JP5588024B2 - 散乱特性を増強した遠隔リン光体及びディフューザの構成を用いるledランプ又は電球 - Google Patents

散乱特性を増強した遠隔リン光体及びディフューザの構成を用いるledランプ又は電球 Download PDF

Info

Publication number
JP5588024B2
JP5588024B2 JP2012556066A JP2012556066A JP5588024B2 JP 5588024 B2 JP5588024 B2 JP 5588024B2 JP 2012556066 A JP2012556066 A JP 2012556066A JP 2012556066 A JP2012556066 A JP 2012556066A JP 5588024 B2 JP5588024 B2 JP 5588024B2
Authority
JP
Japan
Prior art keywords
lamp
light
phosphor
diffuser
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012556066A
Other languages
English (en)
Other versions
JP2013521614A (ja
Inventor
トン、タオ
レトキン、ロナン
ケラー、ベルント
ターサ、エリック
ユーマンス、マーク
ロウズ、セオドア
メデンドープ、ニコラス、ダブリュ.、ジュニア
デ ヴェン、アントニー ヴァン
ネグリー、ジェラルド
Original Assignee
クリー インコーポレイテッドCree Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US33951610P priority Critical
Priority to US33951510P priority
Priority to US61/339,516 priority
Priority to US61/339,515 priority
Priority to US12/848,825 priority patent/US8562161B2/en
Priority to US12/848,825 priority
Priority to US61/386,437 priority
Priority to US12/889,719 priority
Priority to US38643710P priority
Priority to US12/889,719 priority patent/US9523488B2/en
Priority to US61/424,665 priority
Priority to US61/424,670 priority
Priority to US201061424670P priority
Priority to US201061424665P priority
Priority to US12/975,820 priority
Priority to US12/975,820 priority patent/US9052067B2/en
Priority to US61/434,355 priority
Priority to US201161434355P priority
Priority to US61/435,326 priority
Priority to US201161435326P priority
Priority to US61/435,759 priority
Priority to US201161435759P priority
Priority to US13/018,291 priority
Priority to US13/018,291 priority patent/US8882284B2/en
Priority to PCT/US2011/000407 priority patent/WO2011109100A2/en
Application filed by クリー インコーポレイテッドCree Inc. filed Critical クリー インコーポレイテッドCree Inc.
Publication of JP2013521614A publication Critical patent/JP2013521614A/ja
Application granted granted Critical
Publication of JP5588024B2 publication Critical patent/JP5588024B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/232Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings specially adapted for generating an essentially omnidirectional light distribution, e.g. with a glass bulb
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/64Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/02Combinations of only two kinds of elements
    • F21V13/08Combinations of only two kinds of elements the elements being filters or photoluminescent elements and reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
    • F21V29/76Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical parallel planar fins or blades, e.g. with comb-like cross-section
    • F21V29/767Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical parallel planar fins or blades, e.g. with comb-like cross-section the planes containing the fins or blades having directions perpendicular to the light emitting axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/04Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings
    • F21V3/06Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by the material
    • F21V3/08Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by the material the material comprising photoluminescent substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/32Elements containing photoluminescent material distinct from or spaced from the light source characterised by the arrangement of the photoluminescent material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/38Combination of two or more photoluminescent elements of different materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • F21V29/505Cooling arrangements characterised by the adaptation for cooling of specific components of reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/51Cooling arrangements using condensation or evaporation of a fluid, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
    • F21V29/77Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical diverging planar fins or blades, e.g. with fan-like or star-like cross-section
    • F21V29/773Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical diverging planar fins or blades, e.g. with fan-like or star-like cross-section the planes containing the fins or blades having the direction of the light emitting axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/85Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems characterised by the material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/02Globes; Bowls; Cover glasses characterised by the shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/04Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings
    • F21V3/10Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by coatings
    • F21V3/12Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by coatings the coatings comprising photoluminescent substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Description

本出願は、2010年3月3日に出願した米国仮特許出願第61/339,516号、2010年3月3日に出願した米国仮特許出願第61/339,515号、2010年9月24日に出願した米国仮特許出願第61/386,437号、2010年12月19日に出願した米国仮出願第61/424,665号、2010年12月19日に出願した米国仮出願第61/424,670号、2011年1月19日に出願した米国仮特許出願第61/434,355号、2011年1月23日に出願した米国仮特許出願第61/435,326号、2011年1月24日に出願した米国仮特許出願第61/435,759号の利益を主張するものである。本出願は、また、2010年8月2日に出願した米国特許出願第12/848,825号、2010年9月24日に出願した米国特許出願第12/889,719号、及び2010年12月22日に出願した米国特許出願第12/975,820号からの一部継続出願であり、それらの利益を主張するものである。
本出願は、エネルギー省契約番号DE−FC26−08NT01577の下で政府支援によりなされた。政府は、本出願においていくつかの権利を有する。

本発明は、固体ランプ(solid state lamp)及び電球に関するものであり、具体的には、無指向性放射パターンを生成することができる効率的で信頼性の高い発光ダイオード(LED)ベースのランプ及び電球に関するものである。

白熱灯若しくはフィラメント・ベースのランプ若しくは電球は、住宅用の光源及び商業施設用の光源として一般に使用されている。しかし、このようなランプは非常に非効率的な光源であり、投入エネルギーの95%程度が、主に熱又は赤外線エネルギーの形で失われる。白熱ランプに対する普通の一代替手段は、いわゆる電球型蛍光ランプ(CFL)であり、電力を光に変換することがより効果的になされるが、さまざまな化合物とともに慢性中毒だけでなく急性の中毒の原因となり、また環境汚染を引き起こす可能性のある有毒物質を使用する必要がある。ランプ若しくは電球の効率を改善する一解決策は、光を発生するために金属フィラメントではなく発光ダイオード(1つ又は複数のLED)などの固体デバイスを使用することである。

発光ダイオードは、一般に、反対極性にドープされた層の間に挟装された固体材料の1つ又は複数の活性層を備える。ドープされた層にバイアスが印加されると、正孔及び電子が活性層内に注入され、そこで再結合して光を発生する。光はLEDの活性層から、またさまざまな表面から放射される。

回路又は他の類似の配置構成でLEDチップを使用するために、環境及び/又は機械的保護、色の選択、集光、及び同様のことを行うためにLEDチップをパッケージに封入することが知られている。LEDパッケージは、LEDパッケージを外部回路に電気的に接続するためのリード線、接点、又はトレースも備える。図1に例示されている典型的なLEDパッケージ10では、単一のLEDチップ12がハンダ付け又は導電性エポキシを使って反射カップ13上に実装される。1つ又は複数のワイヤボンド11は、LEDチップ12のオーミック接点を、反射カップ13に取り付けられるか、又は反射カップ13と一体化されうる、リード線15A及び/又は15Bに接続する。反射カップは、リン光体などの波長変換材料を含みうるカプセル材料16を充填されうる。第1の波長のLEDによって放射された光は、それに応答して第2の波長の光を放射することができる、リン光体によって吸収されうる。次いで、アセンブリ全体を透明保護樹脂14内にカプセル封入し、これをレンズ形状に成形してLEDチップ12から放射される光が平行になるようにできる。反射カップ13は、光を上向き方向に向き付けることができるが、光が反射されると光学的損失が発生しうる(つまり、実用的な反射体表面の反射率が100%より小さいので光の一部が反射カップに吸収されうる)。それに加えて、図1aに示されているパッケージ10などのパッケージについてはうつ熱が問題になる可能性があるが、それというのも、リード線15A、15Bを通して熱を抽出することが困難な場合があるからである。

図2に例示されている従来のLEDパッケージ20は、より多くの熱を発生しうる高出力動作により適している場合がある。LEDパッケージ20では、1つ又は複数のLEDチップ22がプリント回路基板(PCB)キャリア、基板、又はサブマウント23などのキャリア上に実装される。サブマウント23上に実装された金属反射体24は、LEDチップ(複数可)22を囲み、パッケージ20からLEDチップ22によって放射された光を反射する。反射体24は、LEDチップ22に機械的保護ももたらしうる。LEDチップ22上のオーミック接点とサブマウント23上の電気的トレース25A、25Bとの間に1つ又は複数のワイヤボンド接続27が形成される。次いで、実装されているLEDチップ22を封止材26で覆うと、この封止材26はレンズとしても機能しながらチップの環境及び機械的保護をもたらしうる。金属反射体24は、典型的には、ハンダ付け又はエポキシボンドを使ってキャリアに取り付けられる。

図2のLEDパッケージ20に見られるようなLEDチップは、リン光体がLED光の少なくとも一部を吸収する、1つ又は複数のリン光体を含む変換材料によってコーティングされうる。LEDチップは、LEDとリン光体からの光の組み合わせを放射するように異なる波長の光を放射することができる。LEDチップ(複数可)は、多くの異なる方法を使用してリン光体でコーティングすることができ、好適な1つの方法はChitnisらの米国特許出願第11/656,759号及び米国特許出願第11/899,790号、(両方とも同じ)名称「Wafer Level Phosphor Coating Method and Devices Fabricated Utilizing Method」において説明されている。或いは、電気泳動塗布(EPD)などの他の方法を使用してLEDをコーティングすることもでき、この好適なEPD法はTarsaらの米国特許出願第11/473,089号、名称「Close Loop Electrophoretic Deposition of Semiconductor Devices」において説明されている。

変換材料を非常に近い位置に有しているか、又は直接的コーティングとして有するLEDチップは、さまざまな異なるパッケージ内で使用されているが、デバイスの構造に基づくいくつかの制限がある。リン光体がLEDエピタキシャル層上にあるか、又はLEDエピタキシャル層に非常に近い位置にある(また場合によってはLEDの上にコンフォーマル・コートを備える)場合に、リン光体は、リン光体材料の温度を上昇させうるチップが発生する熱に直接的に曝されうる。さらに、そのような場合、リン光体は、LEDからの入射光の非常に密度の高い集光又は光束に曝されうる。変換プロセスは一般的に100%の効率でないため、入射光束に比例する過剰熱がリン光体層内に発生する。LEDチップに近い位置にあるコンパクトなリン光体層では、これにより、小さな領域内に大量の熱が発生するとリン光体層内に実質的温度上昇が発生しうる。この温度上昇は、リン光体粒子が、リン光体粒子内に発生する熱に対する効果的な放散経路を形成しないシリコーンなどの熱伝導率の低い材料内に埋め込まれたときに悪化する可能性がある。このように動作温度が上昇すると、時間の経過とともにリン光体及び周囲の材料の劣化が生じるだけでなく、リン光体変換効率が低下し、変換色がシフトする可能性がある。

LEDから隔てられているか、又はLEDから離れている変換材料と組み合わせて、LEDなどの固体光源を利用するランプも開発されている。このような配置構成は、Tarsaらの米国特許第6,350,041号、名称「High Output Radial Dispersing Lamp Using a Solid State Light Source」において開示されている。この特許で説明されているランプは、光をセパレータに通してリン光体を有するディスパーサに送る固体光源を備えることができる。ディスパーサは、光の少なくとも一部を、リン光体又は他の変換材料に通して異なる波長に変換することによって、光を所望のパターンで分散させ、及び/又はその色を変化させることができる。いくつかの実施例では、セパレータは、光源において室内照明に必要な大きな電流が流れているときに光源からの熱がディスパーサに伝わらないように光源とディスパーサとの間に十分な間隔を設ける。追加の遠隔リン光体技術は、Negleyらの米国特許第7,614,759号、名称「Lighting Device」で説明されている。

遠隔リン光体を組み込んだランプの潜在的欠点の1つは、視覚的な、又は美観に関する特性が望ましくないものとなる可能性がある点である。ランプが光を発生していない場合、ランプは、標準的エジソン電球の典型的な白色又は透明の外観と異なる表面色を有することがある。いくつかの場合において、ランプは黄色若しくはオレンジ色の外観を有することがあるが、これは主にリン光体変換材料から生じるものである。この外観は、多くの用途にとって望ましいものでないと考えられ、光が照射されていないときに周囲の建築要素に美観に関する問題を引き起こす可能性がある。これは、これらの種類のランプを消費者が受け入れることに対し全体としてマイナスの影響を及ぼしうる。

さらに、変換プロセスにおいてリン光体層内に発生する熱が付近のチップ若しくは基板表面を介して伝導又は放散しうるコンフォーマルの又は隣接するリン光体配置構成と比較したときに、遠隔リン光体配置構成は、熱伝導の不適切な熱放散経路に曝されうる。効果的な熱放散経路がないと、断熱された遠隔リン光体は、場合によっては相当するコンフォーマル・コーティング層内の温度よりもなおいっそう高い可能性のある高動作温度に曝される可能性がある。これは、リン光体をチップに関して遠隔に配置することによって得られる利点の一部又は前部を相殺することもありえる。別の言い方をすると、LEDチップに関する遠隔リン光体配置は、動作時にLEDチップ内に熱が発生することによるリン光体層の直接的加熱を低減するか、又は排除しうるが、その結果のリン光体の温度低下は、光変換プロセスにおいてリン光体層それ自体に発生する熱のせいで部分的に又は全体として相殺され、この発生した熱を放散させるための好適な熱経路を欠くこともある。

固体光源を使用するランプの実装及び受け入れに影響を及ぼす別の問題は、光源それ自体によって放射される光の性質に関係する。LED光源(及び関連する変換層)に基づく効率的なランプ又は電球を製造するために、典型的には、LEDチップ又はパッケージを同一平面配置構成にすることが望ましい。これにより、従来の生産機器及びプロセスを使用することが可能になるので製造が容易になり、また製造コストが低減されうる。しかし、LEDチップの同一平面配置構成では、典型的に、前方に向けられた光強度プロファイル(例えば、ランベルト・プロファイル)を発生する。このようなビーム・プロファイルは、固体ランプ又は電球が無指向性度のかなり高いビーム・パターンを有する従来の白熱電球などの従来のランプを置き換えることが意図されている用途では一般的に望ましくない。LED光源又はパッケージを三次元配置構成に実装することは可能であるが、そのような配置構成は、一般的に、加工が難しく、また加工費用も高くなる。

米国特許出願第11/656,759号 米国特許出願第11/899,790号 米国特許出願第11/473,089号 米国特許第6,350,041号 米国特許第7,614,759号 米国特許出願第2010/0155763号 米国特許出願第12/566,195号 米国特許出願第12/704,730号

本発明は、1つの光源、1つ又は複数の波長変換材料、光源に関して分離して、若しくは遠隔に位置決めされた領域若しくは層、及び分離した拡散層の異なる組み合わせ及び配置構成を一般的に備えるランプ及び電球を実現する。この配置構成は、効率、信頼性、及び費用効果が高く、LEDの同一平面配置構成をとる光源の場合であっても、本質的に無指向性の放射パターンをもたらしうるランプ及び電球の製造を可能にする。それに加えて、この配置構成は、ランプから光が照射されないときに変換領域若しくは層の外観を美観に関してマスク又は隠蔽することを可能にする。本発明のさまざまな実施例を使用することで、従来の白熱電球の直接的代替に適したランプ又は電球の製造においてLEDなどの効率的な固体光源を使用することに付随する困難の多くを解消することができる。本発明の実施例は、白熱灯電球などの一般的に使用されているランプに帰されるような認識されている標準サイズ・プロファイルに適合するようになされ、したがってそのような電球の直接的代替が円滑に行えるようになる。本発明の実施例は、ランプ光源の遠隔に位置する変換材料を有するさまざまな配置構成をとることもでき、ディフューザを変換材料及び光源の上に設け、ディフューザがランプの光源及び/又は変換材料から出た光を、一定範囲の視野角度にわたってほぼ均一な色及び/又は強度などの所望のパターンになるように分散させることができる。

幾何学的形状、散乱層の散乱特性、表面粗さ又は平滑性、散乱層特性の空間的分布などの、ディフューザの特性を使用して、色均一性及び光強度分布などのさまざまなランプ特性を視野角度の関数として制御することができる。ディフューザの幾何学的形状及び他の態様を多くの異なる仕方で使用し、ビーム・プロファイルを修正することができる。例えば、ディフューザがランプの背後から見えるようにヒート・シンク部分などの他のランプ特徴体のプロファイルの外部にあるディフューザ要素の「電球」部分を伸張させることによって追加の光をランプの垂直軸から90°を超える角度の方へ向けることができる。光を散乱させるために使用される粒子の性質並びに電球及び散乱フィルム表面の平滑性も、与えられたディフューザの幾何学的形状に対する放射プロファイルに強い影響力を有することができる。

変換材料及びディフューザを光源の遠隔に有することによって、高い電気信号を光源に印加することができ、その結果、光出力が増大しうるが、光源をより高い温度で動作させることも可能になる。光源と変換材料(複数可)との間に距離があると、光源内に発生する熱がリン光体若しくは変換層(複数可)に伝わる量が減る。これは、製造コストの低減につながるチップ部品点数の低減を可能にしつつ、高い変換効率及び信頼性を維持する。いくつかの実施例は、変換に関係する熱を遠隔変換材料から遠ざかる方へ効率よく伝導することを可能にする特徴体も備えることができる。ディフューザ及び変換材料は、異なる形状を有することができ、いくつかの実施例では、この2つのものの幾何学的形状が連携して、所望のランプ放射パターン若しくは均一性をもたらすことができる。

本発明による固体ランプの一実施例は、LEDベースの光源及びLED光源から隔てて配置される遠隔波長変換材料を備える。ディフューザは、遠隔波長変換材料から遠い位置に配置構成され、このディフューザは、LED光源及び波長変換材料からの光を実質的に無指向性の放射パターンに分散させる幾何学的形状及び光散乱特性を備える。

本発明による固体ランプの別の実施例は、前方放射発光ダイオード(LED)ベースの光源及びLED光源から隔てて配置される遠隔リン光体を備える。ディフューザは、遠隔リン光体から遠い位置に配置構成される。ディフューザは、散乱材料とともに配置構成され、LED光源及び遠隔リン光体からの実質的に均一なランプ放射パターンの光をもたらすようにも配置構成される。

本発明による固体ランプは、LEDベースの光源、及びLED光源から隔てて配置される三次元遠隔リン光体を備える。三次元ディフューザは、遠隔リン光体から遠い位置に配置構成され、ディフューザはある形状及び可変散乱特性を有する。ディフューザから放射される光は、遠隔リン光体から放射された光に比較してある角度範囲にわたって空間放射強度プロファイルの変動が低減されている。

