JP5466640B2 - 硬化性組成物及びその硬化物 - Google Patents

硬化性組成物及びその硬化物 Download PDF

Info

Publication number
JP5466640B2
JP5466640B2 JP2010519072A JP2010519072A JP5466640B2 JP 5466640 B2 JP5466640 B2 JP 5466640B2 JP 2010519072 A JP2010519072 A JP 2010519072A JP 2010519072 A JP2010519072 A JP 2010519072A JP 5466640 B2 JP5466640 B2 JP 5466640B2
Authority
JP
Japan
Prior art keywords
curable composition
fine particles
mass
silica fine
meth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010519072A
Other languages
English (en)
Other versions
JPWO2010001875A1 (ja
Inventor
繁 山木
英雄 宮田
信幸 御手洗
伸晃 石井
克己 室伏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2010519072A priority Critical patent/JP5466640B2/ja
Publication of JPWO2010001875A1 publication Critical patent/JPWO2010001875A1/ja
Application granted granted Critical
Publication of JP5466640B2 publication Critical patent/JP5466640B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/309Combinations of treatments provided for in groups C09C1/3009 - C09C1/3081
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1811C10or C11-(Meth)acrylate, e.g. isodecyl (meth)acrylate, isobornyl (meth)acrylate or 2-naphthyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/103Esters of polyhydric alcohols or polyhydric phenols of trialcohols, e.g. trimethylolpropane tri(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F292/00Macromolecular compounds obtained by polymerising monomers on to inorganic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3081Treatment with organo-silicon compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/22Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Polymerisation Methods In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Graft Or Block Polymers (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Description

本発明は、低粘度でハンドリング性に優れた硬化性組成物、及び該硬化性組成物を硬化させて得られる、透明性、耐熱性、耐環境性及び成形加工性に優れた硬化物に関する。前記硬化物は、例えば、光学レンズ、光ディスク基板、液晶表示素子用プラスチック基板、カラーフィルター用基板、有機EL表示素子用プラスチック基板、太陽電池基板、タッチパネル、光学素子、光導波路、LED封止材等に利用でき、特に光学レンズ、光学素子、光導波路に好適に利用できる。
一般に、液晶表示素子用基板、カラーフィルター基板、有機EL表示素子用基板、太陽電池用基板、タッチパネル等としては、ガラス板が多く用いられていた。しかし、ガラス板は割れ易い、曲げられない、比重が大きく軽量化に不向きである等の問題点を有することから、近年、ガラス板の代わりにプラスチック素材を用いる試みが数多く行われるようになってきた。また、光学レンズ、光学素子、光導波路、LED封止材としては、近年、リフロー耐性を有する等の耐熱性に優れたプラスチック素材が要望されてきている。
例えば、特開平10−77321号公報には、非晶質熱可塑性樹脂と活性エネルギー線により硬化可能なビス(メタ)アクリレートとよりなる樹脂組成物を、活性エネルギー線により硬化させてなる部材が、ガラス基板に代えて光学レンズ、光ディスク基板、プラスチック液晶基板などに好適に利用できることが記載されている。しかしながら、この公報で示されているような従来のプラスチック材料は、耐熱性に乏しい、または硬化時の収縮が大きい。そのため、例えば表示素子基板に適用する場合に、その製造工程において材料に反り、たわみやクラックなどが発生するという問題が生じる。
耐熱性を向上させたり、収縮を低減させたりする方法としては、一般に、樹脂組成物中に無機フィラーを添加する方法や基板に無機膜を積層する等の方法がある。しかし、樹脂組成物中に無機フィラーを添加した場合、樹脂組成物を硬化させて得られる硬化物(基板)の透明性が著しく損なわれる、表面平滑性が失われる、無機フィラー(シリカ微粒子)の分散性が悪いために基板内に不均一性が生じ、基板が割れやすくなる等の問題があった。また、無機膜を積層した場合には、以下の問題などがあった。
(1)無機膜と基板との密着性が悪い。
(2)基板から無機膜が剥離したり、基板に割れ等が発生する。
上記(2)の問題は、無機膜および硬化して基板となる樹脂組成物の硬化時の収縮の差が大きい等の理由から生じる。
特開平5−209027号、特開平10−231339号、特開平10−298252号各公報には、特定のシラン化合物をコロイダルシリカ分散系中で加水分解、縮重合させて得られたシリカ系縮重合体を、メチルメタクリレート等のラジカル重合性ビニル化合物やビスフェノールA型のエチレンオキサイド変性(メタ)アクリレート中に均一分散した、透明性と剛性に優れた硬化物を与える硬化性組成物が記載されている。しかしながら、これらの硬化性組成物から得られる硬化物も、耐熱性は不十分である。
