JP5514714B2 - テレビ広告のためのインプレッション値を決定するための方法およびシステム - Google Patents

テレビ広告のためのインプレッション値を決定するための方法およびシステム Download PDF

Info

Publication number
JP5514714B2
JP5514714B2 JP2010502308A JP2010502308A JP5514714B2 JP 5514714 B2 JP5514714 B2 JP 5514714B2 JP 2010502308 A JP2010502308 A JP 2010502308A JP 2010502308 A JP2010502308 A JP 2010502308A JP 5514714 B2 JP5514714 B2 JP 5514714B2
Authority
JP
Japan
Prior art keywords
impression
time
tuning
television
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010502308A
Other languages
English (en)
Other versions
JP2010524355A (ja
Inventor
ジェフリー・アール・スミス
イアイン・メリック
マイケル・エー・キリアニー
ジョン・アラステア・ホーキンス
グレッグ・ヘクト
サイモン・ロウ
Original Assignee
グーグル・インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by グーグル・インコーポレーテッド filed Critical グーグル・インコーポレーテッド
Publication of JP2010524355A publication Critical patent/JP2010524355A/ja
Application granted granted Critical
Publication of JP5514714B2 publication Critical patent/JP5514714B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/442Monitoring of processes or resources, e.g. detecting the failure of a recording device, monitoring the downstream bandwidth, the number of times a movie has been viewed, the storage space available from the internal hard disk
    • H04N21/44204Monitoring of content usage, e.g. the number of times a movie has been viewed, copied or the amount which has been watched
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0241Advertisements
    • G06Q30/0242Determining effectiveness of advertisements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0241Advertisements
    • G06Q30/0273Determination of fees for advertising
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/24Monitoring of processes or resources, e.g. monitoring of server load, available bandwidth, upstream requests
    • H04N21/2407Monitoring of transmitted content, e.g. distribution time, number of downloads
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/25Management operations performed by the server for facilitating the content distribution or administrating data related to end-users or client devices, e.g. end-user or client device authentication, learning user preferences for recommending movies
    • H04N21/254Management at additional data server, e.g. shopping server, rights management server
    • H04N21/2543Billing, e.g. for subscription services
    • H04N21/2547Third Party Billing, e.g. billing of advertiser
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/45Management operations performed by the client for facilitating the reception of or the interaction with the content or administrating data related to the end-user or to the client device itself, e.g. learning user preferences for recommending movies, resolving scheduling conflicts
    • H04N21/466Learning process for intelligent management, e.g. learning user preferences for recommending movies
    • H04N21/4667Processing of monitored end-user data, e.g. trend analysis based on the log file of viewer selections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/60Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client 
    • H04N21/65Transmission of management data between client and server
    • H04N21/658Transmission by the client directed to the server
    • H04N21/6582Data stored in the client, e.g. viewing habits, hardware capabilities, credit card number
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/80Generation or processing of content or additional data by content creator independently of the distribution process; Content per se
    • H04N21/81Monomedia components thereof
    • H04N21/812Monomedia components thereof involving advertisement data

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Development Economics (AREA)
  • Finance (AREA)
  • Strategic Management (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Marketing (AREA)
  • Databases & Information Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Economics (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Information Transfer Between Computers (AREA)