本発明のこれら及び他の態様並びに利点は、以下の詳細な説明と、本発明の特徴を実例を用いて示す添付図面とから明らかになるであろう。

従来技術のLEDランプの一実施例の断面図である。 従来技術のLEDランプの別の実施例の断面図である。 A19代替電球に対するサイズ指定を示す図である。 本発明によるランプの一実施例の断面図である。 本発明によるランプの一実施例の側面図である。 本発明によるランプの別の実施例の側面図である。 本発明によるランプのさらに別の実施例の側面図である。 本発明によるランプの一実施例の放射特性を示すグラフである。 本発明によるディフューザの側面図である。 本発明による別のディフューザの側面図である。 本発明による別の実施例のディフューザの側面図である。 本発明によるさらに別のディフューザの側面図である。 図9に示されているディフューザ及び図30に概略が示されている平面遠隔リン光体円板を備えるランプの放射特性を示すグラフである。 図9に示されているディフューザ及び図30に概略が示されている平面遠隔リン光体円板を備えるランプの放射特性を示すグラフである。 図9に示されているディフューザ及び図30に概略が示されている平面遠隔リン光体円板を備えるランプの放射特性を示すグラフである。 図9に示されているディフューザ及び図30に概略が示されている平面遠隔リン光体円板を備えるランプの放射特性を示すグラフである。 図10に示されているディフューザ及び図30に概略が示されている平面遠隔リン光体円板を備えるランプの放射特性を示すグラフである。 図10に示されているディフューザ及び図30に概略が示されている平面遠隔リン光体円板を備えるランプの放射特性を示すグラフである。 図10に示されているディフューザ及び図30に概略が示されている平面遠隔リン光体円板を備えるランプの放射特性を示すグラフである。 図10に示されているディフューザ及び図30に概略が示されている平面遠隔リン光体円板を備えるランプの放射特性を示すグラフである。 図11に示されているディフューザ及び図30に概略が示されている平面遠隔リン光体円板を備えるランプの放射特性を示すグラフである。 図11に示されているディフューザ及び図30に概略が示されている平面遠隔リン光体円板を備えるランプの放射特性を示すグラフである。 図11に示されているディフューザ及び図30に概略が示されている平面遠隔リン光体円板を備えるランプの放射特性を示すグラフである。 図11に示されているディフューザ及び図30に概略が示されている平面遠隔リン光体円板を備えるランプの放射特性を示すグラフである。 図12に示されているディフューザ及び図30に概略が示されている平面遠隔リン光体円板を備えるランプの放射特性を示すグラフである。 図12に示されているディフューザ及び図30に概略が示されている平面遠隔リン光体円板を備えるランプの放射特性を示すグラフである。 図12に示されているディフューザ及び図30に概略が示されている平面遠隔リン光体円板を備えるランプの放射特性を示すグラフである。 図12に示されているディフューザ及び図30に概略が示されている平面遠隔リン光体円板を備えるランプの放射特性を示すグラフである。 ディフューザ・ドームを有する本発明によるランプの別の実施例の断面図である。 本発明によるランプの別の実施例の断面図である。 ディフューザ・ドームを有する本発明によるランプの別の実施例の断面図である。 異なる形状のディフューザ・ドームを有する本発明によるランプの別の実施例の斜視図である。 図32に示されているランプの断面図である。 図32に示されているランプの分解図である。 本発明による三次元リン光体キャリアの一実施例の断面図である。 本発明による三次元リン光体キャリアの別の実施例の断面図である。 本発明による三次元リン光体キャリアの別の実施例の断面図である。 本発明による三次元リン光体キャリアの別の実施例の断面図である。 三次元リン光体キャリアを備える本発明によるランプの別の実施例の斜視図である。 図39に示されているランプの断面図である。 図39に示されているランプの分解図である。 ヒート・シンク及び光源を備える本発明によるランプの一実施例の斜視図である。 ドーム形リン光体キャリアを備える図42に示されているランプの斜視図である。 本発明によるドーム形ディフューザの一実施例の側面図である。 寸法とともに図44に示されているドーム形ディフューザの実施例の断面図である。 図43の球形リン光体キャリア並びに図44及び45に示されているドーム形ディフューザを備えるランプの放射特性を示すグラフである。 図43の球形リン光体キャリア並びに図44及び45に示されているドーム形ディフューザを備えるランプの放射特性を示すグラフである。 図43の球形リン光体キャリア並びに図44及び45に示されているドーム形ディフューザを備えるランプの放射特性を示すグラフである。 図43の球形リン光体キャリア並びに図44及び45に示されているドーム形ディフューザを備えるランプの放射特性を示すグラフである。 図10に示されているディフューザ及び図43に示されている球形リン光体を備えるランプの放射特性を示すグラフである。 図10に示されているディフューザ及び図43に示されている球形リン光体を備えるランプの放射特性を示すグラフである。 図10に示されているディフューザ及び図43に示されている球形リン光体を備えるランプの放射特性を示すグラフである。 図10に示されているディフューザ及び図43に示されている球形リン光体を備えるランプの放射特性を示すグラフである。 図11に示されているディフューザ及び図43に示されている球形リン光体を備えるランプの放射特性を示すグラフである。 図11に示されているディフューザ及び図43に示されている球形リン光体を備えるランプの放射特性を示すグラフである。 図11に示されているディフューザ及び図43に示されている球形リン光体を備えるランプの放射特性を示すグラフである。 図11に示されているディフューザ及び図43に示されている球形リン光体を備えるランプの放射特性を示すグラフである。 図12に示されているディフューザ及び図43に示されている球形リン光体を備えるランプの放射特性を示すグラフである。 図12に示されているディフューザ及び図43に示されている球形リン光体を備えるランプの放射特性を示すグラフである。 図12に示されているディフューザ及び図43に示されている球形リン光体を備えるランプの放射特性を示すグラフである。 図12に示されているディフューザ及び図43に示されている球形リン光体を備えるランプの放射特性を示すグラフである。 本発明によるランプに対する視野角度特性に関する色分布を示すCIE色度図である。 本発明によるディフューザのさらに別の実施例の断面図である。 三次元リン光体キャリアを備える本発明によるランプの別の実施例の斜視図である。 図64に示されているランプの断面図である。 図64に示されているランプの分解図である。 本発明によるランプの別の実施例の断面図である。 本発明によるカラーキャビティの一実施例の断面図である。 本発明によるランプの一実施例の異なる特徴体のフットプリントを示す概略図である。 本発明によるランプの別の実施例の断面図である。 本発明によるランプの別の実施例の断面図である。 本発明によるランプの別の実施例の断面図である。 本発明によるランプのさらに別の実施例の断面図である。 本発明によるランプの別の実施例の上面図である。 本発明によるランプの投光照明型の実施例の断面図である。 本発明による投光照明型ランプの別の実施例の断面図である。 本発明による投光照明型ランプの別の実施例の断面図である。 本発明によるランプの二次元パネルの実施例の断面図である。 本発明によるランプの別の二次元パネルの実施例の断面図である。 本発明によるランプの別の二次元パネルの実施例の断面図である。 本発明によるランプのチューブ形状の実施例の断面図である。 本発明によるランプの別のチューブ形状の実施例の断面図である。 本発明によるランプの別のチューブ形状の実施例の断面図である。 本発明によるランプの発光パネルの実施例の断面図である。 本発明によるランプの別の投光照明の実施例の断面図である。 本発明によるランプのさらに別の実施例の側面図である。 図86のランプの放射特性を示すグラフである。 本発明によるランプのさらに別の実施例の側面図である。 図86のランプの放射特性を示すグラフである。

本発明は、効率、信頼性、及び費用効果が高く、いくつかの実施例では、前方放射光源などの、指向性光源から本質的に無指向性の放射パターンを構成することができるランプ又は電球構造の異なる実施例を対象とする。本発明は、遠隔変換材料(又はリン光体)及び遠隔拡散要素若しくはディフューザとともに固体発光体を使用するランプ構造も対象とする。いくつかの実施例では、ディフューザは、ランプの使用者から見えないようにリン光体をマスクするために使用されるだけでなく、遠隔リン光体及び/又はランプの光源から出た光を所望の放射パターンに分散若しくは再分配することもできる。いくつかの実施例では、ディフューザ・ドームは、前方に向けられた放射パターンを一般的な照明用途に使用されうるより無指向性の高いパターンに分散するように配置構成されうる。ディフューザは、二次元形状だけでなく三次元形状の遠隔変換材料を有する実施例において、LED光源からの前方に向けられた放射を標準的な白熱電球に匹敵するビーム・プロファイルに変換することができる特徴体の組み合わせとともに使用されうる。

本発明は変換材料、波長変換材料、遠隔リン光体、リン光体、リン光体層、及び関係する用語を参照しつつ本明細書において説明される。これらの用語の使用は、制限的であるものとして解釈すべきでない。遠隔リン光体、リン光体、又はリン光体層という用語の使用は、すべての波長変換材料を包含し、それらに等しく適用可能であることを意味するものと理解される。

ランプのいくつかの実施例は、光源の上にあり、また光源から相隔てて並ぶドーム形(又は球錐台形状)の三次元変換材料、並びに変換材料から相隔てて並び、また変換材料の上にあるドーム形のディフューザを有することができ、ランプは二重ドーム構造を示す。さまざまな構造の間の空間は、ランプの発光の分散、及び色均一性を促進しうる光混合室を備えることができる。光源と変換材料との間の空間、さらには変換材料間の空間は、光混合室として使用されうる。他の実施例は、追加の混合室を形成することができる追加の変換材料若しくはディフューザを備えることができる。ドーム変換材料及びドーム形ディフューザの順序は、いくつかの実施例では、ディフューザが変換材料の内側に入り、間の空間が光混合室を形成するように異なりうる。これらは、本発明による多くの異なる変換材料及びディフューザ配置構成のうちのごく一部に過ぎない。

本発明によるいくつかのランプ実施例は、1つ又は複数のLEDチップ若しくはパッケージの同一平面配置構成を有し、放射体が平坦な表面若しくは平面状表面に実装されている光源を備えることができる。他の実施例では、LEDチップは、台又は他の三次元構造上など、同一平面上になくてもよい。同一平面上にある光源は、放射体配置構成の複雑さを低減し、製造しやすくするとともに製造コストも低減することができる。しかし、同一平面上の光源は、ランベルト放射パターンなど、主に前方の方向に放射する傾向を持つ。異なる実施例において、異なる放射角度でほぼ均一な放射強度及び色均一性をもたらしうる従来の白熱電球の光パターンを模した光パターンを放射することが望ましい場合がある。本発明の異なる実施例は、放射パターンを一定の視野角度範囲内において非均一なパターンから実質的に均一なパターンに変換することができる特徴体を備えることができる。

いくつかの実施例では、光源からの光を少なくとも部分的に透過する熱伝導材料、及びそれぞれが光源からの光を吸収し異なる波長の光を放射する少なくとも1つのリン光体材料を含みうるリン光体キャリアを備えることができる変換層若しくは領域がある。ディフューザは、散乱フィルム/粒子及びガラスエンクロージャなどの付随するキャリアを備えることができ、光源及び/又はリン光体キャリアによって放射される光の少なくとも一部を散乱若しくは再配向し、所望のビーム・プロファイルを構成するために使用されうる。いくつかの実施例では、本発明によるランプは、標準的な白熱電球と互換性のあるビーム・プロファイルの光を放射することができる。

幾何学的形状、散乱層の散乱特性、表面粗さ又は平滑性、散乱層特性の空間的分布などの、ディフューザの特性を使用して、色均一性及び光強度分布などのさまざまなランプ特性を視野角度の関数として制御することができる。リン光体キャリア及び他の内部ランプ特徴体をマスクすることによって、ディフューザは、ランプ若しくは電球が点灯していない場合に所望のランプ外観全体を示す。

光源及びリン光体層内に発生する熱を周囲に放散するために光源と熱的に接触し、リン光体キャリアと熱的に接触しうるヒート・シンク構造を備えることができる。光源、及び調光などの他の機能に電力を供給するための電子回路を備えることもでき、これらの回路は、エジソン・ソケットなどの、電力をランプに印加するための手段を備えることができる。

ランプの異なる実施例は、多くの異なる形状及びサイズを有することができ、いくつかの実施例では図3に示されているようなA19サイズのエンベロープ30などの、標準サイズのエンベロープに嵌入する寸法を有する。これにより、ランプは従来の白熱及び蛍光ランプ若しくは電球の代替として特に有用なものとなり、本発明によるランプは固体光源からもたらされるエネルギー消費量の低減と長寿命化が実現される。本発明によるランプは、限定はしないがA21及びA23を含む他の種類の標準サイズのプロファイルにも適合しうる。

いくつかの実施例では、光源は、異なる種類のLED、LEDチップ、又はLEDパッケージなどの、固体光源を含みうる。いくつかの実施例では、単一のLEDチップ又はパッケージを使用することができるが、他の複数のLEDチップ又はパッケージを異なる種類のアレイの配置構成で使用することができる。リン光体をLEDチップから断熱し、熱放散を十分に行うことによって、LEDチップは、リン光体の変換効率及びその長期間信頼性に悪影響を及ぼすことなくより大きな電流レベルによって駆動することができる。これにより、LEDチップをオーバードライブする柔軟性を持たせることで、所望の光束を発生するのに必要なLEDの個数を減らすことが可能になる。このことにより、延いては、ランプの複雑度に対するコスト低減を達成できる。これらのLEDパッケージは、高い光束に耐えられる材料とともにカプセル封入されたLEDを備えるか、又はカプセル封入されていないLEDを備えることができる。

いくつかの実施例では、光源は、1つ又は複数の青色発光LEDを備えることができ、リン光体キャリア内のリン光体層は、青色光の一部を吸収し、ランプが青色LED及び変換材料から白色の光の組み合わせを放射するように1つ又は複数の異なる波長の光を放射する1つ又は複数の材料を含むことができる。変換材料は、青色LED光を吸収し、限定はしないが黄色及び緑色を含む異なる色の光を放射することができる。光源は、ランプが色温度及び演色などの所望の特性を有する光を放射するように異なる色の光を放射する異なるLED及び変換材料を備えることもできる。

赤色と青色の両方のLEDチップを組み込んだ従来のランプは、異なる動作温度及び減光による色の不安定性に曝されうる。これは、異なる温度及び動作電力(電流/電圧)における赤色及び青色のLEDの異なる挙動、さらには時間の経過により異なる動作特性のせいであるものとしてよい。この効果は、ランプ全体に対するコスト及び複雑度を増す可能性がある能動制御システムの実装を通じて幾分緩和されうる。本発明による異なる実施例では、本明細書で開示されている熱放散配置構成を通じて比較的冷たい状態を保つリン光体の複数の層を備えうる遠隔リン光体キャリアと、同じ種類の放射体を備える光源を組み合わせることでこの問題に対処することができる。いくつかの実施例では、遠隔リン光体キャリアは、放射体からの光を吸収することができ、リン光体に対する低くなった動作温度の効率及び信頼性をそのまま保ちながら異なる色の光を再放射することができる。

リン光体要素をLEDから分離することで、カラービニングがより容易に、より一貫性のあるものとなるという利点がさらにもたらされうる。これは、いく通りもの仕方で達成できる。さまざまなビンからのLED(例えば、さまざまなビンからの青色LED)を組み立てて1つにし、異なるランプで使用されうる実質的に波長が均一である励起源を実現することができる。次いで、これらを所望のビン内で発光するランプを構成する実質的に同じ変換特性を有するリン光体キャリアと組み合わせることができる。それに加えて、異なる変換特性に応じて多数のリン光体キャリアを製造し、事前にビニングを行うことができる。異なるリン光体キャリアを異なる特性の発光をする光源と組み合わせてターゲットとなる色のビンの範囲内の光を放射するランプを構成することができる。

本発明によるいくつかのランプは、反射面によって光源を囲むことによる改善された放射効率を備えることもできる。この結果、変換材料から光源の方へ再放射され戻される光の大半を反射することによって光子のリサイクリングが強化される。効率をさらに高め、所望の放射プロファイルを得るために、リン光体層、キャリア層、又はディフューザの表面は、滑らか、又は散乱性を有しているものとしてよい。いくつかの実施例では、キャリア層及びディフューザの内面は、リン光体層から後方に向かう光(ダウンコンバートされた光又は散乱光)の量を低減する全反射挙動を促進するように光学的に滑らかであるものとしてよい。これにより、ランプのLEDチップ、関連する基板、又はランプの内側内の他の理想的でない反射面によって吸収されうる後方放射光の量が低減される。

本発明は、いくつかの実施例を参照しつつ本明細書において説明されているが、本発明は、多くの異なる形態で具現化することができ、本明細書で述べられている実施例に限定されると解釈すべきではないことは理解される。特に、本発明は、異なる構成の1つ若しくは複数のLED又はLEDチップ又はLEDパッケージを有するいくつかのランプに関して以下で説明されるが、本発明は、多くの異なる構成を有する他の多くのランプに使用されうることは理解される。本発明による異なる形で配置構成された異なるランプの実例は、以下で説明され、また参照により本明細書に組み込まれている2011年1月24日に出願したLeらの米国仮特許出願第61/435,759号、名称「Solid State Lamp」において説明されている。

以下の実施例は、1つ又は複数のLEDを参照しつつ説明されているが、これはLEDチップ及びLEDパッケージを包含することが意図されていることは理解される。これらのコンポーネントは、示されているものと異なる形状及びそれを超えるサイズを有していてもよく、異なる数のLEDを備えることもできる。以下で説明される実施例は同一平面上の光源を使用することも理解されるが、同一平面上にない光源も使用できることは理解される。ランプのLED光源は1つ又は複数のLEDからなり、複数のLEDを備えるいくつかの実施例では、LEDは異なる放射波長を有していてもよいことも理解される。同様に、いくつかのLEDは、隣接するか、又は接触しているリン光体層若しくは領域を有することができるが、他のLEDは、異なる組成の隣接するリン光体層を有するか、又はリン光体層を全く有しない場合もある。

本発明は、本明細書では、互いに遠隔にある変換材料、リン光体層、並びにリン光体キャリア及びディフューザを参照しつつ説明される。この文脈における遠隔とは、直接熱接触しないよう相隔てられていること、及び/又は表面上で若しくは中で直接熱接触していないことを指す。

層、領域、又は基板などの要素が、別の要素の「上に」あるという場合、要素は、直接他の要素上にありうるか、又は介在要素も存在しうることは理解される。さらに、「内側」、「外側」、「上側」、「より高い」、「下側」、「真下」、及び「より低い」などの相対語、並びに類似の語は、本明細書では、一方の層又は別の領域の関係を記述するために使用されうる。これらの単語は、図中に示されている配向に加えてデバイスの異なる配向をも包含することが意図されていると理解される。

第1、第2などの語は、本明細書では、さまざまな要素、コンポーネント、領域、層、及び/又はセクションを記述するために使用される場合があるけれども、これらの要素、コンポーネント、領域、層、及び/又はセクションは、その語によって限定されるべきでない。これらの語は、一方の要素、コンポーネント、領域、層、又はセクションを他方の領域、層、又はセクションから区別するためにのみ使用される。そのため、後述の第1の要素、コンポーネント、領域、層、又はセクションは、本発明の教示から逸脱することなく第2の要素、コンポーネント、領域、層、又はセクションと称することが可能である。

本発明の実施例は、本明細書では、本発明の実施例の概略図である断面図を参照しつつ説明される。そのようなものとして、層の実際の厚さが異なることもあり、例えば、製造技術及び/又は許容誤差があるため図の形状と異なることが予想される。本発明の実施例は、本明細書に例示されている領域の特定の形状に制限されるものとして解釈されるべきでないが、例えば、製造から結果として生じる形状の逸脱を含むものとすべきである。正方形若しくは矩形として例示又は説明されている領域は、典型的には、通常の製造公差により丸い若しくは湾曲した特徴体を有する。そのため、図に例示されている領域は、本質的に概略を示すものであり、その形状は、デバイスの領域の正確な形状を示すことを意図されておらず、また本発明の範囲を制限することも意図されていない。

図4は、光源58を保持するためのプラットフォーム56を備える光キャビティ54を有するヒート・シンク構造を具備する本発明によるランプ50の一実施例を示している。この実施例及び以下のいくつかの実施例は、光キャビティを参照しつつ説明されているけれども、他の多くの実施例を光キャビティなしで構成することができることは理解される。これらは、限定はしないが、ランプ構造の平面状表面上に、又は台上にある光源を備えることができる。光源58は、LEDを備えるように図示されている実施例を伴う多くの異なる放射体を備えることができる。限定はしないが、ノースカロライナ州ダラム所在のCree,Inc.社から市販されているものを含む、多くの異なる市販LEDチップ若しくはLEDパッケージを使用することができる。ランプの実施例は、光キャビティを備えることなく、これらの他の実施例において異なる方法で実装されたLEDを備えて構成されうることは理解される。例えば、光源をランプ内の平面状表面に実装することができるか、又はLEDを保持するために台を備えることができる。