また、特許第4008246号公報には、特定の脂環式構造を有し、2官能の(メタ)アクリレートと有機溶媒に分散されたコロイダルシリカとを含む組成物の有機溶媒を除去して得られる複合体組成物を架橋してなる硬化物が開示されている。しかしながら、この特許文献に記載の発明では、前記複合体組成物中のシリカの分散性や硬化収縮抑制、硬化物の成形加工性が不十分である。また、シリカの分散性を補うこと及び複合体組成物の粘度低減のために、脂環構造を有するシラン化合物を前記組成物に添加することも記載されているが、そのシラン化合物の加水分解速度が極めて遅い。そのために、シラン化合物を前記組成物に添加する方法は、製造時間の点で経済的でない上、その効果が発現しにくいという問題がある。
また、ガラス板の代わりにプラスチック素材を光学レンズ、光導波路等の光学部品へ適用するには、そのプラスチック素材が、吸水率が少ないことや、仮に吸水した場合にも屈折率が変化しないことが望まれる。更には、屈折率の温度変化による変化量が小さいことが望まれる。
上記の特開平5−209027号、特開平10−231339号、特開平10−298252号、特許第4008246号各公報には、各々の公報に記載された組成物または該組成物の硬化物の屈折率の、温度変化(環境変化)による変化に関する記載は無い。
特開平10−77321号公報 特開平5−209027号公報 特開平10−231339号公報 特開平10−298252号公報 特許第4008246号公報
本発明は、上記の従来技術に伴う問題点を解決することができる、光学レンズ、光ディスク基板、液晶表示素子用プラスチック基板、カラーフィルター用基板、有機EL表示素子用プラスチック基板、太陽電池基板、タッチパネル、光学素子、光導波路、LED封止材等の用途に好適に用いることができる硬化物を与えることができる硬化性組成物を提供することを目的とする。
すなわち本発明は、透明性、耐熱性、耐環境性(吸水率が低く、温度変化による屈折率の変化が小さいこと)及び成形加工性に優れた硬化物を与えることができ、ハンドリング性に優れた硬化性組成物を提供することを目的としている。
本発明者らは、上記課題を達成すべく鋭意検討した結果、特定のシラン化合物で表面処理したシリカ微粒子と、2以上のエチレン性不飽和基を有し且つ環構造を有しない(メタ)アクリレートと、エチレン性不飽和基を有し且つ脂環式構造を有するモノ(メタ)アクリレートと、重合開始剤とを含む硬化性組成物が、低粘度でハンドリング性良好であること、また、該硬化性組成物を硬化することにより、以下の特性を有する硬化物が得られることを見出した。
(1)透明板、光学レンズ、光ディスク基板、液晶表示素子用プラスチック基板、カラーフィルター用基板、有機EL表示素子用プラスチック基板、太陽電池基板、タッチパネル、光学素子、光導波路、LED封止材等に好適に用いることができる
(2)透明性、耐熱性、耐環境性および成形加工性に優れる。
すなわち本発明の要旨は、以下のとおりである。
[1](a)シリカ微粒子と、(b)2以上のエチレン性不飽和基を有し且つ環構造を有しない(メタ)アクリレートと、(c)1つのエチレン性不飽和基を有し且つ脂環式構造を有する(メタ)アクリレートと、(d)重合開始剤とを含み、前記シリカ微粒子(a)が、下記一般式(1)で表されるシラン化合物(e)及び下記一般式(2)で表されるシラン化合物(f)で表面処理されていることを特徴とする硬化性組成物:
Figure 0005466640
(式(1)中、R1は水素原子又はメチル基を表し、R2は炭素数1〜3のアルキル基又はフェニル基を表し、R3は水素原子又は炭素数1〜10の炭化水素基を表し、qは1〜6の整数であり、rは0〜2の整数である。);
Figure 0005466640
(式(2)中、R4は炭素数1〜3のアルキル基又はフェニル基を表し、R5は水素原子又は炭素数1〜10の炭化水素基を表し、sは0〜6の整数であり、tは0〜2の整数である。)。
[2]前記(メタ)アクリレート(b)が、3つのエチレン性不飽和基を有し且つ脂環式構造を有しない(メタ)アクリレートであることを特徴とする上記[1]に記載の硬化性組成物。
[3]前記シリカ微粒子(a)が、該シリカ微粒子(a)100質量部に対して5〜25質量部の前記シラン化合物(e)と、シリカ微粒子(a)100質量部に対して5〜25質量部の前記シラン化合物(f)とで表面処理されていることを特徴とする上記[1]または上記[2]に記載の硬化性組成物。
[4]前記(メタ)アクリレート(b)の単独重合体のガラス転移温度及び前記(メタ)アクリレート(c)の単独重合体のガラス転移温度がともに150℃以上であることを特徴とする上記[1]〜[3]のいずれかに記載の硬化性組成物。
[5]前記硬化性組成物の粘度が30〜300mPa・sであることを特徴とする上記[1]〜[4]のいずれかに記載の硬化性組成物。
[6]上記[1]〜[5]のいずれかに記載の硬化性組成物を硬化させてなる硬化物。
[7]上記[6]に記載の硬化物からなる光学レンズ。
本発明によれば、透明性、耐熱性、耐環境性及び成形加工性に優れた硬化物を与えることができ、かつハンドリング性に優れた硬化性組成物が提供され、さらに該硬化性組成物の硬化物も提供される。
以下、本発明を詳細に説明する。
[硬化性組成物]
本発明の硬化性組成物は、(a)シリカ微粒子と、(b)2以上のエチレン性不飽和基を有し且つ環構造を有しない(メタ)アクリレート(以下単に「(メタ)アクリレート(b)」ともいう)と、(c)エチレン性不飽和基を有し且つ脂環式構造を有する(メタ)アクリレート(以下単に(メタ)アクリレート(c)ともいう)と、(d)重合開始剤とを含み、前記シリカ微粒子(a)が、特定のシラン化合物で表面処理されていることを特徴している。以下これら各構成要素について説明する。尚、ここで(メタ)アクリレートとは、メタクリレート及び/またはアクリレートを意味する。
<(a)シリカ微粒子>
本発明で用いられるシリカ微粒子(a)としては、平均粒子径が1〜100nmのものを好適に用いることができる。平均粒子径が1nm未満であると、作製した硬化性組成物の粘度が増大し、シリカ微粒子(a)の硬化性組成物中での含有量が制限されるとともに硬化性組成物中での分散性が悪化し、硬化性組成物を硬化させて得られる硬化物(以下単に硬化物とも言う)において十分な透明性および耐熱性を得ることができない傾向がある。また、平均粒子径が100nmを越えると硬化物の透明性が悪化する場合がある。
シリカ微粒子(a)の平均粒子径は、硬化性組成物の粘度と硬化物の透明性とのバランスの点から、より好ましくは1〜50nm、さらに好ましくは5〜50nm、最も好ましくは5〜40nmである。なお、シリカ微粒子(a)の平均粒子径は、高分解能透過型電子顕微鏡((株)日立製作所製 H−9000型)でシリカ微粒子を観察し、観察される微粒子像より任意に100個のシリカ粒子像を選び、公知の画像データ統計処理手法により数平均粒子径として求めることができる。
本発明においては、シリカ微粒子(a)の硬化物への充填量を上げるために、平均粒子径が異なるシリカ微粒子を混合して用いてもよい。また、シリカ微粒子(a)として、多孔質シリカゾルや、アルミニウム、マグネシウム、亜鉛等とケイ素との複合金属酸化物を用いてもよい。
硬化性組成物中のシリカ微粒子(a)の含有量は、表面処理されたシリカ微粒子として20〜80質量%であることが好ましく、硬化物の耐熱性、耐環境性と硬化性組成物の粘度とのバランスの点から、より好ましくは40〜60質量%である。この範囲であれば、硬化性組成物の流動性および硬化性組成物中のシリカ微粒子(a)の分散性が良好であるため、そのような硬化性組成物を用いれば、十分な強度および耐熱性、耐環境性を持つ硬化物を容易に製造することができる。