Description

本開示は、メディア広告に関する。
ビジネスエンティティなどの広告主が、テレビジョンブロードキャスト中の放送時間を購入して、テレビジョン広告を放送することができる。例示的なテレビジョン広告は、番組の切れ目の間に放送されるコマーシャル、番組中に放送される透明オーバーレイ、および、番組中や番組における製品プレースメント中などに放送されるテキストバナーを含む。
広告主によって購入された放送時間のコストは、購入された放送時間中に見ていることまたは購入された放送時間に密接に関係することが予想される視聴者サイズおよび視聴者構成によって変動する。例えば、視聴者サイズおよび視聴者構成は、視聴率システムによって測定することができる。テレビジョン視聴率に関するデータは、例えば、視聴習慣の日誌を視聴者が提供する視聴者調査によって収集することができ、あるいは、視聴習慣データを自動的に収集してこのデータを有線接続、例えば電話回線またはケーブル回線を介して送信する規定の計器によって収集することができ、あるいは、例えばデジタルビデオ録画機のサービスログによって収集することができる。しかし、このような視聴率システムは、ニッチ番組に対しては不正確な場合があり、通常は、実際の視聴者数および視聴者構成の推定しか提供しない。
視聴率推定に基づいて、放送時間が広告主に有料で提供される。通常、広告主は、放送時間よりも十分に前もって放送時間を購入しなければならない。加えて、視聴率推定が不正確な場合、広告主および/またはテレビジョンプロバイダは、購入された放送時間の真の価値を認識することができない。最後に、広告主および/またはテレビジョンプロバイダが、識別された広告視聴の数に基づいて収入合意に参与する場合、公正な結果を生むためには、広告が放送された時間中の潜在的な視聴者に関係する正確なデータを得なければならない。
本明細書では、テレビジョンデバイス、例えばセットトップボックスやデジタルビデオ録画機などのログを処理するためのシステムおよび方法について述べる。一実装形態では、インプレッション記録がテレビジョンプロバイダから受け取られる。インプレッション記録は、同調デバイス、例えばセットトップボックスによって報告された、チャネル識別子、関連する同調イベント、および関連する同調時間を定義する。関連する同調時間が調整されてテレビジョン処理レイテンシが補償され、調整された関連する同調時間に基づいて正規化済みインプレッション記録が生成される。正規化済みインプレッション記録は、テレビジョンプロバイダ識別子、挿入識別子、およびタイムスタンプを含み、フィルタにかけられて偽陽性インプレッション記録が識別される。
別の実装形態では、報告データがテレビジョンプロバイダから受け取られ、テレビジョンプロバイダにおけるテレビジョン広告の挿入時間と、視聴デバイスにおけるテレビジョン広告の放送時間との間のレイテンシ遅延が識別される。同調時間が調整されてレイテンシ遅延が補償される。
別の実装形態では、システムが、インプレッションプロセッサおよびインプレッションフィルタを備える。インプレッションプロセッサは、テレビジョンプロバイダからのインプレッション記録と、テレビジョンプロバイダメタデータとを受け取るように構成することができる。インプレッション記録は、同調デバイスによって報告された、チャネル識別子、関連する同調イベント、および関連する同調時間を識別することができ、テレビジョンプロバイダメタデータは、テレビジョン広告の挿入時間および意図された表示時間を含むことができる。インプレッションプロセッサはまた、関連する同調時間を調整してテレビジョン処理レイテンシを補償し、正規化済みインプレッション記録を生成するように構成することができる。各正規化済みインプレッション記録は、テレビジョンプロバイダ識別子、挿入識別子、および継続時間を含むことができる。インプレッションフィルタは、正規化済みインプレッション記録をフィルタリング規則と比較し、この比較に基づいて、信頼できる正規化済みインプレッション記録を識別するように構成することができる。
例示的なテレビジョン広告システムのブロック図である。 例示的なテレビジョン広告システムフロントエンドのブロック図である。 例示的なテレビジョン広告配信システムのブロック図である。 例示的なテレビジョン広告スケジューリングおよび報告システムのブロック図である。 例示的なログ処理システムのための環境である。 テレビジョン広告システム中のログ処理システムの例示的な一実装形態である。 例示的な滞留時間プロットである。 例示的な滞留時間プロットである。 例示的な滞留時間プロットである。 ブロードキャスト時間期間中のチャネル同調の例示的なプロットである。 ログを処理して処理済みログからインプレッションを決定するための例示的なプロセスの流れ図である。 ログデータを調整してブロードキャスト遅延を補償するための例示的なプロセスの流れ図である。 信頼できる継続時間と偽陽性の継続時間とを識別するための例示的なプロセスの流れ図である。 ログを処理して処理済みログからインプレッションを決定するための別の例示的なプロセスの流れ図である。 ログを処理して処理済みログからインプレッションを決定するための別の例示的なプロセスの流れ図である。 ログデータから総インプレッションを推定するための例示的なプロセスの流れ図である。 ログを反復的に処理するための例示的なプロセスの流れ図である。 自動生成型チャネル同調時間に基づいて広告コストを調整するための例示的なプロセスの流れ図である。 自動生成型チャネル同調を識別するための例示的なプロセスの流れ図である。 識別されたチャネル同調クラスタに基づいて広告コストを調整するための例示的なプロセスの流れ図である。 自動生成型チャネル同調を識別するための別の例示的なプロセスの流れ図である。 自動生成型チャネル同調を識別するための別の例示的なプロセスの流れ図である。
様々な図面における同じ参照番号および名称は、同じ要素を示す。
図1は、例示的なテレビジョン広告システム100のブロック図である。テレビジョン広告システム100は、例えば、関連のあるコンテンツアイテム(例えばテレビジョン広告、以下では一般に広告と呼ぶ)の広告を視聴者に配信して、オペレータによる番組の貨幣化、およびターゲット市場への広告配信の定量化を容易にすることができる。テレビジョン広告システム100は、例えば、1又は複数のコンピュータサーバ上で実装することができ、ネットワークを介してデータを提供および受信することができる。例示的なネットワークは、ローカルエリアネットワーク(LAN)、ワイドエリアネットワーク(WAN)、電話ネットワーク、およびワイヤレスネットワーク(例えば802.11x準拠のネットワーク、衛星ネットワーク、セルラーネットワークなど)を含む。加えて、テレビジョン広告システム100は、例えば、いくつかの異なるタイプのネットワーク、例えばインターネット、衛星ネットワーク、および電話ネットワークを介して、通信することができる。
一般に、テレビジョン広告システム100は、広告主140から、例えば、製品またはサービスを販売する商業エンティティや広告代理店や人物など、テレビジョン広告を提供するエンティティから、テレビジョン広告および広告キャンペーンデータを受け取ることができる。テレビジョン広告システム100は、テレビジョンプロバイダ160に、例えば、ケーブルプロバイダやデジタル衛星プロバイダやストリーミングメディアプロバイダや他の何らかのメディアプロバイダなど、視聴者へのテレビジョンブロードキャストの配信を容易にするエンティティに、テレビジョン広告を供給するのを容易にすることができる。プロバイダ160は、例えば、テレビジョン広告システム100からプロバイダエージェント162を受け取ることができる。プロバイダエージェント162は、例えば、プロバイダ160の広告ブロードキャスト挿入場所、例えばプロバイダのヘッドエンドに位置することができる。
プロバイダエージェント162は、例えば、広告空き時間スケジュールをプロバイダ160から受け取り、広告空き時間スケジュールをテレビジョン広告システム100に提供することができる。例示的な広告空き時間スケジュールは、広告スポット、タイムスロット、ポッド(タイムスロットのグループ)、画面不動産(例えばオーバーレイ用のテキストバナー中または画面コーナ中の領域)などに関係する、スケジューリングデータを含む。例えば、プロバイダエージェント162は、スケジュール要求をリアルタイムでまたは前もって読み、テレビジョン広告システム100によって提供される広告でどのスケジュール時間を満たす許可をテレビジョン広告システム100が有するかを識別することができる。別法として、プロバイダエージェント162は、1又は複数の基準に従って、すでにスケジュールされた1又は複数の広告を差し替えるべきか否か/差し替えられるか否かを判定することができ、あるいはスケジュールされた広告を差し替えるべきであるという情報を受け取ることができる(例えば、プロバイダにとっての収入生成を向上させるために、または関連する広告がスケジュールされた後で広告主の予算が使い果たされた場合に、等)。プロバイダエージェント162は、識別された放送時間広告スポット、例えば空いている広告スロットまたは差し替えられる広告スロットに対して、関連のある広告を識別するようテレビジョン広告システム100に要求することができる。
広告は、広告メタデータおよび広告コンテキストに基づいて、関連があると見なすことができる。例えば、メタデータが18〜30歳男性を主要視聴者層として識別するテレビ放送スポーツイベント中に放送されるように、思い切ったスポーツ用品の広告を、利用可能な広告予算を有する広告に選択することができる。
テレビジョン広告システム100は、例えば、アカウント広告主の付け値、予算、および、収集された任意の品質測定基準(例えばコンバージョン、視聴者アクション、インプレッションなど)に基づいて、広告空き時間中に放送される候補広告を選択することができる。例えば、コンピュータによって実施されるオークションに従って、広告空き時間中に放送されるように広告を選択することができる。例示的なオークションの1つはヴィックレー(Vickrey)式であり、この場合、各広告主が、次に高い広告の付け値を支払う。他のオークションプロセス(例えば、広告主の付け値を、視聴者インプレッションの推定数と、広告主が各インプレッションにつき支払うことを申し出た金額とを掛けた値に等しく設定するなど)を使用してもよい。
コンピュータによって実施されるオークションにおいて、種々の入札タイプを実施することができる。例えば、入札タイプは、放送ごとのコスト、インプレッションごとのコスト、広告が完全に視聴されるごとのコスト、広告が部分的に視聴されるごとのコストなどとすることができる。電話勧誘から生じた通話、ネットワーク放送ごとのコスト(例えば第1のネットワーク上では1000回のインプレッションにつき5ドル、第2のネットワーク上では1000回のインプレッションにつき6ドル)、時刻によって変倍されるアクションごとコストなど、他のタイプのアクションごとコストを使用することもできる。オークションプロセスは、例えば、種々の入札タイプ、さらには複合的な(ハイブリッド)入札タイプの広告をサポートすることができる。
テレビジョン広告システム100のオークションから選択された広告、広告放送時間、および/または広告は、プロバイダ160に提供することができる。例えば、全ての利用可能な広告、あるいはそのサブセットを、放送前にプロバイダ160に提供することができ、プロバイダエージェント162は、どの広告が特定の広告放送時間中に放送されるかを示す広告識別子を受け取るだけで済む。
プロバイダエージェント162はその後、いつ広告が放送されたかに関するステータスをテレビジョン広告システム100に提供することができる。プロバイダエージェント162はまた、例えば、視聴デバイス164a〜164nに関係する匿名化されたインプレッションデータを提供することができる。例示的な視聴デバイスは、セットトップボックス、デジタルビデオ録画機およびチューナ、ならびに、テレビジョンデバイス上でのテレビジョン信号の視聴を容易にする他のテレビジョン処理デバイスを含む。例えば、視聴デバイス164のアクティビティに関係するログ、例えばセットトップボックスログを匿名化して、視聴アクティビティに関係する個人情報を除去し、テレビジョン広告システム100に提供することができる。別の実装形態では、このような情報は、プロバイダ160または第三者によって提供することができる。
一実装形態では、広告の放送に関するインプレッションデータに基づいて、テレビジョン広告システム100は、広告の放送に対する料金を広告主に課すことができる。料金は、例えば、広告の特定の放送について決定されたインプレッション数に実質的に比例するものとすることができる。
一実装形態では、料金は、例えば入札タイプに基づくことができる。例えば、入札は放送ごとのコストに基づく場合があり、したがって広告主は、広告の放送に対して料金を課されることになる。他の料金決定を使用してもよい。
インプレッションは、例えば統計的に測定することができる。インプレッションは、世帯インプレッション、例えば世帯における広告の放送とすることができ、世帯におけるテレビジョンの数から独立したものとすることができる。世帯における視聴デバイス上で広告が放送された場合、1回の世帯インプレッションを記録することができる。他のインプレッションタイプを使用してもよい。例えば、インプレッションは、番組視聴率パーセンテージ、例えば測定可能な世帯における視聴者数のパーセンテージによって生成することもでき、あるいは、番組共有パーセンテージ、例えばアクティブな測定された家庭における視聴者数のパーセンテージによって生成することもでき、あるいは他の何らかの統計測定によって生成することもできる。
別の例として、インプレッションは、視聴デバイス164のアクティビティログを分析することによって測定することができる。例えば、ある世帯が3つの視聴デバイス164を有し、所定の時点でこれらのデバイスのうちの2つを第1のチャネルに同調させ、第3のデバイスを第2のチャネルに同調させる場合がある。第1のコマーシャルが第1のチャネル上で放送され、第2のコマーシャルが第2のチャネル上で放送される場合、視聴デバイスごとにインプレッションを生成することができる。
インプレッションは、広告がチャネル上で放送されるときのチャネル同調ステータスに依存することができる。例えば、インプレッションは、広告が挿入されるブロードキャストストリームに視聴デバイス164が同調され、視聴デバイス164が挿入の実際の表示時間中に連続N秒間にわたりブロードキャストストリームに同調されたままであるときに、発生することができる。例えば、インプレッションは、視聴デバイスが広告放送開始後5秒間ブロードキャストストリームに同調されたままの場合として定義することができる。別法として、インプレッションは、広告が放送されているときに視聴デバイスがブロードキャストストリームに同調され、ブロードキャストストリームへの同調後5秒間ブロードキャストストリームに同調されたままの場合として定義することもできる。他の同調時間を使用してもよい。
同様に、他のインプレッションタイプを使用してもよい。例えば、インプレッションは、広告露出(例えば広告の短時間の露出)、あるいは広告の完全な視聴、あるいは中間のしきい値視聴(例えば5秒、または最初の15秒のうちの5秒)、あるいは視聴された広告のパーセンテージなどに基づくことができる。
一実装形態では、テレビジョン広告システム100はまた、テレビジョン広告ならびに関連データ(例えばテレビジョン広告に関係するメタデータ、テレビジョン広告に関係する性能データ、広告主およびテレビジョン広告に関係するアカウンティングデータなど)を記憶するための、1又は複数のデータストアを備えることができる。一実装形態では、テレビジョン広告システム100は、広告データストア102、広告パラメータストア104、ログデータストア106、性能データストア108、および帯域外データストア110を備える。追加の広告関連データを記憶してもよく、例えばアカウンティングデータストア112がアカウンティングデータを記憶することができる。
テレビジョン広告データストア102は、例えば、広告スポット中にブロードキャストまたは放送することのできる広告を含むことができる。例示的なテレビジョン広告は、ビデオ広告、バナー広告、広告用のロゴやURLや動的価格設定情報などのオーバーレイ広告、ならびに、テレビジョンブロードキャスト中に視覚的および/または聴覚的に情報を伝えるのに使用できる他の広告を含む。
テレビジョン広告パラメータデータストア104は、例えば、アクションごとコストのパラメータ、頻度値、競合制限、広告予算データ、地理データ、ターゲティングデータなどを含むことができる。テレビジョン広告パラメータ104は、例えば、広告主140によって指定されてもよく、かつ/または、広告キャンペーン中の広告の性能に基づいて自動的に更新されてもよい。
ログデータストア106は、視聴デバイス164、例えばセットトップボックスや衛星受信機などからのデータログを含むことができる。ログデータは、チャネル同調(例えば、視聴デバイス164が録画および/または表示のためにビデオデータを処理しているときに発生する場合のあるものなど、視聴デバイスが同調されたチャネル識別子)ならびにチャネル同調時間(例えば、視聴デバイスがチャネルに同調された時間)を識別する報告データを含むことができる。他のデータ、例えば、視聴デバイス164に関連するリモートデバイスのキー押下や視聴デバイス164によって受け取られたコマンドを含んでもよい。例えば、視聴デバイス164がデジタルビデオ録画機である場合、ログデータは、録画された番組のリスト、ならびに、録画された番組ごとに、録画された番組が再生されたか否かを示す記録、およびコマーシャルの早送りまたはスキップなど再生中に行われたアクションを含むことができる。
性能データストア108は、例えば品質データを含むことができ、例えば、各広告のインプレッション総数または各広告のインプレッションレート、ならびに/あるいは、品質パラメータおよび/またはインプレッションパラメータを含むことができる。例示的なインプレッションレートは、潜在的な全視聴者のパーセンテージ(例えば、識別されたインプレッションの数を加入者数で割った値)、および、インプレッション総数の実際のインプレッションのパーセンテージ(例えば、信頼できるインプレッションのパーセンテージをインプレッション総数で割った値)を含む。例示的な信頼できるインプレッションは、視聴デバイス上で1人または複数の人物によって視聴された可能性が高いことを決定する規則セットまたは条件を満たすインプレッションである。
他の性能データ、例えば、特定の番組中の特定の広告の性能、視聴者が広告中に別のチャネルに合わせることになる確率、視聴者が広告を早送りすることになる確率などを、性能データストア108に記憶することもできる。このような確率を正規化して、広告単位またはタイムスロット単位で、あるいは他の何らかの測定可能単位で挙動を平均することができる。
性能データはまた、広告が放送されたときに視聴者が広告をどれくらい見たかに関係するデータを含むこともできる。例えば、累積チューンイン時間およびチューンアウト時間や視聴者数などに関係する統計を測定し評価して、視聴パーセンテージに基づいて広告に関係する品質データを決定することができる。
帯域外データストア110は、例えば、特定の広告、広告主題、およびテレビジョン番組の、関連性または人気に関係するデータを含むことができる。例えば、ウェブページをマイニングして、特定のテレビジョン番組の視聴率が上昇すると予想されるか否か判定することができる。例えば、番組のファンページの急増を、予想される視聴率値の上昇に相関させることができ、得られたデータを帯域外データストア110に記憶することができる。他のデータは、検索クエリや、広告サイトのページビューなどに関係するデータを含むことができる。
同様に、帯域外データストア110は、例えば、ビデオウェブサイトをマイニングして特に人気のあるテレビジョン広告を識別することから得られたデータを記憶することができる。例えば、特にユーモラスな広告が特定層の間で比較的人気があることを示す視聴統計を、ビデオウェブサイトが記録する場合がある。このようなデータを使用して、広告選択プロセスをさらに精緻化することができる。
加えて、テレビジョン番組に関係するウェブサイトをマイニングして、テレビジョン番組に関係する製品またはサービスの関連性を決定することができる。例えば、特定の番組がエピソード中で製品を参照する場合があり、番組のファンサイトをマイニングすると、この製品への言及がこの製品および関連製品に対するかなりの関心を生み出していることが明らかになる場合がある。したがって、この製品および関連製品に関係する広告が、この番組中のタイムスロットにとってより適切であると見なすことができる。
アカウンティングデータストア112は、例えば、広告および広告主140に関係するアカウンティングデータを記憶することができる。アカウンティングデータストア112は、広告主に関する、キャンペーン予算、月次支出パラメータ、および収支などのデータを記憶することができる。
視聴予測の調整、価格設定モデルの調整、関連性尺度の調整等に利用できるデータなど、他のデータを記憶してもよい。例えば、広告された特定の製品またはサービスに関係する性能データ(例えば匿名化された履歴キャンペーンデータ)、番組視聴率の傾向分析(例えば、初回放送、再放送、およびシンジケーションの、番組シリーズエピソードの視聴統計)などを、分析のために記憶することができる。一実装形態では、広告システム100によって供給されないタイムスロット中に放送された広告に関係するデータを記憶して、他の広告市場モデル、例えば固定価格広告市場や予約広告市場などを分析することができる。
広告データストア102、広告パラメータストア104、ログデータストア106、性能データストア108、帯域外データストア110、およびアカウンティングデータストア112は、別々にまたは組み合わせて実装することができる。例えば、一実装形態では、広告データストア102、広告パラメータストア104、および性能データストア108を、単一の広告データベース中で実装することができる。他の組合せおよび/またはサブコンビネーションを使用してもよい。
テレビジョン広告システム100は、広告フロントエンドエンジン120、広告配信エンジン122、スケジューラエンジン124、候補エンジン126、報告エンジン128、およびアカウンティングエンジン130を備えることができる。広告フロントエンドエンジン120、広告配信エンジン122、スケジューラエンジン124、候補エンジン126、報告エンジン128、およびアカウンティングエンジン130は、例えば、複数のコンピュータデバイス間で、例えばネットワークを介して通信するサーバコンピュータ間で分散させることもでき、あるいは単一のコンピュータ上で、例えばサーバコンピュータ上の複数のスレッドとして実装することもできる。他の実装アーキテクチャを使用してもよい。広告フロントエンドエンジン120、広告配信エンジン122、スケジューラエンジン124、候補エンジン126、報告エンジン128、およびアカウンティングエンジン130は、例えば、実行可能オブジェクトコード、解釈されるスクリプト命令、または実行可能命令と解釈される命令の組合せなど、ソフトウェア中で実装することができる。他のソフトウェアおよび/またはハードウェア実装形態を使用してもよい。
広告フロントエンドエンジン120は、例えば、広告データおよびテレビジョン広告を広告主140から受け取って、広告データをテレビジョン広告と関連付けるように構成することができる。一実装形態では、広告フロントエンドエンジン120はウェブベースのインタフェースを備えることができ、このインタフェースを介して、広告主140は、テレビジョン広告ならびに関連するキャンペーンデータ(例えば、広告予算、視聴者層や放送時間などのターゲティングデータ、垂直分類や価格範囲や主題などの製品および/またはサービス記述データ)をアップロードすることができる。
一実装形態では、広告フロントエンドエンジン120は、テレビジョンプロバイダ160による承認保留中のテレビジョン広告を識別するように構成された承認エンジンを含むことができる。承認エンジンを利用して、パブリッシャ160は任意選択で、広告を検討して広告を承認するかまたは不可とすることができる。例えば、ケーブルプロバイダが、特に低品質の広告、例えば音質の悪い広告、正しくない広告データの広告などを不可とすることができる。広告配信エンジン122は、例えば、承認された広告をテレビジョンプロバイダ160に提供するように構成することができる。一実装形態では、広告は、広告の放送前にテレビジョンプロバイダ160に提供される。プロバイダエージェント162は、ダウンロードすべき新しい広告があればそれらを求める要求を、テレビジョン広告システム100に定期的に発行することができる。そのような広告があれば、プロバイダエージェント162または配信エンジン122はダウンロードを開始することができ、うまく完了すると、プロバイダエージェント162は、ダウンロードの成功をテレビジョン広告システム100に通知することができる。テレビジョン広告システム100は、例えば、ダウンロードに特定のIDをラベル付けすることができ、このIDは後で、スケジューリング中に、スケジュールされる広告を識別するのに使用することができる。したがって、パブリッシャ160は、広告空き時間(例えばタイムスロット)に関連する広告識別子を受け取ることができ、テレビジョンプロバイダ160の構内でローカルに広告を取り出し、選択された広告をブロードキャストストリームに挿入することができる。
テレビジョン広告スケジューラエンジン124は、例えば、テレビジョン空き時間を定義するテレビジョン広告要求をテレビジョンプロバイダ160から受け取り、候補テレビジョン広告データ、例えば広告空き時間を満たすために選択される候補である広告に関係するデータを求める要求を発行するように構成することができる。テレビジョン広告要求は、地理データ、プロバイダ識別、ネットワークデータ、番組データ、および他のデータを含むことができる。例えば、要求は、米国/カリフォルニア州/ベイエリア/マウンテンビューの地理領域で表示できる広告であって、テレビジョンプロバイダのリモートリポジトリIDがXXであり、テレビジョンプロバイダYYに関し、テレビジョンネットワークZZ上で、月曜午後2:00〜午後3:00の時間ウィンドウ内で、好ましい時刻として午後2:16にスケジュールされるべき広告を指定することができる。
候補エンジン126は、例えば、候補テレビジョン広告データを求める要求に応答して候補テレビジョン広告データを識別するように構成することができる。この識別は、広告パラメータデータストア104に記憶されたデータなど、テレビジョン広告に関連するデータに基づくことができる。候補エンジン126は、様々なターゲティングおよび/またはフィルタリング規則を実施することができる。例えば、広告主の予算が実質的に使い果たされ、予想されるインプレッションに基づく予想される広告放送料金が残りの広告予算を超えることになる場合には、予算制限を課すことができる。
他の例示的な規則は、広告がテレビジョンプロバイダ160にうまくダウンロードされること、広告が、広告が表示されることになる場所または場所のスーパーセットをターゲットとすること、広告主140または広告が詐欺または滞納と見なされてはならないこと、パブリッシャ160が広告を表示のために承認済みであること、広告がこの特定のテレビジョンネットワークおよび/または時間をターゲットとしていること、広告が、内部または第三者データソースを介して所定の要求に対応するテレビジョン番組をターゲットとしていること、ならびに、広告が、内部または第三者データソースを介して所定の要求に対応する視聴者層プロファイルをターゲットとしていることを含む。より少数または多数のフィルタリングおよびターゲティング条件を適用してもよい。
候補広告データを受け取るのに応答して、テレビジョン広告スケジューラエンジン124は、テレビジョン広告空き時間中に放送される1又は複数のテレビジョン広告を選択することができる。この選択は、テレビジョン広告要求および候補テレビジョン広告データに基づくことができる。例えば、テレビジョン広告要求を利用してコンテキストを決定することができ、コンテキストは例えば、スポーツイベント、娯楽ジャンル、ニュース番組など、広告に関連する番組のコンテキスト、またはテレビジョンネットワークのコンテキスト(例えばネットワークタイプ)、またはテレビジョンチャネルのコンテキスト、または時刻のコンテキスト、またはこのような例のいずれかの組合せである。コンテキストを利用して関連性スコアを決定することができ、関連性スコアを利用してオークション結果を変倍し、識別されたコンテキストに対する関連性がより高い広告に関係する付け値が、関連性がより低い広告に関係する付け値よりもより高く変倍されるようにすることができる。
一実装形態では、スケジューラエンジン124および/または候補エンジン126は、広告制限を施行することができる。例えば、スケジューラエンジン124および/または候補エンジン126は、広告をフィルタにかけて、望ましくない広告を除去することができる。例えば、頻度上限制限を実施して、広告が最後に放送されてからの時間量に基づいていくつかの広告のスケジューリングを制限すること、競合制限を適用して、ある広告を競合相手の別の広告の近くに配置できないようにすることなどができる。
報告エンジン128は、例えば、プロバイダ160からテレビジョン広告報告データを受け取り、テレビジョン広告報告データに基づいて、選択されたテレビジョン広告が放送されたか否か判定することができる。例えば広告は、番組の不規則性、例えばスポーツイベントがスケジュール済みブロードキャストを超過したり、スケジュール済み番組がニュース速報のせいで中断されたりするなどにより、放送されない場合がある。一実装形態では、報告エンジン128は、視聴者デバイス164からの報告ログ、例えばセットトップボックスログを処理して、広告インプレッションおよび/または偽陽性インプレッションを決定することができる。
アカウンティングエンジン130は、例えば、報告エンジン128からインプレッションデータを受け取り、広告主に関するアカウンティングデータを生成することができる。一実装形態では、アカウンティングデータは、テレビジョン広告システム100に支払うべき料金を詳述することができる。この料金は、例えば、広告に関連するアクションごとコストのパラメータに基づくことができる。例えば、広告主がテレビジョンコマーシャルの1000回のインプレッションごとの最大コストとして10ドルを指定しており、報告データが広告の放送から420000回の信頼できるインプレッションが生成されたことを示す場合は、広告主に4200ドルを請求することができる。
別の実装形態では、アカウンティングデータは、収入分配合意に従った、テレビジョン広告システム100とパブリッシャとに支払うべき料金を詳述することができる。例示的な収入分配合意は、テレビジョン広告システム100とテレビジョンプロバイダ160とのオペレータ間のパーセンテージ分割を含むことができる。例えば、テレビジョン広告システムのオペレータは料金の20%を受け取り、パブリッシャ160のオペレータは料金の残りの80%を受け取ることができる。別の例示的な収入分配合意は、最大上限までの第1の料金がテレビジョン広告システムのオペレータに行き、残りの料金がテレビジョンプロバイダ160のオペレータに行くことを含むことができる。例えば、テレビジョン広告システムのオペレータは料金の第1の500ドルを受け取り、パブリッシャ160のオペレータは料金の残りを受け取ることができる。他の料金分配合意を使用してもよい。
広告フロントエンドエンジン120、広告配信エンジン122、スケジューラエンジン124、候補エンジン126、報告エンジン128、およびアカウンティングエンジン130は、別々にまたは組み合わせて実装することができる。例えば、一実装形態では、スケジューラエンジン124と候補エンジン126を、コンピューティングデバイス上の単一のオークションエンジン132として統合することができる。他の組合せおよび/またはサブコンビネーションを使用してもよい。