光源58は、多くの異なる公知の実装方法及び材料を使用してプラットフォーム56に実装することができ、光源58からの光はキャビティ54の頂部開口部から外に放射される。いくつかの実施例では、光源58をプラットフォーム56に直接実装することができるが、他の実施例では、光源を、プラットフォーム56にその後実装されるサブマウント又はプリント基板(PCB)上に備えることができる。プラットフォーム56及びヒート・シンク構造52は、電気信号を光源58に印加するための導電経路を備えることができ、導電経路のうちのいくつかは導電性トレース又は導線である。プラットフォーム56の一部は、熱伝導性材料で作ることができ、いくつかの実施例では、動作中に発生する熱は、プラットフォームに、次いでヒート・シンク構造に拡散することができる。

ヒート・シンク構造52は、熱伝導性材料を少なくとも部分的に含むものとしてよく、銅若しくはアルミニウムなどの異なる金属、又は金属合金を含む多くの異なる熱伝導性材料を使用することができる。銅は、最大400W/m−kまで又はそれ以上の熱伝導率を有することができる。いくつかの実施例では、ヒート・シンクは、室温で約210W/m−kの熱伝導率を有することができる高純度アルミニウムを含むことができる。他の実施例では、ヒート・シンク構造は、約200W/m−kの熱伝導率を有するダイ・カスト・アルミニウムを含むことができる。ヒート・シンク構造52は、周囲への効率的放散を促すためにヒート・シンクの表面積を増大させるヒート・フィン60などの他の放熱特徴体を備えることもできる。いくつかの実施例では、ヒート・フィン60は、ヒート・シンクの残り部分に比べて高い熱伝導率を持つ材料で作ることができる。図示されている実施例では、フィン60は、一般的に水平方向の向きに示されるが、他の実施例では、フィンは、垂直の向き若しくはある角度の向きをなすことができることは理解される。さらに他の実施例では、ヒート・シンクは、ファンなどの能動冷却要素を備え、これにより、ランプ内の熱抵抗を下げることができる。いくつかの実施例では、リン光体キャリアからの熱放散は、対流熱放散とヒート・シンク構造52を通る伝導との組み合わせを通して達成される。異なる熱放散配置構成及び構造は、Tongらの米国特許出願第61/339,516号、名称「LED Lamp Incorporating Remote Phosphor with Heat Dissipation Features and Diffuser Element」において説明されており、またCree, Inc.社に譲渡され、参照により本明細書に組み込まれている。

反射層53は、光キャビティ54の表面上など、ヒート・シンク構造52上に備えることもできる。光キャビティを有していない実施例では、反射層は、光源の周りに備えることができる。いくつかの実施例では、光源58及び/又は波長変換材料によって放射されるランプ可視光線(「ランプ光」)に対して約75%以上の反射率を有する材料を表面にコーティングすることができるが、他の実施例では、この材料は、ランプ光に対して約85%以上の反射率を有することができる。さらに他の実施例では、この材料は、約95%以上のランプ光に対する反射率を有することができる。

ヒート・シンク構造52は、電源に接続する、例えば、異なる電気的レセプタクルなどに接続するための特徴体も備えることができる。いくつかの実施例では、ヒート・シンク構造は、従来の電気的レセプタクルに嵌入するタイプの特徴体を備えることができる。例えば、これは、エジソン・ソケット内にねじ込むことができるネジ山付き部分を備えることができる、標準的なエジソン・ソケットに装着するための特徴体を具備することができる。他の実施例では、これは標準的なプラグを備えることができ、また電気的レセプタクルは標準的なコンセントであるか、若しくはGU24ベースのユニットを備えることができるか、又は、これは、クリップであってもよく、電気的レセプタクルは、クリップを受け入れ保持するレセプタクルとすることができる(例えば、多くの蛍光灯で使用されているようなもの)。これらは、ヒート・シンク構造及びレセプタクルに対するオプションのうちのごく一部に過ぎず、レセプタクルから電力をランプ50に安全に供給する他の配置構成も使用することができる。本発明によるランプは、AC線間電圧/電流から電球を点灯させ、光源に調光機能を持たせるドライバを備えることができる電源若しくは電力変換ユニットを具備することができる。いくつかの実施例では、電源は、非絶縁型疑似共振フライバック・トポロジーを使用するオフライン定電流LEDドライバを備えることができる。LEDドライバは、ランプ内に嵌合し、いくつかの実施例では、25立方センチメートル未満の体積を有することができるが、他の実施例では、約20立方センチメートルの体積を備えることができる。いくつかの実施例では、電源は非調光型であってもよいが、低コストである。使用される電源は、異なるトポロジー又は幾何学的形状を有することができ、また調光型であってもよいことは理解される。

リン光体キャリア62は、キャビティ54の頂部開口部の上に備えられ、ドーム形ディフューザ76は、リン光体キャリア62の上に備えられる。図示されている実施例では、リン光体キャリアは開口部全体を覆い、キャビティ開口部は円形として図示されており、リン光体キャリア62は、円板である。キャビティ開口部及びリン光体キャリアは、多くの異なる形状及びサイズのものであってよいことは理解される。また、リン光体キャリア62は、キャビティ開口部全体ではなくそれより小さな部分を覆うことができることも理解される。以下でさらに説明されるように、ディフューザ76は、リン光体キャリア及び/又はLEDからの光を所望のランプ放射パターンに分散させるように配置構成され、所望のランプ放射パターンから受ける光に応じて多くの異なる形状及びサイズを備えることができる。

本発明によるリン光体キャリアの実施例は、変換材料及び熱伝導性光伝送材料を備えるものとして特徴付けられうるが、熱伝導性でないリン光体キャリアを備えることもできることは理解される。光伝送材料は、光源54から放射された光に対して透過的であるものとしてよく、変換材料は、光源からの波長の光を吸収し、それと異なる波長の光を再放射するタイプのものであるべきである。図示されている実施例では、熱伝導性光伝送材料は、キャリア層64を備え、変換材料は、リン光体キャリア上にリン光体層66を備える。以下でさらに説明されるように、異なる実施例は、熱伝導性光伝送材料及び変換材料の多くの異なる配置構成を備えることができる。

光源58からの光は、リン光体層66内のリン光体によって吸収されると、等方に再放射され、光の約50%が前方に放射され、50%が後方に出てキャビティ54内に入る。コンフォーマル・リン光体層を有する従来のLEDでは、後方に放射される光のかなりの部分は、後ろへ向けられLED内に入る可能性があり、漏出する可能性は、LED構造の抽出効率によって制限される。いくつかのLEDについては、抽出効率は、約70%となる可能性があり、したがって、変換材料から逆向きにLED内に入る一定割合の光が失われうる。キャビティ54の底部のところのプラットフォーム56上のLEDとともに遠隔リン光体構成を有する本発明によるランプでは、後ろ向きのリン光体光のうちのより高い割合の光がLEDの代わりにキャビティの表面に当たる。これらの表面に反射層53をコーティングすることで、反射してリン光体層66内に戻る光の割合が高まり、そこで光がランプから放射されうる。これらの反射層53は、光キャビティで光子のリサイクルを効果的に行うことを可能にし、ランプの放射効率を高める。反射層は、限定はしないが分布ブラッグ反射器などの反射性金属又は多重層反射構造を含む多くの異なる材料及び構造を備えることができることは理解される。反射層は、光キャビティを有していないこれらの実施例におけるLEDの周りに備えることもできる。

キャリア層64は、石英、炭化ケイ素(SiC)(熱伝導率約120W/m−k)、ガラス(熱伝導率1.0〜1.4W/m−k)、又はサファイア(熱伝導率約40W/m−k)などの、0.5W/m−k以上の熱伝導率を有する多くの異なる材料で作ることができる。他の実施例では、キャリア層64は、1.0W/m−kより大きい熱伝導率を有することができ、他の実施例では、5.0W/m−kより大きい熱伝導率を有することができる。さらに他の実施例では、これは10W/m−kより大きい熱伝導率を有することができる。いくつかの実施例では、キャリア層は、1.4から10W/m−kまでの範囲内の熱伝導率を有することができる。リン光体キャリアは、使用される材料に応じて異なる厚さを有することもでき、厚さの好適な範囲は0.1mmから10mm以上である。他の厚さも、キャリア層に対する材料の特性に応じて使用することができることは理解される。材料は、特定の動作条件に対して十分な横方向熱拡散をもたらす十分な厚さを有しているべきである。一般に、材料の熱伝導率が高ければ高いほど、必要な熱放散を維持しながら材料をより薄くすることができる。限定はしないが光源からの光に対するコスト及び透過性を含むさまざまな要因が、どのキャリア層材料を使用するかについて影響を及ぼしうる。いくつかの材料は、ガラス又は石英などの、より大きな直径により適しているとも考えられる。これらは、より大きな直径のキャリア層上にリン光体層を形成し、次いで、より小さなキャリア層に個片切断することによって製造コストを低減することが可能になる。

多くの異なるリン光体がリン光体層66において使用されうるが、本発明は白色光を放射するランプに特に適合されている。上で説明されているように、いくつかの実施例では、光源58は、LEDベースであり、青色波長スペクトルの光を放射することができる。リン光体層は、青色光の一部を吸収し、黄色光を再放射することができる。これにより、ランプは、青色光と黄色光を組み合わせて得られる白色光を放射することができる。いくつかの実施例では、青色LED光は、市販のYAG:Ceリン光体を使用して黄色変換材料によって変換されうるけれども、YAl12:Ce(YAG)などの(Gd,Y)(Al,Ga)12:Ce系をベースとするリン光体で作られた変換粒子を使用してあらゆる種類の広範な黄色スペクトル放射が可能である。青色発光LEDベースの放射体とともに使用したときに白色光を生成するために使用されうる他の黄色リン光体は、限定はしないが、
Tb3−xRE12:Ce(TAG); RE=Y,Gd,La,Lu; 又は
Sr2−x−yBaCaSiO:Eu
を含む。

リン光体層は、リン光体層66と一緒に混ぜ合わされた複数のリン光体を使用して、又はキャリア層64上の第2のリン光体層として配置構成することもできる。いくつかの実施例では、2つのリン光体のそれぞれが、LED光を吸収し、それと異なる色の光を再放射することができる。これらの実施例では、2つのリン光体層からの色を組み合わせることで、異なる白色の色調(暖白色)のより高いCRIの白色を形成することができる。これは、赤色リン光体からの光と組み合わせることができる上記の黄色リン光体からの光を含むことができる。
SrCa1−xS:Eu,Y; Y=ハロゲン化物、
CaSiAlN:Eu、又は
Sr2−yCaSiO:Eu;
を含む異なる赤色リン光体を使用することができる。

実質的にすべての光を特定の色に変化することによってカラー発光させるために他のリン光体を使用することができる。例えば、リン光体
SrGa:Eu;
Sr2−yBaSiO:Eu; 又は
SrSi:Eu
を使用して緑色光を発生することができる。

以下に、変換粒子リン光体層66として使用されるいくつかの追加の好適なリン光体の一覧を示すが、他のものも使用することができる。それぞれ、青色及び/又はUV発光スペクトルの励起を示し、望ましいピーク発光をもたらし、効率的な光変換を行い、許容可能なストークスシフトを有する。
黄色/緑色
(Sr,Ca,Ba)(Al,Ga):Eu2+
Ba(Mg,Zn)Si:Eu2+
Gd0.46Sr0.31Al1.231.38:Eu2+ 0.06
(Ba1−x−ySrCa)SiO:Eu
BaSiO:Eu2+
赤色
Lu:Eu3+
(Sr2−xLa)(Ce1−xEu)O
SrCe1−xEu
Sr2−xEuCeO
SrTiO:Pr3+,Ga3+
CaAlSiN:Eu2+
SrSi:Eu2+

限定はしないが、10ナノメートル(nm)から30マイクロメートル(μm)までの範囲内、又はそれ以上の粒子を含む、異なるサイズのリン光体粒子を使用することができる。より小さなサイズの粒子は、典型的には散乱し、より大きなサイズの粒子に比べて色の混合がよく、より均一な光が発生する。より大きな粒子は、典型的には、より小さな粒子に比べて光の変換効率が高いが、均一な光を放射しにくい。いくつかの実施例では、リン光体は、結合剤中のリン光体層66で形成され、リン光体は、結合剤中に異なる濃度又は装荷量のリン光体を有することもできる。典型的な濃度は、30〜70質量%の範囲内である。一実施例では、リン光体濃度は、約65質量%であるが、好ましくは、遠隔リン光体全体にわたって均一に分散される。リン光体層66は、異なる変換材料及び異なる濃度の変換材料とともに異なる領域を有することもできる。

結合剤に異なる材料を使用することができ、材料は好ましくは硬化させた後頑丈なものとなり、可視波長スペクトルにおいて実質的に透過性を有する。好適な材料として、シリコーン、エポキシ、ガラス、無機ガラス、誘電体、BCB、ポリイミド、ポリマー、及びこれらの混成物が挙げられ、好ましい材料は高出力LEDにおいて透過性及び信頼性が高いことからシリコーンである。好適なフェニル及びメチル系のシリコーンが、Dow(登録商標)Chemical社から市販されている。結合剤は、使用される結合剤の種類などの異なる要因に応じて多くの異なる硬化法を使用して硬化させることができる。異なる硬化法として、限定はしないが、熱、紫外線(UV)、赤外線(IR)、又は空気による硬化が挙げられる。

リン光体層66は、限定はしないが、スピン・コーティング、スパッタリング、印刷、粉体塗装、電気泳動塗装(EPD)、静電塗装などを含む異なるプロセスを使用して施すことができる。上述のように、リン光体層66は、結合剤材料とともに施すことができるが、結合剤は必要ないことは理解される。さらに他の実施例では、リン光体層66は、別々に加工され、次いで、キャリア層64に実装されうる。

一実施例では、リン光体−結合剤混合物をキャリア層64の上に噴霧するか、又は分散させ、次いで、結合剤を硬化させてリン光体層66を形成することができる。これらの実施例のいくつかにおいて、リン光体−結合剤混合物を、リン光体結合剤混合物がキャリア層64に接触すると、キャリア層64からの熱が結合剤中に拡散して結合剤を硬化させるように加熱されたキャリア層64上に、若しくはその上に被さるように噴霧するか、又は注ぎ込むか、又は分散させることができる。これらのプロセスは、混合物を液化しその粘度下げ、噴霧との親和性を持たせることができるリン光体−結合剤中の溶剤も含みうる。限定はしないが、トルエン、ベンゼン、ザイレン、又はDow Corning(登録商標)社から市販されているOS−20を含む多くの異なる溶剤を使用することができ、また溶剤の異なる濃度も使用することができる。溶剤−リン光体−結合剤混合物を加熱されたキャリア層64上に噴霧又は分散させたときに、キャリア層64からの熱が溶剤を蒸発させ、キャリア層の温度は溶剤が蒸発する速度に影響を及ぼす。キャリア層64からの熱は、この混合物中の結合剤を硬化し、キャリア層上に固定されたリン光体層を残すようにすることもできる。キャリア層64は、使用される材料並びに所望の溶剤蒸発及び結合剤硬化速度に応じて多くの異なる温度に加熱されうる。好適な温度範囲は、90から150℃までの範囲内であるが、他の温度も使用できることは理解される。さまざまな塗装方法及びシステムが、Donofrioらの米国特許出願公開第2010/0155763号、名称「Systems and Methods for Application of Optical Materials to Optical Elements」において説明されており、これもまたCree, Inc.社に譲渡されている。

リン光体層66は、少なくとも部分的にリン光体材料の濃度及びリン光体層66によって変換される光の所望の量に応じて多くの異なる厚さを有することができる。本発明によるリン光体層は、30%より高い濃度レベル(リン光体装荷量)で施すことができる。他の実施例では、50%より高い濃度レベルを有することができるが、さらに他の実施例では、60%より高くすることもできる。いくつかの実施例では、リン光体層は、10〜100ミクロンまでの範囲内の厚さを有することができるが、他の実施例では、40〜50ミクロまでの範囲内の厚さを有することができる。

上述の方法は、異なるリン光体材料の同じものの複数の層を施すために使用することができ、知られているマスキング・プロセスを使用してキャリア層の異なる領域内に異なるリン光体材料を施すことができる。上述の方法は、リン光体層66に対する何らかの厚さ制御を行うが、さらに大きな厚さの制御の場合には、知られている方法を使用してリン光体層を研磨し、リン光体層66の厚さを薄くするか、又は層全体にわたって厚さを均すことができる。この研磨するという特徴では、CIE色度グラフ上の単一のビンの範囲内で発光するランプを生産することができるという利点が加わる。ビニングは、一般的に当技術分野で知られており、最終的な顧客に提供されるLED又はランプが許容可能な色範囲内の光を放射することを確実にすることを意図したものである。LED又はランプをテストし、色若しくは輝度によりソートして異なるいくつかのビンに分けることができるが、これは一般的に当技術分野ではビニングと称される。それぞれのビンは、典型的には、ある色及び輝度のグループからのLED若しくはランプを含み、典型的には、ビン・コードによって識別される。白色発光LED又はランプは、色度(色)及び光束(輝度)によってソートされうる。リン光体層の厚さ制御は、リン光体層によって変換される光源光の量を制御することによってターゲット・ビンの範囲内の光を放射するランプの生産をより精密に制御する。リン光体層66の厚さが同じである複数のリン光体62を形成することができる。実質的に同じ放射特性を持つ光源58を使用することによって、いくつかの場合において単一のビンの範囲内に収まりうるほぼ同じ放射特性を有するランプを製造することができる。いくつかの実施例では、ランプ放射は、CIE図上の1つの点からの標準偏差の範囲内にあり、またいくつかの実施例では、標準偏差は、10ステップ未満のマクアダム楕円を含む。いくつかの実施例では、ランプの放射は、CIExy(0.313,0.323)を中心とする4ステップ・マクアダム楕円内に収まる。

リン光体キャリア62は、熱伝導結合材又は熱グリースなどの異なる公知の方法若しくは材料を使用してキャビティ54の開口部の上に載せて、接着することができる。従来の熱伝導性グリースは、酸化ベリリウム及び窒化アルミニウムなどのセラミック材料又はコロイド状銀などの金属粒子を含んでいる可能性がある。他の実施例では、クランプ機構、ネジ、又は熱接着剤などの熱伝導性デバイスを使用してリン光体キャリアを開口部の上に取り付け、リン光体キャリア62をヒート・シンク構造にきつく留めて、熱伝導性を最大にすることができる。一実施例では、厚さが約100μm、熱伝導率がk=0.2W/m−kである熱グリース層が使用される。この配置構成は、リン光体層66から熱を放散するための効率的な熱伝導経路をなす。上述のように、異なるランプ実施例を、キャビティなしで構成することができ、またリン光体キャリアは、キャビティの開口部の上に実装することを超える多くの異なる方法で装着することができる。

ランプ50の動作中、リン光体変換加熱が、LED光の大半がリン光体キャリア62に当たりそこを通過するリン光体層66の中心など、リン光体層66内に集中する。キャリア層64の熱伝導性により、この熱は第1の熱流70に示されているようなリン光体キャリア62の縁の方へ横方向に拡散する。そこでは、第2の熱流72によって示されているように熱が熱グリース層を通過して、ヒート・シンク構造52内に入り、そこで、効率よく周囲に放散されうる。

