falling film evaporator
EP3087331B1 (en) * 2013-12-24 2020-11-25 Carrier Corporation Refrigerant riser for evaporator
CN103727707A (zh) * 2013-12-30 2014-04-16 麦克维尔空调制冷(武汉)有限公司 具有二重冷媒分配装置的全降膜式蒸发器
EP3094932B1 (en) * 2014-01-15 2020-09-09 Carrier Corporation Falling film evaporator
EP2908081A1 (en) * 2014-02-14 2015-08-19 Alstom Technology Ltd Heat exchanger and a method for demisting
CN103791647B (zh) * 2014-02-28 2016-01-27 湖南运达节能科技有限公司 单泵型溴化锂吸收式机组
AU2014388923B2 (en) * 2014-03-25 2018-12-06 Wieland Provides SRL Compact heat exchanger
EP3132211B1 (en) 2014-04-16 2023-12-27 Johnson Controls Tyco IP Holdings LLP Method for operating a chiller
JP6423221B2 (ja) 2014-09-25 2018-11-14 三菱重工サーマルシステムズ株式会社 蒸発器及び冷凍機
CN104406334B (zh) * 2014-11-13 2017-08-11 广东申菱环境系统股份有限公司 一种喷淋降膜式蒸发器及其液位控制方法
KR101623840B1 (ko) * 2014-12-12 2016-05-24 주식회사 대산엔지니어링 드럼형 유류 가열장치
CN104676934B (zh) * 2015-03-10 2017-04-12 南京冷德节能科技有限公司 一种双级降膜式螺杆冷水/热泵机组
CN104819605B (zh) * 2015-05-05 2017-05-17 昆山方佳机械制造有限公司 一种满液式蒸发器
WO2016191417A1 (en) 2015-05-27 2016-12-01 Carrier Corporation Mulitlevel distribution system for evaporator
US10670312B2 (en) * 2015-06-10 2020-06-02 Lockheed Martin Corporation Evaporator having a fluid distribution sub-assembly
WO2017027021A1 (en) * 2015-08-11 2017-02-16 Wong Lee Wa Air conditioning tower
US10119471B2 (en) * 2015-10-09 2018-11-06 General Electric Company Turbine engine assembly and method of operating thereof
FR3042858B1 (fr) * 2015-10-21 2018-01-12 Technip France Dispositif d'echange thermique entre un premier fluide destine a etre vaporise et un deuxieme fluide destine a etre refroidi et/ou condense, installation et procede associes
US10508843B2 (en) * 2015-12-21 2019-12-17 Johnson Controls Technology Company Heat exchanger with water box
US10088208B2 (en) * 2016-01-06 2018-10-02 Johnson Controls Technology Company Vapor compression system
CN107131687B (zh) * 2016-02-29 2023-07-11 约克(无锡)空调冷冻设备有限公司 一种适用于低压制冷剂的换热装置
US10746441B2 (en) * 2016-03-07 2020-08-18 Daikin Applied Americas Inc. Heat exchanger
CN105841523A (zh) * 2016-05-31 2016-08-10 中冶焦耐工程技术有限公司 一种波纹直管换热器及其换热方法
CN105890407A (zh) * 2016-05-31 2016-08-24 中冶焦耐工程技术有限公司 一种自支撑式缩放管换热器及换热方法
CN106524599A (zh) * 2016-11-15 2017-03-22 顿汉布什(中国)工业有限公司 一种降膜分配器用制冷剂重力滴淋盘
US10508844B2 (en) * 2016-12-30 2019-12-17 Trane International Inc. Evaporator with redirected process fluid flow
KR101899523B1 (ko) 2017-01-20 2018-10-31 (주)와이앤제이에프엠씨 복합열교환을 이용하는 고효율 히트펌프식 냉난방장치
US10724520B2 (en) * 2017-02-13 2020-07-28 Hamilton Sunstrand Corporation Removable hydropad for an orbiting scroll
CN108662812B (zh) 2017-03-31 2022-02-18 开利公司 流平衡器和具有该流平衡器的蒸发器
US11092363B2 (en) * 2017-04-04 2021-08-17 Danfoss A/S Low back pressure flow limiter
US10132537B1 (en) * 2017-05-22 2018-11-20 Daikin Applied Americas Inc. Heat exchanger
US11415135B2 (en) * 2017-06-16 2022-08-16 Trane International Inc. Aerostatic thrust bearing and method of aerostatically supporting a thrust load in a scroll compressor
CN107255375A (zh) * 2017-06-30 2017-10-17 珠海格力电器股份有限公司 换热器和空调装置
CN107490212B (zh) * 2017-07-06 2019-07-05 南京师范大学 一种水平管降膜蒸发器
CN107328294B (zh) * 2017-07-18 2023-09-08 甘肃蓝科石化高新装备股份有限公司 板壳式热交换器用液体分布混合装置
CN107449288A (zh) * 2017-08-11 2017-12-08 中冶焦耐(大连)工程技术有限公司 一种氨汽化器及其工作方法
