JP5530118B2 - 酸化マンガン膜の形成方法、半導体装置の製造方法および半導体装置 - Google Patents

酸化マンガン膜の形成方法、半導体装置の製造方法および半導体装置 Download PDF

Info

Publication number
JP5530118B2
JP5530118B2 JP2009093549A JP2009093549A JP5530118B2 JP 5530118 B2 JP5530118 B2 JP 5530118B2 JP 2009093549 A JP2009093549 A JP 2009093549A JP 2009093549 A JP2009093549 A JP 2009093549A JP 5530118 B2 JP5530118 B2 JP 5530118B2
Authority
JP
Japan
Prior art keywords
manganese
oxide film
manganese oxide
film
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009093549A
Other languages
English (en)
Japanese (ja)
Other versions
JP2010242187A (ja
JP2010242187A5 (enExample
Inventor
浩司 根石
淳一 小池
賢治 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Tokyo Electron Ltd
Original Assignee
Tohoku University NUC
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Tokyo Electron Ltd filed Critical Tohoku University NUC
Priority to JP2009093549A priority Critical patent/JP5530118B2/ja
Priority to CN2010800157385A priority patent/CN102388161A/zh
Priority to KR1020117023503A priority patent/KR101358114B1/ko
Priority to PCT/JP2010/054975 priority patent/WO2010116889A1/ja
Publication of JP2010242187A publication Critical patent/JP2010242187A/ja
Priority to US13/267,227 priority patent/US8859421B2/en
Publication of JP2010242187A5 publication Critical patent/JP2010242187A5/ja
Application granted granted Critical
Publication of JP5530118B2 publication Critical patent/JP5530118B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76867Barrier, adhesion or liner layers characterized by methods of formation other than PVD, CVD or deposition from a liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53228Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being copper
    • H01L23/53238Additional layers associated with copper layers, e.g. adhesion, barrier, cladding layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/406Oxides of iron group metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02269Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by thermal evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76831Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers in via holes or trenches, e.g. non-conductive sidewall liners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • H01L21/76844Bottomless liners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12044OLED

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Formation Of Insulating Films (AREA)
JP2009093549A 2009-04-08 2009-04-08 酸化マンガン膜の形成方法、半導体装置の製造方法および半導体装置 Active JP5530118B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2009093549A JP5530118B2 (ja) 2009-04-08 2009-04-08 酸化マンガン膜の形成方法、半導体装置の製造方法および半導体装置
CN2010800157385A CN102388161A (zh) 2009-04-08 2010-03-23 氧化锰膜的形成方法、半导体装置的制造方法及半导体装置
KR1020117023503A KR101358114B1 (ko) 2009-04-08 2010-03-23 산화 망간막의 형성 방법, 반도체 장치의 제조 방법 및 반도체 장치
PCT/JP2010/054975 WO2010116889A1 (ja) 2009-04-08 2010-03-23 酸化マンガン膜の形成方法、半導体装置の製造方法および半導体装置
US13/267,227 US8859421B2 (en) 2009-04-08 2011-10-06 Manganese oxide film forming method, semiconductor device manufacturing method and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009093549A JP5530118B2 (ja) 2009-04-08 2009-04-08 酸化マンガン膜の形成方法、半導体装置の製造方法および半導体装置

Publications (3)

Publication Number Publication Date
JP2010242187A JP2010242187A (ja) 2010-10-28
JP2010242187A5 JP2010242187A5 (enExample) 2012-02-16
JP5530118B2 true JP5530118B2 (ja) 2014-06-25

Family

ID=42936175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009093549A Active JP5530118B2 (ja) 2009-04-08 2009-04-08 酸化マンガン膜の形成方法、半導体装置の製造方法および半導体装置

Country Status (5)

Country Link
US (1) US8859421B2 (enExample)
JP (1) JP5530118B2 (enExample)
KR (1) KR101358114B1 (enExample)
CN (1) CN102388161A (enExample)
WO (1) WO2010116889A1 (enExample)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8653663B2 (en) * 2009-10-29 2014-02-18 Taiwan Semiconductor Manufacturing Company, Ltd. Barrier layer for copper interconnect
CN105732401A (zh) 2010-11-02 2016-07-06 宇部兴产株式会社 (酰胺氨基烷烃)金属化合物及使用所述金属化合物制备含金属的薄膜的方法
US8461683B2 (en) * 2011-04-01 2013-06-11 Intel Corporation Self-forming, self-aligned barriers for back-end interconnects and methods of making same
JPWO2013125449A1 (ja) 2012-02-22 2015-07-30 東京エレクトロン株式会社 半導体装置の製造方法、記憶媒体及び半導体装置
US9048294B2 (en) 2012-04-13 2015-06-02 Applied Materials, Inc. Methods for depositing manganese and manganese nitrides
US9076661B2 (en) 2012-04-13 2015-07-07 Applied Materials, Inc. Methods for manganese nitride integration
US8969197B2 (en) * 2012-05-18 2015-03-03 International Business Machines Corporation Copper interconnect structure and its formation
KR20150031239A (ko) * 2012-06-18 2015-03-23 도쿄엘렉트론가부시키가이샤 망간 함유막의 형성 방법
JP6030439B2 (ja) 2012-12-27 2016-11-24 東京エレクトロン株式会社 マンガン含有膜の形成方法、処理システム、および電子デバイスの製造方法
JP2014141739A (ja) 2012-12-27 2014-08-07 Tokyo Electron Ltd 金属マンガン膜の成膜方法、処理システム、電子デバイスの製造方法および電子デバイス
US9754258B2 (en) * 2013-06-17 2017-09-05 Visa International Service Association Speech transaction processing
US10760156B2 (en) 2017-10-13 2020-09-01 Honeywell International Inc. Copper manganese sputtering target
US10204829B1 (en) * 2018-01-12 2019-02-12 International Business Machines Corporation Low-resistivity metallic interconnect structures with self-forming diffusion barrier layers
US11035036B2 (en) 2018-02-01 2021-06-15 Honeywell International Inc. Method of forming copper alloy sputtering targets with refined shape and microstructure
US10991604B2 (en) * 2018-07-27 2021-04-27 Taiwan Semiconductor Manufacturing Company Ltd. Method of manufacturing semiconductor structure
EP3880865A2 (en) * 2018-11-13 2021-09-22 Corning Incorporated 3d interposer with through glas vias-method of increasing adhesion between copper and class surfaces and articles therefrom
KR102675758B1 (ko) * 2019-06-17 2024-06-18 다나카 기킨조쿠 고교 가부시키가이샤 유기 망간 화합물을 포함하는 화학 증착용 원료 및 해당 화학 증착용 원료를 사용한 화학 증착법
KR102876645B1 (ko) * 2021-02-08 2025-10-28 맥더미드 엔쏜 인코포레이티드 확산 장벽 형성을 위한 방법 및 습식 화학 조성물