図1のシステム100はまた、他のタイプの広告空き時間の供給を容易にすることもできる。例えば、広告スポット、タイムスロット、およびポッドに関係する広告空き時間を供給することに加えて、動的な広告空き時間、例えばリアルタイムで決定される空き時間を供給することもできる。例示的な動的空き時間は、広告主の要求によるかまたは自動的な、スケジュール済み広告のキャンセルを含むことができ、これは、広告主の予算が使い果たされたとき、または、番組遅延の場合、例えばライブイベントのための番組遅延などである。
図2は、例示的なテレビジョン広告フロントエンドシステム200のブロック図である。テレビジョン広告フロントエンドシステム200は、例えば、図1の広告システム100中で実装することができる。
広告フロントエンドシステム200は、広告主140または広告主の代理人から広告データおよびテレビジョン広告を供給するのを容易にすることができ、広告データをテレビジョン広告と関連付けるのを容易にすることができる。一実装形態では、広告フロントエンドシステム200は、ウェブベースのフロントエンドインタフェース202および広告アップロードサーバ204を備えることができ、これらを介して、広告主140は、テレビジョン広告、および広告に関連する関連キャンペーンデータ(例えば、広告予算、視聴者層や放送時間などのターゲティングデータ、垂直分類や価格範囲や主題などの製品および/またはサービス記述データ)をアップロードすることができる。図5〜9に、例示的なフロントエンドユーザインタフェース環境を提供する。
一実装形態では、広告アップロードサーバ204は、例えば、コマーシャルやバナーやロゴオーバーレイを含めたビデオ広告、オーディオ広告、およびテキストベースの広告などの広告を定義する、広告のデジタル表現(例えばビデオファイル、オーディオファイル、およびテキストデータファイル)を受け取ることができる。別の実装形態では、広告は、広告データストア102への記憶のために処理されるように、デジタルまたはアナログの形で、例えばビデオテープやDVDなどで、広告フロントエンドシステム200に提供することができる。
広告データストア102に記憶される広告は、1又は複数の異なる提示フォーマットにトランスコード(transcode)する必要がある場合がある。例えば、広告が高精細度および第1のアスペクト比で提供される場合があり、したがってこの広告は、NTSCまたはPALなど別のビデオ標準に準拠するようにトランスコードされる場合がある。トランスコードされた広告は、ビデオストリーマ212によってアクセスして、ローカル記憶のためにプロバイダ160に提供することができる。一実装形態では、プロバイダエージェント162は、広告フロントエンドシステム200を定期的に、例えば毎日または毎週ポーリングし、アップロードされ広告フロントエンドシステム200によって処理された新しい広告があればそれを要求することができる。別法として、プロバイダエージェント162は、広告をローカルに配置することができなかった後で、あるいは広告をローカルデータストア中に配置することができないことをプロバイダ160が示した場合に、新しい広告を要求することができる。
一実装形態では、新たに追加された広告を承認保留中として指定することができ、承認エンジン208が、テレビジョンプロバイダによる承認保留中のテレビジョン広告を識別して、保留中の広告を、または保留中の広告へのリンクを承認ビン210に記憶するように構成することができる。承認エンジンは、承認保留中の各テレビジョン広告につきテレビジョンプロバイダ160の承認データを受け取り、テレビジョンプロバイダの承認データに基づいてテレビジョン広告を承認するかまたは不可とすることができる。承認された広告は、その後、プロバイダ160がダウンロードするかまたは他の方法でアクセスすることができ、反対に、不可とされた広告はプロバイダ160に提供されないことになる。したがって、承認された広告のみが、プロバイダ160によって生成されたブロードキャスト信号上で放送されることになる。
一実装形態では、承認を待っている広告は、例えば72時間などの時間期間の満了後に、自動的に承認されるものとすることができる。別の実装形態では、承認を待っている広告は、この時間期間の満了後に自動的に不可とされるものとすることができる。
別の実装形態では、承認エンジンは、承認保留中の各テレビジョン広告につきフロントエンドシステム200の承認データを受け取り、フロントエンドシステム200の承認データに基づいてテレビジョン広告を承認するかまたは不可とすることができる。例えば、フロントエンドシステム200のオペレータは、広告に対する様々なポリシ、例えば品質要件や主題などを施行することができる。
一実装形態では、承認エンジン208は自動化承認エンジン209を備え、自動化承認エンジン209は、提示フォーマットごとに承認基準を記憶し、ある提示フォーマットのテレビジョン広告を、対応する承認基準に対して評価するように構成される。この評価に基づいて、自動化承認エンジン209は、広告を自動的に承認するかまたは不可とすることができる。例えば、色バランスや音声バランスなどに基づく承認基準を利用して、トランスコード済み広告を自動的に承認することができる。その後、自動的に承認された広告、または自動的に承認された広告へのアクセスを、承認ビン210に提供することができる。
広告がプロバイダ160にダウンロードされた後、または、広告をプロバイダが放送できるように他の方法で広告へのアクセスがプロバイダに提供された後で、プロバイダエージェント162は、広告フロントエンドシステム200に確認信号を提供することができる。確認信号は、例えば、パブリッシャが広告を受け取ったかまたは他の方法で放送のために広告へのアクセスを有することを指定することができる。確認信号はパブリッシャを識別することができ、確認信号は、各広告を放送できる対応するパブリッシャ160のリストにその広告を関連付けることができるように、広告パラメータデータストア104に記憶することができる。
一実装形態では、ネットワークインタフェース214を利用して、広告データストア102に記憶された広告へのアクセスを提供することができる。例えば、ネットワークインタフェース214は、検索エンジンインタフェースを備えることができ、広告に関連のある検索クエリに応答して、インターネットなどのネットワークを介して広告を供給することができる。一実装形態では、広告主140は、パブリッシャによって放送できる広告を、ネットワークインタフェース214によってネットワークを介しても同様に供給できるか否か指定することができる。
図3は、例示的なテレビジョン広告配信システム300のブロック図である。広告配信システム300は、例えば、図1の広告システム100中で実装することができる。
広告配信システム300は、テレビジョンプロバイダ160に関連するローカルデータストア、例えばローカルストア166に広告を記憶するのを容易にする。広告をローカルストア166に記憶することは、例えば、リアルタイムまたは実質的にリアルタイムの広告のオークションおよびスケジューリングを容易にすることができ、例えば、利用可能なタイムスロットまたはスポットに対して、そのタイムスロットが発生するほんの数時間前に、さらには数分前にでも広告のオークションを行うまたはスケジュールすることを容易にすることができる。
一実装形態では、プロバイダエージェント162は、広告配信エンジン122と通信して、ローカルストア166に記憶するために広告が入手可能か否か判定することができる。一実装形態では、プロバイダエージェント162は、広告配信エンジン122を定期的に、例えば毎日や毎週など、ポーリングすることができる。別の実装形態では、広告配信エンジン122は、広告がダウンロードに利用可能なとき、例えばプロバイダ160が1又は複数の広告を承認したのに応答して、プロバイダエージェント162に通知を送ることができる。
広告がダウンロードに利用可能な場合、広告配信エンジン122は、プロバイダエージェント162およびビデオストリーマ、例えばビデオストリーマ212に対して、広告を広告ストア102からローカルストア166にダウンロードするための通信セッションを確立するよう指示することができる。追加のデータ、例えば、広告識別子、または例えば広告パラメータストア104に記憶された他の広告パラメータをダウンロードすることもできる。ダウンロードがうまく完了すると、プロバイダエージェント162は、広告配信エンジン122に確認信号を送ることができる。この確認信号を利用して、例えば、広告をテレビジョンプロバイダの位置と関連付けることができ、またテレビジョン広告がプロバイダ160の位置にあるローカルストア166に記憶されていることを示すことができる。
一実装形態では、広告配信エンジン122は、広告パラメータストア104に記憶された広告パラメータを評価して、どのプロバイダ160に広告を配信すべきかを決定することができる。例えば、広告がカリフォルニア州マーケティングキャンペーンに関係することを広告パラメータが指定する場合、この広告は、カリフォルニア州市場にサービスするプロバイダ160のみに配信されることになる。
一実装形態では、広告は、広告システム100により、プロバイダ160によって指定された提示フォーマットにトランスコードすることができる。別の実装形態では、プロバイダ160が、広告を標準フォーマット、例えばMPEGフォーマットで受け取り、この広告を適切な提示フォーマットにトランスコードすることができる。
別の実装形態では、広告は、テレビジョン広告システム100からプロバイダ160にリアルタイムでまたは放送時間中にストリーミングすることができる。したがって、広告をローカルデータストア166に記憶する必要はない。
図4は、例示的なテレビジョン広告スケジューリングおよび報告システム400のブロック図である。テレビジョン広告スケジューリングおよび報告システム400は、例えば、図1の広告システム100中で実装することができる。
一実装形態では、プロバイダエージェント162は、空き時間スケジュール402の形で、広告要求または広告空き時間を受け取ることができる。空き時間スケジュール402は、広告空き時間(例えばタイムスロット)、対応するコンテキスト(例えばテレビジョン番組)、広告空き時間タイプ(例えば単一のスポット、または複数スポットのポッド)、および他のデータ(地理データ、プロバイダ識別データ、ネットワークデータなど)のリストを含むことができる。
空き時間スケジュール402は、例えば、定期的に(例えば次週に関する週単位で、または毎日)、あるいは、実質的にリアルタイムまたはリアルタイムで提供することができる。プロバイダエージェント162は、例えば、プロバイダ160によって管理されるデータサーバのためのAPIなど、プロバイダインタフェース170と通信することができる。別の実装形態では、プロバイダインタフェース170は、プロバイダエージェント162中で実装されてもよい。
プロバイダエージェント162は、広告スケジューリングおよび報告システム400のスケジューリングエンジン124に空き時間スケジュール402を提供することができる。スケジューリングエンジン124は、例えば、候補エンジン126と通信して、空き時間スケジュール402中で指定された広告スポットを満たすのに適格な広告に関連する候補テレビジョン広告データを識別することができる。図1に関して上述したように、候補エンジン126は、様々なターゲティングおよび/またはフィルタリング規則を実施することができる。
スケジューリングエンジン124は、空き時間スケジュール402中で定義されたテレビジョン広告空き時間中に放送される1又は複数のテレビジョン広告を選択することができる。この選択は、空き時間スケジュール402(例えばタイムスロットおよび関連するコンテキスト)、ならびに候補テレビジョン広告データに基づくことができる。コンテキストを利用して関連性スコアを決定することができ、関連性スコアを利用してオークション結果を変倍し、識別されたコンテキストに対する関連性がより高い広告に関係する付け値が、関連性がより低い広告に関係する付け値よりもより高く変倍されるようにすることができる。
スケジューリングエンジン124は、アクションごとのコスト(例えば1000回のインプレッションごとのコスト)またはネットワークごとのコスト(ネットワークM上では5ドル、ネットワークY上では6ドル)などに、品質スコア、例えば広告に関連する履歴インプレッションレート(広告を視聴したと決定される視聴者数を、広告を受信した視聴者総数で割った値など)を掛けた値に基づいて、ヴィックレー式オークションを利用することができる。品質スコアを決定するのに使用できる他の要因を、性能データストア108に記憶された性能データ(例えば、特定の番組中の特定の広告の性能、視聴者が広告中に別のチャネルに合わせることになる確率、視聴者が広告を早送りすることになる確率など)から導出することもできる。
例えば、候補エンジン126が、特定の広告スポットに適する3つの広告を識別すると仮定する。スケジューリングエンジン124は、広告についての最大アクションごとコストに広告の品質スコアを掛けることにより、広告のオークションランクを決定することができる。例示として、広告A、B、およびCの品質スコア(QS)がそれぞれ「2」、「3」、および「1.2」であると仮定する。広告A、B、およびCのランクは、以下のように決定することができる。
A:ランク= QS×最大アクションごとコスト= 2.0×$5.00 = 10.00
B:ランク= QS×最大アクションごとコスト= 3.0×$7.50 = 22.50
C:ランク= QS×最大アクションごとコスト= 1.2×$10.00 = 12.00
したがって、広告を以下のようにランク付けすることができる。
1. B
2. C
3. A
よって、広告Bが選択されて、広告スポット中に表示されることになる。一実装形態では、広告Bの所有者が1000回のインプレッションごとに支払うことになる実際のコストは、後続の広告ランク(C)を広告Bのスコアで割った値、例えば12/3 = $4.00によって決定することができる。他のオークションプロセスを使用してもよい。
別の実装形態では、1組の広告スポット、例えば複数の30秒広告スポットのポッドについて、各スポットを別々にオークションにかけることができる。別の実装形態では、ポッド全体をオークションにかけることができ、最も高くランクされた複数の広告をポッド中での表示用に選択することができる。例えば、広告A、B、およびCについて上に例示したオークションが、2つの広告スポットのポッドに対して行われた場合、コマーシャルBおよびCが選択されることになる。
一実装形態では、インプレッションレートを、初期デフォルト値、例えば、関連する視聴者層領域またはターゲット領域における広告の累積インプレッションレートに等しいレートに設定することができ、その後、履歴性能に基づいて修正することができる。
一実装形態では、スケジューラエンジン124および/または候補エンジン126は、広告制限を施行することができる。例えば、スケジューラエンジン124および/または候補エンジン126は、広告をフィルタにかけて、望ましくない広告を除去することができ、例えば、ある広告を競合相手の別の広告の近くに配置することができないように、競合制限を適用することができる。例えば、広告スポット用のテレビジョン広告空き時間ウィンドウを生成することができる。この広告空き時間ウィンドウは、例えば5分などの時間ベースとすることもでき、あるいは広告ベース、例えば広告スポット前の3つの広告スポットおよび広告スポット後の3つの広告スポットとすることもできる。したがって、テレビジョン広告空き時間ウィンドウ中に放送されるように選択されるテレビジョン広告の競合制限と相容れない競合制限が関連する広告は、その空き時間ウィンドウに対して選択されないようにすることができる。例えば、会社Aと会社Bが、同じ製品の直接の競合相手であり、広告スロットがオークションに利用可能な場合、会社Bの広告は、関連する広告空き時間ウィンドウ中に、例えば所定数の広告スロット内または所定の時間量内に、会社Aの広告が放送されていないかまたは放送されない場合にのみ、オークションに適格とすることができる。
頻度上限制限を実施して、最後に広告が放送されてからの時間量に基づいて特定の広告のスケジューリングを制限することができる。例えば、テレビジョン広告に関連する頻度値、例えば1時間当たりの広告表示レートを記録することができる。広告の現在の頻度値が反復しきい値を超える場合、この広告は、広告空き時間中に表示されないようにすることができる。
同様に、地理データを使用して地元広告をフィルタにかけることができる。例えば、空き時間スケジュールは、カリフォルニア州サンフランシスコにおける広告空き時間を定義する場合がある。したがって、サンフランシスコをターゲットとしない対象限定型の地元広告、例えばカリフォルニア州ロサンゼルスの地元の自動車販売代理店の広告は、サンフランシスコ地域向けの広告空き時間中に表示されないようにすることができる。
広告空き時間に対して広告が選択されると、選択された広告に関係するデータならびに意図された表示時間(例えば、広告識別子、および、対応する広告が表示されることになる対応するタイムスロット)を、広告スケジュール404としてプロバイダ160に提供することができる。広告スケジュール404には、挿入器172および変調器174によってアクセスすることができ、挿入器172および変調器174を利用して、ローカルストア166に記憶された広告をブロードキャストストリーム176に挿入することができる。
広告が放送されたか否かを示すデータを含む検証報告406を、プロバイダエージェント162に提供することができる。一実装形態では、検証報告406は、広告が放送されたか否かを示すデータ、広告の放送時間、および広告が放送されたチャネルを含む。プロバイダエージェント162は、検証報告406を、報告エンジン128によって処理されてアカウンティングデータ112に記憶されるように、テレビジョン広告スケジューリングおよび報告システム400に送信することができる。次いで、契約上の義務に応じて、例えば広告主にインプレッションに従った料金請求されるか均一料金が課されるかに応じて、アカウンティングエンジン130は、対応する広告主アカウントに支払われるべき何らかの料金を課すことができる。
別の実装形態では、実際の視聴に関係するデータ、例えばセットトップボックスログファイルや報告記録などのインプレッションデータ408を、プロバイダ160に提供することができる。インプレッションデータ408は、インプレッションデータ報告410としてプロバイダエージェント162に提供することができる。インプレッションデータ報告410は、実際および/または推定のインプレッション数に関係するインプレッション値を決定する処理のために、報告エンジン128に提供することができる。インプレッション値は、アカウンティングエンジン130が使用して、対応する広告主アカウントに支払われるべき何らかの料金を課すことができる。
一実装形態では、インプレッションデータ408は、視聴デバイス164のログ、例えば報告記録などのセットトップボックスアクティビティデータによって、定義することができる。例えば、チャネル変更およびタイムスタンプを含めたユーザアクティビティを記録して、定期的に、例えば毎日や毎週、ログの形でプロバイダ160に提供することができる。このログは、例えば、タイムスタンプが広告挿入時間に相関されるように、報告エンジン128によって処理することができる。一実装形態では、広告が挿入された時間中にブロードキャストストリームに同調された各視聴デバイス164は、インプレッションとしてカウントされる。加えて、広告の部分視聴に関するチューンイン時間およびチューンアウェイ時間など、他のインプレッションデータを決定してもよい。ログデータは、同調されたテレビジョンのインプレッションを効果的に測定することができるので、世帯ごとに複数のインプレッションを生成することができる。
別の実装形態では、キャッシングレイヤ420を利用して、広告選択と広告要求の処理とに関係するデータをキャッシュすることができる。キャッシングレイヤ420は、例えば、オークションプロセスの性能を最適化するのに利用することができる。
一実装形態では、プロバイダエージェント162は、特定の視聴デバイス164およびアカウント情報に関係するデータがテレビジョン広告スケジューリングおよび報告システム400によって受け取られる前に、このデータを匿名化することができる。各視聴デバイス164を匿名エンティティとして表すことができ、アカウント情報を、ZIPコードよりも粒度の細かくない位置情報に関連付けることができる。
別の実装形態では、インプレッションデータ408は、統計測定値によって、例えば視聴率推定値に対する局所的および/または地域的サンプリングならびに外挿によって定義することができ、第三者によって提供することができる。例えば、ニールセン(Nielsen)視聴率データを使用して、視聴率推定値および対応するインプレッション推定値を決定することができる。
別の実装形態では、広告は、ビデオオンデマンドユーザ、デジタルビデオ録画機ユーザなどをターゲットとすることができる。したがって、広告スケジューリングデータ404は、リアルタイムまたは実質的にリアルタイムの要求を含むことができる。
図5は、例示的なログ処理システムのための環境である。ログ処理エンジン502が、報告記録などのログを、視聴デバイス164、例えばセットトップボックスやデジタルビデオ録画機などから受け取り、ログを処理して特定の広告の視聴者を決定し、広告の品質に関する情報を、例えばインプレッションによって測定される広告の性能を推論することができる。
視聴デバイス164は、例えば、ある期間、例えば典型的には1週間にわたって視聴デバイス164が受け取ったキー押下およびチャネル同調を記録するログファイルを提供することができる。ログデータはまた、チャネル同調(例えば視聴デバイスが同調されたチャネル識別子)およびチャネル同調時間(例えば視聴デバイスがチャネルに同調された時間)を識別する報告データ、例えば報告記録を含むこともできる。しかし、処理遅延のせいで、視聴デバイス164のログファイルは、所定の放送時間に対して同じ時間インデックスを識別しない場合がある。例えば、ブロードキャストシステム中では、ブロードキャストにビデオフレームを挿入するアナログスプライサ510が第1の時間遅延530を有することがある。同様に、エンコーダ512と統計時分割マルチプレクサ(statmux) 514と送信衛星通信デバイス516と衛星518と受信衛星通信デバイス520と視聴デバイス164とを有するブロードキャストシステムには、第2の時間遅延540が内在する場合がある。時間遅延530および540は、例えば、特定のハードウェア製品に基づいてモデル化することができる。通常、statmux 514は地上動的タイムスタンプ(TDT)を挿入し、したがって、視聴デバイス164上の時間ログは、衛星送信時間によって変動することになる。
他の遅延を識別してもよい。例えば、異なる場所で挿入された広告、例えばニューヨークのヘッドエンドとロサンゼルスのヘッドエンドで挿入された広告、または、ニューヨークのルートフィードと地元の中継放送局で挿入された広告を識別することができる。例えば、第1の遅延時間が、20:37:00の東海岸タイムスロットにおけるコマーシャルの全国ブロードキャストについて識別され、第2の遅延時間が、同じ晩の20:37:00の西海岸タイムスロットにおけるコマーシャルの全国ブロードキャストについて識別される場合がある。
いくつかの実装形態では、テレビジョン処理デバイス、例えばセットトップボックスの同調取得時間をモデル化することもできる。同調取得時間は、同調が報告されてからテレビジョン処理デバイスが実際にコンテンツのレンダリングを開始できるまでにどれくらいかかるかを決定し、デバイス依存および/またはストリーム依存とすることができる。例えば、デバイス依存パラメータは、デバイスが特定の周波数にロックするのに必要な平均時間または最長時間を含むことができる。ストリーム依存パラメータは、テレビジョンがコンテンツの表示を開始できるようにストリームがデコードされるための平均時間または最長時間を含むことができる。これらのパラメータは、例えば、ストリームのエンコーディングプロパティと、テレビジョン処理デバイスモデルとに依存することができる。例えば、第1の銘柄のセットトップボックスは平均同調時間取得が550ミリ秒である場合があり、第2の銘柄のセットトップボックスは平均同調時間取得が300ミリ秒である場合がある、等である。
例えば図4で受け取られたインプレッションデータ408など、視聴デバイスに関するログが受け取られると、ログ処理エンジン502は、サービスにおける(例えばスプライシングと表示との間の)様々な遅延を考慮に入れるように、タイムスタンプを調整する。得られた正規化済みログデータ504が分析されて、広告の品質、例えば、何パーセントの人が広告を最後まで視聴するか、中央チューンアウト時間や平均視聴長さはどれだけか、などが決定される。例えば、広告の終了に対応する時間インデックスでチャネルが変更され、したがって視聴者が広告を見た後でチャネルを変更したことが示される場合は、ログ処理エンジン502は、広告が視聴されたと判定することができる。反対に、広告の開始に対応する時間インデックスでチャネルが変更され、したがって視聴者が広告放送時にチャネルを変更したことが示される場合は、ログ処理エンジン502は、広告が視聴されなかったと判定することができる。
加えて、ログ処理エンジン502は、「偽陽性(false positive)」を検出することができる。例えば、実際には広告が視聴されなかった可能性が高いときの、広告が視聴されたという指標を検出することができる。例えば、視聴者が午後10:14まではしばしばチャネルを変更したが、それからその晩の残りはチャネルを変更しなかったことを、匿名化されたログのログデータ504が示す場合、ログ処理エンジン502は、午後10:30より後は、視聴者が眠ったかテレビジョンを見るのをやめたかもしれないので、視聴者によって見られた広告はなかったと決定することができる。一実装形態では、ログ処理エンジン502は、視聴デバイス164のイベントに対して1時間の時間切れ期間を適用することができる。時間切れ期間中に視聴デバイス164のイベントが発生しない場合は、視聴者がテレビジョン524をもはや視聴していない可能性が高い。ビデオ録画デバイスによって生成されたチャネル同調を示す可能性のある自動生成型チャネル同調イベント、ネットワークおよび現地時刻に基づく可変滞留時間(dwell time)、匿名化されたデバイスごとのチャネル変更挙動等を検出することなど、他の偽陽性検出アルゴリズムを使用してもよい。
ログ処理エンジン502中で実施できる例示的なプロセスは、以下のとおりとすることができる。ログファイル(例えばセットトップボックスログファイル、デジタルビデオ録画機ファイルなど)が、プロバイダ160などのプロバイダから、ログ処理エンジン502によってアクセス可能なローカルファイルシステムにコピーされる。調整プロセスが、視聴デバイス164のイベントを識別し、サービスにおける(例えばスプライシングと表示との間の)様々な遅延を考慮に入れるようにタイムスタンプを調整する。偽陽性検出処理が、各視聴デバイスのイベントストリームを分析することによって偽陽性を調節することができる。信頼できるイベントである視聴デバイスイベントを利用して、広告視聴が識別される。インプレッションプロセッサが、信頼できるイベントと、特定のチャネル上でいつ広告が挿入されたかを識別する挿入記録とを利用して、視聴率インプレッションを決定する。受け取られる視聴デバイス164ログが全てに満たない場合は、報告元セットトップボックスの数を利用して、特定の広告の視聴率を外挿(または予測)することができる。他の測定基準、例えば、中央チューンアウト時間、広告を最後まで視聴した視聴者のパーセンテージ、各広告の平均視聴時間などを計算してもよい。
図6Aは、テレビジョン広告システム中のログ処理システム600の例示的な一実装形態である。ログ処理システム600は、例えば、図1の広告システム100中で、または図5のログ処理システム中で実装することができる。
一実装形態では、インプレッションデータ408(例えば、報告データ、セットトップログ、または、テレビジョン処理デバイスアクティビティを記述する他のデータ)を視聴率コレクタエンジン602に提供することができる。視聴率コレクタエンジン602は、例えば、プロバイダエージェント162中で実装することができ、あるいは、プロバイダ160によって提供されるソフトウェアおよび/またはハードウェアとすることができる。インプレッションデータ408は、各視聴デバイスのチャネル同調および対応する同調時間を識別することができ、また、キー押下ログなど他のデータを含むこともできる。
匿名化エンジン604を利用して、例えば、個人を特定できる情報があればそれを除去し、粒度を特定領域(例えばZIPコードや都市など)に低減することができる。アカウンティングエンジン606が、匿名化されたアカウントデータ(例えば、各視聴デバイス164からの各ログデータセットに関連する特定不可能なアカウントプロファイル)を提供することができる。例示的な匿名化されたアカウントデータは、加入者パッケージ詳細(例えばプレミアムプロバイダパッケージ、基本プロバイダパッケージなど)、許可済みチャネルのリスト、視聴者デバイス164の視聴者層データ、チャネルマップデータなどを含むことができる。
匿名化されたデータは、生データ409として記憶することができる。生データの例示的なフォーマットは、コンマで分離された値の/パイプで区切られたデータファイル、または、特定フォーマットの他の何らかのデータファイルを含む。生データファイル409は、例えば、インプレッションデータ報告410中の記録など、フォーマット済みデータファイルに変換して、インプレッションレシーバエンジン620に提供することができる。フォーマット変換は、例えば、プロバイダ160において、例えばプロバイダエージェント162によって実施することができ、あるいは、ログ処理システム600の位置で実施することができる。
インプレッションレシーバエンジン620は、例えば、テレビジョンプロバイダ160からの報告データ、例えばインプレッションデータ報告410と、テレビジョンプロバイダ160によって提供される他の任意のデータ、例えば番組スケジュールなどを受け取ることができる。報告データは、例えば、テレビジョン処理デバイス、例えば視聴者デバイス164によって報告された、チャネル識別子、関連する同調イベント、および関連する同調時間を定義する記録を含むことができる。テレビジョン広告の挿入時間および意図された表示時間を含めたテレビジョンプロバイダ160のデータなど、他のデータをインプレッションレシーバエンジン620に提供してもよい。
受け取られたデータ410は、例えば、データストア610に記憶することができる。一実装形態では、データストア610は、広告データストア102、広告パラメータストア104、ログデータストア106、性能データストア108、帯域外データストア110、アカウンティングデータストア112のうちの1又は複数を含むことができる。
インプレッションプロセッサエンジン630が、インプレッションレシーバエンジン620から報告記録を受け取り、正規化およびフィルタリングエンジン632を実行して、テレビジョン処理遅延に対して関連する同調時間を調整し、信頼できる報告記録と偽陽性の報告記録とを識別することができる。
正規化は、例えば、関連する同調時間を調整して、テレビジョン処理レイテンシ、例えば信号配信および同調レイテンシを補償することができる。プロバイダからの生の報告記録、ならびに、プロバイダのブロードキャストスケジュールおよび処理機器に関する様々なメタデータから判断して、インプレッションプロセッサエンジン630は、挿入時間、意図された表示時間、および/または実際のブロードキャスト時間の間のレイテンシ問題を解決する。一実装形態では、インプレッションプロセッサエンジン630はまた、例えば、視聴者デバイス164によって報告された同調イベントのチャネル識別子を、プロバイダの番組データと照合して、大域的に一意の識別子ストリームに正規化することもできる。例えば、インプレッションプロセッサエンジン630への入力が、特定の視聴デバイスに関する以下のチャネル同調および同調時間を定義する報告記録である場合がある。