CN107490215B (zh) * 2017-08-21 2023-06-27 珠海格力电器股份有限公司 用于满液式蒸发器的喷射结构及满液式蒸发器
DE102017120080A1 (de) * 2017-08-31 2019-02-28 Technische Universität Berlin Vorrichtung für eine Absorptionskältemaschine oder eine Absorptionswärmepumpe, Absorber, Desorber, Absorptionskältemaschine, Absorptionswärmepumpe und Verfahren zum Ausbringen eines Absorptionsmittels
WO2019071415A1 (en) * 2017-10-10 2019-04-18 York (Wuxi) Air Conditioning And Refrigeration Co., Ltd. SYSTEMS AND METHODS FOR DOWNHOLE FILM EVAPORATOR TUBULAR PLATES
US10955179B2 (en) 2017-12-29 2021-03-23 Johnson Controls Technology Company Redistributing refrigerant between an evaporator and a condenser of a vapor compression system
CN208332761U (zh) 2018-01-16 2019-01-04 开利公司 用于冷凝器的导流板、具有其的冷凝器及制冷系统
JP2019128139A (ja) 2018-01-26 2019-08-01 三菱重工サーマルシステムズ株式会社 蒸発器及び冷凍機
US11079150B2 (en) * 2018-02-20 2021-08-03 Blue Star Limited Method for controlling level of liquid within an evaporator and a system thereof
CN108662814A (zh) * 2018-05-04 2018-10-16 重庆美的通用制冷设备有限公司 满液式蒸发器和具有其的冷水机组
US10697674B2 (en) * 2018-07-10 2020-06-30 Johnson Controls Technology Company Bypass line for refrigerant
CN108692492A (zh) * 2018-08-14 2018-10-23 珠海格力电器股份有限公司 降膜式蒸发器及空调
CN110822772A (zh) * 2018-08-14 2020-02-21 约克(无锡)空调冷冻设备有限公司 降膜式蒸发器
EP3839381A4 (en) * 2018-08-14 2022-04-20 York (Wuxi) Air Conditioning And Refrigeration Co., Ltd. FALLING FILM EVAPORATOR
JP7015284B2 (ja) * 2018-09-28 2022-02-02 株式会社デンソー 水散布冷却装置
JP7174927B2 (ja) * 2018-10-02 2022-11-18 パナソニックIpマネジメント株式会社 シェルアンドチューブ式熱交換器
CN109357441B (zh) * 2018-12-14 2024-05-03 珠海格力电器股份有限公司 降膜式蒸发器和空调
US10845125B2 (en) * 2018-12-19 2020-11-24 Daikin Applied Americas Inc. Heat exchanger
US11105558B2 (en) * 2018-12-19 2021-08-31 Daikin Applied Americas Inc. Heat exchanger
US11656036B2 (en) * 2019-03-14 2023-05-23 Carrier Corporation Heat exchanger and associated tube sheet
CN111854232A (zh) 2019-04-26 2020-10-30 荏原冷热系统(中国)有限公司 压缩式制冷机使用的蒸发器和具备该蒸发器的压缩式制冷机
CN110332733A (zh) * 2019-05-09 2019-10-15 上海应用技术大学 一种降膜式蒸发器及离心冷水机组
CN112424545B (zh) 2019-05-24 2023-10-20 开利公司 运输制冷系统中的低制冷剂充注检测
EP3748271B1 (en) * 2019-06-05 2022-08-24 Mitsubishi Electric Hydronics & IT Cooling Systems S.p.A. A hybrid tube bundle evaporator with an improved service refrigerant fluid distributor
EP3748272B1 (en) * 2019-06-05 2022-08-17 Mitsubishi Electric Hydronics & IT Cooling Systems S.p.A. A hybrid tube bundle evaporator
EP3748270B1 (en) * 2019-06-05 2022-08-17 Mitsubishi Electric Hydronics & IT Cooling Systems S.p.A. Hybrid tube bundle evaporator
FR3097307B1 (fr) * 2019-06-17 2021-05-14 Naval Energies Évaporateur d’un fluide de travail pour une centrale ETM comportant une coiffe
FR3097313B1 (fr) * 2019-06-17 2021-10-01 Naval Energies Évaporateur d’un fluide de travail pour une centrale ETM, comportant notamment un système d’amortissement
CN112413940A (zh) * 2019-08-22 2021-02-26 麦克维尔空调制冷(武汉)有限公司 冷媒分配器以及包含该冷媒分配器的蒸发器
KR102292397B1 (ko) 2020-02-13 2021-08-20 엘지전자 주식회사 증발기
KR102292395B1 (ko) * 2020-02-13 2021-08-20 엘지전자 주식회사 증발기
KR102292396B1 (ko) 2020-02-13 2021-08-20 엘지전자 주식회사 증발기
JP6880277B1 (ja) * 2020-04-08 2021-06-02 三菱重工サーマルシステムズ株式会社 蒸発器
CN113513931A (zh) 2020-04-09 2021-10-19 开利公司 热交换器
CN111530207A (zh) * 2020-05-08 2020-08-14 黄龙标 一种粘性气液对冲式高温烟气排放装置