上述のように、ランプ50において、プラットフォーム56及びヒート・シンク構造52は、熱的に接続又は結合されうる。この結合された配置構成の結果、リン光体キャリア62が得られ、光源58は熱放散用の熱伝導経路を少なくとも部分的に共有することになる。第3の熱流74によって示されているように光源58からプラットフォーム56を通過する熱は、ヒート・シンク構造52にも拡散しうる。ヒート・シンク構造52内に流れ込むリン光体キャリア62からの熱も、プラットフォーム56内に流れ込むものとしてよい。以下でさらに説明されるように、他の実施例では、リン光体キャリア62及び光源54は、熱放散用の分離した熱伝導経路を有することができ、これらの分離した経路は「減結合されている」と称される。

リン光体キャリアは、図4に示されている実施例を超える多くの異なる方法で配置構成されうることは理解される。リン光体層は、キャリア層の表面上にあるか、又はキャリア層と一緒に混ぜ合わされてもよい。リン光体キャリアは、リン光体層若しくはキャリア層上に含まれるか、又はそれと一緒に混ぜ合わされるものとしてよい散乱層も備えることができる。リン光体及び散乱層は、キャリア層の表面の全体ではなく一部を覆うことができ、いくつかの実施例では、変換層及び散乱層は、異なる領域内で異なる濃度を有するものとしてよいことも理解される。リン光体キャリアは、リン光体キャリアを通る放射を増強するために異なる粗面化された、又は整形された表面を有することができることも理解される。

上述のように、ディフューザは、リン光体キャリア及びLEDからの光を所望のランプ放射パターンに分散させるように配置構成され、多くの異なる形状及びサイズを有することができる。いくつかの実施例では、ディフューザは、ランプが発光していないときにリン光体キャリアをマスクするようにリン光体キャリアの上に配置構成することもできる。ディフューザは、ランプが発光していないときに電球が白色に見えるように実質的に白色に見せる材料を有することができる。

ランプ50の出力ビーム特性を制御するために使用できるディフューザの属性又は特性は少なくとも4つある。第1は、リン光体層の幾何学的形状に無関係なディフューザの幾何学的形状である。第2は、リン光体層の幾何学的形状に関係するディフューザの幾何学的形状である。第3は、散乱層の性質及びディフューザ表面の滑らかさ/粗さを含むディフューザの散乱特性である。第4は、散乱の意図的な非均一性などの表面全体にわたるディフューザの分布である。これらの属性により、例えば、「横向き」放射光に関する(約90°)、また「高角度」に関する(>約130°)、軸方向放射光の比を制御することができる。これらの属性は、リン光体キャリア及び光源によって放射される光の幾何学的形状及びパターンに応じて異なる形で適用することもできる。

図4に示されているような二次元リン光体キャリア及び/又は光源については、放射される光は、一般的に前方に向けられる(例えば、ランベルト)である。これらの実施例について、上に列挙された属性では、前方に向けられた放射パターンを広いビーム強度プロファイルに分散させることができる。第2及び第4の属性の変更形態は、前方に向けられた放射プロファイルからの広いビーム無指向性放射を達成することに対して特に適用可能であると思われる。

三次元リン光体キャリア(以下でさらに詳しく説明する)及び三次元光源について、放射される光は、すでに、放射がヒート・シンクなどの他のランプ表面によって阻止されていない場合に90°を超える角度で著しい放射強度を有することができる。その結果、上に列挙されているディフューザ属性を使用して、リン光体キャリア及び光源からのビーム・プロファイルに対するさらなる調整又は微調整を行い、所望の出力ビーム強度、色の均一性、色点などにより正確に一致するようにできる。いくつかの実施例では、ビーム・プロファイルは、従来の白熱電球からの出力と実質的に一致するように調整されうる。

リン光体の幾何学的形状に無関係なディフューザの幾何学的形状に関する上記の第1の属性の場合と同様に、ディフューザ表面から光が均一に放射される実施例において、横向き(約90°)に関する「前方」に向けられた(軸方向若しくは約0°の)光、及び「高角度」(>約130°)に関する「前方」に向けられた(軸方向若しくは約0°の)光の量は、その角度から見たときにディフューザの断面積に大きく依存しうる。図5は、小さな二次元リン光体キャリア81を有する、本発明による背が高く狭いディフューザ80の一実施例を示している。第1の視野角度82にそって軸方向に見たときには円形の領域を、第2の視野角度84にそって側面から見たときにはより大きな領域を持たせることによって特徴付けられる。それに対応して、そのようなディフューザは、「横向き」放射に関して低い軸方向光放射を行うことになる。ヒート・シンク又は他の遮光特徴体が、ディフューザの底部のところに存在している場合、ディフューザの高さを大きくすることで、後方若しくは高角度放射の量を増やすことができる。

図6は、同一平面上にある光源及び/又はリン光体キャリア91の放射パターンに応じて均一な無指向性放射に特に適用可能である本発明によるディフューザ90の別の実施例を示している。ディフューザ90は、すべての角度から見たときにほぼ一定の断面積を備える、ほぼ均一な球状の幾何学的形状を有する。これは、均一な、又はほぼ無指向性の放射強度を高める。

第2の属性、リン光体キャリアの幾何学的形状に関するディフューザの幾何学的形状の場合と同様に、図7は、前方に向けられた、又はランベルト放射パターンを典型的にはもたらす二次元リン光体キャリア及び同一平面上にあるLED光源に特に適用可能である配置構成されているディフューザ100の別の実施例を示している。ディフューザ100は、楕円形であり、狭いネック部102を有する。ディフューザ100の底部に光源及び/又はリン光体キャリアを置くことによって、他の方法では光源から前角へ向けられる光は、ディフューザ表面の散乱性により、「インターセプト」され、より高い角度に又は横向きに(約90°)向き付けられる。この効果は、三次元光源及びリン光体キャリアの場合も発生しうるものであるが、効果はそれほどない可能性がある。これらの三次元の実施例のうちのいくつかの実施例では、ディフューザは、ネック形状部を必要としなくてもよいが、むしろ球体の形状をとることができる。

図8は、二次元リン光体キャリア及び同一平面上のLED光源からの前方に向けられた又はランベルト放射パターン112の一実施例を示すグラフ110である。放射パターン114は、図7に示されているように直線112によって表される放射パターンがディフューザを通過した後のランプ放射パターンを示す。パターン114は、軸方向(約0°)では低い放射強度を、横向き(約90°)では著しく高い放射を示している。これは、前方に向けられた放射パターン112に比較してより均一な放射パターンを反映する、

上に列挙されている第3の属性、ディフューザ散乱特性についてと同様に、ディフューザの異なる実施例は、ガラス又はプラスチックなどの異なる材料、及び1つ又は複数の散乱フィルム、層、若しくは領域で作られたキャリアを備えることができる。散乱層は、リン光体層の塗装に関して上で説明されている方法を使用して塗装(deposition)することができ、また粒子の密充填物を含みうる。散乱粒子は、リン光体層とともに使用される結合剤を参照しつつ上で説明されているものと同じものであってよい結合剤材料に含まれるものとしてもよい。散乱粒子層は、使用される用途及び材料に応じて異なる濃度の散乱粒子を有することができる。散乱粒子濃度に対する好適な範囲は、0.01%から0.2%までであるが、濃度は加減できることは理解される。いくつかの実施例では、濃度は、0.001%と低くてもよい。散乱粒子層は、異なる領域内で異なる濃度の散乱粒子を有することができることも理解される。いくつかの散乱粒子について、より高い濃度に対して吸収があるため損失が増大しうる。そこで、散乱粒子の濃度は、許容損失値を維持するように選択することができ、それと同時に、光を分散させ所望の放射パターンを得ることができる。

散乱粒子は、限定はしないが以下のものを含む多くの異なる材料で構成されるものとすることができる。
シリカ;
カオリン;
酸化亜鉛(ZnO);
酸化イットリウム(Y);
二酸化チタン(TiO);
硫酸バリウム(BaSO);
アルミナ(Al);
溶融シリカ(SiO)、
フュームド・シリカ(SiO);
窒化アルミニウム ;
ガラス・ビーズ ;
二酸化ジルコニウム(ZrO);
炭化ケイ素(SiC);
酸化タンタル(TaO);
窒化ケイ素(Si);
酸化ニオブ(Nb);
窒化ホウ素(BN);又は
リン光体粒子(例えば、YAG:Ce、BOSE)
材料のさまざまな組み合わせ又は同じ材料の異なる形態の組み合わせにおける複数の散乱材料を使用して、特定の散乱効果をもたらすことができる。

散乱層は、ディフューザの内側表面上に配置されるか、又は外側表面に配置されるか、又はキャリアと一緒に混ぜ合わされうる。散乱層のキャリアの表面は、光学的に滑らか又は粗いものとすることができる。散乱層は、粒子間の空気とともにキャリアの表面に付着されたシリカ若しくはカオリン粒子などのフィルム若しくは粒子からなるものとしてよい。散乱層は、シリカ、アルミニウムなどの結合剤マトリックス層内の粒子、シリコーン中の粒子も含むことができる。この層はキャリアの内面又は外面上にスプレーコーティングされうるか、又はキャリアそれ自体が散乱粒子を含みうる。ディフューザの形状に成形されうる散乱フィルムの一実例は、FusionOptix,Inc.社から市販されているファイルである。

一般に、散乱材料若しくは粒子は、粒子に入射する光がその元のコースから再配向された程度によって特徴付けられうる。個別の粒子の場合、より大きな粒子は、ミー散乱する傾向を有し、そのため、光の方向の変化が比較的小さい。より小さな粒子では、レーリー散乱する傾向を有し、そのため、方向の変化が大きく、粒子との相互作用の後の光の分配が本質的に均一又は等方的である。粒子からなるフィルムも類似の振る舞いをするものとしてよい。さまざまな表面特徴体及び/又は散乱粒子を使用することができ、その有効性は、吸収(低ければ低いほどよい)、及び周囲マトリックス/周辺との屈折率の差(差が大きいほどより有効な散乱が生じる)によって決定される。

ディフューザ表面の滑らかさは、全内側反射(TIR)効果によりリン光体キャリアの光源の方へ戻される光の量に影響を及ぼすために使用できる。滑らかな内面は、TIRを引き起こし、他の方法では光源に向かうことになる光の方向を変える。対照的に、粗面化された内面は、このような効果を示さない。他の内部ランプ表面の光源の方へ再配向されて戻る光は吸収され、そのためランプ効率が低下しうる。リン光体層の方へ戻り散乱される光は、ダウンコンバージョンの量が増加し、そのため、ディフューザによるランプの色温度又は色点のシフトが生じる。しかし、後方散乱度が高いことで、光がディフューザ内で内部的に反射される「ライトボックス」効果を生じさせることによって均一性を改善し、ディフューザ表面上の分布の均一性を高め、ランプ放射ビーム・プロファイルの色点及び強度分布の均一性を高めることができる。

第4の属性、表面上のディフューザ散乱分布については、ディフューザ表面上の散乱特性の均一性を使用して、特定の領域内の表面から放射される光の量及びしたがってその結果得られるビーム・プロファイルを制御することができる。これは、ディスパーサ内のネック形状部を有する図7に示されているような2番目の属性などの他の属性と組み合わせたときに特に有用である可能性がある。狭いネック領域を有する楕円形のディフューザ、及び二次元リン光体キャリア及び同一平面上のLED光源の放射を示すランプ内の粗い高散乱(レーリー又は等方的)内部粗面フィルムを使用することによって、図8に示されているように光のかなりの部分を横向きに向き付けることができる。この効果は、ディフューザのネック領域内の散乱フィルムを透過する光の量を増やすことによって拡大されうる。リン光体キャリア及び光源によって放射される光のかなりの部分が散乱層と相互作用する場合、光はディフューザの本体部内であちこちに跳ね返り、均一な放射を増強しうる。散乱フィルムがより透過的である領域を、そのような領域内で散乱フィルムをより薄く又はより滑らかにすることなどによって形成することにより、その表面から出る相対強度を高めることが可能である。図7に示されている実施例では、ネック領域から出て横向きのビーム方向に入る光の量は、その領域内で散乱層をより薄く又はより滑らかにすることによって増加させることができる。

これらは、所望の放射パターンを構成するために異なる仕方でこれらの属性を組み合わせる方法のうちの一部に過ぎない。この組み合わせの結果、無指向性を超える多くの異なるランプ放射パターンを構成することができる多くの異なる形状が得られる。図9〜12は、本発明によるランプ内の二次元キャリア・リン光体(及び後述のような三次元リン光体)とともに使用されうるいくつかの追加のディフューザの形状及びサイズを示している。図9は、図7に示されている実施例に類似しており、より短く狭いネック部分を持つ形状の一般的な球体である、ディフューザ130を示す。ディフューザ130の一実施例の寸法は、図9に示されており、図10〜12のディフューザの寸法も図示されている。図10は、より短いネック部を有する、球体形状の大半を保持するディフューザ140の別の実施例を示している。図11は、ネック領域を有しないが、球体形状の大半を保持するディフューザ150の別の実施例を示している。図12は、ディフューザ160のさらに別の実施例を示しており、このディフューザはむしろ半球形状となっている。これらの形状は、以下で説明され、添付図面に示されているように、異なるパターン及び異なる効率レベルを持つ放射体を構成する。これらは、ディフューザがとりうる無数の他の形状であり、いくつかの追加の形状としてマッシュルーム形、弾丸形、円筒形、卵形、長円形などがある。他の実施例では、ディフューザは、底部では広く、少なくとも底部から離れて行く1つの部分にそって狭まる形状をとりうる。これらの実施例は、頂部に比べて底部において広くなる形状をとりうる。

図13〜16は、リン光体キャリアからの光がディフューザを通過するようにディフューザ130がリン光体の上に配置構成されている二次元リン光体キャリアを有する本発明によるランプに対する放射特性を示すグラフである。図13及び14は、ディフューザなしのランプと比較したときの、さらに標準のGeneral Electric 60W Extra Soft Light Bulbと比較したときのランプの放射特性を示している。図15及び16は、視野角度0から180°までの範囲の放射強度の変動を示している。

図17〜20は、図13から16のグラフに類似しており、ディフューザ140がリン光体キャリアの上に配置構成されている二次元リン光体キャリアも有する本発明によるランプに対する放射特性を示している。図21〜24も、図13〜16のグラフに類似しており、ディフューザ150がリン光体キャリアの上に配置構成されている二次元リン光体キャリアも有する本発明による別のランプに対する放射特性を示している。同様に、図25〜28も、図13〜16のグラフに類似しており、ディフューザ160がリン光体キャリアの上に配置構成されている二次元リン光体キャリアも有する本発明による別のランプに対する放射特性を示している。

本発明によるランプは、上述のものを超える多くの異なる特徴を備えることができる。図4を再び参照すると、キャビティ54を有するこれらのランプ実施例に、透明な熱伝導性材料を充填し、ランプの熱放散をさらに高めることができることがわかる。キャビティ伝導性材料は、光源58から熱を放散するための二次経路を構成することが可能である。光源からの熱は、そのままプラットフォーム56を通って伝導するが、キャビティ材料を通過してヒート・シンク構造52に至ることも可能である。これにより、光源58の動作温度を下げることができるが、リン光体キャリア62の動作温度が上昇する危険性がある。この配置構成は、多くの異なる実施例において使用することができるが、リン光体キャリアのものと比べて光源の動作温度が高いランプに特に適用可能である。この配置構成により、リン光体キャリア層の熱の上昇に耐えられる用途の光源から熱をより効率的に拡散させることができる。

上で説明されているように、本発明による異なるランプ実施例は、多くの異なる種類の光源を用いて配置構成されうる。図29は、上で説明され、図4に示されているランプ50に類似しているランプ210の別の実施例を示している。ランプ210は、プラットフォームが光源218を保持するように配置構成されているキャビティ214を有するヒート・シンク構造212を備える。リン光体キャリア220は、キャビティ214への開口部の上に、また少なくとも部分的にそれを覆うように備えられうる。この実施例では、光源218は、個別のLEDパッケージに配置構成されるか、又は単一の複数LEDパッケージ内にアレイ状に配置構成された複数のLEDを備えることができる。個別のLEDパッケージを備える実施例については、LEDのそれぞれは、それ専用の一次光学系又はレンズ222を備えることができる。単一の複数LEDパッケージを有する実施例では、単一の一次光学系又はレンズ224がすべてのLEDを覆うことができる。LED若しくはLEDアレイは、二次光学系を有することができるか、又は一次光学系と二次光学系の組み合わせを備えることができることも理解される。LEDはレンズを備えないようにすることができること、またアレイの実施例では、LEDのそれぞれがそれ専用のレンズを有することができることは理解される。ランプ50と同様に、ヒート・シンク構造及びプラットフォームは、必要な電気的トレース又は導線を備えて電気信号を光源218に送るように配置構成されうる。それぞれの実施例において、放射体を異なる直列及び並列の配置構成で結合することができる。一実施例では、2本の導線で回路基板に直列に接続される8個のLEDを使用することができる。次いで、導線を上述の電源ユニットに接続することができる。他の実施例では、8個より多い、又は少ないLEDを使用することができ、上述のように、8個のXLamp(登録商標)XP−E LED又は4個のXLamp(登録商標)XP−G LEDを含むCree,Inc.社から市販されているLEDを使用することができる。異なる単一列のLED回路が、参照により本明細書に組み込まれている、van de Venらの米国特許出願第12/566,195号、名称「Color Control of Single String Light Emitting Devices Having Single String Color Control」並びにvan de Venらの米国特許出願第12/704,730号、名称「Solid State Lighting Apparatus with Compensation Bypass Circuits and Methods of Operation Thereof」に説明されている。

上述のランプ50及び210では、光源及びリン光体キャリアは、熱を放散するための熱経路を共有する、つまり熱的に結合されている。いくつかの実施例では、リン光体キャリアの熱放散は、リン光体キャリア及び光源に対する熱経路が熱的に接続されていない、つまり熱的に減結合されている場合に増強されうる。

図30は、ヒート・シンク構造305内に光キャビティ302を備える本発明によるランプ300のさらに別の実施例を示している。上記の実施例と同様に、ランプ300は、ランプ・キャビティを備えなくてもよく、LEDがヒート・シンクの表面上に、又は異なる形状を有する三次元若しくは台構造上に実装される。平面状LEDベースの光源304は、プラットフォーム306に実装され、リン光体キャリア308は、キャビティ302の頂部開口部に実装され、リン光体キャリア308は上述のものの特徴のうちのどれかを有する。図示されている実施例において、リン光体キャリア308は、平らな円板形状とすることができ、熱伝導性透明材料及びリン光体層を備える。これは、上述のように熱伝導性材料又はデバイスとともにキャビティに実装されうる。キャビティ302は、上述のように放射効率を高めるために反射面を有することができる。

光源304からの光は、リン光体キャリア308を通過し、そこで、その一部がリン光体キャリア308内のリン光体によって異なる波長の光に変換される。一実施例では、光源304は、青色発光LEDを備えることができ、リン光体キャリア308は、上述のように、青色光の一部を吸収し、黄色光を再放射する黄色リン光体を備えることができる。ランプ300は、LED光と黄色リン光体光を組み合わせて得られる白色光を放射する。上記と同様に、光源304は、異なる色の光を放射する多くの異なるLEDも備えることができ、リン光体キャリアは、所望の色温度及びレンダリングにより発光する他のリン光体を含むことができる。