V_ID00001111:Channel=123.Start=4.05:00pm.end=4:06:00pm
ここで、V_ID00001111は、匿名化された視聴デバイス164の識別子であり、Channelはチャネル識別子であり、Startは、チャネル識別子によって識別されるチャネルに視聴デバイス164がチャネルを合わせたときを示す第1の同調時間であり、Endは、チャネル識別子によって識別されるチャネルから視聴デバイス164がチャネルを変えたときを示す第2の同調時間である。インプレッションプロセッサエンジン630は、以下の例示的な正規化済み報告記録を生成することができる。
V_ID00001111:OperatorID=1243.HeadendID=22.InsertionZone=243.InsertionID=53432934.Channel=123.Start=4:04:52pm.End=4:05:52pm
ここで、追加のフィールドOperatorID、HeadendID、およびInsertionZoneは、特定のオペレータ160および対応する地理的位置に関係する識別子であり、InsertionIDは広告識別子である。正規化済み報告記録中の対応する同調時間も同様に、テレビジョン処理レイテンシを補償するように調整することができる。
一実装形態では、同調時間は、固定遅延および可変遅延に従って調整することができる。固定遅延は、テレビジョンプロバイダのエンコーダハードウェアおよびソフトウェアに、あるいは既知の遅延を有する他のシステム実装に基づくことができる。可変遅延は、可変遅延を有する場合のあるテレビジョンプロバイダの機器、例えばアナログミクサや、エンコーディング変更などに基づくことができる。
種々のレイテンシ遅延を決定することができる。例えば、レイテンシ遅延は、テレビジョンプロバイダにおけるテレビジョン広告の挿入時間と、視聴デバイスにおけるテレビジョン広告の実際の表示時間との間の時間として定義することができる。別の実装形態では、レイテンシ遅延は、テレビジョン広告の意図された表示時間と、視聴デバイスにおけるテレビジョン広告の実際の表示時間との間の時間として定義することができる。他のレイテンシ測定値を使用してもよい。
一実装形態では、処理レイテンシ調整は、調整の不確実性が存在する場合に、対応するエラー推定を含むことができる。一実装形態では、インプレッションプロセッサエンジン630はまた、正規化済み報告記録から元の報告記録を生成することもできる。
インプレッションプロセッサエンジン630はまた、例えば、正規化済み報告記録を1又は複数のフィルタリング規則に従ってフィルタにかけて、信頼できる正規化済み報告記録と偽陽性の正規化済み報告記録とを識別することもできる。例えば、意図された表示時間、挿入時間、および実際の表示時間に関係するデータを、滞留時間フィルタリング、アイドリングフィルタリング、および許可フィルタリングなど、1又は複数のフィルタリング規則と比較することができる。
滞留時間フィルタリングは、例えば、チャネル同調についての対応する同調時間が、最小滞留時間しきい値を超える継続時間を定義するか否か判定することができ、判定が正であれば、チャネル同調についての対応する同調時間を、信頼できる継続時間として関連付けることができる。例えば、ユーザがチャネルサーフィンをしている場合、ユーザは、チャネルに本当に注意を払ったことに対応しない多くの同調イベントを生成することがあり、したがってユーザは、放送されたであろう広告に注意を払わなかったかもしれない。いずれかの視聴の滞留時間が特定の滞留時間しきい値、例えば2秒、5秒などよりも短い場合、チャネル同調はチャネルサーフィンイベントと考えることができ、その場合ユーザは広告に注意を払っておらず、したがって、インプレッションは生成されないことになる。
キー押下など、他のログデータを使用して、チャネルサーフィンを識別し滞留時間を定義してもよい。例えば、チャネル番号を手動で入力することは、チャネルサーフィンの弱い指標とすることができ、上または下チャネルキーを繰り返し作動させることは、チャネルサーフィンの強い指標とすることができる。一実装形態では、滞留時間しきい値は、ユーザ挙動に応じて調整することができる。例えば、非チャネルサーフィンコンテキストでは、15秒の滞留時間を課すことができるが、チャネルサーフィンコンテキストの間は、滞留時間を10秒に短縮することができる。
いくつかの実装形態では、ログデータを処理して、複数のチャネル同調が同時に発生したか否かを判定することができ、同時チャネル同調のうちの1つまたはそれぞれに関連するインプレッションおよび/またはコストを調整または無視することができる。例えば、ログデータは、テレビジョン処理デバイスが同時に2つのチャネルに同調されたこと、例えば「ピクチャインピクチャ」操作を示す場合がある。これらの実装形態では、一方(例えば主要チャネル同調、または「ピクチャインピクチャ」チャネル同調)に関する報告記録を、偽陽性の報告記録として識別することができる。
アイドリングフィルタリングは、例えば、チャネル同調についての対応する同調時間が、最大滞留時間しきい値を超える継続時間を定義するか否か判定することができ、判定が正であれば、チャネル同調についての対応する同調時間を偽陽性の継続時間として関連付けることができる。例えば、よくある使用パターンは、視聴デバイス164をオンにしたままテレビジョンをオフにすること、テレビジョンがオンになったまま長時間にわたり部屋を離れること、および、テレビジョン番組中に眠ってしまうことである。したがって、ユーザがチャネルを変えずに長時間にわたり同じチャネルを、例えば4時間見ていることを示す視聴者イベントの記録は、視聴者がテレビジョンをオフにしたか、部屋を離れたか、眠ってしまったかもしれないので、多くの偽陽性インプレッションを生成することがある。
いくつかの実装形態では、アイドリングフィルタリングパラメータは、例えば、対応する番組イベントに基づいて調整することができる。例えば、最大滞留時間しきい値は、番組イベントに実質的に比例して設定することができる。例えば、30分の番組イベントは、最大滞留時間が30分とすることができ、3時間のスポーツイベントは、最大滞留時間が3時間とすることができる、等である。別の実装形態では、最大滞留時間しきい値は、番組イベントの累積長さに基づいて調整することができる。例えば、4つの30分番組イベントは、対応する最大滞留時間が45分とすることができる。したがって、4つの30分ホームコメディのブロードキャスト中に視聴デバイス164がチャネル同調変更を示さない場合、最初の45分の滞留時間を超える視聴についてはインプレッションが生成されないことになる。
別の実装形態では、アイドリングフィルタリングは、前の番組中の視聴者挙動に基づいて調整することができる。例えば、アイドリング履歴時間は、時間の経過につれて収集された視聴者挙動に基づくことができ、例えば、過去の視聴者挙動に基づいて、第1の番組または番組コンテンツ(例えばテレビジョンニューストーク番組)に対するアイドリングフィルタ時間は15分とすることができ、第2の番組または番組コンテンツ(例えば長さ3時間の番組)に対するアイドリング履歴時間は2時間とすることができる。
許可フィルタリングは、例えば、チャネル同調が許可済みチャネル同調であるか否か、例えばユーザが加入しているチャネルであるか否かを判定することができる。チャネル同調が許可済みチャネル同調でない場合は、許可フィルタリングは、そのチャネル同調についての対応する同調時間を、信頼できる継続時間として関連付けないようにすることができる。例えば、同調されたチャネルにユーザが未加入である場合、ユーザがこのチャネル上で出された広告を視聴できた可能性は低い。
インプレッションアナライザエンジン640は、インプレッションプロセッサエンジン630から正規化済み報告記録を受け取るように構成することができる。一実装形態では、インプレッションアナライザエンジン640は、相関エンジン642を実装して、信頼できる正規化済み報告記録を広告挿入記録と相関させて、対応するテレビジョン広告の報告されたインプレッションを決定することができる。例えば、インプレッションアナライザエンジン640は、信頼できる継続時間を、前にテレビジョンプロバイダ160に提供された、広告挿入記録を定義する広告スケジュール404と相関させることができる。したがって、信頼できる継続時間中に視聴デバイス164が広告を表示したことを示す、チャネル同調と同調時間とを含む信頼できる正規化済み報告記録が、その広告のインプレッションに対応することができる。
通常、所定の時間期間について全ての視聴デバイス164が報告済みではないことになる。例えば、視聴デバイス164の全体が、異なる時点でログデータを提供する可能性がある。したがって、実際のインプレッションの真の総数は、全ての視聴デバイス164が所定の時間期間について報告し終えるまで、正確に測定することはできない。したがって、任意のある時点では、全ての視聴デバイス164のうちのサブセットだけしかログデータをログ処理システム600に提供し終えていない可能性が高い。このため、推定エンジン644が、例えば、報告されたインプレッションに基づいて、対応するテレビジョン広告の予測インプレッションを推定することができる。
一実装形態では、インプレッションアナライザエンジン640の推定エンジン644は、受け取られた最大報告記録数のパーセンテージを決定することができる。例えば、テレビジョンプロバイダが100000個の加入者視聴デバイスを有し、視聴デバイスの50%が月曜午後のタイムスロットに関するログデータを提供し終えている場合は、受け取られた最大報告記録数のパーセンテージは50%である。
受け取られた報告記録のパーセンテージは、サンプル重み付けを定義することができ、サンプル重み付けは、サンプルバイアスに対して調整することができる。例えば、推定エンジン644は、したがって、最大報告記録数のパーセンテージと、対応するテレビジョン広告の報告されたインプレッションとに基づいて、対応するテレビジョン広告の予測インプレッションを推定することができる。一実装形態では、推定は例えば線形外挿とすることができる。例えば、受け取られた全ての利用可能な報告記録のうちの報告された50%が、特定の広告空き時間中に放送された広告について2100回のインプレッションをもたらす場合は、予測インプレッションは4200回とすることができる。
報告記録は数日間、さらには数週間の期間にわたってプロバイダ160から受け取られる可能性が高いので、インプレッションプロセッサエンジン630およびインプレッションアナライザエンジン640は、例えば、新たに到着した報告記録を反復的に処理することができる。一実装形態では、インプレッションプロセッサエンジン630およびインプレッションアナライザエンジン640は、インプレッション時間ウィンドウ中に予測インプレッションを反復的に更新するように構成される。反復的な更新は、例えば、インプレッション時間ウィンドウ中にテレビジョンプロバイダ160から続いて受け取った報告記録に基づくことができる。一実装形態では、インプレッション時間ウィンドウは約1週間とすることができる。
各反復の後、予測インプレッションに関係するエラー値を計算することができる。通常、所定の広告空き時間について処理されるログ記録の数が増加するにつれて、エラー値は減少する。一実装形態では、広告主のアカウントには、エラー値がしきい値未満に減少することが発生したときのみ、またはインプレッション時間ウィンドウが満了したときのみ、料金請求することができる。
報告レコーダエンジン650が、例えば、データストア610中の広告に関係するインプレッションデータを記憶することができる。例えば、報告レコーダエンジン650は、広告に関係する性能データを更新することができ、この性能データは、広告の品質スコアおよび広告の未来の選択に影響を及ぼす可能性がある。一実装形態では、インプレッションレコーダエンジン650はまた、課金プロセス652(例えばアカウンティングエンジン130への呼出し)を実装することもでき、課金プロセス652は、対応する広告主請求を生成することができる。
別の実装形態では、元の報告記録、すなわち正規化されていない報告記録から、偽陽性の検出を識別することができる。例えば、自動化同調検出エンジン660が、インプレッションレシーバエンジン620から報告記録を受け取り、報告記録から、テレビジョン処理デバイスの報告されたチャネル同調および対応する同調時間を識別し、対応する同調時間に基づいて、自動生成されたチャネル同調を識別することができる。
例えば、報告記録を自動化同調検出エンジン660によって処理して、視聴者によってトリガされたチャネル同調と自動生成されたチャネル同調とを区別することができる。自動生成されたチャネル同調は、例えば、録画デバイスがチャネルに同調して番組を録画したことを示すものとすることができる。このようなチャネル同調特性の場合、視聴者が実際のブロードキャスト時間中に番組を見るために存在していない可能性がより高い。自動化チャネル同調によって同調されたチャネル上で広告が放送されたテレビジョン処理デバイスに関しては、識別された自動生成型チャネル同調に時間的に近接する他の視聴者トリガ型チャネル同調および/または他の視聴者トリガ型データに応じて、広告コスト、例えばアクションごとのコストを、割引、猶予、さらには放棄することができる。
視聴者トリガ型チャネル同調は、視聴者反応時間に基づいて自動生成型チャネル同調と区別することができる。これらの同調タイプは両方とも、特定の時間に、例えば番組イベントの開始および終了に集中する傾向があるが、視聴者トリガ型チャネル同調の同調時間は、自動生成型チャネル同調の同調時間の相関に対して相対的に、相関が緩い。
加えて、テレビジョン処理デバイス、および/またはテレビジョン処理デバイスに関連する制御デバイス(例えばセットトップボックスデジタルビデオ録画機(DVR)リモートコントロール)における非活動期間は、視聴者が実際のブロードキャスト時間中に番組を見るために存在していたか否かをさらに判定するのに使用できる滞留時間を定義することができる。例えば、視聴者によって入力されたテレビジョン処理デバイスコマンド、例えばチャネル同調、音量調整、メニューキー押下、視聴者の存在を示す他の入力を、テレビジョン処理デバイスが処理しない場合、視聴者が実際のブロードキャスト時間中に番組を見るために存在していた可能性は低下する。
図6B〜6Eに、テレビジョン処理デバイスによって自動生成された可能性の高いチャネル同調を示す滞留時間プロットを示す。図6B〜6Dは、例えば1週間などの時間期間にわたる、テレビジョン処理デバイスでの滞留時間を示す例示的な滞留時間プロットである。図6B〜6Dのプロットでは、滞留時間はチャネルチューンアウトを測定する。例えば、60分間にわたって特定のチャネルに同調されたたままであり、次いで別のチャネルに同調されたセットトップボックスは、60分の滞留時間間隔を定義することになる。
図6Bに示すように、滞留時間は、指数関数的なレートで減少する傾向がある。しかし、多くの番組は30分の増分でブロードキャストされるので、各30分増分の終わり付近の同調時間に比較的多数のチャネル同調が分散し、滞留時間のクラスタを生み出す。したがって、30、60、90、および120分など、いくつかの滞留時間では、滞留時間の発生が増加する。例えば、実際の継続時間30、60、90、および120分の付近では、滞留時間の数はガウス分布、またはガウス分布に類似する分布を有する可能性がある。さらに、特徴的な滞留時間、例えばちょうど30:00、または31:00、32:00などで、多くのチャネル同調が発生する。これらのチャネル同調は、自動チャネル同調からなる可能性が高い。というのは、このような特徴的な時間は、ユーザが録画デバイスを、ちょうど番組終了時間に録画を停止するようにプログラムしたか、または番組全体が確実に録画されるよう番組終了時間を超えて数分まで延長するようにプログラムしたことを示す可能性が高いからである。これらの特徴的な滞留時間はまた、録画デバイスに実装されたデフォルトのパディング時間も示す。
図6Cは、滞留ビン分解能4秒の、27〜34分の滞留時間期間についてのより詳細な滞留時間プロットである。滞留時間30:00、31:00、32:00、33:00、および34:00は、前後の滞留時間、例えば滞留時間29:56と30:04、30:56と31:04などに対して、かなりの比例増加を有する。滞留時間をより精緻な滞留時間ビンサイズ、例えば1秒に離散化することで、特徴的な時間30:00、31:00、32:00、33:00、および34:00における比例利得をさらに強調することができる。時間30:00と31:00の間における滞留時間の比較的平坦な増加は、視聴者トリガ型チャネル同調に起因すると考えることができる。
図6Dは、滞留ビン分解能4秒の、42:00〜49:00分の滞留時間期間についてのより詳細な滞留時間プロットである。滞留時間は比較的平坦のままであり、視聴者トリガ型チャネル同調を示す。これらの滞留時間で自動生成型チャネル同調が発生する可能性はより低いことになるので、このような平坦な分布がこの期間にわたって予想される。
図6Eは、18:30〜22:00の時間帯からのブロードキャスト時間期間中のチャネル同調の例示的なプロットである。このチャネル同調プロットは、特徴的な同調時間、例えば18:59、19:00、19:01、19:29、19:30、19:31などにおける、相関の高いチャネル同調クラスタを示す。線パターン670は、特定のセットトップボックスに関する報告データによって定義されるチャネル同調、および結果的な滞留時間t1〜t6に対応する。線パターン670に関係する、対応するチャネル同調および同調時間を、以下の表1に提供する。
Figure 0005514714
特定のセットトップボックスについて上の表1にリストし図6Eに示すチャネル同調および同調時間は、滞留時間期間t1、t2、t3、およびt4中の視聴者トリガ型チャネル同調を証明するものと解釈することができる。というのは、これらの滞留時間は、ランダムであり、特徴的な同調時間から独立した同調時間に対応するからである。しかし、滞留期間t5およびt6中のチャネル同調は、自動生成型チャネル同調と解釈することができる。というのは、これらのチャネル同調は、対応するチャネル同調クラスタペアにおいて発生し、前後の滞留時間に対してかなりの比例増加を有する滞留時間、例えば32分を定義するからである。
他の滞留時間特性または同調時間特性を使用してもよい。例えば、32分の滞留時間は、視聴大衆の観察された挙動次第で決まるものとすることができる。いくつかの実装形態では、テレビジョン処理デバイスのデフォルト挙動を使用して自動生成型チャネル同調を識別することもできる。例えば、特定のテレビジョンプロバイダが、DVR機能付きセットトップボックスを有する場合があり、このセットトップボックスは、デフォルトでは、スケジュールされた電子番組ガイド開始時間の2分前に開始し、スケジュールされた電子番組ガイド終了時間を超えて5分延長する。
一実装形態では、チャネル同調時間によって定義されるチャネル上で、チャネル同調クラスタペアによって定義される時間期間(例えば滞留時間t5またはt6によって定義されるブロードキャスト時間期間)中に放送された広告に対する広告コストは、割り引くことができる。割引は、例えば、実際の放送時間中に録画されている番組を視聴者が見た可能性に基づいて調整することができる。この可能性は、例えば、自動生成型チャネル同調に関連しないチャネル同調が時間的に近接することに基づくことができる。例えば、滞留期間t1〜t4でのチャネル同調は、滞留期間t5と時間的に近接し、よって、視聴者対話を、したがって滞留期間t5の初めに視聴者が存在したことを示す。このため、広告コストには小さい割引しか適用できないか、さらには全く割引を適用できない。
しかし、滞留期間t1〜t4でのチャネル同調は、滞留期間t6とは時間的に近接せず、したがって、滞留期間t6の初めに視聴者が存在しなかったことを示す。このため、この特定のテレビジョン処理デバイスに関しては、広告コストに完全な割引を適用することができ、あるいは広告コストを完全に放棄することができる。すなわち、前述のように、インプレッションは偽陽性として識別されて処理される。他の割引を適用してもよい。例えば、滞留時間の長さに実質的に比例して割引を適用することができる。
いくつかの実装形態では、自動化同調検出エンジン660は、対応する同調時間におけるチャネル同調クラスタに基づいて、偽陽性インプレッションを識別することができる。前述の挙動モデルに基づいて、自動化同調検出エンジン660はまた、チャネル同調クラスタを自動生成型チャネル同調として識別することができる。例えば、自動化同調検出エンジン660は、報告データからテレビジョン処理デバイスについての滞留時間カウントを識別して、図6Cのデータを生成することができ、このデータは、隣接する滞留時間カウントに対する滞留時間カウントが、しきい値、例えば3dB、または他の何らかのしきい値尺度を超えるか否かを定義する。しきい値を超える場合は、チャネル同調クラスタを自動生成型チャネル同調として識別することができる。例えば、滞留時間30:00、31:00、32:00、33:00、および34:00におけるチャネル同調は、自動生成型チャネル同調として識別することができるが、時間29:32、31:07などにおけるチャネル同調は、自動生成型チャネル同調として識別されない。
いくつかの実装形態では、自動化同調検出エンジン660は、テレビジョン処理デバイス、例えばセットトップボックスDVRに関係するチャネル同調が、チャネル同調クラスタペアに対応するか否か判定することができる。テレビジョン処理デバイスに関係するチャネル同調がチャネル同調クラスタペアに対応すると自動化同調検出エンジン660が判定した場合は、アカウンティングエンジン130は、このチャネル同調によって定義されるチャネル上で、このチャネル同調クラスタペアによって定義される時間期間中に放送された広告について、広告コストを割り引くことができる。割引は、例えば、チャネル同調クラスタペアによって定義される時間期間の長さに実質的に比例して調整することができ、あるいは、関連しないチャネル同調がチャネル同調クラスタペアによって定義される時間期間と時間的に近接するのに実質的に反比例して調整することができる。他の広告コスト調整または遅延課金方式を使用してもよい。
別の実装形態では、自動化同調検出エンジン660は、トリガ同調時間に対応するチャネル同調時間に発生するチャネル同調に基づいて、偽陽性インプレッションを識別することができる。トリガ同調時間は、例えば、テレビジョン番組の番組開始時間および終了時間、または丸められた時間値(例えば18:29:00、18:30:00、18:31:00等)など、自動化録画デバイスによってしばしば利用される同調時間とすることができる。いくつかの実装形態では、トリガ同調時間の種々のセットを比較して、偽陽性インプレッションの識別精度を高めることができる。例えば、丸められた時間値18:30:00は、番組開始時間および/または終了時間に対応する可能性があるが、丸められた時間値18:21:00は、番組開始時間または終了時間に対応しない。したがって、同調時間18:30:00に発生するチャネル同調は、自動生成されたと判定することができ、同調時間18:21:00に発生するチャネル同調は、自動生成されたと判定しないことができる。
いくつかの実装形態では、自動化同調検出エンジン660は、電子番組ガイドデータ中で定義された番組の開始時間および終了時間のリストを記憶することができ、また、テレビジョン処理デバイスによって使用される特徴的なパディング方式に関係するデータを記憶することができる。パディング方式の例としては、番組開始時間に先立つ録画がなければ、番組開始時間の1分前に番組を録画するための録画動作を開始すること、番組終了時間後3分以内にスケジュールされた録画がなければ、番組終了時間の3分後に停止すること、番組がスポーツイベントであれば、番組終了時間を超えて30分間録画を継続することなどを含めることができる。自動化同調検出エンジン660は、報告記録を分析して、番組開始時間から特徴的な時間だけ前に開始して番組終了時間から特徴的な時間だけ後に終了するチャネル同調時間を識別することができる。
いくつかの実装形態では、電子番組ガイドデータを、静的データとして、例えば定期的にスケジュールされるテレビジョンイベントに関係するデータとして、帯域外で配信することができる。別法として、電子番組ガイドデータは、テレビジョン処理デバイスによって録画されるデータストリームを監視することから配信することができる。これは例えば、電子番組ガイドデータのデジタルビデオブロードキャスト帯域内配信である。帯域内電子番組ガイドデータは、終了時間が予測できない可能性のあるライブスポーツイベントに関する情報の処理を容易にすることができる。例えば、スポーツイベントが2回の延長戦に入った場合、帯域内配信で「番組終了」信号配信が遅延されることがある。そのため、予想されない滞留時間またはブロードキャスト時間で多数のチャネル同調が自動的に生成される場合がある。例えば、スポーツイベントが午後7:30から11:43:19まで放送され、その結果、チャネル同調クラスタが7:29:00および11:45:19で生じる場合がある。
いくつかの実装形態では、自動化同調検出エンジン660は、ランダムな偶然によって予想されることになるよりも大きいテレビジョン処理デバイス個体群によって共有される同調時間における、チューンインおよびチューンアウトチャネル同調を識別することができる。この相関する挙動が、ランダムな発生よりも十分に高頻度である場合、例えば近接する同調時間におけるチャネル同調の10倍相関する場合は、合致する同調時間におけるチャネル同調は、通常の番組スケジュールから独立して個人によって手動でスケジュールされたイベントを示す可能性がある。いくつかの実装形態では、このような識別は、電子番組ガイドデータなしで実施することができる。
いくつかの実装形態では、自動化同調検出エンジン660は、丸められた時間値から特徴的な時間だけ前または後、例えば正時の0、15、30、および45分後に開始するチャネル同調時間を識別し、そのようなチャネル同調クラスタが識別されればそれらのチャネル同調クラスタを、手動でプログラムされたトリガ同調時間として識別することができる。そのようなチャネル同調クラスタが、前後のチャネル同調に対して相対的に高い相関を示す場合は、このチャネル同調クラスタは自動生成型チャネル同調として識別することができる。
自動化同調検出エンジン660が、自動生成型チャネル同調、例えばDVRタイマによってトリガされた可能性の高いチャネル同調を示す報告記録を識別すると、アカウンティングエンジン130は任意選択で、録画された可能性の高い広告に対する広告コストを調整することができる。一実装形態では、この広告コスト調整はデバイス単位で適用することができ、例えば、このテレビジョン処理デバイスに関連するインプレッションは、偽陽性として識別されて反映されないものとすることができる。
別の実装形態では、アカウンティングエンジン130は、データ全体に基づいて比例配分された課金を適用することができる。例えば、視聴者調査または対応するデータ分析により、録画された番組中の広告の40%が再生中にスキップされたことがわかった場合、広告コストを40%下げることができる。
別の実装形態では、アカウンティングエンジン130は、滞留時間の長さに実質的に比例して広告コストを調整することができる。例えば、自動生成された3時間の滞留時間は、自動生成された30分の滞留時間よりも割り引くことができる。
インプレッションレシーバエンジン620、インプレッションプロセッサエンジン630、インプレッションアナライザエンジン640、インプレッションレコーダエンジン650、および自動化同調検出エンジン660は、別々にまたは組み合わせて実装することができる。例えば、一実装形態では、インプレッションレシーバエンジン620をコンピューティングデバイス上でインプレッションプロセッサエンジン630に統合することができる。他の組合せおよび/またはサブコンビネーションを使用してもよい。
別の実装形態では、自動化同調検出エンジン660は、自動生成型チャネル同調の直前および直後にチャネルを合わせる視聴者の挙動の分布を処理し、同時発生ユーザ同調(例えば「バックグラウンド」チャネル同調)の値を推定する(例えば補間する)ことができる。同時発生ユーザ同調は、偽陽性の推定値から除外することができる。以下の表2に、29:00に時間的に近接する例示的なチャネル同調をリストする。
Figure 0005514714
この分布に基づいて、自動化同調検出エンジン660は、例えば、時間29:00で2000回のチャネル同調が自動生成されたと推定することができる(例えば2230 - 230)。
前述のように、自動化同調検出エンジン660は、テレビジョン処理デバイス、例えばセットトップボックスやDVRなどからの報告記録を処理し、自動トリガ型チャネル同調イベント(例えば、相関の高いチャネル同調またはチャネル同調クラスタ、電子番組ガイドに見られる番組の開始および終了に対応する時点におけるチャネル同調クラスタ、あるいは、時間基準に対する切りのいい数に対応するチャネル同調クラスタ)のシグネチャに対応する報告記録を識別することができる。したがって、これらの識別されたチャネル同調は、視聴者トリガ型チャネル同調とは区別することができる。
図7は、ログを処理して処理済みログからインプレッションを決定するための例示的なプロセス700の流れ図である。プロセス700は、例えば、図1のテレビジョン広告システム100中で、または図5のログ処理システム500中で、または図6Aのログ処理システム600中で実施することができる。
段階702で、報告データを例えばテレビジョンプロバイダから受け取る。例えば、図1の報告エンジン128、図5のログ処理エンジン502、あるいは図6Aのインプレッションレシーバエンジン620および/またはインプレッションプロセッサエンジン630が、報告データ、例えばインプレッションデータ報告410を、プロバイダ160から受け取ることができる。
段階704で、報告データから、チャネル同調および対応する同調時間を識別する。例えば、図1の報告エンジン128、図5のログ処理エンジン502、あるいは図6Aのインプレッションレシーバエンジン620および/またはインプレッションプロセッサエンジン630が、報告データからチャネル同調および対応する同調時間を識別することができる。
段階706で、識別されたチャネル同調および対応する同調時間に基づいて、信頼できる継続時間を識別する。例えば、図1の報告エンジン128、図5のログ処理エンジン502、あるいは図6Aのインプレッションレシーバエンジン620および/またはインプレッションプロセッサエンジン630が、報告記録を滞留時間、アイドリング時間、および許可済みチャネルなどの評価基準と比較することによって、信頼できる継続時間を検出することができる。
段階708で、例えばチャネル同調に対応するチャネル上で同調時間中に放送されたテレビジョン広告を含めて、コンテンツアイテムを識別する。例えば、図1の報告エンジン128、図5のログ処理エンジン502、またはインプレッションアナライザエンジン640が、信頼できる継続時間を、広告挿入記録を定義する広告スケジュール404と比較して、信頼できる継続時間中に放送されたテレビジョン広告を識別することができる。
段階710で、信頼できる継続時間に基づいて、識別された各コンテンツアイテム(例えばテレビジョン広告)のインプレッション値を決定する。例えば、図1の報告エンジン128、図5のログ処理エンジン502、あるいは図6Aのインプレッションレシーバエンジン620および/またはインプレッションプロセッサエンジン630が、チャネル同調上でこのチャネル同調の信頼できる継続時間中に放送された、識別された各テレビジョン広告のインプレッション値を決定することができる。