CN111854233B (zh) * 2020-06-24 2021-05-18 宁波方太厨具有限公司 一种降膜式蒸发器及采用该降膜式蒸发器的制冷系统
KR20230078727A (ko) * 2020-09-30 2023-06-02 존슨 컨트롤즈 타이코 아이피 홀딩스 엘엘피 바이패스 도관을 구비한 hvac 시스템
CN114543395B (zh) * 2020-11-26 2024-02-23 青岛海尔空调电子有限公司 用于制冷系统的降膜蒸发器及制冷系统
CN112628703A (zh) * 2020-12-29 2021-04-09 河北鑫麦发节能环保科技有限公司 一种高效节能商用电蒸汽发生器
TW202238050A (zh) * 2021-01-11 2022-10-01 美商江森自控泰科知識產權控股有限責任合夥公司 用於冷凍器之冷凝器過冷卻器
US20230056774A1 (en) * 2021-08-17 2023-02-23 Solarisine Innovations, Llc Sub-cooling a refrigerant in an air conditioning system
IT202100029945A1 (it) * 2021-11-26 2023-05-26 Mitsubishi Electric Hydronics & It Cooling Systems S P A Assieme di evaporatore ibrido migliorato
CN114517993B (zh) * 2022-02-09 2024-02-20 青岛海尔空调电子有限公司 卧式管壳式换热器及换热机组
US20230392837A1 (en) * 2022-06-03 2023-12-07 Trane International Inc. Evaporator charge management and method for controlling the same
WO2024054577A1 (en) * 2022-09-08 2024-03-14 Johnson Controls Tyco IP Holdings LLP Lubricant separation system for hvac&r system

Family Cites Families (164)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US939143A (en) 1908-01-22 1909-11-02 Samuel Morris Lillie Evaporating apparatus.
FR513982A (fr) * 1919-10-01 1921-02-28 Barbet Et Fils Et Cie E Plateau perfectionné pour colonnes de distillation et de rectification
US1623617A (en) * 1923-02-07 1927-04-05 Carl F Braun Condenser, cooler, and absorber
GB253868A (en) * 1925-06-18 1927-01-13 Daniel Guggenheim Improved refrigerating apparatus
US1937802A (en) * 1931-10-12 1933-12-05 Frick Co Heat exchanger
US2059725A (en) * 1934-03-09 1936-11-03 Carrier Engineering Corp Shell and tube evaporator
US2012183A (en) * 1934-03-09 1935-08-20 Carrier Engineering Corp Shell and tube evaporator
US2091757A (en) * 1935-05-16 1937-08-31 Westinghouse Electric & Mfg Co Heat exchange apparatus
US2206428A (en) * 1937-11-27 1940-07-02 Westinghouse Electric & Mfg Co Refrigerating apparatus
US2274391A (en) * 1940-12-06 1942-02-24 Worthington Pump & Mach Corp Refrigerating system and evaporator therefor
US2323511A (en) * 1941-10-24 1943-07-06 Carroll W Baker Refrigerating and air conditioning apparatus
US2384413A (en) 1943-11-18 1945-09-04 Worthington Pump & Mach Corp Cooler or evaporator
US2411097A (en) 1944-03-16 1946-11-12 American Locomotive Co Heat exchanger
US2492725A (en) 1945-04-09 1949-12-27 Carrier Corp Mixed refrigerant system
US2504710A (en) * 1947-08-18 1950-04-18 Westinghouse Electric Corp Evaporator apparatus
GB769459A (en) 1953-10-16 1957-03-06 Foster Wheeler Ltd Improved method and apparatus for the purification of liquids by evaporation
NL245072A (ja) 1959-11-05
US3004396A (en) * 1960-01-04 1961-10-17 Carrier Corp Apparatus for and method of fluid recovery in a refrigeration system
US3095255A (en) * 1960-04-25 1963-06-25 Carrier Corp Heat exchange apparatus of the evaporative type
US3202549A (en) * 1961-05-01 1965-08-24 Union Carbide Corp Leak-resistant dry cells
US3180408A (en) 1961-06-23 1965-04-27 Braun & Co C F Heat exchanger apparatus
US3259181A (en) 1961-11-08 1966-07-05 Carrier Corp Heat exchange system having interme-diate fluent material receiving and discharging heat
US3240265A (en) * 1962-10-03 1966-03-15 American Radiator & Standard Refrigeration evaporator system of the flooded type