また、シリカ微粒子(a)としては、硬化性組成物中での分散性の点から、有機溶媒に分散したシリカ微粒子を用いることが好ましい。有機溶媒としては、硬化性組成物中に含有される有機成分(後述する(メタ)アクリレート(b)および(メタ)アクリレート(c)など)が溶解するものを用いることが好ましい。
前記有機溶媒としては、例えば、アルコール類、ケトン類、エステル類、グリコールエーテル類が挙げられる。後述するシリカ微粒子(a)、(メタ)アクリレート(b)および(メタ)アクリレート(c)の混合液から有機溶媒を除去する脱溶媒工程における脱溶媒のしやすさから、メタノール、エタノール、イソプロピルアルコール、ブチルアルコール、n−プロピルアルコール等のアルコール系、メチルエチルケトン、メチルイソブチルケトン等のケトン系の有機溶媒が好ましい。
これらの中でも、イソプロピルアルコールが特に好ましい。イソプロピルアルコールに分散したシリカ微粒子(a)を用いた場合には、脱溶媒後の硬化性組成物の粘度が他の溶媒を使用した場合に比べて低く、粘度が低い硬化性組成物を安定して作製することができる。
このような有機溶媒に分散したシリカ微粒子は従来公知の方法で製造することができ、またたとえば商品名スノーテックIPA−ST(日産化学(株)製)などとして市販されている。なお、シリカ微粒子(a)として有機溶媒に分散したシリカ微粒子を使用する場合は、前述の本発明の硬化性組成物中のシリカ微粒子(a)の含有量は、組成物中に含まれるシリカ微粒子そのもののみの含有量を指す。
また、本発明に使用されるシリカ微粒子(a)は、シラン化合物(e)およびシラン化合物(f)で表面処理されている。以下これら各シラン化合物について説明する。
<(e)シラン化合物>
前記シラン化合物(e)は、下記一般式(1)で表される。
Figure 0005466640
上記式(1)中、R1は水素原子又はメチル基を表し、R2は炭素数1〜3のアルキル基又はフェニル基を表し、R3は水素原子又は炭素数1〜10の炭化水素基を表し、qは1〜6の整数であり、rは0〜2の整数である。
rが2の場合には、ふたつ存在するR2は同一でも異なってもよく、rが1以下の場合には、複数存在するR3は同一でも異なってもよい。
硬化性組成物の粘度の低減、保存安定性の点から、好ましいR2はメチル基であり、好ましいR3は炭素数1〜3のアルキル基であり、さらに好ましいR3はメチル基であり、好ましいqは3であり、好ましいrは0である。
シラン化合物(e)は硬化性組成物の粘度を低減させ、且つ後述する(メタ)アクリレート(b)と反応することによって、シリカ微粒子(a)の硬化性組成物中における分散安定性を向上させるため、及び硬化性組成物を硬化させる際の硬化収縮を低減し、かつ硬化物に成形加工性を付与するために用いられる。つまり、シラン化合物(e)でシリカ微粒子(a)を表面処理しない場合には、硬化性組成物の粘度が高くなるとともに、硬化時の硬化収縮が大きくなり、硬化物が脆くなり、硬化物にクラックが発生したりするので好ましくない。
シラン化合物(e)としては、例えば、γ−アクリロキシプロピルジメチルメトキシシラン、γ−アクリロキシプロピルメチルジメトキシシラン、γ−アクリロキシプロピルジエチルメトキシシラン、γ−アクリロキシプロピルエチルジメトキシシラン、γ−アクリロキシプロピルトリメトキシシラン、γ−アクリロキシプロピルジメチルエトキシシラン、γ−アクリロキシプロピルメチルジエトキシシラン、γ−アクリロキシプロピルジエチルエトキシシラン、γ−アクリロキシプロピルエチルジエトキシシラン、γ−アクリロキシプロピルトリエトキシシラン、γ−メタクリロキシプロピルジメチルメトキシシラン、γ−メタクリロキシプロピルメチルジメトキシシラン、γ−メタクリロキシプロピルジエチルメトキシシラン、γ−メタクリロキシプロピルエチルジメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−メタクリロキシプロピルジメチルエトキシシラン、γ−メタクリロキシプロピルメチルジエトキシシラン、γ−メタクリロキシプロピルジエチルエトキシシラン、γ−メタクリロキシプロピルエチルジエトキシシラン、γ−メタクリロキシプロピルトリエトキシシラン等が挙げられる。
シリカ微粒子(a)の硬化性組成物中における凝集防止、硬化性組成物の粘度の低減および保存安定性向上の点からは、γ−アクリロキシプロピルジメチルメトキシシラン、γ−アクリロキシプロピルメチルジメトキシシラン、γ−メタクリロキシプロピルジメチルメトキシシラン、γ−メタクリロキシプロピルメチルジメトキシシラン、γ−アクリロキシプロピルトリメトキシシラン、γ−メタクリロキシプロピルトリメトキシシランが好ましく、より好ましくは、γ−アクリロキシプロピルトリメトキシシランである。また、これらは、2種以上を併用して用いることができる。
また、このようなシラン化合物(e)は公知の方法で製造することができ、市販もされている。
シリカ微粒子(a)を表面処理する際のシラン化合物(e)の使用量は、シリカ微粒子(a)100質量部に対して通常5〜25質量部、好ましくは10〜20質量部、より好ましくは12〜18質量部である。シラン化合物(e)の使用量が5質量部未満であると、硬化性組成物の粘度が高くなり、シリカ微粒子(a)の硬化性組成物中への分散性が悪化してゲル化を生じる可能性がある。また、25質量部を超えると、シリカ微粒子(a)の凝集を引き起こすことがある。なお、シリカ微粒子(a)として有機溶媒に分散したシリカ微粒子を使用する場合は、前記シリカ微粒子(a)の質量は、有機溶媒に分散したシリカ微粒子そのもののみの質量を指す。また、シリカ微粒子(a)の表面処理については後述する。
硬化性組成物中にアクリレート(後述するアクリレート(b)およびアクリレート(c))が多く含まれる場合には、前記シラン化合物(e)として、アクリル基を有する、つまりR1が水素原子である一般式(1)で表されるシラン化合物を用いることが好ましい。一方硬化性組成物中にメタクリレート(後述するメタクリレート(b)およびメタクリレート(c))が多く含まれる場合は、前記シラン化合物(e)として、メタクリル基を含有する、つまりR1がメチル基である一般式(1)で表されるシラン化合物を用いることが好ましい。これらの場合には、本発明の硬化性組成物を硬化させる際に硬化反応が起こりやすい。
<(f)シラン化合物>
本発明で用いられるシラン化合物(f)は、下記一般式(2)で表される。
Figure 0005466640
上記式(2)中、R4は炭素数1〜3のアルキル基又はフェニル基を表し、R5は水素原子又は炭素数1〜10の炭化水素基を表し、sは0〜6の整数であり、tは0〜2の整数である。前記フェニル基には、本発明の効果を損なわない範囲で置換基が結合していてもよい。
tが2の場合には、ふたつ存在するR4は同一でも異なってもよく、tが1以下の場合には、複数存在するR5は同一でも異なっていてもよい。
硬化性組成物の粘度の低減、保存安定性の点から、好ましいR4はメチル基であり、好ましいR5は炭素数1〜3のアルキル基であり、さらに好ましいR5はメチル基であり、好ましいsは0又は1であり、好ましいtは0である。
シリカ微粒子(a)とシラン化合物(f)が反応すると、以下のような効果が得られる。
(1)シリカ微粒子(a)の表面に疎水性が付与される