図8は、ログデータを調整してブロードキャスト遅延を補償するための例示的なプロセスの流れ図である。プロセス800は、例えば、図1のテレビジョン広告システム100中で、または図5のログ処理システム500中で、または図6Aのログ処理システム600中で実施することができる。
段階802で、テレビジョンプロバイダにおけるコンテンツアイテム(例えばテレビジョン広告)の挿入時間と、視聴デバイスにおけるコンテンツアイテムの放送時間との間のレイテンシ遅延を識別する。例えば、図1の報告エンジン128、図5のログ処理エンジン502、あるいは図6Aのインプレッションレシーバエンジン620および/またはインプレッションプロセッサエンジン630が、テレビジョンプロバイダにおけるテレビジョン広告の挿入時間と視聴デバイスにおけるテレビジョン広告の実際の表示時間との間の時間、または、テレビジョン広告の意図された表示時間と視聴デバイスにおけるテレビジョン広告の実際の表示時間との間の時間など、レイテンシ遅延を識別することができる。
段階804で、同調時間を調整してレイテンシ遅延を補償する。例えば、図1の報告エンジン128、図5のログ処理エンジン502、あるいは図6Aのインプレッションレシーバエンジン620および/またはインプレッションプロセッサエンジン630が、報告記録中の同調時間を調整して、正規化済み報告記録を生成することができる。
図9は、信頼できる継続時間と偽陽性の継続時間とを識別するための例示的なプロセスの流れ図である。プロセス900は、例えば、図1のテレビジョン広告システム100中で、または図5のログ処理システム500中で、または図6Aのログ処理システム600中で実施することができる。
段階902で、チャネル同調についての対応する同調時間が、最大滞留時間しきい値を超える継続時間を定義するか否か判定する。例えば、図1の報告エンジン128、図5のログ処理エンジン502、あるいは図6Aのインプレッションレシーバエンジン620および/またはインプレッションプロセッサエンジン630が、特定のチャネル同調についての同調時間が最大滞留時間しきい値(例えば1時間)を超える継続時間を定義するか否か判定することができる。
段階902でチャネル同調についての対応する同調時間が最大滞留時間しきい値を超える継続時間を定義すると決定された場合は、段階904で、チャネル同調についての対応する同調時間を、偽陽性の継続時間として関連付ける。例えば、図1の報告エンジン128、図5のログ処理エンジン502、あるいは図6Aのインプレッションレシーバエンジン620および/またはインプレッションプロセッサエンジン630が、3時間の視聴継続時間を定義する同調時間を、少なくとも2時間の偽陽性の継続時間と関連付けることができる。例えば、3時間のうちの最後の2時間は、インプレッションの生成に利用されないことになる。
しかし、段階902でチャネル同調についての対応する同調時間が最大滞留時間しきい値を超える継続時間を定義しないと決定された場合は、段階906で、チャネル同調についての対応する同調時間を、信頼できる継続時間として関連付ける。例えば、図1の報告エンジン128、図5のログ処理エンジン502、あるいは図6Aのインプレッションレシーバエンジン620および/またはインプレッションプロセッサエンジン630が、30分の視聴継続時間を定義する同調時間を、信頼できる継続時間として関連付けることができる。例えば、30分の継続時間全体をインプレッションの生成に利用することができる。
図10は、ログを処理して処理済みログからインプレッションを決定するための別の例示的なプロセスの流れ図である。プロセス1000は、例えば、図1のテレビジョン広告システム100中で、または図5のログ処理システム500中で、または図6Aのログ処理システム600中で実施することができる。
段階1002で、チャネル、および関連するコンテンツアイテムスロット、例えば広告タイムスロットまたは広告オーバーレイ空き時間などを識別する。例えば、図1の報告エンジン128、図5のログ処理エンジン502、または図6Aのインプレッションアナライザエンジン640が、広告スケジュール404から、チャネルおよび関連する広告スロットを識別することができる。
段階1004で、対応するチャネル同調および同調時間を識別する。例えば、図1の報告エンジン128、図5のログ処理エンジン502、または図6Aのインプレッションアナライザエンジン640が、インプレッションデータ報告410から、対応するチャネル同調および同調時間を識別することができる。
段階1006で、識別されたチャネルおよびコンテンツアイテムスロットに関連する、コンテンツアイテム(例えばテレビジョン広告)を識別する。例えば、図1の報告エンジン128、図5のログ処理エンジン502、またはインプレッションアナライザエンジン640が、インプレッションデータ報告410を広告スケジュール404と相関させて、同調時間とチャネル同調とによって定義されるチャネルおよび広告スロットに関連する、テレビジョン広告を識別することができる。
段階1008で、信頼できる継続時間に対応する識別されたチャネルおよび広告タイムスロットに関連する各テレビジョン広告のインプレッションを識別する。例えば、図1の報告エンジン128、図5のログ処理エンジン502、または図6Aのインプレッションアナライザエンジン640が、チャネル同調上でこのチャネル同調の信頼できる継続時間中に放送された識別された各テレビジョン広告のインプレッション値を生成することができる。
図11は、ログを処理して処理済みログからインプレッションを決定するための別の例示的なプロセスの流れ図である。プロセス1100は、例えば、図1のテレビジョン広告システム100中で、または図5のログ処理システム500中で、または図6Aのログ処理システム600中で実施することができる。
段階1102で、同調デバイスから報告されたチャネル識別子と関連する同調イベントと関連する同調時間とを定義する報告記録を受け取る。例えば、図1の報告エンジン128、図5のログ処理エンジン502、あるいは図6Aのインプレッションレシーバエンジン620および/またはインプレッションプロセッサエンジン630が、テレビジョンプロバイダ160または第三者から報告記録を受け取ることができる。
段階1104で、関連する同調時間を調整してテレビジョン処理レイテンシを補償する。例えば、図1の報告エンジン128、図5のログ処理エンジン502、あるいは図6Aのインプレッションレシーバエンジン620および/またはインプレッションプロセッサエンジン630が、識別されたレイテンシで同調時間を相殺することによって同調時間を調整することができる。
段階1106で、調整された関連する同調時間に基づいて、テレビジョンプロバイダ識別子と挿入識別子とタイムスタンプとを含む正規化済み報告記録を生成する。例えば、図1の報告エンジン128、図5のログ処理エンジン502、あるいは図6Aのインプレッションレシーバエンジン620および/またはインプレッションプロセッサエンジン630が、調整された同調時間と、適切なら他のデータとを含む正規化済み報告記録を生成することができる。
段階1108で、正規化済み報告記録をフィルタにかけて、偽陽性の報告記録を識別する。例えば、図1の報告エンジン128、図5のログ処理エンジン502、あるいは図6Aのインプレッションレシーバエンジン620および/またはインプレッションプロセッサエンジン630が、チャネル同調によって定義される同調継続時間の一部が偽陽性の継続時間として決定される報告記録を、識別することができる。例えば、2時間の同調継続時間が、30分の信頼できる継続時間および90分の偽陽性の継続時間を有すると決定される場合がある。
段階1110で、偽陽性の報告記録に基づいて、コンテンツアイテム(例えばテレビジョン広告)のインプレッション値を決定する。例えば、図1の報告エンジン128、図5のログ処理エンジン502、または図6Aのインプレッションアナライザエンジン640が、偽陽性の継続時間でないと決定されたチャネル同調継続時間、例えば信頼できる継続時間から、インプレッション値を生成することができる。
図12は、ログデータから総インプレッションを推定するための例示的なプロセス1200の流れ図である。プロセス1200は、例えば、図1のテレビジョン広告システム100中で、または図5のログ処理システム500中で、または図6Aのログ処理システム600中で実施することができる。
段階1202で、正規化済み報告記録を広告挿入記録と相関させて、対応するテレビジョン広告の報告されたインプレッションを決定する。例えば、図1の報告エンジン128、図5のログ処理エンジン502、または図6Aのインプレッションアナライザエンジン640が、正規化済み報告記録を広告スケジュール404と相関させて、テレビジョン広告に対応する報告されたインプレッションを決定することができる。
段階1204で、報告されたインプレッションおよび識別された偽陽性の報告記録に基づいて、対応するテレビジョン広告の予測インプレッションを推定する。例えば、図1の報告エンジン128、図5のログ処理エンジン502、またはインプレッションアナライザエンジン640が、報告されたインプレッションおよび識別された偽陽性の報告記録に基づいて、対応するテレビジョン広告の予測インプレッションを推定することができる。
図13は、ログを反復的に処理するための例示的なプロセス1300の流れ図である。プロセス1300は、例えば、図1のテレビジョン広告システム100中で、または図5のログ処理システム500中で、または図6Aのインプレッションレシーバエンジン620、インプレッションプロセッサエンジン630、インプレッションアナライザエンジン640、および報告レコーダエンジン650中で実施することができる。
段階1302で、インプレッション時間ウィンドウを定義する。例えば、図1の報告エンジン128、図5のログ処理エンジン502、または図6Aのインプレッション報告レコーダエンジン650が、インプレッション時間ウィンドウ、例えば1週間を定義することができる。
段階1304で、インプレッション時間ウィンドウ中に続いて受け取られた報告記録に基づいて、報告記録を反復的に処理する。例えば、図1の報告エンジン128、図5のログ処理エンジン502、または図6Aのインプレッションレシーバエンジン620、インプレッションプロセッサエンジン630、インプレッションアナライザエンジン640、および報告レコーダエンジン650が、インプレッション時間ウィンドウ中に特定の広告空き時間に関係する報告記録が受け取られる度に、報告記録を反復的に処理することができる。
段階1306で、インプレッション時間ウィンドウの満了後に、予測インプレッションに基づいて広告主請求を生成する。例えば、図1の報告エンジン128、図5のログ処理エンジン502、または図6Aの報告レコーダエンジン650が、インプレッション時間ウィンドウの満了後に請求を生成することができる。
図14は、自動生成型チャネル同調時間に基づいて広告コストを調整するための例示的なプロセス1400の流れ図である。プロセス1400は、例えば、図1のテレビジョン広告システム100中で、または図6Aのインプレッションレシーバエンジン620、自動化同調検出エンジン660、および報告レコーダエンジン650中で実施することができる。
段階1402で、テレビジョン処理デバイスに関係する報告データを受け取る。例えば、図1の報告エンジン128または図6Aの自動化同調検出エンジン660が、テレビジョン処理デバイスに関係する報告データ、例えばセットトップボックス計測記録を受け取ることができる。
段階1404で、報告データから、テレビジョン処理デバイスのチャネル同調および対応する同調時間を識別する。例えば、図1の報告エンジン128または図6Aの自動化同調検出エンジン660が、報告データから、テレビジョン処理デバイスのチャネル同調および対応する同調時間を識別することができる。
段階1406で、対応する同調時間に基づいて自動生成型チャネル同調を識別する。例えば、図1の報告エンジン128または図6Aの自動化同調検出エンジン660が、対応する同調時間に基づいて自動生成型チャネル同調を識別することができる。例えば、チャネル同調の同調時間は、特徴的な同調時間と比較される可能性があり、あるいはチャネル同調クラスタと高く相関する可能性があり、あるいは電子番組ガイドデータ中で定義された番組ブロードキャスト時間に対応する可能性がある。
段階1408で、識別された自動生成型チャネル同調に基づいて、コンテンツアイテム(例えば広告)の提示に関連する広告コストを調整する。例えば、アカウンティングエンジン130または報告エンジン650が、識別された自動生成型チャネル同調に基づいて、広告に関連する広告コストを調整することができる。
図15は、自動生成型チャネル同調を識別するための例示的なプロセス1500の流れ図である。プロセス1500は、例えば、図1のテレビジョン広告システム100中で、または図6Aの自動化同調検出エンジン660中で実施することができる。
段階1502で、対応する同調時間におけるチャネル同調クラスタを識別する。例えば、図1の報告エンジン128または図6Aの自動化同調検出エンジン660が、対応する同調時間におけるチャネル同調クラスタを識別することができる。
段階1504で、チャネル同調クラスタを自動生成型チャネル同調として識別する。例えば、図1の報告エンジン128または図6Aの自動化同調検出エンジン660が、チャネル同調クラスタを自動生成型チャネル同調として識別することができる。
図16は、識別されたチャネル同調クラスタに基づいて広告コストを調整するための例示的なプロセス1600の流れ図である。プロセス1600は、図1のテレビジョン広告システム100中で、または図6Aの自動化同調検出エンジン660および報告レコーダエンジン650中で実施することができる。
段階1602で、チャネル同調クラスタペアを識別する。例えば、図1の報告エンジン128または図6Aの自動化同調検出エンジン660が、チャネル同調クラスタペア、例えば、例として時間20:30:00および21:00:00に近いチャネル同調クラスタを識別することができる。
段階1604で、テレビジョン処理デバイスに関係する識別されたチャネル同調が、チャネル同調クラスタペアに対応するか否か判定する。例えば、図1の報告エンジン128または図6Aの自動化同調検出エンジン660は、テレビジョン処理デバイスに関する識別されたチャネル同調が、チャネル同調クラスタペア(例えば、例として20:29:00におけるチャネルへのチューンインと、時間21:03:00におけるチャネルからのチューンアウトまたはテレビジョン処理デバイスのオフ)において発生したか否か判定することができる。
段階1604でテレビジョン処理デバイスに関係する識別されたチャネル同調がチャネル同調クラスタペアに対応すると判定された場合は、段階1606で、チャネル同調によって定義されるチャネル上でチャネル同調クラスタペアによって定義される時間期間中に放送された広告について、広告コストを割り引く。例えば、アカウンティングエンジン130または報告エンジン650が、チャネル同調によって定義されるチャネル上でチャネル同調クラスタペアによって定義される時間期間中に放送された広告について、広告コストを割り引くことができる。
反対に、段階1604でテレビジョン処理デバイスに関係する識別されたチャネル同調がチャネル同調クラスタペアに対応しないと判定された場合は、段階1608で、チャネル同調によって定義されるチャネル上でチャネル同調クラスタペアによって定義される時間期間中に放送された広告について、完全な広告コストを適用する。例えば、アカウンティングエンジン130または報告エンジン650が、チャネル同調によって定義されるチャネル上でチャネル同調クラスタペアによって定義される時間期間中に放送された広告について、完全な広告コストを適用することができる。
別の実装形態では、信頼因子を利用して広告コストを調整することができる。例えば、20:29:00に開始する33:00分の滞留時間には、信頼因子100%を関連付けることができ、完全な広告コストを適用することができる。20:30:00に開始する33:00分の滞留時間には、信頼因子80%を関連付けることができ、広告コストは全額の80%に調整することができる。20:29:00に開始する30:00分の滞留時間には、信頼因子70%を関連付けることができる、等である。複数の信頼因子を積の形で適用することもできる。例えば、録画された可能性の高い広告の調整では、80%の信頼因子をさらに60%変倍することができ、それにより広告のコストは全額の48%である、等である。
図17は、自動生成型チャネル同調を識別するための別の例示的なプロセス1700の流れ図である。プロセス1700は、例えば、図1のテレビジョン広告システム100中で、または図6Aのインプレッションレシーバエンジン620、自動化同調検出エンジン660、および報告レコーダエンジン650中で実施することができる。
段階1702で、トリガ同調時間を識別する。例えば、図1の報告エンジン128または図6Aの自動化同調検出エンジン660が、テレビジョン番組の番組開始時間および終了時間や、丸められた時間値、例えば18:29:00、18:30:00、18:31:00など、自動化録画デバイスによってしばしば利用される同調時間を識別することができる。
段階1704で、トリガ同調時間に対応する同調時間を識別する。例えば、図1の報告エンジン128または図6Aの自動化同調検出エンジン660が、報告記録中の同調時間がトリガ同調時間に対応するか否か、例えば、特定のテレビジョン処理デバイスの第1の同調時間がトリガ同調時間19:29:00、19:30:00、19:31:00、または他の何らかのトリガ同調時間に対応するか否か判定することができる。
段階1706で、トリガ同調時間に対応する同調時間に発生するチャネル同調を、自動生成型チャネル同調として識別する。例えば、図1の報告エンジン128または図6Aの自動化同調検出エンジン660が、同調時間19:29:00に発生するチャネル同調を自動生成型チャネル同調として識別することができる。
図18は、自動生成型チャネル同調を識別するための別の例示的なプロセス1800の流れ図である。プロセス1800は、例えば、図1のテレビジョン広告システム100中で、または図6Aのインプレッションレシーバエンジン620、自動化同調検出エンジン660、および報告レコーダエンジン650中で実施することができる。
段階1802で、トリガ同調時間から第1の特徴的な時間だけ前に発生する1又は複数の同調時間を識別する。例えば、図1の報告エンジン128または図6Aの自動化同調検出エンジン660が、トリガ同調時間19:30:00に対して、19:29:00、19:30:00、および19:31:00に発生する同調時間を識別することができる。
段階1804で、トリガ同調時間から第2の特徴的な時間だけ後に発生する1又は複数の同調時間を識別する。例えば、図1の報告エンジン128または図6Aの自動化同調検出エンジン660が、トリガ同調時間19:30:00に対して同調時間20:01:00(例えばトリガ同調時間19:30:00の31分後)を識別することができる。
いくつかの実装形態では、図1の報告エンジン128または図6Aの自動化同調検出エンジン660は、第1の特徴的な同調時間に発生する同調時間と、第2の特徴的な同調時間に発生する同調時間とによって定義される時間期間が、滞留時間クラスタに対応するか否か判定することができる。判定が正であれば、トリガ同調時間に対応する同調時間に発生するチャネル同調を自動生成型チャネル同調として識別することができる。例えば、第1のセットトップボックスについての2つの連続した同調時間が、19:32:00および19:59:00である場合がある。これらの同調時間は特徴的な時間に発生する場合があるが、対応する滞留時間27分は、滞留時間クラスタに属さない場合がある。したがって、これらの同調時間は、視聴者によってトリガされて、偶然に特徴的な時間に発生したものであった場合がある。よって、対応するチャネル同調は、視聴者トリガ型と見なすことができる。
反対に、第2のセットトップボックスについての2つの連続的な同調時間が、19:29:00および20:02:00である場合がある。これらの同調時間は特徴的な時間に発生する場合があり、対応する滞留時間32分もまた、滞留時間クラスタに属する場合がある。したがって、これらの同調時間は、自動生成された可能性がより高い。
他の報告データを処理して、本明細書に述べたようにインプレッションを決定してもよい。例えば、DVRに関係する報告データが、視聴時間データ(例えば、DVRによってレンダリングされたデータがテレビジョン表示装置上に現れたときを示すデータ)を含むことができる。この視聴時間データを元の放送時間から遅延視聴時間にマッピングして、インプレッションが発生したか否か判定することができる。
本明細書ではテレビジョン広告のインプレッションを識別することに関してシステムおよび方法を述べたが、本明細書に述べたシステムおよび方法はまた、コマーシャル休止、オープニングクレジット、クロージングクレジット、30分時点でのコマーシャル休止、特別ブロードキャスト割込み(例えばニュースイベント、スケジュールされたブロードキャスト時間を超えて延長するスポーツイベント)に入るコンテキストにおける挙動モデルなど、他のコンテキストに対する視聴者挙動を決定するのに利用することもできる。このような挙動モデルを利用して、例えば、特定の時に提示するためのオプションコンテンツを識別することができる。例えば、クロージングクレジットの横にレンダリングされる20秒の「スクイーズ」広告の方が、クロージングクレジットの後に提示される完全な60秒の広告よりも性能がよい、等である。
加えて、これらのシステムおよび方法はまた、他のコンテンツアイテム、例えば公共事業告知や特別な告知などについてのインプレッション処理を実施するのに利用することもできる。報告ログを提供する他の媒体、例えば、帯域内で(無線周波数チャネルを介して)または帯域外で(非搬送波チャネルや有線チャネルなどを介して)ログデータを提供する無線システムにおける、コンテンツアイテムのインプレッションの処理を容易にすることもできる。例えば、ラジオで流れる歌の歌インプレッションを測定すること、例えば歌が放送されたときにユーザが別のラジオチャネルに合わせるか否か等を測定することができ、あるいは、ユーザがラジオ番組を録音したか否か等を測定することができる。
本特許文書に述べた装置、方法、流れ図、および構造ブロック図は、コンピュータ処理システムによって実行可能なプログラム命令を含むプログラムコードを備えたコンピュータ処理システム中で実現することができる。他の実装形態を使用してもよい。加えて、本特許文書に述べた流れ図および構造ブロック図は、各ステップをサポートする特定の方法および/または対応する行為と、開示した構造上の手段をサポートする対応する機能とを記述しているが、これらの流れ図および構造ブロック図を利用して、対応するソフトウェア構造およびアルゴリズム、ならびにその均等物を実現することもできる。
本明細書に述べた主題の実施形態は、1又は複数のコンピュータプログラム製品として実現することができる。すなわち、データ処理装置によって実行されるようにまたはデータ処理装置の動作を制御するように有形のプログラム担体上でエンコードされたコンピュータプログラム命令の1又は複数のモジュールとして実現することができる。コンピュータ可読媒体は、機械可読記憶デバイス、機械可読記憶基板、メモリデバイス、機械可読伝搬信号をもたらす物質構成、あるいはこれらの1又は複数の組合せとすることができる。
コンピュータプログラム(プログラム、ソフトウェア、ソフトウェアアプリケーション、スクリプト、またはコードとも呼ばれる)は、コンパイルされる言語または解釈される言語、あるいは宣言言語または手続き型言語を含めて、任意の形のプログラム言語で書かれたものであってよく、スタンドアロンプログラムとして、あるいはモジュール、コンポーネント、サブルーチン、またはコンピューティング環境での使用に適した他の単位としての形を含めて、任意の形で配置することができる。コンピュータプログラムは、必ずしもファイルシステム中のファイルに対応するとは限らない。あるプログラムが、他のプログラムまたはデータ(例えばマークアップ言語文書に記憶された1又は複数のスクリプト)を保持するファイルの一部に記憶されてもよく、当該プログラム専用に確保された単一のファイルに記憶されてもよく、あるいは複数の連携ファイル(例えば1又は複数のモジュール、サブプログラム、またはコード部分を記憶する、複数のファイル)に記憶されてもよい。コンピュータプログラムは、1つのコンピュータ上で実行されるように配置することもでき、あるいは、1つの場所に位置するかまたは複数の場所にわたって分散されて通信ネットワークによって相互接続された、複数のコンピュータ上で実行されるように配置することもできる。
本明細書に述べたプロセスおよび論理フローは、入力データに作用して出力を生成することによって機能を実施するための1又は複数のコンピュータプログラムを実行する、1又は複数のプログラム可能プロセッサによって実施することができる。プロセスおよび論理フローはまた、専用論理回路、例えばFPGA(フィールドプログラマブルゲートアレイ)やASIC(特定用途向け集積回路)によって実施することもでき、装置はまた、このような専用論理回路として実現することもできる。
コンピュータプログラムの実行に適したプロセッサは、例として、汎用と専用の両方のマイクロプロセッサ、および、任意の種類のデジタルコンピュータの任意の1又は複数のプロセッサを含む。一般に、プロセッサは、読取り専用メモリまたはランダムアクセスメモリ、あるいはこの両方から、命令およびデータを受け取ることになる。コンピュータの本質的な要素は、命令を実施するためのプロセッサと、命令およびデータを記憶するための1又は複数のメモリデバイスである。一般に、コンピュータはまた、データを記憶するための1又は複数の大容量記憶デバイス、例えば磁気ディスク、光磁気ディスク、または光学ディスクを備えることになるか、あるいは、このような大容量記憶デバイスとデータの受信または送信あるいはその両方を行うために動作可能に結合されることになる。しかし、コンピュータは、必ずしもこのようなデバイスを有するとは限らない。
ユーザとの対話を可能にするために、本明細書に述べた主題の実施形態は、ユーザに対して情報を表示するための表示デバイス(例えばCRT(陰極線管)またはLCD(液晶表示)モニタ)と、ユーザがコンピュータに入力を提供できるためのキーボードおよびポインティングデバイス(例えばマウスまたはトラックボール)とを有するコンピュータ上で実施することができる。他の種類のデバイスを使用してユーザとの対話を可能にすることもできる。例えば、ユーザに提供されるフィードバックは、任意の形の感覚フィードバック、例えば視覚フィードバック、聴覚フィードバック、または触覚フィードバックとすることができ、ユーザからの入力は、音響、音声、または触覚入力を含めて、任意の形で受け取ることができる。
本明細書に述べた主題の実施形態は、バックエンドコンポーネント(例えばデータサーバとしての)、あるいはミドルウェアコンポーネント(例えばアプリケーションサーバ)、あるいはフロントエンドコンポーネント(例えばユーザが本明細書に記載の主題の一実装形態と対話できるためのグラフィカルユーザインタフェースまたはウェブブラウザを有するクライアントコンピュータ)、あるいはこのようなバックエンド、ミドルウェア、またはフロントエンドコンポーネントのうちの1又は複数の任意の組合せを含む、コンピュータシステム中で実施することができる。システムのコンポーネントは、任意の形または媒体のデジタルデータ通信、例えば通信ネットワークによって相互接続することができる。コンピューティングシステムは、クライアントおよびサーバを含むことができる。クライアントとサーバとは、一般には相互から離れており、通常は通信ネットワークを介して対話する。クライアントとサーバとの関係は、コンピュータプログラムがそれぞれのコンピュータ上で稼動して相互とのクライアントサーバ関係を有することによって生じる。
本明細書は多くの具体的な実装詳細を含むが、これらは、任意の発明または特許請求できるものの範囲に対する限定と解釈すべきではない。そうではなく、特定の発明の特定の実施形態に特有な場合のある特徴の記述として解釈すべきである。本明細書で別々の実施形態のコンテキストで述べるいくつかの特徴は、単一の実施形態で組み合わせて実現することもできる。反対に、単一の実施形態のコンテキストで述べる様々な特徴は、複数の実施形態で別々にまたは任意の適切なサブコンビネーションで実現することもできる。さらに、特徴は、特定の組合せで作用するものとして上述している場合もあり、さらには最初にそのように特許請求する場合もあるが、特許請求する組合せからの1又は複数の特徴は、場合によってはその組合せから削除することができ、特許請求する組合せは、サブコンビネーション、またはサブコンビネーションの変形を対象とする場合がある。
同様に、図面には動作を特定の順序で示してあるが、これは、所望の結果を達成するために、このような動作が図示の特定の順序でまたは連続した順序で実施されること、あるいは図示の全ての動作が実施されることを必要とするものと理解すべきではない。状況によっては、マルチタスキングおよび並列処理が有利な場合もある。さらに、前述の実施形態における様々なシステムコンポーネントの分離は、全ての実施形態でそのような分離を必要とするものと理解すべきではなく、述べたプログラムコンポーネントおよびシステムは一般に、単一のソフトウェア製品に統合することまたは複数のソフトウェア製品にパッケージすることができることを理解されたい。
この書面による記述は、本発明の最良のモードを示し、本発明を記述するためおよび当業者が本発明を作成および使用できるようにするための例を提供する。この書面による記述は、述べた厳密な用語に本発明を限定するものではない。したがって、本発明を上述の例に関して詳細に述べたが、当業者なら本発明の範囲を逸脱することなくこれらの例に改変、修正、および変形を加えることができる。
100 テレビジョン広告システム
102 広告データストア、広告ストア
104 広告パラメータストア
106 ログデータストア
108 性能データストア
110 帯域外データストア
112 アカウンティングデータストア
120 広告フロントエンドエンジン
122 広告配信エンジン
124 スケジューラエンジン、スケジューリングエンジン
126 候補エンジン
128 報告エンジン
130 アカウンティングエンジン
132 オークションエンジン
140 広告主
160 テレビジョンプロバイダ、パブリッシャ
162 プロバイダエージェント
164a〜n 視聴デバイス、視聴者デバイス
166 ローカルストア
170 プロバイダインタフェース
172 挿入器
174 変調器
176 ブロードキャストストリーム
200 テレビジョン広告フロントエンドシステム
202 フロントエンドインタフェース
204 広告アップロードサーバ
206 トランスコーダ
208 承認エンジン
209 自動化承認エンジン
210 承認ビン
212 ビデオストリーマ
214 ネットワークインタフェース
300 テレビジョン広告配信システム
400 テレビジョン広告スケジューリングおよび報告システム
402 空き時間スケジュール
404 広告スケジュール、広告スケジューリングデータ
406 検証報告
408 インプレッションデータ
409 生データ
410 インプレッションデータ報告
420 キャッシングレイヤ
500 ログ処理システム
502 ログ処理エンジン
504 ログデータ
510 アナログスプライサ
512 エンコーダ
514 統計時分割マルチプレクサ(statmux)
516 送信衛星通信デバイス
518 衛星
520 受信衛星通信デバイス
530 第1の時間遅延
540 第2の時間遅延
600 ログ処理システム
602 視聴率コレクタエンジン
604 匿名化エンジン
606 アカウンティングエンジン
610 データストア
620 インプレッションレシーバエンジン
630 インプレッションプロセッサエンジン
640 インプレッションアナライザエンジン
642 相関エンジン
644 推定エンジン
650 報告レコーダエンジン、インプレッションレコーダエンジン、報告エンジン
660 自動化同調検出エンジン