BE637665A (ja) * 1962-10-03
BE639176A (ja) * 1962-11-22
US3191396A (en) * 1963-01-14 1965-06-29 Carrier Corp Refrigeration system and apparatus for operation at low loads
US3197387A (en) 1963-05-20 1965-07-27 Baldwin Lima Hamilton Corp Multi-stage flash evaporators
US3213935A (en) 1963-08-01 1965-10-26 American Radiator & Standard Liquid distributing means
US3316735A (en) * 1964-11-25 1967-05-02 Borg Warner Refrigerant distribution for absorption refrigeration systems
US3351119A (en) * 1965-01-05 1967-11-07 Rosenblad Corp Falling film type heat exchanger
GB1033187A (en) 1965-04-03 1966-06-15 American Radiator & Standard Improvements in or relating to tubular heat exchangers
US3267693A (en) * 1965-06-29 1966-08-23 Westinghouse Electric Corp Shell-and-tube type liquid chillers
NL135406C (ja) * 1965-07-28
US3276217A (en) * 1965-11-09 1966-10-04 Carrier Corp Maintaining the effectiveness of an additive in absorption refrigeration systems
US3412569A (en) * 1966-02-21 1968-11-26 Carrier Corp Refrigeration apparatus
US3412778A (en) 1966-10-24 1968-11-26 Mojonnier Bros Co Liquid distributor for tubular internal falling film evaporator
US3529181A (en) * 1968-04-19 1970-09-15 Bell Telephone Labor Inc Thyristor switch
US3593540A (en) * 1970-01-02 1971-07-20 Borg Warner Absorption refrigeration system using a heat transfer additive
US3635040A (en) 1970-03-13 1972-01-18 William F Morris Jr Ingredient water chiller apparatus
CH519150A (de) 1970-07-17 1972-02-15 Bbc Sulzer Turbomaschinen Wärmeaustauscher mit kreiszylindrischem Gehäuse
GB1376308A (en) 1971-06-04 1974-12-04 Cooling Dev Ltd Art of evaporative cooling
DE2212816C3 (de) 1972-03-16 1974-12-12 Wiegand Karlsruhe Gmbh, 7505 Ettlingen Vorrichtung zur gleichmäßigen Verteilung einzudampfender Flüssigkeit in einem Fallstromverdampfer
JPS4956010A (ja) * 1972-09-29 1974-05-30
US3831390A (en) 1972-12-04 1974-08-27 Borg Warner Method and apparatus for controlling refrigerant temperatures of absorption refrigeration systems
DE2604389A1 (de) 1976-02-05 1977-08-18 Metallgesellschaft Ag Verfahren und vorrichtung zur gleichmaessigen beaufschlagung von heizrohren in fallfilmverdampfern
US4029145A (en) * 1976-03-05 1977-06-14 United Aircraft Products, Inc. Brazeless heat exchanger of the tube and shell type
JPS52136449A (en) * 1976-05-11 1977-11-15 Babcock Hitachi Kk Heat exchanger with liquid redistributor
JPS53118606A (en) * 1977-03-25 1978-10-17 Toshiba Corp Condenser
US4158295A (en) 1978-01-06 1979-06-19 Carrier Corporation Spray generators for absorption refrigeration systems
CH626985A5 (ja) * 1978-04-28 1981-12-15 Bbc Brown Boveri & Cie
FR2424477A1 (fr) * 1978-04-28 1979-11-23 Stein Industrie Dispositif echangeur de sechage et de surchauffe de vapeur
JPS5834734B2 (ja) * 1978-10-31 1983-07-28 三井造船株式会社 蒸発器
US4568022A (en) * 1980-04-04 1986-02-04 Baltimore Aircoil Company, Inc. Spray nozzle
DE3014148C2 (de) * 1980-04-12 1985-11-28 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 8000 München Ölabscheider für Verdichter von Wärmepumpen und Kältemaschinen
NL8103640A (nl) * 1980-08-12 1982-03-01 Regehr Ulrich Tegenstroomkoeltoren, in het bijzonder terugkoel-koeltoren voor stoomkrachtinstallaties.