ランプ300は、上に列挙されているような拡散若しくは散乱粒子を含むキャビティ302の上に実装された整形ディフューザ・ドーム310も備える。散乱粒子は、一般的なドーム形状に形成された硬化性結合剤中に提供されうる。図示されている実施例では、ドーム310は、ヒート・シンク構造305に実装され、ヒート・シンク構造305の反対側にある端部のところに拡大された部分を有する。シリコーン、エポキシ、ガラス、無機ガラス、誘電体、BCB、ポリイミド、ポリマー、及びこれらの混成物などの異なる結合剤材料を上述のように使用することができる。いくつかの実施例では、白色散乱粒子を、光キャビティ内のリン光体キャリア308内のリン光体の色を隠す白色を有するドームとともに使用することができる。これにより、ランプ300全体が白色に見え、一般的にリン光体の色に比べて消費者に視覚的に受け入れられるか、又はアピールする。一実施例では、ディフューザは、白色二酸化チタン粒子を含むものとしてよく、これはディフューザ・ドーム310を全体的に白色に見せることができる。

ディフューザ・ドーム310は、光キャビティから放射される光をより均一なパターンで分配する利点をさらにもたらしうる。上述のように、光キャビティ内の光源からの光は、一般的ランベルト・パターンで放射することができ、散乱粒子の散乱特性とともにドーム310の形状により、光はより無指向性の放射パターンでドームから放射される。設計されたドームは、異なる領域内で異なる濃度の散乱粒子を有することができるか、又は特定の放射パターンに合わせて整形することができる。いくつかの実施例では、ランプからの放射パターンが米国エネルギー省(DOE)のEnergy Starで定められている無指向性分配の基準に適合するように設計することができる。ランプ300が満たすこの標準の必要条件の1つは、放射の均一性が0から135°までの範囲の視野角度の平均値の20%以内でなければならず、ランプからの全光束の5%超が、135〜180°の放射域内で放射されなければならないというものであり、測定は0、45、90°の方位角で行った。上述のように、本明細書で説明されている異なるランプ実施例は、DOE Energy Star規格準拠のA型改造LED電球も備えることができる。本発明は、効率的で、信頼性が高く、費用効果も高いランプを実現する。いくつかの実施例では、ランプ全体が、素早く容易に組み立てられる5つのコンポーネントを備えることができる。

上記の実施例と同様に、ランプ300は、従来の電気的レセプタクルに嵌入するタイプの装着機構を備えることができる。図示されている実施例では、ランプ300は、標準エジソン・ソケットに装着するためのネジ山付き部分312を備える。上記の実施例と同様に、ランプ300は、標準プラグを備えることができ、また電気的レセプタクルは標準的なコンセントであるか、若しくはGU24ベースのユニットを備えることができるか、又は、これは、クリップであってもよく、電気的レセプタクルは、クリップを受け入れ保持するレセプタクルとすることができる(例えば、多くの蛍光灯で使用されているようなもの)。

上述のように、ランプ300の特徴体のうちのいくつかの間の空間を混合室とみなすことができ、光源306とリン光体キャリア308との間の空間は第1の光混合室を備える。リン光体キャリア308とディフューザ310との間の空間は、第2の光混合室を備えることができ、混合室は前記ランプに対する均一な色及び強度の発光を促す。異なる形状のリン光体キャリア及びディフューザを有する以下の実施例にも同じことが言える。他の実施例では、追加の混合室を形成する追加のディフューザ及び/又はリン光体キャリアを備えることができ、またディフューザ及び/又はリン光体キャリアを異なる順序で配置構成することができる。

本発明による異なるランプ実施例は、多くの異なる形状及びサイズを有することができる。図31は、ランプ300に類似し、ヒート・シンク構造325内に光キャビティ322を同様に備え、光源324が光キャビティ322内のプラットフォーム326に実装されている、本発明によるランプ320の別の実施例を示している。上記のように、ヒート・シンク構造は、光キャビティを有している必要はなく、ヒート・シンク構造を超える他の構造上に光源を備えることができる。これらは、光源を有する平面状表面又は台を備えることができる。リン光体キャリア328は、熱的接続部を持つキャビティ開口部の上に実装される。ランプ320は、光キャビティの上に、ヒート・シンク構造325に実装されたディフューザ・ドーム330も備える。ディフューザ・ドームは、上で説明され、図15に示されているディフューザ・ドーム310と同じ材料で作ることができるが、この実施例では、ドーム300は、リン光体キャリア328内のリン光体から色をそのままマスクしながら異なるランプ放射パターンをもたらすように長円形又は卵形である。また、ヒート・シンク構造325及びプラットフォーム326は熱的に減結合されていることに留意されたい。つまり、熱を放散するために熱経路を共有しないようにプラットフォーム326とヒート・シンク構造との間に空間があるということである。上述のように、これは、減結合された熱経路を有しないランプと比べてリン光体キャリアからの熱放散を改善することができる。ランプ300は、エジソン・ソケットに装着するためのネジ山付き部分332も備える。

図32〜34は、図31に示されているランプ320に類似する本発明によるランプ340の別の実施例を示している。これは、光源344がプラットフォーム346上に置かれている光キャビティと光キャビティの上に載るリン光体キャリア348を有するヒート・シンク構造345を備える。これは、ネジ山付き部分352をさらに備える。これはディフューザ・ドーム350も備えるが、この実施例では、ディフューザ・ドームは、頂部で平たくなっており、リン光体の色をそのままマスクしながら所望の放射パターンを生み出す。

ランプ340は、光源344と光源344からのヒート・シンク構造345との間に界面層354も備える。いくつかの実施例では、界面層は、断熱材料を備えることができ、光源344は、放射体から光源の基板の縁に熱が放散するのを促進する特徴体を有することができる。これは、ヒート・シンク構造345の外縁への熱放散を促進することができ、熱はヒート・フィンを通して放散することができる。他の実施例では、界面層354は、ヒート・シンク構造345を光源344から電気的に絶縁する電気的絶縁性を有するものとしてよい。次いで、光源の上面に電気的接続を形成することができる。

上記の実施例では、リン光体キャリアは、光源内のLEDが同一平面上にある二次元(又はフラット/平面)状のものである。しかし、他のランプ実施例では、リン光体キャリアは、異なる三次元形状を含む多くの異なる形状をとりうることは理解される。三次元という語は、上記の実施例に示されているように平面以外の形状を意味することが意図されている。図35〜38は、本発明による三次元リン光体キャリアの異なる実施例を示しているが、これらは多くの他の形状もとりうることは理解される。上述のように、リン光体は光の吸収及び光の再放射を行うときに、光は等方的に再放射され、したがって、三次元リン光体キャリアは光源からの光を変換して、また分散する。上述のディフューザと同様に、三次元キャリア層の異なる形状は、光源の放射パターンに部分的に依存する異なる特性を有する放射パターンで光を放射することができる。次いで、所望のランプ放射パターンが得られるように、ディフューザとリン光体キャリアの放射との整合をとることができる。

図35は、半球状キャリア355及びリン光体層356を備える半球形状リン光体キャリア354を示している。半球状キャリア355は、上述のキャリア層と同じ材料で作ることができ、またリン光体層は、上述のリン光体層と同じ材料で作ることができ、また散乱粒子は、上述のようにキャリア及びリン光体層内に含むことができる。

この実施例では、リン光体層356は、キャリア355の外面上にあるように示されているけれども、リン光体層は、キャリアの内側の層上にあるか、又はキャリアと混ぜ合わされているか、又はこれら3つの任意の組み合わせとすることができることは理解される。いくつかの実施例では、外面上にリン光体層を有することによって、放射損失を最小限度に抑えることができる。放射体の光がリン光体層356によって吸収されると、光は全方向に放射され、光の一部は後方に放射され、LEDなどのランプ要素によって吸収されうる。リン光体層356は、リン光体層から前方に放射される光がキャリア355の内面から反射されて戻るように半球状キャリア355と異なる屈折率を有することもできる。この光は、ランプ要素による吸収のせいで失われる可能性もある。リン光体層356がキャリア355の外面上にあるので、前方に放射された光は、キャリア355を通過する必要はなく、反射に失われることはない。後方に放射された光は、キャリアの頂部に当たり、そこで、光の少なくとも一部が反射されて戻る。この配置構成の結果、光が吸収されうるキャリア内に放射されて戻るリン光体層356からの光が低減される。

リン光体層356は、上述と同じ方法の多くを使用して塗装することができる。いくつかの場合において、キャリア355の三次元形状は、必要な被覆を行うために追加のステップ若しくは他のプロセスを必要とすることがある。上述のように溶剤−リン光体−結合剤混合物を噴霧し、キャリアを加熱することができる実施例では、おおよそ均一な被覆などの、キャリアへの所望の被覆を行うために複数の噴霧ノズルが必要になることがある。他の実施例では、所望の被覆を行うためにキャリアを回転させながら噴霧ノズルを使用することで、噴霧ノズルを減らせる。上記のように、キャリア355からの熱は、溶剤を蒸発させ、結合剤の硬化を助長することができる。

さらに他の実施例では、リン光体層は、浸漬プロセスを通じて形成することができ、これにより、リン光体層は、キャリア355の内面若しくは外面上に形成されうるが、内面上に形成することに特に適用可能である。キャリア355は、キャリアの表面に接着するリン光体混合物で少なくとも部分的に充填されるか、又は他の何らかの形でキャリアの表面に接着するリン光体混合物と接触するものとしてよい。次いで、この混合物をキャリアから排出して、その後硬化されうる表面上のリン光体混合物の層を残すことができる。一実施例では、この混合物は、ポリエチレンオキシド(PEO)及びリン光体を含むものとしてよい。キャリアを充填し、次いで排出して、その後熱硬化されうるPEO−リン光体混合物の層を残すことができる。PEOは、蒸発するか、又は熱によって追い出され、リン光体層を残す。いくつかの実施例では、結合剤を塗布して、リン光体層をさらに固定することができるが、他の実施例では、リン光体は結合剤なしで残すこともできる。

平面状キャリア層をコーティングするために使用されるプロセスと同様に、これらのプロセスを三次元キャリアにおいて使用し、同じ又は異なるリン光体材料を有することができる複数のリン光体層を施すことができる。このリン光体層は、キャリアの内側と外側の両方に施すこともでき、キャリアの異なる領域内に異なる厚さを有する異なる種類のものを有することができる。さらに他の実施例では、キャリアに熱形成されうるリン光体材料のシートでキャリアをコーティングするなどの異なるプロセスを使用することができる。

キャリア355を使用するランプでは、放射体からの光が上に放射され、キャリア355を通過するように放射体をキャリアの基部に配置構成することができる。いくつかの実施例では、これらの放射体は、一般的ランベルト・パターンで光を放射することができ、キャリアは、光をより均一なパターンで分散させることを助けることができる。

図36は、弾丸形キャリア358及びキャリアの外面上のリン光体層359を備える本発明による三次元リン光体キャリア357の別の実施例を示している。キャリア358及びリン光体層359は、上述と方法を使用して同じ材料で形成することができる。全体的な所望のランプ放射パターンを得るために、異なる形状のリン光体キャリアを異なる放射体とともに使用することができる。図37は、球体形状のキャリア361及びキャリアの外面上のリン光体層362を備える本発明による三次元リン光体キャリア360のさらに別の実施例を示している。キャリア361及びリン光体層362は、上述と方法を使用して同じ材料で形成することができる。

図38は、狭いネック部分365とともに一般的に球体形状のキャリア364を有する本発明によるさらに別の実施例のリン光体キャリア363を示している。上記の実施例と同様に、リン光体キャリア363は、上で説明されているのと同じ材料で作られ、同じ方法を使用して形成されたキャリア364の外面上にリン光体層366を備える。いくつかの実施例では、キャリア364に類似の形状を有するリン光体キャリアは、放射体の光及び光源からのランベルト・パターンの再放射光をより均一な放射パターンに変換することをより効率的に実行することができる。

台座などのLEDを保持する三次元構造物を有する実施例は、三次元リン光体キャリアからなおいっそう分散された光パターンをもたらすことができる。これらの実施例では、LEDは、平面状LED光源に比べてランベルト性が低い発光パターンをもたらすように異なる角度でリン光体キャリア内に置くことができる。次いで、これは、三次元リン光体キャリアによってさらに分散され、ディスパーサがランプの放射パターンを微調整することができる。

図39〜41は、ヒート・シンク構造372、光キャビティ374、光源376、ディフューザ・ドーム378、及びネジ山付き部分380を有する本発明によるランプ370の別の実施例を示している。この実施例は、熱伝導性透明材料及び1つのリン光体層を含む三次元リン光体キャリア382も備える。これは、熱的接続によりヒート・シンク構造372にも実装される。しかし、この実施例では、リン光体キャリア382は半球形状であり、放射体は、光源からの光がリン光体キャリア382を通過しそこで光の少なくとも一部が変換されるように配置構成される。

リン光体キャリア382の三次元形状は、それと光源376との間に自然な分離をもたらす。したがって、光源376は、光キャビティを形成するヒート・シンク内の陥凹部内に装着されない。その代わりに、光源376はヒート・シンク構造372の上面に装着され、光キャビティ374がリン光体キャリア382とヒート・シンク構造372の頂部との間の空間によって形成される。この配置構成により、光キャビティ374からの放射のランベルト性を小さくすることができるが、それは、横向きの放射を遮り、再配向する光キャビティの側面がないからである。

光源376用の青色発光LD及び黄色リン光体を使用するランプ370の実施例では、リン光体キャリア382は黄色に見えることがあり、ディフューザ・ドーム378は、ランプ光を所望の放射パターンに分散させている間にこの色をマスクする。ランプ370では、プラットフォーム及びヒート・シンク構造に対する伝導経路が結合されるが、他の実施例では、これらは減結合されうることは理解される。

図42は、上で説明されているようにヒート・シンク構造394上に装着された8個のLED光源392を備える本発明によるランプ390の一実施例を示している。放射体は、多くの異なる方法で結合されうるが、図示されている実施例では、直列に接続されている。しかし、放射体は、多くの異なる直列及び並列の相互接続方式の組み合わせで結合されうることは理解される。この実施例では、放射体は、光キャビティ内に装着されないが、その代わりに、ヒート・シンク394の頂部平面状表面に装着されることに留意されたい。図43は、ドーム形リン光体キャリア396が光源392の上に装着されている図42に示されているランプ390を示している。図43に示されているランプ390は、図44及び45に示されているようにディフューザ398と組み合わされ、ランプ分散光放射を形成することができる。

図46〜49は、リン光体キャリアからの光がディフューザを通過するようにディフューザ398がリン光体の上に配置構成されているドーム形三次元リン光体キャリアを有する本発明によるランプ390に対する放射特性を示すグラフである。図46及び47は、ディフューザなしのランプと比較したときの、さらに標準のGeneral Electric 60W Extra Soft Light Bulbと比較したときのランプの放射特性を示している。図48及び49は、視野角度0から180°までの範囲の放射強度の変動を示している。

図50〜53は、図46〜49のグラフに類似しており、図10に示されているようなディフューザ140がリン光体キャリアの上に配置構成されているドーム形三次元リン光体キャリアも有する本発明によるランプに対する放射特性を示している。図54〜57は、図46〜49のグラフに類似しており、図11に示されているようなディフューザ150がリン光体キャリアの上に配置構成されているドーム形三次元リン光体キャリアも有する本発明による別のランプに対する放射特性を示している。同様に、図58〜61は、図46〜49のグラフに類似しており、図12に示されているようなディフューザ160がリン光体キャリアの上に配置構成されているドーム形三次元リン光体キャリアも有する本発明による別のランプに対する放射特性を示している。

図62は、上で説明され、図42〜61に示されている、異なるランプ実施例に対する視野角度にわたる色の変化を示すCIE図を主に含んでいる。上述のように、ディフューザは、所望の放射パターンに応じて、また他のランプ・コンポーネントの配置構成に応じて、多くの異なる形状及びサイズをとりうる。一実例として、図63は、ヒート・シンクの縁などを通して、リン光体キャリアの光の漏れが生じる実施例において使用されうるディフューザ400の別の実施例を示している。ディフューザ400の基部402は、これらの縁を通り過ぎる光を拡散することができる。

図64〜66は、本発明によるランプ410のさらに別の実施例を示している。これは、上記の図39〜41に示されているランプ370と同じ特徴の多くを備える。しかし、この実施例では、リン光体キャリア412は弾丸形状であり、上で説明されているリン光体キャリアの他の実施例と大部分同じ機能を有する。これらは、本発明の異なる実施例においてリン光体キャリアがとりうる異なる形状のうちのいくつかに過ぎないことは理解される。

図67は、光源426及びリン光体キャリア428を有する光キャビティ424とともにヒート・シンク422も備える本発明によるランプ420の別の実施例を示している。ランプ420は、ディフューザ・ドーム430及びネジ山付き部分432も備える。しかし、この実施例では、光キャビティ424は、ヒート・シンク422から取り外し可能である図68に示されているような分離したカラー構造434を備えることができる。これは、ヒート・シンク全体に比べて、反射材料によりコーティングしやすい分離した構成要素をなす。カラー構造434は、ヒート・シンク構造422内のネジ山と嵌合するようにねじ込むことができる。カラー構造434は、PCBをヒート・シンクに機械的にしっかり締め付けるという利点をさらにもたらしうる。他の実施例では、カラー構造434は、製造しやすいようにネジ山の代わりに機械的スナップ式デバイスを備えることができる。

上述のように、三次元リン光体キャリアの形及び幾何学的形状は、放射体の放射パターンを別のより望ましい放射パターンに変換するのを補助することができる。一実施例では、これは、ランベルト放射パターンを異なる角度のより均一な放射パターンに変更するのに役立ちうる。次いで、ディスパーサは、リン光体キャリアからの光を最終的な所望の放射パターンにさらに変換することができ、それと同時に、光がオフにされたときにリン光体の黄色の外観をマスクすることができる。他の要因も、放射体、リン光体キャリア、及びディスパーサの組み合わせが所望の放射パターンを生成する能力に寄与しうる。図69は、本発明による一ランプ実施例に対する放射体のフットプリント440、リン光体キャリアのフットプリント442、及びディスパーサのフットプリント444の一実施例を示している。リン光体キャリアのフットプリント442及びディスパーサのフットプリント444は、放射体440の周りのこれらの特徴体の両方の下側縁を示している。これらの特徴体の実際の形状を超えて、これらの特徴体の縁の間の距離D1及びD2も、リン光体キャリア及びディスパーサが所望の放射パターンをもたらす能力に影響を及ぼしうる。これらの特徴体の形状は縁の間の距離とともに、所望のランプ放射パターンが得られるように放射体の放射パターンに基づき最適化されうる。

他の実施例において、光キャビティ全体などのランプの異なる部分を取り除くことができることは理解される。カラー構造414を取り外し可能にするこれらの特徴体を使用することで、光キャビティを反射層でコーティングすることが容易になり、また故障した場合も光キャビティの取り外し及び交換を行うことが可能になる。

本発明によるランプは、異なる多数のLEDを備える光源を有することができ、いくつかの実施例では30個未満、他の実施例では20個未満を有する。さらに他の実施例では、10個未満のLEDを有することができ、ランプ光源のコスト及び複雑度はLEDチップが少ないほど低くなる。いくつかの実施例における複数チップの光源によって覆われる面積は、30mm未満であり、他の実施例では、20mm未満である。さらに他の実施例では、10mm未満とすることができる。本発明によるランプのいくつかの実施例では、400ルーメンを超える定常状態ルーメン出力も可能であり、また他の実施例では、600ルーメンを超える。さらに他の実施例では、ランプは、800ルーメンを超える定常状態ルーメン出力をもたらしうる。いくつかのランプ実施例では、このルーメン出力を、ランプを触れても比較的冷たいままに保てるランプの熱管理機能によって行うことができる。一実施例では、そのランプは触れてみると60℃未満のままであり、他の実施例では、触れてみると50℃未満のままである。さらに他の実施例では、ランプは触れてみると40℃未満のままである。