(2)前記有機溶媒中でのシリカ微粒子(a)の分散性が向上する
(3)後述する(メタ)アクリレート(c)との良好な相溶性により硬化性組成物の粘度が低減する
(4)硬化性組成物の保存安定性が向上すると同時に、吸水率が低くなる。
シラン化合物(f)としては、例えば、フェニルジメチルメトキシシラン、フェニルメチルジメトキシシラン、フェニルジエチルメトキシシラン、フェニルエチルジメトキシシラン、フェニルトリメトキシシラン、フェニルジメチルエトキシシラン、フェニルメチルジエトキシシラン、フェニルジエチルエトキシシラン、フェニルエチルジエトキシシラン、フェニルトリエトキシシラン、ベンジルジメチルメトキシシラン、ベンジルメチルジメトキシシラン、ベンジルジエチルメトキシシラン、ベンジルエチルジメトキシシラン、ベンジルトリメトキシシラン、ベンジルジメチルエトキシシラン、ベンジルメチルジエトキシシラン、ベンジルジエチルエトキシシラン、ベンジルエチルジエトキシシランおよびベンジルトリエトキシシラン等が挙げられる。
硬化性組成物の粘度の低減、保存安定性向上、吸水率の低下も含めた耐環境性の向上の観点からは、フェニルジメチルメトキシシラン、フェニルメチルジメトキシシラン、フェニルジエチルメトキシシラン、フェニルエチルジメトキシシラン、フェニルトリメトキシシランが好ましく、フェニルトリメトキシシランがより好ましい。また、これらのシラン化合物は、2種以上を併用して用いることができる。
また、このようなシラン化合物(f)は公知の方法で製造することができ、市販もされている。
シリカ微粒子(a)を表面処理する際のシラン化合物(f)の使用量は、シリカ微粒子(a)100質量部に対して通常5〜25質量部、好ましくは10〜20質量部、より好ましくは12〜18質量部である。シラン化合物(f)の使用量が5質量部未満であると、硬化性組成物の粘度が高くなり、ゲル化を生じたり、硬化物の耐熱性が低下したりすることがある。また、25質量部を超えると、シリカ微粒子(a)の凝集を引き起こすことがある。なお、シリカ微粒子(a)として有機溶媒に分散したシリカ微粒子を使用する場合は、前記シリカ微粒子(a)の質量は、有機溶媒に分散したシリカ微粒子そのもののみの質量を指す。また、シリカ微粒子(a)の表面処理については後述する。
さらに、シラン化合物(e)およびシラン化合物(f)の使用量の合計が、シリカ微粒子(a)100質量部に対して50質量部をこえると、処理剤量が多すぎるため、シリカ微粒子(a)の表面処理時にシリカ粒子間での反応がおこることにより、凝集、ゲル化を生じることがある。
<(b)(メタ)アクリレート>
本発明で用いられる2以上のエチレン性不飽和基を有し且つ脂環式構造、芳香環または複素環のような環構造を有しない(メタ)アクリレート(b)は、好ましくは2〜6個のエチレン性不飽和基を有する。(メタ)アクリレート(b)としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリメチロールプロパントリオキシエチル(メタ)アクリレート、アリル(メタ)アクリレート等が挙げられる。
これらを含有する本発明の硬化性組成物を硬化させると、耐熱性に優れた硬化物が形成される。
これらの中でも硬化物の耐熱性の観点から、3つのエチレン性不飽和基を有するものが好ましく、さらに単独重合体のガラス転移温度が150℃以上であるものが好ましい。特に、単独重合体のガラス転移温度が200℃以上であり、且つ多官能(メタ)アクリレートの中では硬化収縮が比較的少ない、トリメチロールプロパントリ(メタ)アクリレートが最も好ましい。
単独重合体のガラス転移温度は、以下の方法で測定する。(メタ)アクリレート(b)100質量部に光重合開始剤としてジフェニル−(2,4,6−トリメチルベンゾイル)フォスフィンオキシド(商品名Speedcure TPO−L;日本シーベルヘグナー(株)製)1質量部を溶解し、得られた溶液をガラス基板(50mm×50mm)上に、硬化膜の厚みが100μmになるように塗布し、超高圧水銀ランプを組み込んだ露光装置で3J/cm2露光し塗膜を硬化させる。その硬化膜を用いて、DMS6100(セイコー電子工業社製)にて、引張モード、温度範囲20℃〜300℃、昇温速度2℃/min、周波数1Hzで測定した、第一昇温時のtanδ値のピーク温度より、単独重合体のガラス転移温度を求めることができる。
本発明で用いられる(メタ)アクリレート(b)の配合量は、表面処理前のシリカ微粒子(a)100質量部に対して、20〜500質量部であることが好ましく、硬化性組成物の粘度、硬化性組成物中のシリカ微粒子(a)の分散安定性、硬化物の耐熱性の点から、より好ましくは30〜300質量部であり、さらに好ましくは50〜200質量部である。配合量が20質量部未満では、硬化性組成物の粘度が高くなり、ゲル化を生じることがある。配合量が500質量部を超えると、硬化性組成物の硬化時の収縮が大きくなり、硬化物の反りやクラックを生じることがある。なお、シリカ微粒子(a)として有機溶媒に分散したシリカ微粒子を使用する場合は、前記シリカ微粒子(a)の質量は、有機溶媒に分散したシリカ微粒子そのもののみの質量を指す。
<(c)(メタ)アクリレート>
本発明で用いられるエチレン性不飽和基を有し且つ脂環式構造を有する(メタ)アクリレート(c)は、硬化物に耐熱性、耐環境性を付与することと、硬化時の収縮を低減するために用いられる。(メタ)アクリレート(c)は、通常1〜4個のエチレン性不飽和基を有する。
なかでも1つのエチレン性不飽和基を有し且つ脂環式構造を有する(メタ)アクリレートが好適に用いられ、そのような(メタ)アクリレートとして、たとえば、シクロヘキシル(メタ)アクリレート、4−ブチルシクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンタジエニル(メタ)アクリレート、ボルニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート、トリシクロデカンジメタノールジアクリレート、アダマンチル(メタ)アクリレートなどのシクロアルキル(メタ)アクリレート類が挙げられる。
硬化物の耐熱性の観点からは、(メタ)アクリレート(c)として、単独重合体のガラス転移温度が150℃以上である(メタ)アクリレートが好ましい。単独重合体のガラス転移温度の測定方法は、前述と同様である。
上記の例示した(メタ)アクリレートの中でも、硬化物の透明性及び耐熱性、耐環境性の観点から、ジシクロペンタニル(メタ)アクリレート、アダマンチル(メタ)アクリレートが好ましく、単独重合体のガラス転移温度が高いアダマンチル(メタ)アクリレートが最も好ましい。
なお、脂環式構造とは、炭素原子が環状に結合した構造のうち、芳香環構造を除く構造である。
本発明で用いられる(メタ)アクリレート(c)の配合量は、表面処理前のシリカ微粒子(a)100質量部に対して、5〜400質量部であることが好ましく、硬化性組成物の粘度、硬化性組成物中のシリカ微粒子(a)の分散安定性、硬化物の耐熱性の点から、より好ましくは10〜200質量部であり、さらに好ましくは20〜100質量部である。配合量が5質量部未満では、硬化性組成物の粘度が高くなり、ゲル化を生じることがある。配合量が400質量部を超えると、硬化物にクラックを生じたり、硬化物の耐熱性、耐環境性が低下したりすることがある。なお、シリカ微粒子(a)として有機溶媒に分散したシリカ微粒子を使用する場合は、前記シリカ微粒子(a)の質量は、有機溶媒に分散したシリカ微粒子そのもののみの質量を指す。