Claims (23)

  1. テレビジョンプロバイダから報告データを受け取るステップと、
    前記報告データからチャネル同調および対応する同調時間を識別するステップと、
    前記チャネル同調に対応するチャネル上で前記同調時間中に放送されたテレビジョン広告を識別するステップと、
    前記テレビジョンプロバイダにおけるテレビジョン広告のブロードキャストストリームへの挿入時間と、前記ブロードキャストストリームに同調した視聴デバイスにおける前記テレビジョン広告の表示時間との間のレイテンシ遅延を識別するステップと、
    固定遅延および可変遅延に従って前記同調時間を調整して前記レイテンシ遅延を補償するステップと
    を含む、
    前記チャネル同調は、前記視聴デバイスが同調されたチャネル識別子であり、
    前記対応する同調時間は、前記チャネル識別子に対応したチャネルに前記視聴デバイスが同調された時間であり、
    前記テレビジョンプロバイダにおけるテレビジョン広告のブロードキャストストリームへの挿入時間と、前記ブロードキャストストリームに同調した視聴デバイスにおける前記テレビジョン広告の表示時間との間のレイテンシ遅延を識別するステップは、
    テレビジョンプロバイダエンコーダハードウェアおよびソフトウェアに基づく固定遅延を識別するステップと、
    チャネル同調についての対応する同調時間に基づく可変遅延を識別するステップとを含む、
    コンピュータによって実施される方法。
  2. 前記識別されたチャネル同調および最小滞留しきい値を超えた対応する同調時間に基づいて、信頼できる継続時間を識別するステップと、
    前記信頼できる継続時間に基づいて、識別された各テレビジョン広告のインプレッション値を決定するステップとを含む、請求項1に記載の方法。
  3. 前記識別されたチャネル同調および最小滞留しきい値を超えた対応する同調時間に基づいて信頼できる継続時間を識別するステップは、
    チャネル同調についての対応する同調時間が、最小滞留時間しきい値を超える継続時間を定義するか否か判定するステップと、
    前記チャネル同調についての前記対応する同調時間が前記最小滞留時間しきい値を超える継続時間を定義する場合に、前記チャネル同調についての前記対応する同調時間を信頼できる継続時間として関連付けるステップとを含む、請求項2に記載の方法。
  4. 前記識別されたチャネル同調および最小滞留しきい値を超えた対応する同調時間に基づいて信頼できる継続時間を識別するステップは、
    チャネル同調についての対応する同調時間が、最大滞留時間しきい値未満の継続時間を定義するか否か判定するステップと、
    前記チャネル同調についての前記対応する同調時間が前記最大滞留時間しきい値未満の継続時間を定義する場合に、前記チャネル同調についての前記対応する同調時間を信頼できる継続時間として関連付けるステップとを含む、請求項2に記載の方法。
  5. 前記識別されたチャネル同調および最小滞留しきい値を超えた対応する同調時間に基づいて信頼できる継続時間を識別するステップは、
    チャネル同調が許可済みチャネル同調であるか否か判定するステップと、
    チャネル同調が許可済みチャネル同調でない場合に、前記チャネル同調についての前記対応する同調時間を信頼できる継続時間として関連付けないようにするステップとを含む、請求項2に記載の方法。
  6. 前記チャネル同調に対応するチャネル上で前記同調時間中に放送されたテレビジョン広告を識別するステップは、
    チャネルおよび関連する広告タイムスロットを識別するステップと、
    対応するチャネル同調および同調時間を識別するステップと、
    前記識別されたチャネルおよび広告タイムスロットに関連するテレビジョン広告を識別するステップとを含む、請求項2に記載の方法。
  7. 前記信頼できる継続時間に基づいて、識別された各テレビジョン広告のインプレッション値を決定するステップは、
    信頼できる継続時間に対応する識別されたチャネルおよび広告タイムスロットに関連する各テレビジョン広告のインプレッションを識別するステップを含む、請求項に記載の方法。
  8. 前記信頼できる継続時間に基づいて、識別された各テレビジョン広告のインプレッション値を決定するステップは、
    最大報告数のパーセンテージを決定するステップと、
    前記最大報告数のパーセンテージおよび各テレビジョン広告の識別されたインプレッションの数に基づいて、識別された各テレビジョン広告の推定インプレッション値を生成するステップとを含み、
    前記パーセンテージが前記報告データによって定義されることを特徴とする請求項に記載の方法。
  9. テレビジョンプロバイダから報告データを受け取るステップは、デジタルビデオ録画機に関係するデジタルビデオ録画機データを受け取るステップを含み、
    前記識別されたチャネル同調および対応する同調時間に基づいて信頼できる継続時間を識別するステップは、
    録画された継続時間を識別するステップと、
    前記録画された継続時間が録画後に再生されたか否か判定するステップと、
    前記録画された継続時間が録画後に再生されなかったと判定された場合に、録画された継続時間を信頼できないとして識別するステップとを含む、請求項1に記載の方法。
  10. 前記テレビジョン広告はテレビジョンコマーシャルとオーバーレイとテキストバナーとのうちの1又は複数を含む、請求項1に記載の方法。
  11. 同調デバイスによって報告されたチャネル識別子と関連する同調イベントと関連する同調時間とを定義するインプレッション記録をテレビジョンプロバイダから受け取り、かつ、テレビジョン広告の挿入時間と意図された表示時間とを含むテレビジョンプロバイダメタデータを受け取り、
    固定遅延および可変遅延に従って前記関連する同調時間を調整してテレビジョン処理レイテンシを補償し、かつ、
    テレビジョンプロバイダ識別子と挿入識別子と継続時間とをそれぞれが含む正規化済みインプレッション記録を生成するように構成されたインプレッションプロセッサと、
    前記正規化済みインプレッション記録をフィルタリング規則と比較し、かつ、
    前記比較に基づいて、信頼できる正規化済みインプレッション記録を識別するように構成されたインプレッションフィルタと
    を備え、
    前記インプレッションプロセッサは、テレビジョンプロバイダエンコーダハードウェアおよびソフトウェアに基づく固定遅延を識別し、かつ、挿入時間に関係する可変遅延を識別するように構成される、システム。
  12. 前記信頼できる正規化済みインプレッション記録を広告挿入記録と相関させて、対応するテレビジョン広告の報告されたインプレッションを決定し、かつ、
    前記報告されたインプレッションに基づいて前記対応するテレビジョン広告の予測インプレッションを推定するように構成されたインプレッションアナライザを備える、請求項11に記載のシステム。
  13. 前記インプレッションアナライザは、
    受け取ったインプレッション記録の数によって定義される、最大インプレッション記録数のパーセンテージを決定し、かつ、
    前記最大インプレッション記録数のパーセンテージと、前記対応するテレビジョン広告の前記報告されたインプレッションとに基づいて、前記対応するテレビジョン広告の前記予測インプレッションを推定するように構成された、請求項12に記載のシステム。
  14. 前記インプレッションプロセッサ、前記インプレッションフィルタ、および前記インプレッションアナライザは、インプレッション時間ウィンドウ中に、前記インプレッション時間ウィンドウ中に前記テレビジョンプロバイダから続いて受け取ったインプレッション記録に基づいて前記予測インプレッションを反復的に更新するように構成され、かつ、
    前記インプレッション時間ウィンドウの満了後に前記予測インプレッションに基づいて広告主請求を生成するように構成されたインプレッションレコーダをさらに備える、請求項13に記載のシステム。
  15. 前記インプレッションプロセッサは、
    前記テレビジョンプロバイダにおけるテレビジョン広告の挿入時間と視聴デバイスにおける前記テレビジョン広告の実際の表示時間との間の時間としてレイテンシ遅延を識別するように構成された、請求項11に記載のシステム。
  16. 前記インプレッションプロセッサは、
    テレビジョン広告の意図された表示時間と視聴デバイスにおける前記テレビジョン広告の実際の表示時間との間の時間としてレイテンシ遅延を識別するように構成された、請求項12に記載のシステム。
  17. 前記フィルタリング規則は最小滞留時間しきい値を定義し、かつ、
    前記インプレッションフィルタは、前記関連する同調時間が前記最小滞留時間よりも長い場合に、正規化済みインプレッション記録を信頼できる正規化済みインプレッション記録として識別するように構成された、請求項11に記載のシステム。
  18. 前記フィルタリング規則は、対応するインプレッション記録に関連する許可済みチャネル識別子を定義し、かつ、
    前記インプレッションフィルタは、正規化済みインプレッション記録の前記チャネル識別子が前記関連する許可済みチャネル識別子のうちの1つでない場合に、前記正規化済みインプレッション記録を信頼できる正規化済みインプレッション記録として識別しないようにするように構成された、請求項11に記載のシステム。
  19. 同調デバイスによって報告されたチャネル識別子と関連する同調イベントと関連する同調時間とを定義するインプレッション記録をテレビジョンプロバイダから受け取るステップと、
    識別された固定遅延および可変遅延に従って前記関連する同調時間を調整してテレビジョン処理レイテンシを補償するステップと、
    前記調整された関連する同調時間に基づくと共にテレビジョンプロバイダ識別子と挿入識別子とタイムスタンプとを含む、正規化済みインプレッション記録を生成するステップと、
    前記正規化済みインプレッション記録をフィルタにかけて偽陽性インプレッション記録を識別するステップと
    を含む、コンピュータによって実施される方法。
  20. 前記正規化済みインプレッション記録を広告挿入記録と相関させて、対応するテレビジョン広告の報告されたインプレッションを決定するステップと、
    前記報告されたインプレッションおよび前記識別された偽陽性インプレッション記録に基づいて、前記対応するテレビジョン広告の予測インプレッションを推定するステップとを含む、請求項19に記載の方法。
  21. インプレッション時間ウィンドウを定義するステップと、
    前記インプレッション時間ウィンドウ中に前記テレビジョンプロバイダから続いて受け取ったインプレッション記録に基づいてインプレッション記録を反復的に処理するステップとを含む、請求項19に記載の方法。
  22. インプレッション時間ウィンドウの満了後に予測インプレッションに基づいて広告主請求を生成するステップを含む、請求項21に記載の方法。
  23. インプレッションレシーバエンジンおよび/またはインプレッションプロセッサエンジンによって、テレビジョンプロバイダから報告データを受け取り、前記インプレッションレシーバエンジンおよび/または前記インプレッションプロセッサエンジンによって、前記報告データからチャネル同調および対応する同調時間を識別し、かつ、前記インプレッションレシーバエンジンおよび/または前記インプレッションプロセッサエンジンによって、前記テレビジョンプロバイダにおけるテレビジョン広告のブロードキャストストリームへの挿入時間と前記ブロードキャストストリームに同調した視聴デバイスにおける前記テレビジョン広告の表示時間との間のレイテンシ遅延を識別してそれに合わせて調整する手段であって、前記インプレッションレシーバエンジンおよび/または前記インプレッションプロセッサエンジンによってテレビジョンプロバイダエンコーダハードウェアおよびソフトウェアに基づく固定遅延を識別し、チャネル同調についての対応する同調時間に基づく可変遅延を識別する、手段と、
    インプレッションアナライザエンジンによって、前記チャネル同調に対応するチャネル上で前記同調時間中に放送されたテレビジョン広告を識別し、かつ、前記インプレッションアナライザエンジンによって、識別された各テレビジョン広告のインプレッション値を決定する手段と
    を備え、
    前記チャネル同調は、前記視聴デバイスが同調されたチャネル識別子であり、
    前記対応する同調時間は、前記チャネル識別子に対応したチャネルに前記視聴デバイスが同調された時間である
    システム。
JP2010502308A 2007-04-03 2008-04-03 テレビ広告のためのインプレッション値を決定するための方法およびシステム Active JP5514714B2 (ja)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US90989307P 2007-04-03 2007-04-03
US60/909,893 2007-04-03
US91526107P 2007-05-01 2007-05-01
US60/915,261 2007-05-01
US94499207P 2007-06-19 2007-06-19
US60/944,992 2007-06-19
US11/852,791 US7853969B2 (en) 2007-04-03 2007-09-10 Log processing to determine impression values using reliable durations
US11/852,791 2007-09-10
PCT/US2008/059318 WO2008124545A1 (en) 2007-04-03 2008-04-03 Log processing