US4335581A (en) * 1981-08-12 1982-06-22 Chicago Bridge & Iron Company Falling film freeze exchanger
JPS58168889A (ja) * 1982-03-29 1983-10-05 Hitachi Ltd 復水器輸送時保護法
US4437322A (en) * 1982-05-03 1984-03-20 Carrier Corporation Heat exchanger assembly for a refrigeration system
JPS58205084A (ja) 1982-05-26 1983-11-29 Hitachi Ltd 薄膜蒸発式熱交換器
US4511432A (en) 1982-09-07 1985-04-16 Sephton Hugo H Feed distribution method for vertical tube evaporation
US4778005A (en) * 1983-06-13 1988-10-18 Exxon Research And Engineering Company Baffle seal for sheel and tube heat exchangers
SE8402163D0 (sv) * 1984-04-18 1984-04-18 Alfa Laval Food & Dairy Eng Vermevexlare av fallfilmstyp
SE458149B (sv) 1984-07-05 1989-02-27 Stal Refrigeration Ab Koeldmediefoeraangare foer kylsystem
EP0179225B1 (en) * 1984-09-19 1988-10-19 Kabushiki Kaisha Toshiba Heat pump system
FR2571837B1 (fr) * 1984-10-17 1987-01-30 Air Liquide Appareil de rechauffage de fluide
JPS61262567A (ja) * 1985-05-17 1986-11-20 株式会社荏原製作所 冷凍機用蒸発器
JPS61192177U (ja) * 1985-05-17 1986-11-29
JPS62162868A (ja) 1986-01-14 1987-07-18 株式会社東芝 蒸発器
JPS62280501A (ja) * 1986-05-30 1987-12-05 三菱重工業株式会社 横形蒸発器
JPS6470696A (en) * 1987-09-11 1989-03-16 Hitachi Ltd Heat transfer tube and manufacture thereof
JPH0633917B2 (ja) 1987-10-23 1994-05-02 株式会社日立製作所 流下液膜式蒸発器
FR2640727B1 (fr) 1988-12-15 1991-08-16 Stein Industrie Faisceau de surchauffe pour separateur-surchauffeur de vapeur horizontal
US4944839A (en) * 1989-05-30 1990-07-31 Rosenblad Corporation Interstage liquor heater for plate type falling film evaporators
US5059226A (en) * 1989-10-27 1991-10-22 Sundstrand Corporation Centrifugal two-phase flow distributor
JPH0397164U (ja) * 1990-01-17 1991-10-04
US4972903A (en) * 1990-01-25 1990-11-27 Phillips Petroleum Company Heat exchanger
US5044427A (en) 1990-08-31 1991-09-03 Phillips Petroleum Company Heat exchanger
US5086621A (en) 1990-12-27 1992-02-11 York International Corporation Oil recovery system for low capacity operation of refrigeration systems
US5246541A (en) 1991-05-14 1993-09-21 A. Ahlstrom Corporation Evaporator for liquid solutions
US5953924A (en) * 1991-06-17 1999-09-21 Y. T. Li Engineering, Inc. Apparatus, process and system for tube and whip rod heat exchanger
JP2653334B2 (ja) 1993-01-26 1997-09-17 株式会社日立製作所 圧縮式冷凍機
US5575889A (en) * 1993-02-04 1996-11-19 Rosenblad; Axel E. Rotating falling film evaporator
US6029471A (en) * 1993-03-12 2000-02-29 Taylor; Christopher Enveloping heat absorber for improved refrigerator efficiency and recovery of reject heat for water heating
CA2156076C (en) * 1993-03-31 1999-03-23 Michael C. Boehde Cooling of compressor lubricant in a refrigeration system
US5390505A (en) * 1993-07-23 1995-02-21 Baltimore Aircoil Company, Inc. Indirect contact chiller air-precooler method and apparatus
WO1995005226A1 (en) 1993-08-12 1995-02-23 Ancon Chemicals Pty. Ltd. Distributor plate and evaporator
JPH0783526A (ja) 1993-09-13 1995-03-28 Hitachi Ltd 圧縮式冷凍機
JP3277634B2 (ja) 1993-09-17 2002-04-22 株式会社日立製作所 タ−ボ冷凍機
US5472044A (en) * 1993-10-20 1995-12-05 E. I. Du Pont De Nemours And Company Method and apparatus for interacting a gas and liquid on a convoluted array of tubes
JP3590661B2 (ja) * 1994-12-07 2004-11-17 株式会社東芝 復水器