<(d)重合開始剤>
本発明で用いられる重合開始剤(d)としては、ラジカルを発生する光重合開始剤及び熱重合開始剤が挙げられる。
光重合開始剤としては、例えばベンゾフェノン、ベンゾインメチルエーテル、ベンゾインプロピルエーテル、ジエトキシアセトフェノン、1−ヒドロキシ−フェニルフェニルケトン、2,6−ジメチルベンゾイルジフェニルホスフィンオキシド、2,4,6−トリメチルベンゾイルジフェニルホスフィンオキシドおよびジフェニル−(2,4,6−トリメチルベンゾイル)フォスフィンオキシドが挙げられる。これらの光重合開始剤は2種以上を併用してもよい。
光重合開始剤の硬化性組成物中における含有量は、硬化性組成物を適度に硬化させる量であればよく、(メタ)アクリレート(b)、メタアクリレート(c)および後述の反応性希釈剤の合計量100質量部に対して、0.01〜10質量部であることが好ましく、より好ましくは0.02〜5質量部であり、さらに好ましくは0.1〜2質量部である。光重合開始剤の添加量が多すぎると、硬化性組成物の保存安定性が低下したり、着色したり、架橋して硬化物を得る際の架橋が急激に進行し硬化時の割れ等の問題が発生する場合がある。また、光重合開始剤の添加量が少なすぎると硬化性組成物を十分に硬化させることができないことがある。
前記熱重合開始剤としては、ベンゾイルパーオキシド、ジイソプロピルパーオキシカーボネート、t−ブチルパーオキシ(2−エチルヘキサノエート)等が挙げられる。
熱重合開始剤の硬化性組成物中における含有量は、硬化性組成物100質量部に対して、2質量部以下であることが好ましく、0.1〜2質量部であることがより好ましい。
また、本発明の硬化性組成物は、必要に応じて、組成物の粘度及び硬化物の透明性、耐熱性等の特性を損なわない範囲で、レベリング剤、酸化防止剤、紫外線吸収剤、溶剤、顔料、他の無機フィラー等の充填剤、反応性希釈剤、その他改質剤等を含んでいてもよい。
レベリング剤としては、例えば、ポリエーテル変性ジメチルポリシロキサン共重合物、ポリエステル変性ジメチルポリシロキサン共重合物、ポリエーテル変性メチルアルキルポリシロキサン共重合物、アラルキル変性メチルアルキルポリシロキサン共重合物、ポリエーテル変性メチルアルキルポリシロキサン共重合物等が挙げられる。
充填剤または顔料としては、炭酸カルシウム、タルク、マイカ、クレー、アエロジル(登録商標)等、硫酸バリウム、水酸化アルミニウム、ステアリン酸亜鉛、亜鉛華、ベンガラ、アゾ顔料等が挙げられる。
このような各種成分を含有する本発明の硬化性組成物の、B型粘度計DV−II+Pro(BROOKFIELD社製)、25℃、ローターNo.63、回転数60rpmで測定した粘度は、通常30〜300mPa・sであり、溶剤を含有していなくとも極めて低粘度であり、良好なハンドリング性を有する。このことは、上述のシリカ微粒子(a)の表面処理による、シリカ微粒子(a)の(メタ)アクリレート(b)および(c)との高い相溶性、(メタ)アクリレート(b)および(c)中におけるシリカ微粒子(a)の高い分散安定性に起因する。
<硬化性組成物の製造方法>
本発明の硬化性組成物は、例えば、有機溶媒に分散したコロイダルシリカ(シリカ微粒子(a))をシラン化合物(e)および(f)で表面処理する工程(工程1)、表面処理したシリカ微粒子(a)に(メタ)アクリレート(b)および(c)を添加し、均一混合する工程(工程2)、工程2で得られたシリカ微粒子(a)と(メタ)アクリレート(b)および(c)との均一混合液から有機溶媒及び水を留去・脱溶媒する工程(工程3)、工程3で留去・脱溶媒された組成物に重合開始剤(d)を添加、均一混合して硬化性組成物とする工程(工程4)を順次行うことにより製造することができる。以下各工程について説明する。
(工程1)
工程1では、シリカ微粒子(a)をシラン化合物(e)および(f)で表面処理する。表面処理は、シリカ微粒子(a)を反応器に入れ、攪拌しながら、シラン化合物(e)および(f)を添加、攪拌混合し、さらに該シラン化合物の加水分解を行うのに必要な水と触媒を添加、攪拌しながら、該シラン化合物を加水分解し、シリカ微粒子(a)表面にてシラン化合物の加水分解物を縮重合させることにより行う。なお、前記シリカ微粒子(a)としては、有機溶媒に分散したシリカ微粒子を用いることが好ましいことは、前述のとおりである。
なお、前記シラン化合物の加水分解による消失を、ガスクロマトグラフィーにより確認することができる。ガスクロマトグラフィー(アジレント(株)製 型式6850)にて、無極性カラムDB−1(J&W社製)を使用し、温度50〜300℃、昇温速度10℃/min、キャリアガスとしてHeを使用し、流量1.2cc/min、水素炎イオン化検出器にて内部標準法でシラン化合物の残存量を測定することができるため、シラン化合物の加水分解による消失を確認することができる。
なお、前述のようにシリカ微粒子(a)を表面処理する際のシラン化合物(e)の使用量は、シリカ微粒子(a)100質量部に対して通常5〜25質量部、好ましくは10〜20質量部、より好ましくは12〜18質量部である。また、シラン化合物(f)の使用量は、シリカ微粒子(a)100質量部に対して通常5〜25質量部、好ましくは10〜20質量部、より好ましくは12〜18質量部である。
加水分解反応を行うのに必要な水の量の下限値は、シラン化合物(e)および(f)に結合したアルコキシ基およびヒドロキシ基のモル数の合計の1倍、上限値は10倍である。水の量が過度に少ないと、加水分解速度が極端に遅くなり経済性に欠けたり、表面処理が充分進行しないおそれがある。逆に水の量が過度に多いと、シリカ微粒子(a)がゲルを形成するおそれがある。
加水分解反応を行う際には、通常、加水分解反応用の触媒が使用される。このような触媒の具体例としては、例えば、塩酸、酢酸、硫酸、リン酸等の無機酸;
蟻酸、プロピオン酸、シュウ酸、パラトルエンスルホン酸、安息香酸、フタル酸、マレイン酸等の有機酸;
水酸化カリウム、水酸化ナトリウム、水酸化カルシウム、アンモニア等のアルカリ触媒;有機金属;
金属アルコキシド;
ジブチルスズジラウレート、ジブチルスズジオクチレート、ジブチルスズジアセテート等の有機スズ化合物;
アルミニウムトリス(アセチルアセトネート)、チタニウムテトラキス(アセチルアセトネート)、チタニウムビス(ブトキシ)ビス(アセチルアセトネート)、チタニウムビス(イソプロポキシ)ビス(アセチルアセトネート)、ジルコニウムビス(ブトキシ)ビス(アセチルアセトネート)、ジルコニウムビス(イソプロポキシ)ビス(アセチルアセトネート)等の金属キレート化合物;
ホウ素ブトキシド、ホウ酸等のホウ素化合物;
等が挙げられる。
これらの中でも、水への溶解性、充分な加水分解速度が得られる点から、塩酸、酢酸、マレイン酸、ホウ素化合物が好ましい。これらの触媒は、1種又は2種以上を組み合わせて用いることができる。
工程1において、シラン化合物(e)および(f)の加水分解反応を行う際には、非水溶性触媒を用いてもよいが、水溶性触媒を使用することが好ましい。加水分解反応用の水溶性触媒を使用する場合は、水溶性触媒を適当量の水に溶解し、反応系に添加すると、触媒を均一に分散させることができるので好ましい。