Publications (2)

Publication Number Publication Date
JP2010524355A JP2010524355A (ja) 2010-07-15
JP5514714B2 true JP5514714B2 (ja) 2014-06-04

Family

ID=39828123

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2010502297A Expired - Fee Related JP5395055B2 (ja) 2007-04-03 2008-04-03 テレビジョン広告の広告主請求を生成する方法およびシステム
JP2010502310A Expired - Fee Related JP5629572B2 (ja) 2007-04-03 2008-04-03 ログ処理
JP2010502308A Active JP5514714B2 (ja) 2007-04-03 2008-04-03 テレビ広告のためのインプレッション値を決定するための方法およびシステム
JP2014085715A Active JP5863872B2 (ja) 2007-04-03 2014-04-17 ログ処理

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2010502297A Expired - Fee Related JP5395055B2 (ja) 2007-04-03 2008-04-03 テレビジョン広告の広告主請求を生成する方法およびシステム
JP2010502310A Expired - Fee Related JP5629572B2 (ja) 2007-04-03 2008-04-03 ログ処理

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2014085715A Active JP5863872B2 (ja) 2007-04-03 2014-04-17 ログ処理

Country Status (4)

Country Link
US (7) US7853969B2 (ja)
EP (3) EP2145301A4 (ja)
JP (4) JP5395055B2 (ja)
WO (3) WO2008124545A1 (ja)

Families Citing this family (159)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8959019B2 (en) 2002-10-31 2015-02-17 Promptu Systems Corporation Efficient empirical determination, computation, and use of acoustic confusability measures
TW200704183A (en) 2005-01-27 2007-01-16 Matrix Tv Dynamic mosaic extended electronic programming guide for television program selection and display
US8875196B2 (en) 2005-08-13 2014-10-28 Webtuner Corp. System for network and local content access
US8898072B2 (en) * 2007-04-20 2014-11-25 Hubpages, Inc. Optimizing electronic display of advertising content
JP5503531B2 (ja) 2007-05-02 2014-05-28 グーグル インコーポレイテッド ウェブベースの映像プレイヤのためのユーザインタフェース
US8281332B2 (en) * 2007-05-02 2012-10-02 Google Inc. Animated video overlays
US8560391B1 (en) * 2007-06-15 2013-10-15 At&T Mobility Ii Llc Classification engine for dynamic E-advertisement content insertion
US8924992B2 (en) 2007-12-05 2014-12-30 Ds-Iq, Inc. System and method for independent media auditing and media serving for marketing campaigns presented via media devices in public places
US8949882B2 (en) * 2007-12-06 2015-02-03 This Technology, Inc. System and method for enabling content providers to identify advertising opportunities
US8705498B2 (en) * 2008-03-24 2014-04-22 At&T Mobility Ii Llc Theme based advertising
US20090313232A1 (en) * 2008-03-26 2009-12-17 Thomas Austin Tinsley Methods and Apparatus to Calculate Audience Estimations
US7729940B2 (en) 2008-04-14 2010-06-01 Tra, Inc. Analyzing return on investment of advertising campaigns by matching multiple data sources
US20090259519A1 (en) * 2008-04-14 2009-10-15 Microsoft Corporation Advertisements Targeted to Social Groups that Establish Program Popularity
US8000993B2 (en) * 2008-04-14 2011-08-16 Tra, Inc. Using consumer purchase behavior for television targeting
US8887194B2 (en) * 2008-06-19 2014-11-11 Verizon Patent And Licensing Inc. Method and system for providing interactive advertisement customization
US20100010890A1 (en) * 2008-06-30 2010-01-14 Eyeblaster, Ltd. Method and System for Measuring Advertisement Dwell Time
US8869193B2 (en) * 2008-08-26 2014-10-21 At&T Intellectual Property I, L.P. Methods, computer program products, and apparatus for receiving targeted content based on locally stored user data
US8869194B2 (en) * 2008-08-26 2014-10-21 At&T Intellectual Property I, L.P. Methods, computer program products, and apparatus for providing targeted content based on user data
US20110185382A2 (en) * 2008-10-07 2011-07-28 Google Inc. Generating reach and frequency data for television advertisements
US8087041B2 (en) * 2008-12-10 2011-12-27 Google Inc. Estimating reach and frequency of advertisements
US20100154003A1 (en) * 2008-12-11 2010-06-17 At&T Intellectual Property I, L.P. Providing report of popular channels at present time
US20100153173A1 (en) * 2008-12-11 2010-06-17 At&T Intellectual Property I, L.P. Providing report of content most scheduled for recording
US8832733B2 (en) * 2008-12-17 2014-09-09 Verizon Patent And Licensing Inc. Method and system for providing localized advertisement information using a set top box
US20100174609A1 (en) * 2009-01-02 2010-07-08 Yahoo! Inc. Method and system for correcting bias introduced by estimating offer values
US8341550B2 (en) * 2009-02-10 2012-12-25 Microsoft Corporation User generated targeted advertisements
US20100241944A1 (en) * 2009-03-19 2010-09-23 Yahoo! Inc. Method and apparatus for associating advertising content with computer enabled maps
US9009753B2 (en) * 2009-03-24 2015-04-14 Microsoft Technology Licensing, Llc Measurement and reporting of set top box inserted AD impressions
US8997142B2 (en) * 2009-03-24 2015-03-31 Microsoft Technology Licensing, Llc Advertisement insertion decisions for set top box management of advertisements
US9215423B2 (en) 2009-03-30 2015-12-15 Time Warner Cable Enterprises Llc Recommendation engine apparatus and methods
US9015741B2 (en) 2009-04-17 2015-04-21 Gracenote, Inc. Method and system for remotely controlling consumer electronic devices
US20110010737A1 (en) * 2009-07-10 2011-01-13 Nokia Corporation Method and apparatus for notification-based customized advertisement
US8813124B2 (en) * 2009-07-15 2014-08-19 Time Warner Cable Enterprises Llc Methods and apparatus for targeted secondary content insertion
US20110035774A1 (en) * 2009-08-07 2011-02-10 Echostar Technologies Llc Previously viewed channel quick bar
US8495676B2 (en) * 2009-11-23 2013-07-23 Clear Channel Management Services, Inc. Managing under-filled spot blocks
US9323788B2 (en) 2009-11-23 2016-04-26 iHeartMedia Management Service, Inc. Managing under-filled spot blocks
US9875719B2 (en) 2009-12-23 2018-01-23 Gearbox, Llc Identifying a characteristic of an individual utilizing facial recognition and providing a display for the individual
US20110211739A1 (en) * 2009-12-23 2011-09-01 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Identifying a characteristic of an individual utilizing facial recognition and providing a display for the individual
US8903812B1 (en) * 2010-01-07 2014-12-02 Google Inc. Query independent quality signals
US20110238504A1 (en) * 2010-03-26 2011-09-29 Nazish Aslam System And Method For Modifying Advertising Costs Based On The Visibility Of The Advertisement
US20110264530A1 (en) 2010-04-23 2011-10-27 Bryan Santangelo Apparatus and methods for dynamic secondary content and data insertion and delivery
US8370330B2 (en) 2010-05-28 2013-02-05 Apple Inc. Predicting content and context performance based on performance history of users
WO2011156532A2 (en) * 2010-06-08 2011-12-15 Google Inc. Determining conversion rates for on-line purchases
US10957002B2 (en) 2010-08-06 2021-03-23 Google Llc Sequence dependent or location based operation processing of protocol based data message transmissions
US10013978B1 (en) 2016-12-30 2018-07-03 Google Llc Sequence dependent operation processing of packet based data message transmissions
US8799941B2 (en) * 2010-09-03 2014-08-05 The Directv Group, Inc. Method and system for automating advertising insertion and reconciliation
EP2621911A1 (en) 2010-09-30 2013-08-07 Solvay Sa Derivative of epichlorohydrin of natural origin
US9032427B2 (en) * 2010-10-28 2015-05-12 Avvasi Inc. System for monitoring a video network and methods for use therewith
US9191284B2 (en) 2010-10-28 2015-11-17 Avvasi Inc. Methods and apparatus for providing a media stream quality signal
US9037743B2 (en) 2010-10-28 2015-05-19 Avvasi Inc. Methods and apparatus for providing a presentation quality signal
US10248960B2 (en) * 2010-11-16 2019-04-02 Disney Enterprises, Inc. Data mining to determine online user responses to broadcast messages
US10945011B2 (en) 2010-12-29 2021-03-09 Comcast Cable Communications, Llc Measuring video viewing
US8898698B2 (en) * 2011-01-21 2014-11-25 Bluefin Labs, Inc. Cross media targeted message synchronization
CA2829308C (en) * 2011-03-10 2017-10-03 Opentv, Inc Determination of advertisement impact
KR101211098B1 (ko) 2011-04-25 2012-12-11 (주)엔써즈 클라이언트 단말기측으로 네트워크를 통해 방송에 포함된 광고와 연관된 정보를 제공하는 시스템 및 방법
KR20140033412A (ko) 2011-05-17 2014-03-18 웹튜너 코포레이션 스케일링가능 고정밀 센서 및 id 기초 청중 측정 시스템용 시스템 및 방법
CN103649906A (zh) 2011-05-24 2014-03-19 韦伯图纳公司 提高观众测量系统中的分析报告产生的效率和速度的系统和方法
AU2012258513A1 (en) * 2011-05-26 2013-12-12 WebTuner, Corporation Highly scalable audience measurement system with client event pre-processing
US20130014148A1 (en) * 2011-07-06 2013-01-10 Michael Vinson Aggregation-based methods for detection and correction of television viewership aberrations
US10028003B2 (en) * 2011-10-12 2018-07-17 Turner Broadcasting System, Inc. Advertisement scheduler
US9942580B2 (en) * 2011-11-18 2018-04-10 At&T Intellecutal Property I, L.P. System and method for automatically selecting encoding/decoding for streaming media
US9270718B2 (en) * 2011-11-25 2016-02-23 Harry E Emerson, III Internet streaming and the presentation of dynamic content
US20130139194A1 (en) * 2011-11-30 2013-05-30 Sling Media, Inc. Systems and methods to determine expected viewership of future television broadcasts using recording timer data
US8352981B1 (en) 2011-12-01 2013-01-08 Google Inc. Television advertisement reach and frequency management
WO2013088822A1 (ja) 2011-12-16 2013-06-20 株式会社ソニー・コンピュータエンタテインメント 放送番組処理装置、放送番組処理方法、放送局装置、情報配信サーバ、プログラム及び情報記憶媒体
US10645433B1 (en) * 2013-08-29 2020-05-05 Comcast Cable Communications, Llc Measuring video-content viewing
US8832723B2 (en) 2012-02-07 2014-09-09 Turner Broadcasting System, Inc. Method and system for a synchronous event manager for automatic content recognition
US9584858B2 (en) 2012-03-19 2017-02-28 Rentrak Corporation Empirical ad pod detection
KR101769353B1 (ko) * 2012-03-22 2017-08-18 한국전자통신연구원 증강 방송 스트림 송출 장치 및 방법, 및 증강 방송 서비스 제공 장치 및 방법
US20130305269A1 (en) * 2012-05-09 2013-11-14 Opentv, Inc. High definition playback verification
JP5906950B2 (ja) * 2012-06-06 2016-04-20 富士通株式会社 コンテンツ配信のための情報処理方法及び装置
US9767479B2 (en) 2012-06-25 2017-09-19 Google Inc. System and method for deploying ads based on a content exposure interval
US10614801B2 (en) 2012-06-25 2020-04-07 Google Llc Protocol based computer network exposure interval content item transmission
US20140033248A1 (en) * 2012-07-27 2014-01-30 General Instrument Corporation Including inserts in multimedia content
US20140059579A1 (en) * 2012-08-22 2014-02-27 Rentrak Corporation Systems and methods for projecting viewership data
US8843951B1 (en) * 2012-08-27 2014-09-23 Google Inc. User behavior indicator
JP6011920B2 (ja) * 2012-08-29 2016-10-25 パナソニックIpマネジメント株式会社 映像表示装置、映像表示方法、及びプログラム
UA119532C2 (uk) 2012-09-14 2019-07-10 Байєр Кропсайєнс Лп Варіант hppd та спосіб його застосування
US20140101682A1 (en) * 2012-10-10 2014-04-10 Microsoft Corporation Television auto-tune based on habitual viewing behaviors
US8782683B2 (en) * 2012-10-12 2014-07-15 At&T Intellectual Property I, Lp Method and apparatus for managing advertising
US9363557B2 (en) * 2012-10-15 2016-06-07 Simulmedia, Inc. Methods and systems for forecasting and measurement of media viewership using a combination of data sets
US8612281B1 (en) * 2012-10-27 2013-12-17 Lions Gate Entertainment Inc. System and method for producing and distributing audio-visual content
US9100719B2 (en) * 2012-12-03 2015-08-04 Brightcove, Inc. Advertising processing engine service
US9167276B2 (en) 2012-12-28 2015-10-20 Turner Broadcasting System, Inc. Method and system for providing and handling product and service discounts, and location based services (LBS) in an automatic content recognition based system
WO2014120108A1 (en) * 2013-01-29 2014-08-07 Google Inc. Automatic bid generation
US9049386B1 (en) 2013-03-14 2015-06-02 Tribune Broadcasting Company, Llc Systems and methods for causing a stunt switcher to run a bug-overlay DVE
US9094618B1 (en) * 2013-03-14 2015-07-28 Tribune Broadcasting Company, Llc Systems and methods for causing a stunt switcher to run a bug-overlay DVE with absolute timing restrictions
US9473801B1 (en) 2013-03-14 2016-10-18 Tribune Broadcasting Company, Llc Systems and methods for causing a stunt switcher to run a bug-removal DVE
US9185309B1 (en) 2013-03-14 2015-11-10 Tribune Broadcasting Company, Llc Systems and methods for causing a stunt switcher to run a snipe-overlay DVE
US9549208B1 (en) 2013-03-14 2017-01-17 Tribune Broadcasting Company, Llc Systems and methods for causing a stunt switcher to run a multi-video-source DVE
US9584863B1 (en) 2013-03-15 2017-02-28 Andrew Teoh Method and system for distance based video advertisement reward system with instant dynamic price generation for digital media propagation
WO2014150399A1 (en) * 2013-03-15 2014-09-25 Brandstetter Jeffrey D Systems and methods for defining ad spaces in video
US11218434B2 (en) * 2013-06-12 2022-01-04 Google Llc Audio data packet status determination
US20140372205A1 (en) * 2013-06-12 2014-12-18 Google Inc. Systems and methods for selecting and serving content items based on view probability
US9923979B2 (en) 2013-06-27 2018-03-20 Google Llc Systems and methods of determining a geographic location based conversion
US20150006279A1 (en) * 2013-06-27 2015-01-01 Google Inc. Systems and methods of generating a valid location cluster based on a location of a commercial entity
US10134053B2 (en) * 2013-11-19 2018-11-20 Excalibur Ip, Llc User engagement-based contextually-dependent automated pricing for non-guaranteed delivery
US9137558B2 (en) 2013-11-26 2015-09-15 At&T Intellectual Property I, Lp Method and system for analysis of sensory information to estimate audience reaction
WO2015081334A1 (en) * 2013-12-01 2015-06-04 Athey James Leighton Systems and methods for providing a virtual menu
US20150229995A1 (en) * 2014-02-07 2015-08-13 Visible World, Inc. Systems and methods for providing content distribution information and verification
US20150262207A1 (en) 2014-03-13 2015-09-17 The Nielsen Company (US),LLC Methods and apparatus to compensate impression data for misattribution and/or non-coverage by a database proprietor
US20150278353A1 (en) * 2014-03-31 2015-10-01 Linkedln Corporation Methods and systems for surfacing content items based on impression discounting
US9402113B1 (en) * 2014-04-04 2016-07-26 Google Inc. Visualizing video audience retention by impression frequency
JP7184500B2 (ja) * 2014-06-05 2022-12-06 ヴィジブル ワールド リミテッド ライアビリティ カンパニー 販促デジタルオンスクリーングラフィックに対する成果を決定する方法、システム、及びコンピュータ可読媒体
US10185971B2 (en) 2014-10-27 2019-01-22 Adobe Systems Incorporated Systems and methods for planning and executing an advertising campaign targeting TV viewers and digital media viewers across formats and screen types
US10250951B2 (en) * 2014-10-27 2019-04-02 Adobe Inc. Systems and methods for planning, executing, and reporting a strategic advertising campaign for television
US20160189182A1 (en) 2014-12-31 2016-06-30 The Nielsen Company (Us), Llc Methods and apparatus to correct age misattribution in media impressions
US9479810B2 (en) * 2015-01-26 2016-10-25 Accenture Global Services Limited Broadcast schedule synchronized digital video recorder
US10224027B2 (en) 2015-06-01 2019-03-05 Sinclair Broadcast Group, Inc. Rights management and syndication of content
CA2988105C (en) 2015-06-01 2024-06-18 Benjamin Aaron Miller Content segmentation and time reconciliation
WO2016196692A1 (en) 2015-06-01 2016-12-08 Miller Benjamin Aaron Break state detection in content management systems
US10045082B2 (en) 2015-07-02 2018-08-07 The Nielsen Company (Us), Llc Methods and apparatus to correct errors in audience measurements for media accessed using over-the-top devices
US10380633B2 (en) 2015-07-02 2019-08-13 The Nielsen Company (Us), Llc Methods and apparatus to generate corrected online audience measurement data
US9838754B2 (en) * 2015-09-01 2017-12-05 The Nielsen Company (Us), Llc On-site measurement of over the top media
US9922341B2 (en) 2015-09-01 2018-03-20 Turner Broadcasting System, Inc. Programming optimization utilizing a framework for audience rating estimation
US11064234B2 (en) 2015-09-01 2021-07-13 Turner Broadcasting System, Inc. Targeting and demographics scheduling utilizing a framework for audience rating estimation
US10070166B2 (en) 2015-11-02 2018-09-04 Turner Broadcasting System, Inc Generation of reach, mixture, and pricing utilizing a framework for audience rating estimation
US11093968B2 (en) 2015-11-02 2021-08-17 Turner Broadcasting System, Inc. Audience proposal creation and spot scheduling utilizing a framework for audience rating estimation
US10412469B2 (en) 2015-12-17 2019-09-10 The Nielsen Company (Us), Llc Methods and apparatus for determining audience metrics across different media platforms
US10546317B2 (en) * 2015-12-31 2020-01-28 A4 Media & Data Solutions, Llc Programmatic advertising platform
US11228817B2 (en) 2016-03-01 2022-01-18 Comcast Cable Communications, Llc Crowd-sourced program boundaries
US20170257678A1 (en) * 2016-03-01 2017-09-07 Comcast Cable Communications, Llc Determining Advertisement Locations Based on Customer Interaction
US11343555B2 (en) 2016-04-05 2022-05-24 Turner Broadcasting System, Inc. Allocation of under delivery units utilizing an optimization framework
US10586023B2 (en) 2016-04-21 2020-03-10 Time Warner Cable Enterprises Llc Methods and apparatus for secondary content management and fraud prevention
US10855765B2 (en) 2016-05-20 2020-12-01 Sinclair Broadcast Group, Inc. Content atomization
JP6313872B2 (ja) * 2016-07-22 2018-04-18 東海電子株式会社 アルコール測定システムおよびアルコール測定動画保存プログラム
US11212593B2 (en) * 2016-09-27 2021-12-28 Time Warner Cable Enterprises Llc Apparatus and methods for automated secondary content management in a digital network
US20180101863A1 (en) * 2016-10-07 2018-04-12 Facebook, Inc. Online campaign measurement across multiple third-party systems
US10701438B2 (en) 2016-12-31 2020-06-30 Turner Broadcasting System, Inc. Automatic content recognition and verification in a broadcast chain
EP3520429B1 (en) 2017-03-14 2023-09-13 Google LLC Verifying the rendering of video content at client devices using trusted platform modules
US10778648B2 (en) * 2017-05-10 2020-09-15 Nexmo Inc. Systems and methods for regional data storage and data anonymization
US11282115B2 (en) 2017-06-13 2022-03-22 Turner Broadcasting System, Inc. Managing allocation of inventory mix utilizing an optimization framework
US11423431B2 (en) 2017-06-13 2022-08-23 Turner Broadcasting System, Inc. Promotion planning for managing allocation of inventory mix utilizing an optimization framework
HRP20240238T1 (hr) * 2017-06-23 2024-05-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Postupak, uređaj, kompjuterski program i sustav za određivanje informacija vezanih za auditorij programa audio-vizualnih sadržaja
US10685321B2 (en) 2017-06-27 2020-06-16 Xandr Inc. Break-based inventory forecasting
WO2019022748A1 (en) * 2017-07-27 2019-01-31 Rovi Guides, Inc. SYSTEMS AND METHODS FOR EXTENDING RECORDINGS FOR MULTIMEDIA CONTENT BASED ON AGGREGATION OF USER DATA
KR102030439B1 (ko) 2017-12-18 2019-10-10 애니포인트미디어 주식회사 방송 서비스의 반송률 측정 장치
KR102081221B1 (ko) * 2017-12-18 2020-02-25 애니포인트미디어 주식회사 방송 서비스의 반송률 측정 장치
US10834451B2 (en) 2018-01-09 2020-11-10 Turner Broadcasting System, Inc. Dynamically scheduling non-programming media items in contextually relevant programming media content
US11334911B1 (en) 2018-03-23 2022-05-17 Tatari, Inc. Systems and methods for debiasing media creative efficiency
US11212566B1 (en) 2018-03-26 2021-12-28 Tatari, Inc. Systems and methods for attributing TV conversions
US11132706B1 (en) 2018-03-26 2021-09-28 Tatari, Inc. System and method for quantification of latent effects on user interactions with an online presence in a distributed computer network resulting from content distributed through a distinct content delivery network
US10841649B2 (en) * 2018-06-06 2020-11-17 The Nielsen Company (Us), Llc Methods and apparatus to calibrate return path data for audience measurement
US11968414B1 (en) 2018-06-18 2024-04-23 Sintec Media Ltd. Systems and methods for forecasting program viewership
US11049150B2 (en) * 2018-06-22 2021-06-29 Criteo Sa Generation of incremental bidding and recommendations for electronic advertisements
US11244327B1 (en) * 2018-08-29 2022-02-08 Sintec Media Ltd. Methods and systems for determining reach information
US10511873B1 (en) * 2018-08-30 2019-12-17 The Nielsen Company (Us), Llc Correcting systematic tuning defects
US11334912B1 (en) 2018-12-07 2022-05-17 Tatari, Inc. Systems and methods for determining media creative attribution to website traffic
US11562393B1 (en) 2018-12-07 2023-01-24 Tatari, Inc. Self-consistent inception architecture for efficient baselining media creatives
US11115696B2 (en) * 2019-07-10 2021-09-07 Beachfront Media Llc Programmatic ingestion and STB delivery in ad auction environments
US11270354B2 (en) * 2019-07-29 2022-03-08 TapText llc System and methods for advertisement campaign tracking and management using a multi-platform adaptive ad campaign manager
US11006191B2 (en) 2019-08-02 2021-05-11 The Nielsen Company (Us), Llc Use of watermarking to control abandonment of dynamic content modification
US11403849B2 (en) 2019-09-25 2022-08-02 Charter Communications Operating, Llc Methods and apparatus for characterization of digital content
WO2021133836A1 (en) * 2019-12-23 2021-07-01 The Nielsen Company (Us), Llc Under-addressable advertisement measurement
US11671679B2 (en) 2019-12-23 2023-06-06 The Nielsen Company (Us), Llc Under-addressable advertisement measurement
WO2021146707A1 (en) * 2020-01-16 2021-07-22 Green Line Business Group, LLC Communication networking system
US11587115B2 (en) * 2020-04-23 2023-02-21 BRKR.IO, Inc. System and methods for facilitating content promotion transactions between content promoters and artists
US11632597B2 (en) * 2020-07-22 2023-04-18 Roku, Inc. Responding to emergency-alert audio tone by abandoning dynamic content modification
US11494803B2 (en) * 2021-02-11 2022-11-08 Roku, Inc. Content modification system with viewer behavior-based content delivery selection feature
WO2022183020A1 (en) * 2021-02-25 2022-09-01 The Nielsen Company (Us), Llc Reconciliation of commercial measurement ratings for non-return path data media devices