JPH08233407A (ja) * 1995-02-27 1996-09-13 Daikin Ind Ltd 満液式蒸発器
US5632154A (en) 1995-02-28 1997-05-27 American Standard Inc. Feed forward control of expansion valve
US5561987A (en) * 1995-05-25 1996-10-08 American Standard Inc. Falling film evaporator with vapor-liquid separator
US5588596A (en) 1995-05-25 1996-12-31 American Standard Inc. Falling film evaporator with refrigerant distribution system
JPH08338671A (ja) * 1995-06-14 1996-12-24 Kobe Steel Ltd 非共沸混合冷媒用横形凝縮器
US6119472A (en) * 1996-02-16 2000-09-19 Ross; Harold F. Ice cream machine optimized to efficiently and evenly freeze ice cream
CA2260157C (en) * 1996-07-19 2003-03-18 Steve S. Dingle Evaporator refrigerant distributor
US5791404A (en) 1996-08-02 1998-08-11 Mcdermott Technology, Inc. Flooding reduction on a tubular heat exchanger
JPH10110976A (ja) * 1996-10-08 1998-04-28 Sanyo Electric Co Ltd 自然循環式熱移動装置
US5839294A (en) 1996-11-19 1998-11-24 Carrier Corporation Chiller with hybrid falling film evaporator
US5931020A (en) * 1997-02-28 1999-08-03 Denso Corporation Refrigerant evaporator having a plurality of tubes
JP3269634B2 (ja) * 1997-03-17 2002-03-25 株式会社日立製作所 液体分配装置及び流下液膜式熱交換器並びに吸収式冷凍機
US6035651A (en) * 1997-06-11 2000-03-14 American Standard Inc. Start-up method and apparatus in refrigeration chillers
US5875637A (en) 1997-07-25 1999-03-02 York International Corporation Method and apparatus for applying dual centrifugal compressors to a refrigeration chiller unit
JP3834944B2 (ja) * 1997-07-28 2006-10-18 石川島播磨重工業株式会社 冷水塔における温水槽の散水ノズル
US5922903A (en) * 1997-11-10 1999-07-13 Uop Llc Falling film reactor with corrugated plates
US6127571A (en) 1997-11-11 2000-10-03 Uop Llc Controlled reactant injection with permeable plates
JPH11281211A (ja) * 1998-03-30 1999-10-15 Tadano Ltd ガス分離装置
US6098420A (en) * 1998-03-31 2000-08-08 Sanyo Electric Co., Ltd. Absorption chiller and heat exchanger tube used the same
US6089312A (en) * 1998-06-05 2000-07-18 Engineers And Fabricators Co. Vertical falling film shell and tube heat exchanger
JP3735464B2 (ja) * 1998-06-25 2006-01-18 株式会社東芝 脱気復水器
FI106296B (fi) * 1998-11-09 2001-01-15 Amsco Europ Inc Suomen Sivulii Menetelmä ja laite haihdutettavan veden käsittelemiseksi
FR2786858B1 (fr) * 1998-12-07 2001-01-19 Air Liquide Echangeur de chaleur
US6300429B1 (en) * 1998-12-31 2001-10-09 Union Carbide Chemicals & Plastics Technology Corporation Method of modifying near-wall temperature in a gas phase polymerization reactor
JP2000230760A (ja) * 1999-02-08 2000-08-22 Mitsubishi Heavy Ind Ltd 冷凍機
TW579420B (en) 1999-02-16 2004-03-11 Carrier Corp Heat exchanger including falling-film evaporator and refrigerant distribution system
CN2359636Y (zh) * 1999-03-09 2000-01-19 董春栋 制冷系统用高效蒸发器
US6167713B1 (en) 1999-03-12 2001-01-02 American Standard Inc. Falling film evaporator having two-phase distribution system
US6170286B1 (en) * 1999-07-09 2001-01-09 American Standard Inc. Oil return from refrigeration system evaporator using hot oil as motive force
US6233967B1 (en) * 1999-12-03 2001-05-22 American Standard International Inc. Refrigeration chiller oil recovery employing high pressure oil as eductor motive fluid
US6293112B1 (en) * 1999-12-17 2001-09-25 American Standard International Inc. Falling film evaporator for a vapor compression refrigeration chiller