加水分解反応に使用する触媒の添加量は、特に限定されないが、通常シリカ微粒子(a)100質量部に対して、0.1〜10質量部、好ましくは0.5〜5質量部である。なお、シリカ微粒子(a)として有機溶媒に分散したシリカ微粒子を使用する場合は、前記シリカ微粒子(a)の質量は、有機溶媒に分散したシリカ微粒子そのもののみの質量を指す。
加水分解反応の反応温度は特に限定されないが、通常、10〜80℃の範囲であり、好ましくは20〜50℃の範囲である。反応温度が過度に低いと、加水分解速度が極端に遅くなり経済性に欠けたり、表面処理が充分進行しないおそれがある。反応温度が過度に高いと、ゲル化反応が起こりやすくなる傾向がある。
また、加水分解反応を行うための反応時間は特に限定されないが、通常10分間〜48時間、好ましくは30分間〜24時間の範囲である。
尚、工程1におけるシラン化合物(e)およびシラン化合物(f)による表面処理は、両者を逐次に行ってもよいが、同時に一段で行うほうが反応プロセスの単純化や効率化の点で好ましい。
(工程2)
工程2において、表面処理したシリカ微粒子(a)と(メタ)アクリレート(b)および(c)とを混合する方法に、特に制限は無い。混合方法としてたとえば、室温または加熱条件下でミキサー、ボールミル、3本ロールなどの混合機により混合する方法や、工程1を行った反応器の中で連続的に攪拌しながら(メタ)アクリレート(b)および(c)を添加、混合する方法が挙げられる。
(工程3)
工程3において、シリカ微粒子(a)と(メタ)アクリレート(b)および(c)との均一混合液から有機溶媒及び水を留去・脱溶媒(以下これらをまとめて脱溶媒という)するには、減圧状態で加熱することが好ましい。
温度は、20〜100℃に保つことが好ましく、凝集ゲル化防止と脱溶媒スピードとのバランスで、より好ましくは30〜70℃、さらに好ましくは30〜50℃である。温度を上げすぎると、硬化性組成物の流動性が極端に低下したり、硬化性組成物がゲル状になってしまうことがある。
減圧する際の真空度は、通常10〜4000kPaであり、脱溶媒スピードと凝集ゲル化防止とのバランスを図る上で、さらに好ましくは10〜1000kPa、最も好ましくは、10〜500kPaである。真空度の値が大きすぎると、脱溶媒スピードが極端に遅くなり経済性にかける。
脱溶媒後の組成物は、実質的に溶媒を含まないことが好ましい。ここでいう実質的とは、本発明の硬化性組成物を用いて実際に硬化物を得る際に、再度、脱溶媒する工程を経る必要がないことを意味している。具体的には、硬化性組成物中の有機溶媒及び水の残存量として、1質量%以下が好ましく、好ましくは0.5質量%以下、更に好ましくは0.1質量%以下である。
工程3においては、脱溶媒する前に、脱溶媒後の組成物100質量部に対して0.1質量部以下の重合禁止剤を添加してもよい。重合禁止剤は脱溶媒過程中や脱溶媒後の組成物及び硬化性組成物の保存中に組成物の含有成分が重合反応を起こすのを防止するために用いられる。重合禁止剤としては、例えば、ハイドロキノン、ハイドロキノンモノメチルエーテル、ベンゾキノン、p−t−ブチルカテコール、2,6−ジ−t−ブチル−4−メチルフェノール等が挙げられる。これらは1種又は2種以上を組み合わせて用いることができる。
工程3は、工程2を経たシリカ微粒子(a)と(メタ)アクリレート(b)および(c)との均一混合液を専用の装置に移して行うこともできるし、工程2を、工程1を実施した反応器で行ったのであれば、工程2に引き続いて該反応器中で行うことができる。
(工程4)
工程4において、工程3で脱溶媒された組成物に重合開始剤(d)を添加、均一混合する方法に、特に制限は無い。均一混合方法としてたとえば、室温でミキサー、ボールミル、3本ロールなどの混合機により混合する方法や、工程1〜3を行った反応器の中で連続的に攪拌しながら重合開始剤(d)を添加、混合する方法が挙げられる。
さらに、このような重合開始剤(d)の添加、混合を行って得られた硬化性組成物に対して、必要に応じて濾過を行ってもよい。この濾過は、硬化性組成物中のゴミ等の外来の異物除去を目的として行う。濾過方法には、特に制限は無いが、加圧濾過孔径1.0μmのメンブレンタイプ、カートリッジタイプ等のフィルターを使用し、加圧濾過する方法が好ましい。
以上の各工程を経ることにより、本発明の硬化性組成物を製造することができる。本発明の硬化性組成物は、その構成成分であるシリカ微粒子(a)が特定のシラン化合物で処理されているため、溶剤を含有していなくとも粘度が低く、ハンドリング性が良好である。
[硬化物]
本発明の硬化性組成物は、硬化することにより、光学レンズ、光ディスク基板、液晶表示素子用プラスチック基板、カラーフィルター用基板、有機EL表示素子用プラスチック基板、太陽電池基板、タッチパネル、光学素子、光導波路、LED封止材等の部材として用いることができる硬化物となる。
<硬化物の製造方法>
本発明の硬化性組成物を硬化させることにより、硬化物が得られる。硬化の方法としては、活性エネルギー線の照射により(メタ)アクリレート(b)および(c)のエチレン性不飽和基を架橋させる方法、熱をかけてエチレン性不飽和基を熱重合させる方法等があり、これらを併用することもできる。
硬化性組成物を紫外線等の活性エネルギー線により硬化させる場合は、上記の工程4において、硬化性組成物中に光重合開始剤を含有させる。
硬化性組成物に熱をかけて硬化させる場合は、上記の工程4において、硬化性組成物中に熱重合開始剤を含有させる。
本発明の硬化物は、例えば、本発明の硬化性組成物をガラス板、プラスチック板、金属板、シリコンウエハ等の基材上に塗布して塗膜を形成した後、その硬化性組成物に活性エネルギー線を照射することによって、あるいは加熱することによって、得ることができる。硬化のために、活性エネルギー線の照射と加熱との両方を行ってもよい。
前記硬化性組成物の塗布方法としては、例えば、バーコーター、アプリケーター、ダイコーター、スピンコーター、スプレーコーター、カーテンコーター、ロールコーターなどによる塗布、スクリーン印刷などによる塗布、ディッピングなどによる塗布が挙げられる。
本発明の硬化性組成物の基材上への塗布量は特に限定されず、目的に応じて適宜調整することができる。成形性の観点からは、活性エネルギー線照射および/または加熱での硬化処理後に得られる塗膜の膜厚が、1〜200μmとなる量が好ましく、5〜100μmとなる量がより好ましい。
硬化のために使用される活性エネルギー線としては、電子線、または紫外から赤外の波長範囲の光が好ましい。
活性エネルギー線の光源としては、例えば、紫外線であれば超高圧水銀光源またはメタルハライド光源、可視光線であればメタルハライド光源またはハロゲン光源、赤外線であればハロゲン光源が使用できるが、この他にもレーザー、LEDなどの光源が使用できる。
活性エネルギー線の照射量は、光源の種類、塗膜の膜厚などに応じて適宜設定されるが、好ましくは(メタ)アクリレート(b)および(c)のエチレン性不飽和基の反応率が80%以上、より好ましくは90%以上になるように適宜設定できる。
また、活性エネルギー線を照射して硬化させた後、必要に応じて、加熱処理(アニール処理)をして硬化をさらに進行させてもよい。その際の加熱温度は、80〜200℃の範囲にあることが好ましい。加熱時間は、10分〜60分の範囲にあることが好ましい。