Family Cites Families (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4694490A (en) 1981-11-03 1987-09-15 Harvey John C Signal processing apparatus and methods
US4965825A (en) 1981-11-03 1990-10-23 The Personalized Mass Media Corporation Signal processing apparatus and methods
US6463585B1 (en) 1992-12-09 2002-10-08 Discovery Communications, Inc. Targeted advertisement using television delivery systems
JP3339538B2 (ja) * 1995-03-31 2002-10-28 松下電器産業株式会社 双方向catvシステム
US7844517B2 (en) * 1996-01-18 2010-11-30 Planalytics, Inc. System, method, and computer program product for forecasting weather-based demand using proxy data
US5857190A (en) * 1996-06-27 1999-01-05 Microsoft Corporation Event logging system and method for logging events in a network system
US20030093790A1 (en) * 2000-03-28 2003-05-15 Logan James D. Audio and video program recording, editing and playback systems using metadata
US6983478B1 (en) * 2000-02-01 2006-01-03 Bellsouth Intellectual Property Corporation Method and system for tracking network use
US20030040962A1 (en) 1997-06-12 2003-02-27 Lewis William H. System and data management and on-demand rental and purchase of digital data products
WO1999004570A1 (fr) 1997-07-18 1999-01-28 Ecole Polytechnique Federale De Lausanne Procede de marquage d'un signal numerique video compresse
DE69918341T2 (de) * 1998-03-04 2005-06-30 United Video Properties, Inc., Tulsa Programmführersystem mit Überwachung von Werbenutzung und Nutzeraktivitäten
US6530082B1 (en) * 1998-04-30 2003-03-04 Wink Communications, Inc. Configurable monitoring of program viewership and usage of interactive applications
JP2000032499A (ja) * 1998-07-16 2000-01-28 Sony Corp 番組選択履歴情報取得方法および取得装置
US7185353B2 (en) * 2000-08-31 2007-02-27 Prime Research Alliance E., Inc. System and method for delivering statistically scheduled advertisements
US7260823B2 (en) * 2001-01-11 2007-08-21 Prime Research Alliance E., Inc. Profiling and identification of television viewers
US6324519B1 (en) * 1999-03-12 2001-11-27 Expanse Networks, Inc. Advertisement auction system
US11109114B2 (en) 2001-04-18 2021-08-31 Grass Valley Canada Advertisement management method, system, and computer program product
US6438751B1 (en) * 1999-02-18 2002-08-20 Joseph F. Voyticky Integrated television and internet information system
SE514005C2 (sv) * 1999-02-23 2000-12-11 Dhj Media Ab Informationssystem
US6289514B1 (en) * 1999-03-29 2001-09-11 Qcom Tv, Inc. System and method for the near-real time capture and reporting of large population consumer behaviors concerning television use
US8943527B2 (en) * 1999-03-30 2015-01-27 Tivo Inc. Audience measurement system
AU764877B2 (en) * 1999-05-12 2003-09-04 Two Way Media Limited Interactive television broadcast system
AUPQ206399A0 (en) * 1999-08-06 1999-08-26 Imr Worldwide Pty Ltd. Network user measurement system and method
JP4207102B2 (ja) * 1999-08-20 2009-01-14 ソニー株式会社 放送システム、放送受信装置及び視聴率調査方法
AU2001247245A1 (en) 2000-03-01 2001-09-12 Expanse Networks, Inc. Advertisment monitoring and feedback system
US20040148625A1 (en) 2000-04-20 2004-07-29 Eldering Charles A Advertisement management system for digital video streams
JP2001320743A (ja) * 2000-05-12 2001-11-16 Nec Corp 番組視聴情報の調査方法と視聴情報の利用方法及び番組視聴装置
KR20000054179A (ko) 2000-05-25 2000-09-05 최노림 광고를 위한 매체 업무에서의 매체 효과 분석 방법 및이를 위한 기록 매체
US20060064716A1 (en) 2000-07-24 2006-03-23 Vivcom, Inc. Techniques for navigating multiple video streams
US20050204385A1 (en) 2000-07-24 2005-09-15 Vivcom, Inc. Processing and presentation of infomercials for audio-visual programs
US7356246B1 (en) * 2000-10-01 2008-04-08 Digital Networks North America, Inc. Method and system for extending recording
JP2002135757A (ja) * 2000-10-27 2002-05-10 Intage Inc 広告視聴効果評価システム
JP2002157516A (ja) * 2000-11-17 2002-05-31 Hitachi Ltd 広告情報提供方法及びその装置
US7020888B2 (en) * 2000-11-27 2006-03-28 Intellocity Usa, Inc. System and method for providing an omnimedia package
US7331057B2 (en) * 2000-12-28 2008-02-12 Prime Research Alliance E, Inc. Grouping advertisement subavails
JP2003087825A (ja) 2001-01-24 2003-03-20 Kazuhiko Suzuki 放送システム、課金方法、番組オークション方法、視聴者cmセレクトシステム、視聴者box、視聴者boxデーターベースシステム、視聴率装置、cm放送方法、cm放送装置
GB0106217D0 (en) 2001-03-14 2001-05-02 Pace Micro Tech Plc Television system
JP2002312680A (ja) * 2001-04-18 2002-10-25 Matsushita Electric Ind Co Ltd Cm料算定プログラムおよびcm料算定方法
US20020174424A1 (en) * 2001-05-21 2002-11-21 Chang Matthew S. Apparatus and method for providing an indication of program(s) and/or activities
JP4779236B2 (ja) 2001-06-06 2011-09-28 ソニー株式会社 広告情報の配信管理装置及び配信管理方法、並びにコンピュータ・プログラム
US20030115585A1 (en) * 2001-07-11 2003-06-19 International Business Machines Corporation Enhanced electronic program guide
US7778872B2 (en) 2001-09-06 2010-08-17 Google, Inc. Methods and apparatus for ordering advertisements based on performance information and price information
US7117513B2 (en) * 2001-11-09 2006-10-03 Nielsen Media Research, Inc. Apparatus and method for detecting and correcting a corrupted broadcast time code
US20030101454A1 (en) 2001-11-21 2003-05-29 Stuart Ozer Methods and systems for planning advertising campaigns
US7136871B2 (en) * 2001-11-21 2006-11-14 Microsoft Corporation Methods and systems for selectively displaying advertisements
JP2003178230A (ja) 2001-12-07 2003-06-27 Fujitsu Ltd 広告割付方法,広告割付装置,広告割付プログラムおよび広告割付プログラムを記録した記録媒体
US20030110497A1 (en) 2001-12-11 2003-06-12 Koninklijke Philips Electronics N.V. Micro-auction on television using multiple rewards to benefit the viewer of commercials
US20030115597A1 (en) * 2001-12-14 2003-06-19 Koninklijke Philips Electronics N.V. Micro-auction on television for the selection of commercials
US20030171990A1 (en) * 2001-12-19 2003-09-11 Sabre Inc. Methods, systems, and articles of manufacture for managing the delivery of content
JP4064688B2 (ja) * 2002-02-21 2008-03-19 松下電器産業株式会社 視聴率集計システム、放送受信機および視聴率集計方法
KR20030070275A (ko) 2002-02-23 2003-08-30 삼성전자주식회사 선호 채널 관리 장치 및 방법과 이를 이용한 시청률 조사장치 및 방법
US20050021397A1 (en) 2003-07-22 2005-01-27 Cui Yingwei Claire Content-targeted advertising using collected user behavior data
US8663909B2 (en) 2002-05-09 2014-03-04 Nanologix, Inc. Device for rapid detection and identification of single microorganisms without preliminary growth
JP4359810B2 (ja) 2002-10-01 2009-11-11 ソニー株式会社 ユーザ端末、データ処理方法、およびプログラム、並びにデータ処理システム
US8204353B2 (en) * 2002-11-27 2012-06-19 The Nielsen Company (Us), Llc Apparatus and methods for tracking and analyzing digital recording device event sequences
JP2004241949A (ja) * 2003-02-05 2004-08-26 Fujitsu General Ltd 番組視聴端末、録画番組の再生制御方法および録画番組の再生制御プログラム
US20040163107A1 (en) * 2003-02-13 2004-08-19 Douglas Crystal Television advertising system and method
US7248777B2 (en) * 2003-04-17 2007-07-24 Nielsen Media Research, Inc. Methods and apparatus to detect content skipping by a consumer of a recorded program
US20040225562A1 (en) 2003-05-09 2004-11-11 Aquantive, Inc. Method of maximizing revenue from performance-based internet advertising agreements
US8266659B2 (en) * 2003-05-16 2012-09-11 Time Warner Cable LLC Technique for collecting data relating to activity of a user receiving entertainment programs through a communications network
US20050239089A1 (en) 2003-06-06 2005-10-27 Johnson Martin D Mobility cassettes
US7563748B2 (en) 2003-06-23 2009-07-21 Cognis Ip Management Gmbh Alcohol alkoxylate carriers for pesticide active ingredients
JPWO2005011294A1 (ja) * 2003-07-28 2007-09-27 日本電気株式会社 視聴調査システム
WO2005013092A2 (en) 2003-08-01 2005-02-10 Dollars.Com Llc A system and a method for determining advertising effectiveness
US8146123B2 (en) 2003-11-13 2012-03-27 Arris Group, Inc. System to provide set top box configuration for content on demand
JP4338510B2 (ja) * 2003-12-17 2009-10-07 株式会社オーエン 映像コンテンツ配信装置及びそのシステム
JP2005260728A (ja) * 2004-03-12 2005-09-22 Ntt Docomo Inc 移動端末、視聴情報収集システム、及び視聴情報収集方法
JP4285287B2 (ja) 2004-03-17 2009-06-24 セイコーエプソン株式会社 画像処理装置、画像処理方法およびそのプログラム、記録媒体
US8620742B2 (en) * 2004-03-31 2013-12-31 Google Inc. Advertisement approval
JP2005311810A (ja) * 2004-04-23 2005-11-04 Aii Kk デジタル放送を用いた視聴履歴収集方法
US7697070B1 (en) 2004-04-29 2010-04-13 Michael T Dugan Method of providing standard definition local television content
US20050251444A1 (en) 2004-05-10 2005-11-10 Hal Varian Facilitating the serving of ads having different treatments and/or characteristics, such as text ads and image ads
JP2005332084A (ja) 2004-05-18 2005-12-02 Matsushita Electric Ind Co Ltd Cm配信サーバ装置
WO2006000020A1 (en) 2004-06-29 2006-01-05 European Nickel Plc Improved leaching of base metals
CN1993909A (zh) * 2004-07-02 2007-07-04 尼尔逊媒介研究股份有限公司 用于识别与数字媒体设备相关联的收视信息的方法和装置
EP1790152A4 (en) 2004-08-09 2008-10-08 Nielsen Media Res Inc METHODS AND APPARATUS FOR CONTROLLING AUDIOVISUAL CONTENT FROM VARIOUS SOURCES
JP4481767B2 (ja) * 2004-08-24 2010-06-16 富士通株式会社 視聴情報分析プログラム、視聴情報分析装置および視聴情報分析方法
US7792190B2 (en) 2004-09-09 2010-09-07 Media Tek Singapore Pte Ltd. Inserting a high resolution still image into a lower resolution video stream
US20060085815A1 (en) * 2004-10-18 2006-04-20 Idt Corporation Multimedia advertising marketplace
US8128493B2 (en) 2004-12-20 2012-03-06 Google Inc. Method and system for automatically managing a content approval process for use in in-game advertising
US20060287915A1 (en) 2005-01-12 2006-12-21 Boulet Daniel A Scheduling content insertion opportunities in a broadcast network
US7703114B2 (en) 2005-02-25 2010-04-20 Microsoft Corporation Television system targeted advertising
KR20060097268A (ko) 2005-03-04 2006-09-14 이미정 디지털 방송의 시청정보를 수집할 수 있는 무선단말기 및그 수집방법
US20060253323A1 (en) * 2005-03-15 2006-11-09 Optical Entertainment Network, Inc. System and method for online trading of television advertising space
US20060224445A1 (en) * 2005-03-30 2006-10-05 Brian Axe Adjusting an advertising cost, such as a per-ad impression cost, using a likelihood that the ad will be sensed or perceived by users
US20070011050A1 (en) * 2005-05-20 2007-01-11 Steven Klopf Digital advertising system
US7656462B2 (en) * 2005-06-17 2010-02-02 Martin Weston Systems and methods for modifying master film for viewing at different viewing locations
US8700462B2 (en) * 2005-12-28 2014-04-15 Yahoo! Inc. System and method for optimizing advertisement campaigns using a limited budget
US8255963B2 (en) * 2006-04-25 2012-08-28 XOrbit Inc. System and method for monitoring video data
US7593965B2 (en) 2006-05-10 2009-09-22 Doubledip Llc System of customizing and presenting internet content to associate advertising therewith
US20080022301A1 (en) 2006-06-20 2008-01-24 Stavros Aloizos Placing television commercials into available slots on multiple television stations
US8752086B2 (en) * 2006-08-09 2014-06-10 Carson Victor Conant Methods and apparatus for sending content to a media player
US7590616B2 (en) 2006-11-17 2009-09-15 Yahoo! Inc. Collaborative-filtering contextual model based on explicit and implicit ratings for recommending items
US8108390B2 (en) * 2006-12-21 2012-01-31 Yahoo! Inc. System for targeting data to sites referenced on a page
US20080216107A1 (en) * 2007-02-01 2008-09-04 David Downey Verifying and encouraging asset consumption in a communications network
US20080195475A1 (en) * 2007-02-08 2008-08-14 Matthew Cody Lambert Advertiser portal interface
US8516515B2 (en) 2007-04-03 2013-08-20 Google Inc. Impression based television advertising
US20090013347A1 (en) 2007-06-11 2009-01-08 Gulrukh Ahanger Systems and methods for reporting usage of dynamically inserted and delivered ads
US8949882B2 (en) 2007-12-06 2015-02-03 This Technology, Inc. System and method for enabling content providers to identify advertising opportunities

Also Published As

Publication number Publication date
JP2010524355A (ja) 2010-07-15
US20120124619A1 (en) 2012-05-17
JP5395055B2 (ja) 2014-01-22
EP2145302A4 (en) 2011-11-23
US20080250453A1 (en) 2008-10-09
US20100262496A1 (en) 2010-10-14
US20140223458A1 (en) 2014-08-07
EP2145301A4 (en) 2011-11-23
US8966516B2 (en) 2015-02-24
WO2008124529A1 (en) 2008-10-16
WO2008124545A1 (en) 2008-10-16
US8739199B2 (en) 2014-05-27
EP2145300A4 (en) 2011-11-23
JP2014150575A (ja) 2014-08-21
US7743394B2 (en) 2010-06-22
US7853969B2 (en) 2010-12-14
EP2145302A1 (en) 2010-01-20
EP2145301A1 (en) 2010-01-20
US8438591B2 (en) 2013-05-07
US8091101B2 (en) 2012-01-03
JP5863872B2 (ja) 2016-02-17
WO2008124547A1 (en) 2008-10-16
JP5629572B2 (ja) 2014-11-19
US20120072935A1 (en) 2012-03-22
US8127325B2 (en) 2012-02-28
JP2010524357A (ja) 2010-07-15
JP2010524349A (ja) 2010-07-15
US20080250448A1 (en) 2008-10-09
US20080250447A1 (en) 2008-10-09
EP2145300A1 (en) 2010-01-20

Similar Documents

Publication Publication Date Title
JP5863872B2 (ja) ログ処理
US8255949B1 (en) Television program targeting for advertising
US8566861B2 (en) Advertisement transcoding and approval
US11800061B2 (en) Verifying and encouraging asset consumption in a communications network
US20100235219A1 (en) Reconciling forecast data with measured data
US8276174B2 (en) Displaying advertisements on blank television output
US20080167943A1 (en) Real time pricing, purchasing and auctioning of advertising time slots based on real time viewership, viewer demographics, and content characteristics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20121127

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20121204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131101

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140331

R150 Certificate of patent or registration of utility model

Ref document number: 5514714

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250