本発明によるランプのいくつかの実施例は、40ルーメン/ワットを超える効率で動作することも可能であり、また他の実施例では、50ルーメン/ワットを超える効率で動作可能である。さらに他の実施例では、そのランプは、55ルーメン/ワットを超えて動作可能である。本発明によるランプのいくつかの実施例は、70を超える演色評価数(CRI)で光を発生することができ、他の実施例では、80を超えるCRIで光を発生することができる。さらに他の実施例では、ランプは、90を超えるCRIで動作可能である。本発明によるランプの一実施例は、80を超えるCRI、及び320ルーメン/光学ワット@3000K相関色温度(CCT)を超えるルーメン放射当量(lumen equivalent of radiation)(LER)でランプ発光を行うリン光体を有することができる。

本発明によるランプは、0〜135°の視野角度における平均値の40%以内にある分布の光を放射することもでき、また他の実施例では、この分布は同じ視野角度における平均値の30%以内であるものとしてよい。さらに他の実施例は、Energy Star規格に準拠して同じ視野角度における平均値の20%の分布を有することができる。これらの実施例は、135〜180°の視野角度において全光束の5%を超える光を放射することもできる。

本発明によるランプ又は電球は、上で説明されている実施例を超える多くの異なる方法で配置構成されうることは理解される。上記の実施例は、遠隔リン光体を参照しつつ説明されているが、代替的実施例はコンフォーマル・リン光体層を持つ少なくともいくつかのLEDを備えることができることは理解される。これは、異なる種類の放射体から異なる色の光を放射する光源を有するランプに特に適用可能であるものとしてよい。これらの実施例は、他の何らかの形で、上で説明されている特徴の一部又は全部を有することができる。

図70〜85は、本発明により配置構成された追加のランプ又は電球の実施例を示している。図70は、ヒート・シンク452の頂面上に同一平面上のLED 454のアレイを有する平面状サブマウント又はヒート・シンク452を備えるランプ450の一実施例を示している。三次元又は非平面状リン光体キャリア456は、LED 454の上のヒート・シンク452に実装され、LED 454とリン光体キャリア456との間に空間が設けられている。ディフューザ458は、この2つの間の空間を設けてリン光体キャリア456の上に備えられている。ランプ450の要素及び図71〜85の以下で説明されている実施例は同じ特性を有することができ、上記の実施例において説明されているランプ内の対応する要素と同じようにして製造することができる。この実施例では、リン光体キャリア456及びディフューザ458は本質的に球形であり、ディフューザ458がリン光体キャリア456をマスクしている。

図71は、同一平面上にあるLED 464がヒート・シンク462に実装され、リン光体キャリア466がLED 464の上に、相隔てて並ぶ形で実装されている、サブマウント又はヒート・シンク462を有する本発明によるランプ460の別の実施例である。ディフューザ468は、リン光体キャリア466の上に、相隔てて並ぶ形で実装され、両方ともここでもまた本質的に球形である。この実施例では、ヒート・シンク462は、より大きな深さを有し、一実施例では、立方体の形状をとりうる。ディフューザ468は、ヒート・シンク462の側面に実装され、リン光体キャリア466は、ヒート・シンク462の頂面に実装される。図72は、図71のランプ460に示されているような類似のヒート・シンク472、同一平面上にあるLED 474、及びディフューザ478を有する本発明によるランプ470の別の実施例を示している。ヒート・シンク472の側面に実装されるリン光体キャリア476も、備えられている。

図73は、図71のランプ450に類似し、サブマウント又はヒート・シンク482を備え、リン光体キャリア486及びディフューザ488を備える、本発明によるランプ480の別の実施例を示している。これは、この実施例において、LED 484が同一平面上になく、また異なる方向に光を放射できるように角度付き表面を有する台489上に実装されたLED 484も備える。図74は、立方体の形状のサブマウント又はヒート・シンク492、リン光体キャリア496、及びディフューザ498を有する本発明によるランプ490の別の実施例を示している。LED 494も含まれているが、この実施例では、これらはLED 494が異なる方向に発光するようにヒート・シンク492の側面上にある。LED 494が、ヒート・シンク492の他の表面上にもありうること、またリン光体496及びディフューザ498が、球形状又はチューブ形状などの他の多くの形状であってよいことは理解される。

図75〜77は、投光照明として配置構成されうるランプの異なる実施例を示している。図75は、ランプの光に対して不透明である可能性があり、また反射性を有することができる、側面505を有するハウジング504の基部に実装された同一平面上にあるLED 502を有するランプ500の一実施例を示している。リン光体キャリア506は、LED 502の上に、相隔てて並ぶ形でハウジング504内に実装される。ディフューザ508は、リン光体キャリア506の上に、相隔てて並ぶ形でハウジングに実装される。図76は、ランプ500に類似する本発明によるランプ510の別の実施例を示しているが、この実施例では、LED 512は、それらが同一平面上にないように台514上に実装される。図77は、ランプ510に類似する本発明によるランプ520の別の実施例を示しているが、LED 524の上に実装された球形状のリン光体キャリア522を有している。

異なる実施例は、多くの異なる配置構成及び形状を有することができ、図78は、二次元ランプ・パネルを備えるランプ530の別の実施例を示している。LED 532は、不透明/反射側面535を有するハウジング534内に実装される。リン光体コンバータ536及びディフューザ538は、LED 532の上に、相隔てて並ぶ形でハウジング534に実装される。図79は、二次元両面発光パネル/ボックスを備えるランプ540の別の実施例を示している。この実施例では、LED 542は、互いの方への発光するボックスの対向する側部に実装することができる。リン光体キャリア544は、LED 542の縁にあるボックスの長さにそって延在し、ディフューザ546は、リン光体キャリア544から相隔てて並ぶ部分の外側のボックスの長さにそって延在する。図80は、ランプ540に類似する本発明によるランプ550のさらに別の実施例を示しているが、この実施例では、これは裏面反射体552を有する二次元片面発光パネル/ボックスである。

図81は、図79に示されているランプ540に類似する本発明によるランプ560の別の実施例を示している。しかし、この実施例では、リン光体キャリア562及びディフューザ564はチューブ形状であり、LED 566の間のリン光体キャリアの長さに少なくとも部分的にそった導波路又は空気を備えることができる。図82は、ランプ560に類似する本発明によるランプ570の別の実施例を示しており、このランプはチューブ形状のリン光体キャリア572及びディフューザ574を有する。この実施例において、ランプ570は、LED 578の間のリン光体キャリア572の長さに少なくとも部分的にそって延在する段階的抽出要素導波路576をさらに備える。図83は、ランプ560にも類似する本発明によるランプ580の別の実施例を示しているが、この実施例では、チューブ形状のディフューザの一部は反射体582を備えることができる。

図84は、二次元均一光放射パネルを備える本発明によるランプ590のさらに別の実施例を示している。同一平面上にあるLED 592のアレイが、キャビティ又は基板594の縁に実装される。リン光体キャリア596は、LED 592の上に、相隔てて並ぶ形で実装され、また複数のディフューザ層598が、リン光体キャリアの上に、相隔てて並ぶ形で実装される。基板594の底面は反射面を備えることができ、この配置構成では少なくとも一部は基板594に垂直な方向に発光するパネル光源を備える。

図85は、図75〜77の実施例に類似する投光照明として配置構成されうるランプ600のさらに別の実施例を示している。ランプ600は、不透明な、又は反射する側面を持つハウジング602を備え、LED 604はこのハウジング602の基部に実装されている。ディフューザ606も、LED 602に実装され、LED 604から相隔てて並ぶ。三次元導波路608は、LED 604とディフューザとの間のハウジング602内に備えられ、LED 604は導波路608内に光を放射する。導波路608の表面の少なくとも一部は、リン光体若しくはリン光体キャリア610によって覆われており、導波路を通過したLED光はリン光体608と相互作用し、変換される。

上述のように、本発明によるディフューザは、所望のランプ放射パターンを得るためにランプ光源からの異なる量の光を散乱させ、透過する異なる領域を有することができる。図7及び9に示されているディフューザの形状をここでも参照すると、無指向性の放射を行うために、ディフューザの異なる領域は、異なる散乱及び透過特性を持つ領域を有しうることがわかる。図86は、ディフューザ621を備える本発明によるランプ620の一実施例を示しており、ディフューザの基部の下側部分は上側部分624と異なる散乱(反射)及び透過特性を有することができる。この実施例では、下側部分622は、これを通過する光の約20%を反射し、約80%を透過する。上側部分624は、これを通過する光の80%を反射し、約20%を透過する。図87は、同一平面上の光源及び平面状若しくは二次元リン光体キャリアを伴う、ディフューザ621を備えるランプによって実現されうる改善されたランプ放射特性を示すグラフ640である。ネック部の幾何学的形状の透過性により、軸方向(約0°)に放射される光に関して横向き(約90°)に向き付けられた光の量が増加しうる。

図88は、図6に示されているディフューザ90に類似する形状を持つディフューザ652を有する本発明によるランプ650の別の実施例を示している。ディフューザの基部の下側部分654は、上側部分656と異なる散乱(反射)及び透過特性を有するものとしてよい。この実施例では、下側部分654は、これを通過する光の約20%を反射し、約80%を透過する。上側部分656は、これを通過する光の80%を反射し、約20%を透過する。図89は、同一平面上の光源及び平面状若しくは二次元リン光体キャリアを伴う、ディフューザ652を備えるランプによって実現されうる改善された放射特性を示すグラフ660である。ディフューザ652の下側部分を透過する光の量を増やすことによって、平面(ランンベルト)光をほぼ球面のディフューザと組み合わせたときにほぼ白熱灯に似た強度分布を達成することが可能である。この分布は、例えば、下側部分654に塗布された散乱層の厚さが上側部分656に塗布された散乱層の厚さより小さくなるように、厚さ、散乱粒子密度、粒度、又は性質などを修正することによっても生成されうる。

本発明は、そのいくつかの好ましい構成に関して詳しく説明されているが、他の形態も可能である。したがって、本発明の精神及び範囲は、上述の形態に限定されるべきではない。

Claims (15)

  1. 固体ランプであって、
    発光ダイオード(LED)ベースの光源と、
    前記LED光源から隔てて配置された遠隔波長変換材料と、
    前記遠隔波長変換材料から遠い位置にあるディフューザであって、前記ディフューザは前記LED光源及び前記遠隔波長変換材料からの前記光を実質的に無指向性の放射パターンに分散させる幾何学的形状及び光散乱特性を備え、前記遠隔波長変換材料の少なくとも一部分は前記ディフューザの基部にある、ディフューザとを具備する固体ランプ。
  2. 前記ディフューザの幾何学的形状は、その基部のところにネック部を備える請求項1に記載の固体ランプ。
  3. 前記ディフューザは、電球部分をさらに備える請求項1に記載の固体ランプ。
  4. 前記光散乱特性は、不均一な光散乱特性を備える請求項1に記載の固体ランプ。
  5. 前記LED光源は、複数の同一平面上のLEDを備え、前記遠隔波長変換材料は、実質的に平面状の形状を備える請求項1に記載の固体ランプ。
  6. 前記LED光源は、複数の同一平面上のLEDを備え、前記遠隔波長変換材料は、実質的に平面状の形状をとり、前記ディフューザは、対応する上側部分より多くの光を透過する下側部分を有する請求項1に記載の固体ランプ。
  7. 前記LED光源は、複数の同一平面上のLEDを備え、前記遠隔波長変換材料は、実質的に平面状の形状をとり、前記ディフューザは、対応する上側部分より多くの光を透過する下側部分を有する実質的に球体の形状を備える請求項1に記載の固体ランプ。
  8. 前記LEDベースの光源及び前記遠隔波長変換材料からの発光は、前方に向けられる請求項1に記載の固体ランプ。
  9. 前記LEDベースの光源及び前記遠隔波長変換材料からの発光は、前方に向けられ、前記ディフューザは、対応する上側部分より多くの光を透過する下側部分を有する請求項1に記載の固体ランプ。
  10. 前記LEDベースの光源及び前記遠隔波長変換材料からの発光は、前方に向けられ、前記ディフューザは、対応する上側部分より多くの光を透過する下側部分を有する実質的に球体の形状を備える請求項1に記載の固体ランプ。
  11. 前記遠隔波長変換材料は、三次元形状を備え、前記ディフューザは、実質的に球体の形状を備える請求項1に記載の固体ランプ。
  12. 前記遠隔波長変換材料は、三次元形状を備え、前記ディフューザは、対応する上側部分より多くの光を透過する下側部分を備える請求項1に記載の固体ランプ。
  13. 前記遠隔波長変換材料は、三次元形状を備え、前記ディフューザは、対応する上側部分より多くの光を透過する下側部分を有する実質的に球体の形状を備える請求項1に記載の固体ランプ。
  14. 前記遠隔波長変換材料は、前記光源からの光を吸収し、分散パターンの光を再放射し、前記ディフューザは、球体の形状を備える請求項1に記載の固体ランプ。
  15. 前記ディフューザは、他の表面領域に関してより多くの光を透過する表面領域を有する三次元形状を備える請求項1に記載の固体ランプ。
JP2012556066A 2010-03-03 2011-03-02 散乱特性を増強した遠隔リン光体及びディフューザの構成を用いるledランプ又は電球 Active JP5588024B2 (ja)

Priority Applications (25)

Application Number Priority Date Filing Date Title
US33951610P true 2010-03-03 2010-03-03
US33951510P true 2010-03-03 2010-03-03
US61/339,516 2010-03-03
US61/339,515 2010-03-03
US12/848,825 US8562161B2 (en) 2010-03-03 2010-08-02 LED based pedestal-type lighting structure
US12/848,825 2010-08-02
US38643710P true 2010-09-24 2010-09-24
US12/889,719 US9523488B2 (en) 2010-09-24 2010-09-24 LED lamp
US61/386,437 2010-09-24
US12/889,719 2010-09-24
US201061424670P true 2010-12-19 2010-12-19
US201061424665P true 2010-12-19 2010-12-19
US61/424,665 2010-12-19
US61/424,670 2010-12-19
US12/975,820 US9052067B2 (en) 2010-12-22 2010-12-22 LED lamp with high color rendering index
US12/975,820 2010-12-22
US201161434355P true 2011-01-19 2011-01-19
US61/434,355 2011-01-19
US201161435326P true 2011-01-23 2011-01-23
US61/435,326 2011-01-23
US201161435759P true 2011-01-24 2011-01-24
US61/435,759 2011-01-24
US13/018,291 US8882284B2 (en) 2010-03-03 2011-01-31 LED lamp or bulb with remote phosphor and diffuser configuration with enhanced scattering properties
US13/018,291 2011-01-31
PCT/US2011/000407 WO2011109100A2 (en) 2010-03-03 2011-03-02 Led lamp or bulb with remote phosphor and diffuser configuration with enhanced scattering properties

Publications (2)

Publication Number Publication Date
JP2013521614A JP2013521614A (ja) 2013-06-10
JP5588024B2 true JP5588024B2 (ja) 2014-09-10

Family

ID=47262895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012556066A Active JP5588024B2 (ja) 2010-03-03 2011-03-02 散乱特性を増強した遠隔リン光体及びディフューザの構成を用いるledランプ又は電球

Country Status (4)

Country Link
US (1) US8882284B2 (ja)
EP (1) EP2542834B1 (ja)
JP (1) JP5588024B2 (ja)
WO (1) WO2011109100A2 (ja)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10340424B2 (en) 2002-08-30 2019-07-02 GE Lighting Solutions, LLC Light emitting diode component
US8791631B2 (en) 2007-07-19 2014-07-29 Quarkstar Llc Light emitting device
US8593040B2 (en) 2009-10-02 2013-11-26 Ge Lighting Solutions Llc LED lamp with surface area enhancing fins
JP4717148B1 (ja) * 2010-05-28 2011-07-06 株式会社スズデン 照明器具および照明器具の製造方法
US8192051B2 (en) 2010-11-01 2012-06-05 Quarkstar Llc Bidirectional LED light sheet
US8314566B2 (en) 2011-02-22 2012-11-20 Quarkstar Llc Solid state lamp using light emitting strips
US8410726B2 (en) 2011-02-22 2013-04-02 Quarkstar Llc Solid state lamp using modular light emitting elements
US9730309B2 (en) * 2011-04-04 2017-08-08 Ceramtec Gmbh Ceramic printed circuit board comprising an al cooling body
US8608347B2 (en) * 2011-07-22 2013-12-17 Ge Lighting Solutions Llc Lighting apparatus with a light source comprising light emitting diodes
CN104115290B (zh) 2011-11-23 2017-04-05 夸克星有限责任公司 提供光的不对称传播的发光装置
US20130141917A1 (en) * 2011-12-01 2013-06-06 Tzy-Ying Lin Led light device
US8899783B1 (en) 2011-12-05 2014-12-02 Jerome Simon LED optics for bulbs and luminaires
WO2013123128A1 (en) * 2012-02-17 2013-08-22 Intematix Corporation Solid-state lamps with improved emission efficiency and photoluminescence wavelength conversion components therefor
US9054019B2 (en) * 2012-04-02 2015-06-09 Cree, Inc. Low profile lighting module with side emitting LEDs
US9500355B2 (en) 2012-05-04 2016-11-22 GE Lighting Solutions, LLC Lamp with light emitting elements surrounding active cooling device
WO2014021220A1 (ja) * 2012-07-30 2014-02-06 株式会社日立国際電気 基板処理装置、半導体装置の製造方法および記録媒体
CN103629554B (zh) * 2012-08-21 2016-07-06 展晶科技(深圳)有限公司 照明装置
EP2895793B1 (en) 2012-09-13 2020-11-04 Quarkstar LLC Light-emitting devices with reflective elements
CN104756264B (zh) 2012-09-13 2019-06-18 夸克星有限责任公司 具有远程散射元件和全内反射提取器元件的发光设备
US8764247B2 (en) 2012-11-07 2014-07-01 Palo Alto Research Center Incorporated LED bulb with integrated thermal and optical diffuser
DE102012220264A1 (de) * 2012-11-07 2014-05-08 Osram Gmbh Leuchtmittel mit optoelektronischem Bauelement
US20140168961A1 (en) * 2012-12-18 2014-06-19 Jack Guy Dubord Retrofit kit for fluorescent lamp fixtures
US9752757B2 (en) 2013-03-07 2017-09-05 Quarkstar Llc Light-emitting device with light guide for two way illumination
WO2014138591A1 (en) 2013-03-07 2014-09-12 Quarkstar Llc Illumination device with multi-color light-emitting elements
WO2014141030A1 (en) * 2013-03-11 2014-09-18 Koninklijke Philips N.V. A light emitting diode module with improved light characteristics
US10811576B2 (en) * 2013-03-15 2020-10-20 Quarkstar Llc Color tuning of light-emitting devices
US9797573B2 (en) * 2013-08-09 2017-10-24 Performance Indicator, Llc Luminous systems
US9010966B2 (en) 2013-08-22 2015-04-21 Palo Alto Research Center Incorporated Optical array for LED bulb with thermal optical diffuser
JP5949872B2 (ja) * 2014-10-27 2016-07-13 ウシオ電機株式会社 蛍光光源装置
DE102015001723A1 (de) 2015-02-05 2016-08-11 Sergey Dyukin Die Methode der Verbesserung der Charakteristiken von Leuchtgeräten mit einer Stirnseitenbeleuchtung des Lichtleiters, die den Luminophor beinhalten, der mit Halbleiterstrukturen beleuchtet wird.
TWI635622B (zh) 2015-06-10 2018-09-11 隆達電子股份有限公司 發光結構、燈具及背光模組
CA2991319A1 (en) 2015-07-08 2017-01-12 Performance Indicator, Llc Led panel lighting system
JP6680868B2 (ja) 2015-08-17 2020-04-15 インフィニット アースロスコピー インコーポレーテッド, リミテッド 光源
KR101781034B1 (ko) * 2016-06-14 2017-09-25 엘지전자 주식회사 차량용 발광기구
CN110831488A (zh) 2017-02-15 2020-02-21 无限关节内窥镜检查公司 包括头单元和包含集成光源的光缆的无线医学成像系统