本発明の硬化性組成物の硬化のために加熱処理により熱重合させる場合は、加熱温度は、80〜200℃の範囲にあることが好ましく、より好ましくは100〜150℃の範囲である。加熱温度が80℃より低いと、加熱時間を長くする必要があり経済性に欠ける傾向にある。加熱温度が200℃より高いと、エネルギーコストがかかるうえに、加熱昇温時間及び降温時間がかかるため、経済性に欠ける傾向にある。
加熱時間は、加熱温度、塗膜の膜厚などに応じて適宜設定されるが、好ましくは(メタ)アクリレート(b)および(c)のエチレン性不飽和基の反応率が80%以上、より好ましくは90%以上になるように適宜設定できる。
熱重合により硬化性組成物を硬化させた後、必要に応じて、加熱処理(アニール処理)をして硬化をさらに進行させてもよい。その際の加熱温度は、150〜200℃の範囲にあることが好ましい。加熱時間は、5分〜60分の範囲にあることが好ましい。
<硬化物>
本発明の硬化物は、透明性、耐熱性、耐環境性及び成形加工性に優れることから、光学レンズ、液晶表示素子用プラスチック基板、カラーフィルター用基板、有機EL表示素子用プラスチック基板、太陽電池基板、タッチパネル、光学素子、光導波路、LED封止材等として好適に用いることができる。
硬化物の屈折率は、用途に応じて適宜選択することができる。そして本発明の硬化物は耐熱性に優れているため、270℃、1minにて3回の熱処理をする前後における屈折率の変化量が、好ましくは0.005以下であり、より好ましくは0.003以下、さらに好ましくは0.001以下である。270℃、1minにて3回の熱処理をする前後における屈折率の変化量が0.005を越えると、光を利用する効率が変化するので、光効率が重要な用途には好ましくない。
本発明の硬化物は耐熱性に優れているため、窒素雰囲気で加熱した際の5%重量減少温度が通常330℃以上であり、350℃以上、さらには380℃以上のものを得ることもできる。加熱した際の5%重量減少温度が330℃を下回ると、例えば、この硬化物をアクティブマトリックス表示素子基板に用いた場合、その製造工程において反りやたわみ、場合によってはクラック発生などの問題が生じる恐れがある。
本発明の硬化物は、その単独重合体のガラス転移温度が高い(メタ)アクリレート(b)および(c)を含有する硬化性組成物を硬化させて得られるものなので、耐熱性に優れている。
また本発明の硬化物は、高いガラス転移温度を有する。硬化物のガラス転移温度は、動的粘弾性測定法を用いて周波数1Hzにて測定した際の損失正接tanδ値のピーク温度から求められ、通常200℃以上、好ましくは230℃以上である。ガラス転移温度が200℃未満の場合、この硬化物をアクティブマトリックス表示素子基板に用いると、その製造工程において反りやたわみ、場合によってはクラック発生などの問題が生じる恐れがある。
本発明の硬化物は透明性に優れているため、硬化膜100μm厚みでの波長400nmの光線透過率が85%以上のものを得ることができ、且つ270℃、1minにて3回の熱処理をする前後における波長400nm透過率の変化量が通常3%以下である。波長400nmの光線透過率が85%以下の場合は、光を利用する効率が低下するので、光効率が重要な用途には好ましくない。また、270℃、1minにて3回の熱処理をする前後における波長400nm透過率の変化量が3%を越える場合、この硬化物をアクティブマトリックス表示素子基板に用いた場合、その製造工程において着色の問題が生じる恐れがある。
本発明の硬化物は、水に24時間浸漬した際の吸水率が、硬化物100質量%に対して2質量%以下であり、好ましくは1.5質量%以下、より好ましくは1.0質量%以下である。
本発明の硬化物は、水に24時間浸漬する前後の屈折率変化量が0.001以下であり、好ましくは0.0008以下、より好ましくは0.0005以下である。屈折率の変化量が0.001を超えると、例えば本発明の硬化物を光学レンズや光導波路に適用した場合には、使用環境のもとで吸水した際に、光の焦点距離がずれて画像精度が低下したり、光の伝播効率が低下するため好ましくない。
また、本発明の硬化物は、85℃、85%飽和湿度中に50hr保管する前後における屈折率の変化量が0.001以下であり、好ましくは0.0008以下、より好ましくは0.0005以下である。屈折率の変化量が0.001を超えると、例えば本発明の硬化物を光学レンズや光導波路に適用した場合には、使用環境のもとで吸水した際に、光の焦点距離がずれて画像精度が低下したり、光の伝播効率が低下するため好ましくない。光学レンズ等に従来使用されている材料としては、ポリメチルメタクリレートがあるが、その85℃、85%飽和湿度中に50hr保管前後の屈折率変化量は0.0015(1.4912→1.4897)と大きい。この理由は、高温高湿環境化での吸水により硬化膜が膨潤することによるものと考えられる。
本発明の硬化物は、温度25℃〜55℃での屈折率の温度依存係数の絶対値が6.0×10-5/℃以下であり、好ましくは、5.0×10-5/℃以下、より好ましくは4.0×10-5/℃以下である。屈折率温度依存係数の絶対値が6.0×10-5/℃を超えると、例えば本発明の硬化物を光学レンズや光導波路に適用した場合には、使用環境のもとで温度が変化した際に、光の焦点距離がずれて画像精度が低下したり、光の伝播効率が低下するため好ましくない。光学レンズ等に従来使用されている材料としては、ポリメチルメタクリレートがあるが、その屈折率の温度依存係数の絶対値は、10.5×10-5/℃であり、温度変化に対する屈折率の変化が大きい。なお、屈折率温度依存係数は、屈折率計を用いて、測定温度を25℃〜55℃まで5℃刻みで変えて屈折率を測定し、測定温度に対する屈折率をプロットした際の傾きを指す。
以下、本発明を実施例により詳細に説明するが、本発明は、その要旨を越えない限り以下の例に限定されるものではない。
[硬化性組成物の調製]
(実施例1)
セパラブルフラスコに、イソプロピルアルコール分散型コロイダルシリカ(シリカ含量30質量%、平均粒子径10〜20nm、商品名スノーテックIPA−ST;日産化学(株)製)100質量部を入れ、該セパラブルフラスコにγ−メタクリロキシプロピルトリメトキシシラン4.5質量部とフェニルトリメトキシシラン4.5質量部を加え、攪拌混合し、さらに0.1825質量%の HCl溶液2.9質量部を加え、20℃で24hr撹拌することにより、シリカ微粒子の表面処理を行った。
なお、γ−メタクリロキシプロピルトリメトキシシラン及びフェニルトリメトキシシランの加水分解による消失を、ガスクロマトグラフィー(アジレント(株)製 型式6850)により確認した。無極性カラムDB−1(J&W社製)を使用し、温度50〜300℃、昇温速度10℃/min、キャリアガスとしてHeを使用し、流量1.2cc/min、水素炎イオン化検出器にて内部標準法で測定した。フェニルトリメトキシシラン及びγ−メタクリロキシプロピルトリメトキシシランは、上記HCl溶液を添加後8hrで消失した。
次に、前記表面処理を行ったシリカ微粒子分散液にトリメチロールプロパントリアクリレート(商品名:ビスコート#295;大阪有機化学(株)製、Tg>250℃)22.5質量部とアダマンチルメタクリレート(商品名ADMA;大阪有機化学(株)製、Tg180℃)22.5質量部を加えて均一に混合した。その後、混合液を攪拌しながら40℃、100kPaにて減圧加熱して、揮発分を除去した。揮発分の除去量は72.0質量部であった。