US6341492B1 (en) * 2000-05-24 2002-01-29 American Standard International Inc. Oil return from chiller evaporator
DE10027139A1 (de) * 2000-05-31 2001-12-06 Linde Ag Mehrstöckiger Badkondensator
JP2001349641A (ja) * 2000-06-07 2001-12-21 Mitsubishi Heavy Ind Ltd 凝縮器および冷凍機
US6357254B1 (en) 2000-06-30 2002-03-19 American Standard International Inc. Compact absorption chiller and solution flow scheme therefor
CN2458582Y (zh) * 2001-01-03 2001-11-07 台湾日光灯股份有限公司 气动冷却装置
JP4383686B2 (ja) * 2001-03-26 2009-12-16 株式会社東芝 復水器の据付工法
DE10114808A1 (de) 2001-03-26 2002-10-10 Bayer Ag Verfahren zur Herstellung von Oligocarbonaten
US6516627B2 (en) 2001-05-04 2003-02-11 American Standard International Inc. Flowing pool shell and tube evaporator
JP2003065631A (ja) * 2001-08-24 2003-03-05 Mitsubishi Heavy Ind Ltd 冷凍機及びその凝縮器と蒸発器
DE10147674A1 (de) 2001-09-27 2003-04-24 Gea Wiegand Gmbh Einrichtung zur Fallstromverdampfung einer flüssigen Substanz und anschließenden Kondensation des entstandenen Brüdens
US6736374B2 (en) * 2001-11-02 2004-05-18 Marley Cooling Technologies, Inc. Cooling tower top method and apparatus
JP2003314977A (ja) * 2002-04-18 2003-11-06 Mitsubishi Heavy Ind Ltd 水分回収凝縮器
US6532763B1 (en) 2002-05-06 2003-03-18 Carrier Corporation Evaporator with mist eliminator
KR100437804B1 (ko) 2002-06-12 2004-06-30 엘지전자 주식회사 2배관식 냉난방 동시형 멀티공기조화기 및 그 운전방법
US6910349B2 (en) * 2002-08-06 2005-06-28 York International Corporation Suction connection for dual centrifugal compressor refrigeration systems
US6606882B1 (en) * 2002-10-23 2003-08-19 Carrier Corporation Falling film evaporator with a two-phase flow distributor
US6830099B2 (en) * 2002-12-13 2004-12-14 American Standard International Inc. Falling film evaporator having an improved two-phase distribution system
US6742347B1 (en) * 2003-01-07 2004-06-01 Carrier Corporation Feedforward control for absorption chiller
GB0303195D0 (en) * 2003-02-12 2003-03-19 Baltimore Aircoil Co Inc Cooling system
JP2004340546A (ja) * 2003-05-19 2004-12-02 Mitsubishi Heavy Ind Ltd 冷凍機用蒸発器
US7520917B2 (en) * 2004-02-18 2009-04-21 Battelle Memorial Institute Devices with extended area structures for mass transfer processing of fluids
US6868695B1 (en) * 2004-04-13 2005-03-22 American Standard International Inc. Flow distributor and baffle system for a falling film evaporator
US7849710B2 (en) * 2004-10-13 2010-12-14 York International Corporation Falling film evaporator
GB0502149D0 (en) * 2005-02-02 2005-03-09 Boc Group Inc Method of operating a pumping system
WO2006090387A2 (en) * 2005-02-23 2006-08-31 I.D.E. Technologies Ltd. Compact heat pump using water as refrigerant
JP2007078326A (ja) 2005-09-16 2007-03-29 Sasakura Engineering Co Ltd 蒸発装置
CN200982775Y (zh) * 2006-11-30 2007-11-28 上海海事大学 射流循环喷淋降膜蒸发器
EP2097687A2 (en) * 2006-12-21 2009-09-09 Johnson Controls Technology Company Falling film evaporator with a hood and a flow distributor
TWI320094B (en) * 2006-12-21 2010-02-01 Spray type heat exchang device
CN101033901A (zh) * 2007-04-18 2007-09-12 王全龄 适用于低温水源的水源热泵蒸发器
US8011196B2 (en) * 2007-12-20 2011-09-06 Trane International Inc. Refrigerant control of a heat-recovery chiller
EP2232166B1 (en) * 2008-01-11 2012-04-18 Johnson Controls Technology Company Vapor compression system