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0337329A3 (de) * 1988-04-12 1990-11-22 Siemens Aktiengesellschaft Verfahren zur Herstellung dünner Metallfilme durch Aufdampfen
US5487356A (en) * 1992-08-07 1996-01-30 Advanced Technology Materials, Inc. Chemical vapor deposition method of growing oxide films with giant magnetoresistance
ATE454483T1 (de) * 2002-11-15 2010-01-15 Harvard College Atomlagenabscheidung (ald) mit hilfe von metallamidinaten
US6887523B2 (en) * 2002-12-20 2005-05-03 Sharp Laboratories Of America, Inc. Method for metal oxide thin film deposition via MOCVD
JP4086673B2 (ja) * 2003-02-04 2008-05-14 Necエレクトロニクス株式会社 半導体装置及びその製造方法
US20040170761A1 (en) * 2003-02-27 2004-09-02 Sharp Laboratories Of America, Inc. Precursor solution and method for controlling the composition of MOCVD deposited PCMO
JP4478038B2 (ja) * 2004-02-27 2010-06-09 株式会社半導体理工学研究センター 半導体装置及びその製造方法
US7132140B2 (en) * 2004-05-27 2006-11-07 Eastman Kodak Company Plural metallic layers in OLED donor
JP4236201B2 (ja) * 2005-08-30 2009-03-11 富士通マイクロエレクトロニクス株式会社 半導体装置の製造方法
JP2007220738A (ja) * 2006-02-14 2007-08-30 Sony Corp 半導体装置の製造方法
JP5014696B2 (ja) 2006-07-19 2012-08-29 株式会社アルバック 薄膜形成方法、銅配線膜形成方法
JP4634977B2 (ja) * 2006-08-15 2011-02-16 Okiセミコンダクタ株式会社 半導体装置及び半導体装置の製造方法
JP2009016782A (ja) * 2007-06-04 2009-01-22 Tokyo Electron Ltd 成膜方法及び成膜装置
WO2009028619A1 (ja) * 2007-08-30 2009-03-05 Tokyo Electron Limited 処理ガス供給システム及び処理装置
JP2009076881A (ja) * 2007-08-30 2009-04-09 Tokyo Electron Ltd 処理ガス供給システム及び処理装置
JP2009141058A (ja) * 2007-12-05 2009-06-25 Fujitsu Microelectronics Ltd 半導体装置およびその製造方法
US8043976B2 (en) * 2008-03-24 2011-10-25 Air Products And Chemicals, Inc. Adhesion to copper and copper electromigration resistance

Also Published As

Publication number Publication date
KR20110129940A (ko) 2011-12-02
US20120025380A1 (en) 2012-02-02
WO2010116889A1 (ja) 2010-10-14
KR101358114B1 (ko) 2014-02-11
US8859421B2 (en) 2014-10-14
JP2010242187A (ja) 2010-10-28
CN102388161A (zh) 2012-03-21

Similar Documents

Publication Publication Date Title
JP5530118B2 (ja) 酸化マンガン膜の形成方法、半導体装置の製造方法および半導体装置
TWI469218B (zh) Semiconductor device manufacturing method, semiconductor device, electronic device, semiconductor manufacturing device and memory medium
US8440563B2 (en) Film forming method and processing system
KR101291821B1 (ko) CVD-Ru막의 형성 방법 및 반도체 장치의 제조 방법
US20140363971A1 (en) Manganese oxide film forming method
JP5429078B2 (ja) 成膜方法及び処理システム
US20140084466A1 (en) Manganese silicate film forming method, processing system, semiconductor device manufacturing method and semiconductor device
KR20140085330A (ko) 금속 망간막의 성막 방법, 처리 시스템, 전자 디바이스의 제조 방법 및 전자 디바이스
KR101757021B1 (ko) 망간 함유막의 형성 방법, 처리 시스템, 전자 디바이스의 제조 방법 및 전자 디바이스
JP5526189B2 (ja) Cu膜の形成方法
KR20100024416A (ko) 성막 방법 및 처리 시스템
KR101757037B1 (ko) 구리 배선을 가진 기판을 구비하는 반도체 장치의 제조 방법

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140418

R150 Certificate of patent or registration of utility model

Ref document number: 5530118

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250