Family Cites Families (276)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3581162A (en) 1969-07-01 1971-05-25 Rca Corp Optical semiconductor device
US4204246A (en) 1976-02-14 1980-05-20 Sony Corporation Cooling assembly for cooling electrical parts wherein a heat pipe is attached to a heat conducting portion of a heat conductive block
JPH0736325Y2 (ja) 1989-12-08 1995-08-16 富士通株式会社 スタック構体の結合装置
JPH06283006A (ja) 1993-03-26 1994-10-07 Toshiba Lighting & Technol Corp 照明用ガラスグローブ及び照明器具
US5655830A (en) 1993-12-01 1997-08-12 General Signal Corporation Lighting device
US5463280A (en) 1994-03-03 1995-10-31 National Service Industries, Inc. Light emitting diode retrofit lamp
US5585783A (en) 1994-06-28 1996-12-17 Hall; Roger E. Marker light utilizing light emitting diodes disposed on a flexible circuit board
US5561346A (en) 1994-08-10 1996-10-01 Byrne; David J. LED lamp construction
US5688042A (en) 1995-11-17 1997-11-18 Lumacell, Inc. LED lamp
US5806965A (en) 1996-01-30 1998-09-15 R&M Deese, Inc. LED beacon light
JPH09265807A (ja) 1996-03-29 1997-10-07 Toshiba Lighting & Technol Corp Led光源,led信号灯および信号機
US5890794A (en) 1996-04-03 1999-04-06 Abtahi; Homayoon Lighting units
US5949347A (en) 1996-09-11 1999-09-07 Leotek Electronics Corporation Light emitting diode retrofitting lamps for illuminated signs
TW330233B (en) 1997-01-23 1998-04-21 Philips Eloctronics N V Luminary
JP3138653B2 (ja) 1997-02-25 2001-02-26 三山化成株式会社 射出機
IT1292717B1 (it) 1997-04-24 1999-02-11 Incerti & Simonini Di Incerti LOW VOLTAGE LIGHTING DEVICE.
US7550935B2 (en) 2000-04-24 2009-06-23 Philips Solid-State Lighting Solutions, Inc Methods and apparatus for downloading lighting programs
US5947588A (en) 1997-10-06 1999-09-07 Grand General Accessories Manufacturing Inc. Light fixture with an LED light bulb having a conventional connection post
JPH11177149A (ja) 1997-12-10 1999-07-02 Hiyoshi Denshi Kk 電 球
JP3817665B2 (ja) 1998-01-26 2006-09-06 三菱電機株式会社 照明器具
US6276822B1 (en) 1998-02-20 2001-08-21 Yerchanik Bedrosian Method of replacing a conventional vehicle light bulb with a light-emitting diode array
JPH11260125A (ja) 1998-03-13 1999-09-24 Omron Corp 光源モジュール
JP3215665B2 (ja) 1998-06-17 2001-10-09 株式会社コトブキ 締め止め装置
JP2000017330A (ja) 1998-06-30 2000-01-18 Nkk Corp 鉄損の低い無方向性電磁鋼板の製造方法
WO2000017569A1 (en) 1998-09-17 2000-03-30 Koninklijke Philips Electronics N.V. Led lamp
US6793374B2 (en) 1998-09-17 2004-09-21 Simon H. A. Begemann LED lamp
WO2000019546A1 (en) 1998-09-28 2000-04-06 Koninklijke Philips Electronics N.V. Lighting system
GB2345954B (en) 1999-01-20 2003-03-19 Ian Lennox Crawford Non-filament lights
DE19922176C2 (de) 1999-05-12 2001-11-15 Osram Opto Semiconductors Gmbh Oberflächenmontierte LED-Mehrfachanordnung und deren Verwendung in einer Beleuchtungseinrichtung
US6268801B1 (en) 1999-06-03 2001-07-31 Leotek Electronics Corporation Method and apparatus for retro-fitting a traffic signal light with a light emitting diode lamp module
US6517221B1 (en) 1999-06-18 2003-02-11 Ciena Corporation Heat pipe heat sink for cooling a laser diode
JP2001053341A (ja) 1999-08-09 2001-02-23 Kazuo Kobayashi 面発光表示器
US6550953B1 (en) 1999-08-20 2003-04-22 Toyoda Gosei Co. Ltd. Light emitting diode lamp device
US6227679B1 (en) 1999-09-16 2001-05-08 Mule Lighting Inc Led light bulb
WO2001024583A1 (en) 1999-09-29 2001-04-05 Transportation And Environment Research Institute Ltd. Light emitting diode (led) lamp
JP4078002B2 (ja) 1999-10-18 2008-04-23 常盤電業株式会社 発光体及び信号灯
US7014336B1 (en) 1999-11-18 2006-03-21 Color Kinetics Incorporated Systems and methods for generating and modulating illumination conditions
US6350041B1 (en) 1999-12-03 2002-02-26 Cree Lighting Company High output radial dispersing lamp using a solid state light source
AU4635501A (en) 2000-02-11 2001-08-20 Gerhard Abler Lighting body
JP5016746B2 (ja) 2000-07-28 2012-09-05 キヤノン株式会社 撮像装置及びその駆動方法
GB2366610A (en) 2000-09-06 2002-03-13 Mark Shaffer Electroluminscent lamp
US6583550B2 (en) 2000-10-24 2003-06-24 Toyoda Gosei Co., Ltd. Fluorescent tube with light emitting diodes
DE20018435U1 (de) 2000-10-27 2001-02-22 Shining Blick Entpr Co Glühbirne mit darin enthaltenen biegbaren Lampenbirnchen
US6819486B2 (en) * 2001-01-17 2004-11-16 3M Innovative Properties Company Projection screen having elongated structures
JP2007059930A (ja) 2001-08-09 2007-03-08 Matsushita Electric Ind Co Ltd Led照明装置およびカード型led照明光源
JP4076329B2 (ja) 2001-08-13 2008-04-16 エイテックス株式会社 Led電球
US7224001B2 (en) 2001-08-24 2007-05-29 Densen Cao Semiconductor light source
US6465961B1 (en) 2001-08-24 2002-10-15 Cao Group, Inc. Semiconductor light source using a heat sink with a plurality of panels
US6634770B2 (en) 2001-08-24 2003-10-21 Densen Cao Light source using semiconductor devices mounted on a heat sink
TW533750B (en) 2001-11-11 2003-05-21 Solidlite Corp LED lamp
CN100373638C (zh) 2001-12-29 2008-03-05 杭州富阳新颖电子有限公司 发光二极管及其发光二极管灯
DE50310999D1 (de) 2002-01-07 2009-02-12 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Lampe
JP4431400B2 (ja) 2002-03-25 2010-03-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 発光装置及び燐光体組成物
US7048412B2 (en) 2002-06-10 2006-05-23 Lumileds Lighting U.S., Llc Axial LED source
US7800121B2 (en) 2002-08-30 2010-09-21 Lumination Llc Light emitting diode component
JP4203985B2 (ja) 2002-10-25 2009-01-07 株式会社クラベ 電飾照明装置
DE10251955A1 (de) 2002-11-08 2004-05-19 Hella Kg Hueck & Co. Einbaumodul mit leistungsstarker LED, insbesondere für ein Kraftfahrzeug
US7080924B2 (en) 2002-12-02 2006-07-25 Harvatek Corporation LED light source with reflecting side wall
US20080037257A1 (en) 2002-12-11 2008-02-14 Charles Bolta Light emitting diode (L.E.D.) lighting fixtures with emergency back-up and scotopic enhancement
US7258464B2 (en) 2002-12-18 2007-08-21 General Electric Company Integral ballast lamp thermal management method and apparatus
JP3910543B2 (ja) 2003-02-07 2007-04-25 星和電機株式会社 スポット型照明器具
EP1455398A3 (en) 2003-03-03 2011-05-25 Toyoda Gosei Co., Ltd. Light emitting device comprising a phosphor layer and method of making same
KR20050066970A (ko) * 2003-12-26 2005-06-30 닛토덴코 가부시키가이샤 전자발광 장치, 이를 사용하는 면광원 및 디스플레이
US7556406B2 (en) 2003-03-31 2009-07-07 Lumination Llc Led light with active cooling
US20040201990A1 (en) 2003-04-10 2004-10-14 Meyer William E. LED lamp
US6910794B2 (en) 2003-04-25 2005-06-28 Guide Corporation Automotive lighting assembly cooling system
US7005679B2 (en) 2003-05-01 2006-02-28 Cree, Inc. Multiple component solid state white light
EP1627178B1 (en) 2003-05-05 2018-11-07 GE Lighting Solutions, LLC Led-based light bulb
US6864513B2 (en) 2003-05-07 2005-03-08 Kaylu Industrial Corporation Light emitting diode bulb having high heat dissipating efficiency
US6803607B1 (en) 2003-06-13 2004-10-12 Cotco Holdings Limited Surface mountable light emitting device
US20080106893A1 (en) 2004-07-02 2008-05-08 S. C. Johnson & Son, Inc. Lamp and bulb for illumination and ambiance lighting
JP2005021635A (ja) 2003-07-04 2005-01-27 Amada Insatsu Kako Kk 起伏自在組立て装飾体
US7172314B2 (en) 2003-07-29 2007-02-06 Plastic Inventions & Patents, Llc Solid state electric light bulb
JP4236544B2 (ja) 2003-09-12 2009-03-11 三洋電機株式会社 照明装置
US6982518B2 (en) 2003-10-01 2006-01-03 Enertron, Inc. Methods and apparatus for an LED light
WO2005038935A1 (ja) 2003-10-15 2005-04-28 Nichia Corporation 発光装置
US7094362B2 (en) 2003-10-29 2006-08-22 General Electric Company Garnet phosphor materials having enhanced spectral characteristics
US7144135B2 (en) 2003-11-26 2006-12-05 Philips Lumileds Lighting Company, Llc LED lamp heat sink
CA2552683C (en) 2003-12-11 2011-05-03 Color Kinetics Incorporated Thermal management methods and apparatus for lighting devices
US6948829B2 (en) 2004-01-28 2005-09-27 Dialight Corporation Light emitting diode (LED) light bulbs
KR200350484Y1 (ko) 2004-02-06 2004-05-13 주식회사 대진디엠피 콘상 엘이디 조명등
US7250715B2 (en) 2004-02-23 2007-07-31 Philips Lumileds Lighting Company, Llc Wavelength converted semiconductor light emitting devices
US7824065B2 (en) 2004-03-18 2010-11-02 Lighting Science Group Corporation System and method for providing multi-functional lighting using high-efficiency lighting elements in an environment
US7086756B2 (en) 2004-03-18 2006-08-08 Lighting Science Group Corporation Lighting element using electronically activated light emitting elements and method of making same
JP4451178B2 (ja) 2004-03-25 2010-04-14 スタンレー電気株式会社 発光デバイス
JP2005286267A (ja) 2004-03-31 2005-10-13 Hitachi Lighting Ltd 発光ダイオードランプ
US20050242711A1 (en) 2004-04-30 2005-11-03 Joseph Bloomfield Multi-color solid state light emitting device
KR101295561B1 (ko) 2004-05-05 2013-08-12 렌슬러 폴리테크닉 인스티튜트 고체-상태 에미터 및 하향-변환 재료를 이용한 고효율 광 소스
US7837348B2 (en) * 2004-05-05 2010-11-23 Rensselaer Polytechnic Institute Lighting system using multiple colored light emitting sources and diffuser element
US7086767B2 (en) 2004-05-12 2006-08-08 Osram Sylvania Inc. Thermally efficient LED bulb
US20060002108A1 (en) 2004-06-30 2006-01-05 Ouderkirk Andrew J Phosphor based illumination system having a short pass reflector and method of making same
KR20060000977A (ko) * 2004-06-30 2006-01-06 엘지.필립스 엘시디 주식회사 액정표시장치의 백라이트 유닛
JP2006040850A (ja) 2004-07-23 2006-02-09 Shuji Fukuya 紫外線発光ダイオードを用いた照明装置
US7140753B2 (en) 2004-08-11 2006-11-28 Harvatek Corporation Water-cooling heat dissipation device adopted for modulized LEDs
DE102004051382A1 (de) 2004-10-21 2006-04-27 Oec Ag Mikrolinsenarray
US20060097385A1 (en) 2004-10-25 2006-05-11 Negley Gerald H Solid metal block semiconductor light emitting device mounting substrates and packages including cavities and heat sinks, and methods of packaging same
US7165866B2 (en) 2004-11-01 2007-01-23 Chia Mao Li Light enhanced and heat dissipating bulb
US7419839B2 (en) 2004-11-12 2008-09-02 Philips Lumileds Lighting Company, Llc Bonding an optical element to a light emitting device
JP2006156187A (ja) 2004-11-30 2006-06-15 Mitsubishi Electric Corp Led光源装置及びled電球
EP1672755B1 (en) 2004-12-17 2015-09-23 Nichia Corporation Light emitting device
US7564180B2 (en) 2005-01-10 2009-07-21 Cree, Inc. Light emission device and method utilizing multiple emitters and multiple phosphors
US8125137B2 (en) 2005-01-10 2012-02-28 Cree, Inc. Multi-chip light emitting device lamps for providing high-CRI warm white light and light fixtures including the same
US20060187653A1 (en) * 2005-02-10 2006-08-24 Olsson Mark S LED illumination devices
GB2424507B (en) 2005-03-22 2007-02-21 Smartslab Ltd Modular display system
US7396142B2 (en) 2005-03-25 2008-07-08 Five Star Import Group, L.L.C. LED light bulb
US7758223B2 (en) 2005-04-08 2010-07-20 Toshiba Lighting & Technology Corporation Lamp having outer shell to radiate heat of light source
US7270446B2 (en) 2005-05-09 2007-09-18 Lighthouse Technology Co., Ltd Light module with combined heat transferring plate and heat transferring pipes
JP4539851B2 (ja) 2005-05-23 2010-09-08 シャープ株式会社 バックライトモジュール、および表示装置
WO2007032187A1 (ja) * 2005-08-24 2007-03-22 World Wide Engineering Co., Ltd. Led照明光源および停電時自動点灯ledスタンド
US8563339B2 (en) 2005-08-25 2013-10-22 Cree, Inc. System for and method for closed loop electrophoretic deposition of phosphor materials on semiconductor devices
DE102005042066A1 (de) * 2005-09-03 2007-03-15 Osram Opto Semiconductors Gmbh Hinterleuchtungsanordnung mit in Leuchtgruppen angeordneten Halbleiterlichtquellen
CN100464411C (zh) 2005-10-20 2009-02-25 富准精密工业(深圳)有限公司 发光二极管封装结构及封装方法
US7377674B2 (en) 2005-10-28 2008-05-27 Advanced Accessory Systems, Llc Low profile light for article carrier system
US7354174B1 (en) 2005-12-05 2008-04-08 Technical Consumer Products, Inc. Energy efficient festive lamp
JP2007165811A (ja) 2005-12-16 2007-06-28 Nichia Chem Ind Ltd 発光装置
US7213940B1 (en) 2005-12-21 2007-05-08 Led Lighting Fixtures, Inc. Lighting device and lighting method
TWI396814B (zh) 2005-12-22 2013-05-21 克里公司 照明裝置
TWI345104B (ja) 2006-01-20 2011-07-11 Au Optronics Corp
US7682850B2 (en) 2006-03-17 2010-03-23 Philips Lumileds Lighting Company, Llc White LED for backlight with phosphor plates
US7549782B2 (en) 2006-05-11 2009-06-23 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Semiconductor light source configured as a light tube
JP2009538532A (ja) 2006-05-23 2009-11-05 クリー エル イー ディー ライティング ソリューションズ インコーポレイテッド 照明装置
US7708452B2 (en) 2006-06-08 2010-05-04 Lighting Science Group Corporation Lighting apparatus including flexible power supply
US7682052B2 (en) 2006-06-21 2010-03-23 Osram Sylvania Inc. Heat sink
US7922359B2 (en) 2006-07-17 2011-04-12 Liquidleds Lighting Corp. Liquid-filled LED lamp with heat dissipation means
JP4761207B2 (ja) 2006-07-21 2011-08-31 株式会社東京精密 ウェーハ収納方法
US7663152B2 (en) 2006-08-09 2010-02-16 Philips Lumileds Lighting Company, Llc Illumination device including wavelength converting element side holding heat sink
US20080062694A1 (en) 2006-09-07 2008-03-13 Foxconn Technology Co., Ltd. Heat dissipation device for light emitting diode module
KR20090063258A (ko) 2006-09-14 2009-06-17 코닌클리즈케 필립스 일렉트로닉스 엔.브이. 광원의 냉각을 제공하기 위한 조명 어셈블리 및 방법, 및 비디오 카메라 시스템
JP4981390B2 (ja) 2006-09-20 2012-07-18 オスラム・メルコ株式会社 Ledランプ
JP2008091140A (ja) 2006-09-29 2008-04-17 Toshiba Lighting & Technology Corp Led電球および照明器具
KR100835063B1 (ko) 2006-10-02 2008-06-03 삼성전기주식회사 Led를 이용한 면광원 발광장치
US7659549B2 (en) 2006-10-23 2010-02-09 Chang Gung University Method for obtaining a better color rendering with a photoluminescence plate
JP2008108835A (ja) 2006-10-24 2008-05-08 Harison Toshiba Lighting Corp 半導体発光装置及びその製造方法
USD546980S1 (en) 2006-10-25 2007-07-17 Hsin-Chih Chung Lee LED bulb
JP2010508651A (ja) 2006-10-31 2010-03-18 ティーアイアール テクノロジー エルピー 光励起可能媒体を含む光源
KR100930171B1 (ko) 2006-12-05 2009-12-07 삼성전기주식회사 백색 발광장치 및 이를 이용한 백색 광원 모듈
US20080149166A1 (en) 2006-12-21 2008-06-26 Goldeneye, Inc. Compact light conversion device and light source with high thermal conductivity wavelength conversion material
DE102006061164B4 (de) 2006-12-22 2018-12-27 Osram Opto Semiconductors Gmbh Lichtemittierende Vorrichtung
US20110128742A9 (en) 2007-01-07 2011-06-02 Pui Hang Yuen High efficiency low cost safety light emitting diode illumination device
US7663315B1 (en) 2007-07-24 2010-02-16 Ilight Technologies, Inc. Spherical bulb for light-emitting diode with spherical inner cavity
US7686478B1 (en) 2007-01-12 2010-03-30 Ilight Technologies, Inc. Bulb for light-emitting diode with color-converting insert
US9159888B2 (en) 2007-01-22 2015-10-13 Cree, Inc. Wafer level phosphor coating method and devices fabricated utilizing method
US9024349B2 (en) 2007-01-22 2015-05-05 Cree, Inc. Wafer level phosphor coating method and devices fabricated utilizing method
US7753568B2 (en) 2007-01-23 2010-07-13 Foxconn Technology Co., Ltd. Light-emitting diode assembly and method of fabrication
USD553267S1 (en) 2007-02-09 2007-10-16 Wellion Asia Limited LED light bulb
US20080212332A1 (en) 2007-03-01 2008-09-04 Medinis David M LED cooling system
EP1975505A1 (en) 2007-03-26 2008-10-01 Philips Electronics N.V. Lighting device
JP2008262765A (ja) 2007-04-11 2008-10-30 Stanley Electric Co Ltd 波長変換層を有する発光ダイオード灯具
JP2008288183A (ja) * 2007-04-18 2008-11-27 Ksk:Kk 照明器具
WO2008134056A1 (en) 2007-04-26 2008-11-06 Deak-Lam Inc. Photon energy coversion structure
US7540761B2 (en) 2007-05-01 2009-06-02 Tyco Electronics Corporation LED connector assembly with heat sink
JP5006102B2 (ja) 2007-05-18 2012-08-22 株式会社東芝 発光装置およびその製造方法
EP2843464A1 (en) 2007-05-29 2015-03-04 Koninklijke Philips N.V. Lighting device having a light exit window
JP2008300117A (ja) 2007-05-30 2008-12-11 Toshiba Lighting & Technology Corp 発光ダイオード照明装置
JP2008300570A (ja) 2007-05-30 2008-12-11 Panasonic Electric Works Co Ltd 発光装置
JP2008300203A (ja) 2007-05-31 2008-12-11 Toshiba Lighting & Technology Corp 照明器具
US8209841B2 (en) 2007-06-05 2012-07-03 I2Ic Corporation Method of manufacturing multicolored illuminator
US7999283B2 (en) 2007-06-14 2011-08-16 Cree, Inc. Encapsulant with scatterer to tailor spatial emission pattern and color uniformity in light emitting diodes
US7868341B2 (en) 2007-06-27 2011-01-11 The Regents Of The University Of California Optical designs for high-efficacy white-light emitting diodes
JP2009016058A (ja) 2007-06-29 2009-01-22 Toshiba Lighting & Technology Corp 照明装置及びこれを用いた照明器具
JP2009016153A (ja) 2007-07-04 2009-01-22 Yohohama Electron Kk 照明用ledランプ
TWI347687B (en) 2007-07-13 2011-08-21 Lite On Technology Corp Light-emitting device with open-loop control
US7607802B2 (en) 2007-07-23 2009-10-27 Tamkang University LED lamp instantly dissipating heat as effected by multiple-layer substrates
TWM324618U (en) * 2007-07-26 2008-01-01 Sheng-Tze Huang Back-lighted automobile handle with soft light
US20090039375A1 (en) 2007-08-07 2009-02-12 Cree, Inc. Semiconductor light emitting devices with separated wavelength conversion materials and methods of forming the same
DE102007037862A1 (de) 2007-08-10 2008-10-30 Siemens Ag Entwärmung mittels einer Membranpumpe
CN101368719B (zh) 2007-08-13 2011-07-06 太一节能系统股份有限公司 发光二极管灯具
DE102007040444B8 (de) 2007-08-28 2013-10-17 Osram Gmbh LED-Lampe
JP5044329B2 (ja) 2007-08-31 2012-10-10 株式会社東芝 発光装置
DE102007045540A1 (de) 2007-09-24 2009-04-02 Osram Gesellschaft mit beschränkter Haftung Leuchtvorrichtung mit Lichtpuffer
US7588351B2 (en) 2007-09-27 2009-09-15 Osram Sylvania Inc. LED lamp with heat sink optic
US8439528B2 (en) 2007-10-03 2013-05-14 Switch Bulb Company, Inc. Glass LED light bulbs
JP4124479B1 (ja) 2007-10-16 2008-07-23 株式会社モモ・アライアンス 照明装置
US9086213B2 (en) 2007-10-17 2015-07-21 Xicato, Inc. Illumination device with light emitting diodes
US7984999B2 (en) 2007-10-17 2011-07-26 Xicato, Inc. Illumination device with light emitting diodes and moveable light adjustment member
US7915627B2 (en) 2007-10-17 2011-03-29 Intematix Corporation Light emitting device with phosphor wavelength conversion
USD581555S1 (en) 2007-10-19 2008-11-25 Koninklijke Philips Electronics N.V. Solid state lighting spot
TW200921934A (en) 2007-11-06 2009-05-16 Prodisc Technology Inc Discrete light-emitting diode light source device of wavelength conversion unit
US7726836B2 (en) 2007-11-23 2010-06-01 Taiming Chen Light bulb with light emitting elements for use in conventional incandescent light bulb sockets
US7810954B2 (en) * 2007-12-03 2010-10-12 Lumination Llc LED-based changeable color light lamp
US8680754B2 (en) 2008-01-15 2014-03-25 Philip Premysler Omnidirectional LED light bulb
US8940561B2 (en) 2008-01-15 2015-01-27 Cree, Inc. Systems and methods for application of optical materials to optical elements
US8337029B2 (en) 2008-01-17 2012-12-25 Intematix Corporation Light emitting device with phosphor wavelength conversion
JP5463447B2 (ja) 2008-01-18 2014-04-09 三洋電機株式会社 発光装置及びそれを備えた灯具
JP5432922B2 (ja) 2008-01-22 2014-03-05 コーニンクレッカ フィリップス エヌ ヴェ Ledと発光材料を有する透過性支持体とを備える照明装置
WO2009100160A1 (en) 2008-02-06 2009-08-13 C. Crane Company, Inc. Light emitting diode lighting device
JP5464500B2 (ja) 2008-02-27 2014-04-09 コーニンクレッカ フィリップス エヌ ヴェ Led及び1つ以上の透過窓を備える照明装置
US8558438B2 (en) 2008-03-01 2013-10-15 Goldeneye, Inc. Fixtures for large area directional and isotropic solid state lighting panels
JP5341915B2 (ja) 2008-03-28 2013-11-13 パナソニック株式会社 樹脂成型品、半導体発光光源、照明装置及び樹脂成型品の製造方法
WO2009125314A2 (en) 2008-04-08 2009-10-15 Koninklijke Philips Electronics N.V. Illumination device with led and a transmissive support comprising a luminescent material
JP2009277586A (ja) 2008-05-16 2009-11-26 San Corporation Kk 電球型led照明器具
US8360599B2 (en) 2008-05-23 2013-01-29 Ilumisys, Inc. Electric shock resistant L.E.D. based light
US20090296387A1 (en) 2008-05-27 2009-12-03 Sea Gull Lighting Products, Llc Led retrofit light engine
CN102113119A (zh) 2008-05-29 2011-06-29 克利公司 具有近场混合的光源
JP2009295299A (ja) 2008-06-02 2009-12-17 Tamura Seisakusho Co Ltd 照明体
US8013501B2 (en) 2008-06-04 2011-09-06 Forever Bulb, Llc LED-based light bulb device
US9074751B2 (en) 2008-06-20 2015-07-07 Seoul Semiconductor Co., Ltd. Lighting apparatus
US20090322800A1 (en) 2008-06-25 2009-12-31 Dolby Laboratories Licensing Corporation Method and apparatus in various embodiments for hdr implementation in display devices
CN101614363A (zh) 2008-06-25 2009-12-30 富准精密工业(深圳)有限公司 发光二极管照明装置
US7618157B1 (en) 2008-06-25 2009-11-17 Osram Sylvania Inc. Tubular blue LED lamp with remote phosphor
CA2728158A1 (en) 2008-06-26 2009-12-30 Osram Sylvania Inc. Led lamp with remote phosphor coating and method of making the lamp
US8159131B2 (en) 2008-06-30 2012-04-17 Bridgelux, Inc. Light emitting device having a transparent thermally conductive layer
US8410681B2 (en) 2008-06-30 2013-04-02 Bridgelux, Inc. Light emitting device having a refractory phosphor layer
JP5081746B2 (ja) 2008-07-04 2012-11-28 パナソニック株式会社 ランプ
JP3153766U (ja) * 2008-07-08 2009-09-17 築光光電股▲ふん▼有限公司 照明器具
KR101266226B1 (ko) 2008-07-09 2013-05-21 우시오덴키 가부시키가이샤 발광 장치 및 발광 장치의 제조 방법
KR100924912B1 (ko) 2008-07-29 2009-11-03 서울반도체 주식회사 웜화이트 발광장치 및 그것을 포함하는 백라이트 모듈
GB2462411B (en) 2008-07-30 2013-05-22 Photonstar Led Ltd Tunable colour led module
US8427059B2 (en) 2008-07-31 2013-04-23 Toshiba Lighting & Technology Corporation Lighting device
JP2010040494A (ja) 2008-08-07 2010-02-18 Msm Tech Co Ltd Led駆動装置の着脱が可能な蛍光灯型ledランプ
US8188595B2 (en) 2008-08-13 2012-05-29 Progressive Cooling Solutions, Inc. Two-phase cooling for light-emitting devices
EP2154420A1 (en) 2008-08-13 2010-02-17 GE Investment Co., Ltd. Light-emitting diode illumination apparatus
KR101039073B1 (ko) 2008-10-01 2011-06-08 주식회사 아모럭스 방열장치 및 이를 이용한 전구형 led 조명장치
KR100901180B1 (ko) 2008-10-13 2009-06-04 현대통신 주식회사 가변형의 방열통로가 구비된 방열부재 및 이를 이용한 led 발광 조명등
DE202008013667U1 (de) 2008-10-15 2008-12-18 Li, Chia-Mao Mehrschaliger Reflektorbecher
JP4651701B2 (ja) 2008-10-17 2011-03-16 三洋電機株式会社 照明装置
JP4869317B2 (ja) 2008-10-29 2012-02-08 株式会社東芝 赤色蛍光体およびそれを用いた発光装置
JP5490812B2 (ja) 2008-11-06 2014-05-14 コーニンクレッカ フィリップス エヌ ヴェ 照明装置
JP5359734B2 (ja) 2008-11-20 2013-12-04 豊田合成株式会社 発光装置及びその製造方法
JP2010129300A (ja) 2008-11-26 2010-06-10 Hideki Iimura 半導体発光ランプおよび電球形半導体発光ランプ
JP5327601B2 (ja) 2008-12-12 2013-10-30 東芝ライテック株式会社 発光モジュールおよび照明装置
US8169135B2 (en) 2008-12-17 2012-05-01 Lednovation, Inc. Semiconductor lighting device with wavelength conversion on back-transferred light path
US8292471B2 (en) 2009-01-09 2012-10-23 Koninklijke Philips Electronics N.V. Light source
US8021025B2 (en) 2009-01-15 2011-09-20 Yeh-Chiang Technology Corp. LED lamp
US7600882B1 (en) 2009-01-20 2009-10-13 Lednovation, Inc. High efficiency incandescent bulb replacement lamp
FR2941346A1 (fr) 2009-01-21 2010-07-23 Cassiopee Decoration Dispositif d'eclairage a diodes electroluminescentes
EP3273161A1 (en) 2009-02-17 2018-01-24 Epistar Corporation Led light bulbs for space lighting
US7851819B2 (en) 2009-02-26 2010-12-14 Bridgelux, Inc. Transparent heat spreader for LEDs
JP5333758B2 (ja) 2009-02-27 2013-11-06 東芝ライテック株式会社 照明装置および照明器具
US7828453B2 (en) 2009-03-10 2010-11-09 Nepes Led Corporation Light emitting device and lamp-cover structure containing luminescent material
KR100944181B1 (ko) 2009-04-07 2010-02-24 용남순 방사형 엘이디 전구
JP5363864B2 (ja) 2009-04-13 2013-12-11 日東光学株式会社 発光装置および電球型ledランプ
US8750671B1 (en) 2009-04-16 2014-06-10 Fusion Optix, Inc Light bulb with omnidirectional output
EP2427688B1 (en) 2009-05-04 2019-09-18 Signify Holding B.V. Light source comprising a light emitter arranged inside a translucent outer envelope
WO2010132526A2 (en) 2009-05-13 2010-11-18 Light Prescriptions Innovators, Llc Dimmable led lamp
US7956546B2 (en) 2009-05-15 2011-06-07 Bridgelux, Inc. Modular LED light bulb
JP2010267826A (ja) 2009-05-15 2010-11-25 Rohm Co Ltd Led照明装置および液晶表示装置
KR101758188B1 (ko) 2009-06-10 2017-07-14 렌슬러 폴리테크닉 인스티튜트 고체 상태 광원 전구
US8186852B2 (en) 2009-06-24 2012-05-29 Elumigen Llc Opto-thermal solution for multi-utility solid state lighting device using conic section geometries
KR20110008445A (ko) 2009-07-20 2011-01-27 백일선 접지겸용 커넥터
TWM372923U (en) 2009-08-14 2010-01-21 Risun Expanse Corp Lamp structure
KR100980588B1 (ko) 2009-08-27 2010-09-06 윤인숙 엘이디 전구
TWI391609B (zh) 2009-09-28 2013-04-01 Yu Nung Shen Light emitting diode lighting device
CN102326023B (zh) 2009-09-30 2015-04-08 松下电器产业株式会社 照明装置
US8593040B2 (en) 2009-10-02 2013-11-26 Ge Lighting Solutions Llc LED lamp with surface area enhancing fins
US9103507B2 (en) * 2009-10-02 2015-08-11 GE Lighting Solutions, LLC LED lamp with uniform omnidirectional light intensity output
US9217542B2 (en) 2009-10-20 2015-12-22 Cree, Inc. Heat sinks and lamp incorporating same
WO2011050273A2 (en) 2009-10-22 2011-04-28 Waqidi Falicoff Remote-phosphor light engines and lamps
WO2011056950A1 (en) 2009-11-04 2011-05-12 Forever Bulb, Llc Led-based light bulb device with kelvin corrective features
US8410512B2 (en) 2009-11-25 2013-04-02 Cree, Inc. Solid state light emitting apparatus with thermal management structures and methods of manufacturing
JP5354209B2 (ja) 2010-01-14 2013-11-27 東芝ライテック株式会社 電球形ランプおよび照明器具
US8212469B2 (en) * 2010-02-01 2012-07-03 Abl Ip Holding Llc Lamp using solid state source and doped semiconductor nanophosphor
WO2011100193A1 (en) 2010-02-12 2011-08-18 Cree, Inc. Lighting device with heat dissipation elements
US8562161B2 (en) 2010-03-03 2013-10-22 Cree, Inc. LED based pedestal-type lighting structure
US9310030B2 (en) 2010-03-03 2016-04-12 Cree, Inc. Non-uniform diffuser to scatter light into uniform emission pattern
USD629928S1 (en) 2010-04-05 2010-12-28 Foxconn Technology Co., Ltd. LED lamp
US9732930B2 (en) 2010-07-20 2017-08-15 Panasonic Intellectual Property Management Co., Ltd. Light bulb shaped lamp
US8167677B2 (en) 2010-08-10 2012-05-01 Liquidleds Lighting Corp. Method of assembling an airtight LED light bulb
US8568009B2 (en) 2010-08-20 2013-10-29 Dicon Fiberoptics Inc. Compact high brightness LED aquarium light apparatus, using an extended point source LED array with light emitting diodes
CN102384376B (zh) 2010-09-06 2014-05-07 光宝电子(广州)有限公司 发光二极管灯具与使用其的照明装置
KR101510462B1 (ko) 2010-09-08 2015-04-08 쩌지앙 레디슨 옵토일렉트로닉스 씨오., 엘티디. Led 램프 벌브 및 4π 출광 가능한 led 발광봉
US8272762B2 (en) 2010-09-28 2012-09-25 Lighting Science Group Corporation LED luminaire
US8415865B2 (en) 2011-01-18 2013-04-09 Silitek Electronic (Guangzhou) Co., Ltd. Light-guide type illumination device
US9052067B2 (en) 2010-12-22 2015-06-09 Cree, Inc. LED lamp with high color rendering index
US8421320B2 (en) 2011-01-24 2013-04-16 Sheng-Yi CHUANG LED light bulb equipped with light transparent shell fastening structure
US8421321B2 (en) 2011-01-24 2013-04-16 Sheng-Yi CHUANG LED light bulb
DE102011004718A1 (de) 2011-02-25 2012-08-30 Osram Ag Verfahren zum Herstellen einer lichtdurchlässigen Abdeckung einer Leuchtvorrichtung
US8272766B2 (en) 2011-03-18 2012-09-25 Abl Ip Holding Llc Semiconductor lamp with thermal handling system
CN102759020B (zh) 2011-04-26 2014-07-02 光宝电子(广州)有限公司 发光二极管球型灯泡
WO2012170869A1 (en) 2011-06-09 2012-12-13 Elumigen Llc Solid state lighting device using heat channels in a housing
TWM416727U (en) 2011-06-17 2011-11-21 Enlight Corp Bulb structure
US8740415B2 (en) 2011-07-08 2014-06-03 Switch Bulb Company, Inc. Partitioned heatsink for improved cooling of an LED bulb
US8759843B2 (en) 2011-08-30 2014-06-24 Abl Ip Holding Llc Optical/electrical transducer using semiconductor nanowire wicking structure in a thermal conductivity and phase transition heat transfer mechanism
US20130063945A1 (en) 2011-09-12 2013-03-14 Chaun-Choung Technology Corp. Bulb-type led lamp having replaceable light source module
US8641237B2 (en) 2012-02-09 2014-02-04 Sheng-Yi CHUANG LED light bulb providing high heat dissipation efficiency
US9488359B2 (en) 2012-03-26 2016-11-08 Cree, Inc. Passive phase change radiators for LED lamps and fixtures