EP2263051B1 (en) 2008-03-06 2017-01-18 Carrier Corporation Cooler distributor for a heat exchanger
US9016354B2 (en) * 2008-11-03 2015-04-28 Mitsubishi Hitachi Power Systems, Ltd. Method for cooling a humid gas and a device for the same
TWI358520B (en) * 2008-12-04 2012-02-21 Ind Tech Res Inst Pressure-adjustable multi-tube spraying device
WO2011011421A2 (en) * 2009-07-22 2011-01-27 Johnson Controls Technology Company Compact evaporator for chillers
US20110056664A1 (en) * 2009-09-08 2011-03-10 Johnson Controls Technology Company Vapor compression system
KR20110104667A (ko) * 2010-03-17 2011-09-23 엘지전자 주식회사 냉매 분배장치, 그 냉매 분배장치를 구비하는 증발기 및 냉동장치
US10209013B2 (en) * 2010-09-03 2019-02-19 Johnson Controls Technology Company Vapor compression system
US9541314B2 (en) * 2012-04-23 2017-01-10 Daikin Applied Americas Inc. Heat exchanger
US9513039B2 (en) * 2012-04-23 2016-12-06 Daikin Applied Americas Inc. Heat exchanger
US9658003B2 (en) * 2013-07-11 2017-05-23 Daikin Applied Americas Inc. Heat exchanger
JP5752768B2 (ja) 2013-10-08 2015-07-22 株式会社キムラ 被覆具および内装方法

Also Published As

Publication number Publication date
ATE554355T1 (de) 2012-05-15
EP2482006A1 (en) 2012-08-01
WO2009089446A2 (en) 2009-07-16
CN101903714A (zh) 2010-12-01
WO2009089503A3 (en) 2009-09-11
US8302426B2 (en) 2012-11-06
JP2013242140A (ja) 2013-12-05
CN102788451A (zh) 2012-11-21
CN101907375A (zh) 2010-12-08
US8863551B2 (en) 2014-10-21
US10317117B2 (en) 2019-06-11
WO2009089514A2 (en) 2009-07-16
EP2232166A2 (en) 2010-09-29
US20100326108A1 (en) 2010-12-30
EP2450645B1 (en) 2014-10-08
JP5226807B2 (ja) 2013-07-03
US20160238291A1 (en) 2016-08-18
JP2013092365A (ja) 2013-05-16
US9347715B2 (en) 2016-05-24
KR101507332B1 (ko) 2015-03-31
US20100242533A1 (en) 2010-09-30
JP2011510249A (ja) 2011-03-31
CN102788451B (zh) 2014-07-23
JP2011510248A (ja) 2011-03-31
US20100276130A1 (en) 2010-11-04
CN101855502A (zh) 2010-10-06
US20090178790A1 (en) 2009-07-16
US20100319395A1 (en) 2010-12-23
CN101903714B (zh) 2012-08-15
JP5719411B2 (ja) 2015-05-20
EP2482008A1 (en) 2012-08-01
WO2009089514A3 (en) 2009-09-03
EP2450645A2 (en) 2012-05-09
JP2011080756A (ja) 2011-04-21
EP2232168A2 (en) 2010-09-29
WO2009089488A1 (en) 2009-07-16
KR20100113108A (ko) 2010-10-20
JP2011510250A (ja) 2011-03-31
WO2009089503A2 (en) 2009-07-16
EP2341302A1 (en) 2011-07-06
CN101932893B (zh) 2013-07-03
EP2232167A1 (en) 2010-09-29
EP2482007A1 (en) 2012-08-01
EP2482007B1 (en) 2014-04-16
EP2482008B1 (en) 2014-10-08
CN101932893A (zh) 2010-12-29
EP2232166B1 (en) 2012-04-18
EP2450645A3 (en) 2012-07-25
WO2009089446A3 (en) 2009-09-11

Similar Documents

Publication Publication Date Title
JP5616986B2 (ja) 蒸気圧縮システム
JP2008516187A (ja) 落下フィルム蒸発器
US10209013B2 (en) Vapor compression system
TW201211479A (en) Vapor compression system
CN113227698B (zh) 热交换器
KR101924344B1 (ko) 증기압축장치에서 사용하기 위한 디스트리뷰터
CN113195997B (zh) 热交换器

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130927

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20131205

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20131210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140912

R150 Certificate of patent or registration of utility model

Ref document number: 5616986

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250