Also Published As

Publication number Publication date
EP2542834B1 (en) 2020-02-05
US20110267801A1 (en) 2011-11-03
WO2011109100A9 (en) 2011-11-17
WO2011109100A2 (en) 2011-09-09
US8882284B2 (en) 2014-11-11
WO2011109100A3 (en) 2012-01-05
JP2013521614A (ja) 2013-06-10
EP2542834A2 (en) 2013-01-09

Similar Documents

Publication Publication Date Title
US10422484B2 (en) LED lamp with uniform omnidirectional light intensity output
US10527258B2 (en) Scattered-photon extraction-based light fixtures
US9865780B2 (en) LED package with encapsulant having planar surfaces
US10557594B2 (en) Solid-state lamps utilizing photoluminescence wavelength conversion components
US9651239B2 (en) LED lamp and heat sink
US9528666B2 (en) Integrated LED based illumination device
US9581300B2 (en) LED illumination device with color converting surfaces
US9188290B2 (en) Indirect linear fixture
US9618163B2 (en) LED lamp with electronics board to submount connection
US9599291B2 (en) Solid state light source emitting warm light with high CRI
US10030819B2 (en) LED lamp and heat sink
US9887327B2 (en) LED package with encapsulant having curved and planar surfaces
US10204888B2 (en) LED-based light sources for light emitting devices and lighting arrangements with photoluminescence wavelength conversion
US8016443B2 (en) Remote-phosphor LED downlight
US9086213B2 (en) Illumination device with light emitting diodes
US9395051B2 (en) Gas cooled LED lamp
JP5818778B2 (ja) リモートルミネセンス材料を用いた照明デバイス
TWI421446B (zh) 照明裝置及照明方法
CN102859259B (zh) 基于 led 的基座型照明结构
US9234655B2 (en) Lamp with remote LED light source and heat dissipating elements
US10495295B2 (en) Lighting device, heat transfer structure and heat transfer element
US8944618B2 (en) LED-based illumination modules with PTFE color converting surfaces
KR101340682B1 (ko) 조명 장치
US8807799B2 (en) LED-based lamps
US8764224B2 (en) Luminaire with distributed LED sources

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131025

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140123

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140724

R150 Certificate of patent or registration of utility model

Ref document number: 5588024

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250