この揮発分の除去により得られた母液84.9質量部に、光重合開始剤としてジフェニル−(2,4,6−トリメチルベンゾイル)フォスフィンオキシド(商品名Speedcure TPO−L;日本シーベルヘグナー(株)製)0.845質量部を溶解し、得られた溶液をメンブレンフィルター(孔径1.0μm)で加圧ろ過(圧力0.2MPa)して硬化性組成物1を得た。
得られた硬化性組成物1の粘度は、74mPa・sであった。なお、粘度は、B型粘度計DV−II+Pro(BROOKFIELD社製)を用いて、ローターNo.63、回転数60rpm、25℃にて測定した。
(実施例2)
セパラブルフラスコに、イソプロピルアルコール分散型コロイダルシリカ(シリカ含量30質量%、平均粒子径10〜20nm、商品名スノーテックIPA−ST;日産化学(株)製)100質量部を入れ、該セパラブルフラスコにγ−メタクリロキシプロピルトリメトキシシラン5.4質量部とフェニルトリメトキシシラン3.6質量部を加え、攪拌混合し、さらに0.1825質量%のHCl溶液2.9質量部を加え、20℃で24hr撹拌することにより、シリカ微粒子の表面処理を行った。
フェニルトリメトキシシラン及びγ−メタクリロキシプロピルトリメトキシシランは、上記HCl溶液を添加後8hrで消失した。
次に、表面処理を行ったシリカ微粒子にトリメチロールプロパントリアクリレート(商品名:ビスコート#295;大阪有機化学(株)製、Tg>250℃)37.5質量部とアダマンチルメタクリレート(商品名ADMA;大阪有機化学(株)製、Tg180℃)7.5質量部を加えて均一に混合した。その後、混合液を攪拌しながら40℃、100kPaにて減圧加熱して、揮発分を除去した。揮発分の除去量は72.4質量部であった。
この揮発分の除去により得られた母液84.5質量部に、熱重合開始剤としてt-ブチルパーオキシ(2−エチルヘキサノエート)(商品名パーブチルO;日本油脂(株)製)0.845質量部を溶解し、得られた溶液をメンブレンフィルター(孔径1.0μm)で加圧ろ過(圧力0.2MPa)して硬化性組成物2を得た。
得られた硬化性組成物2中の溶媒濃度を、ガスクロマトグラフィー(アジレント(株)製 型式6850)により、無極性カラムDB−1(J&W社製)を使用し、温度50〜300℃、昇温速度10℃/min、キャリアガスとしてHeを使用し、流量1.2cc/min、水素炎イオン化検出器にて内部標準法で測定した。
その結果、イソプロピルアルコール濃度が0.82質量%、メタノール濃度が0.03質量%、水濃度が0.10質量%であった。
また、得られた硬化性組成物2の粘度は、231mPa・sであった。
(比較例1)
フェニルトリメトキシシランを使用せず、0.1825質量%HCl溶液の使用量を1.3質量部に替えた以外は、実施例1と同様にして硬化性組成物3を得た。
γ−メタクリロキシプロピルトリメトキシシランは上記HCl溶液を添加後8hrで消失した。得られた硬化性組成物3の粘度は、104mPa・sであった。
(比較例2)
γ−メタクリロキシプロピルトリメトキシシランを使用せず、0.1825質量%HCl溶液の使用量を1.6質量部に替えた以外は、実施例1と同様にして硬化性組成物4を得た。
フェニルトリメトキシシランは、上記HCl溶液を添加後8hrで消失した。得られた硬化性組成物4の粘度は、114mPa・sであった。
(比較例3)
フェニルトリメトキシシランに替えてシクロヘキシルトリメトキシシラン4.5質量部を使用し、0.1825質量%HCl溶液の使用量を3.1質量部に替えた以外は、実施例1と同様にして硬化性組成物5を得た。
γ−メタクリロキシプロピルトリメトキシシランは上記HCl溶液を添加後8hrで消失したのに対して、シクロヘキシルトリメトキシシランは、上記HCl溶液を添加後48hr後も消失しなかった。得られた硬化性組成物5の粘度は、90mPa・sであった。
(比較例4)
γ−メタクリロキシプロピルトリメトキシシランおよびフェニルトリメトキシシランを使用せず、替わりにシクロヘキシルトリメトキシシラン4.5質量部を使用し、また0.1825質量%HCl溶液の使用量を1.7質量部に替えた以外は、実施例1と同様にして硬化性組成物6を得た。
シクロヘキシルトリメトキシシランは、上記HCl溶液を添加後48hr後も消失しなかった。得られた硬化性組成物6の粘度は、120mPa・sであった。
(比較例5)
γ−メタクリロキシプロピルトリメトキシシラン及びフェニルトリメトキシシランを使用しない以外は、実施例1と同様にして硬化性組成物7を得た。得られた硬化性組成物7はゲル化した。
(比較例6)
トリメチロールプロパントリアクリレートとアダマンチルメタクリレートに替えて、ジシクロペンタジエニルジアクリレート(商品名ライトアクリレートDCP−A;共栄社化学(株)製)45質量部を使用した以外は、比較例4と同様にして硬化性組成物8を得た。
シクロヘキシルトリメトキシシランは、上記HCl溶液を添加後48hr後も消失しなかった。得られた硬化性組成物8の粘度は、360mPa・sであった。
(比較例7)
トリメチロールプロパントリアクリレートとアダマンチルメタクリレートに替えて、ジシクロペンタジエニルジアクリレート(商品名ライトアクリレートDCP−A;共栄社化学(株)製)45質量部を使用した以外は、比較例5と同様にして硬化性組成物9を得た。得られた硬化性組成物9はゲル化した。
以上の硬化性組成物の調製に用いた各成分の組成を下記表1に示す。
Figure 0005466640
[硬化膜の調製]
<活性エネルギー線硬化>
実施例1及び比較例において、硬化性組成物をそれぞれ別々のガラス基板(50mm×50mm)上に、硬化膜の厚みが100μmになるように塗布し、超高圧水銀ランプを組み込んだ露光装置で3J/cm2露光し塗膜を硬化させた。その後、180℃、30分でアニール処理した。
<加熱硬化>
実施例2の硬化性組成物2をガラス基板(50mm×50mm)上に、硬化膜の厚みが100μmになるように塗布し、140℃、10min加熱処理して塗膜を硬化させた。その後、180℃、30minでアニール処理した。
[性能評価方法]
<成形加工性>
上記の硬化膜をガラス基板から剥がす際に、硬化膜に割れまたはクラックが生じることなく、加工できる度合いを下記の指標で評価した。
A: 割れやクラックが生じることなく加工(剥離)できる。
B: 割れは生じないがクラックが一部生じる。
C: 割れが生じ加工(剥離)性に乏しい。
<透過率>
得られた硬化膜を、270℃、1minにて3回の加熱処理をした前後の波長400nmの光の透過率(T%)を、JIS−K7105に準拠し、分光光度計(日本分光(株)製、UV3100)を用いて測定した。結果を表2に示した。その透過率の値が大きいほど、また、加熱処理前後の透過率変化が少ないほど良好な硬化膜である。
<屈折率>
得られた硬化膜を、270℃、1minにて3回の加熱処理をした前後の屈折率を、多波長アッベ屈折率計DR−M2(Atago社製)を用いて、測定温度25℃で測定した。結果を表2に示した。加熱処理前後の屈折率変化が少ないほど良好な硬化膜である。
<ガラス転移温度 Tg>
得られた硬化膜について、DMS6100(セイコー電子工業社製)を用いて、引張モード、温度範囲20℃〜300℃、昇温速度2℃/min、周波数1Hzにて第一昇温時のtanδ値を測定し、tanδ値のピークの温度をガラス転移温度とした。結果を表2に示した。そのガラス転移点が高いほど、耐熱性が良好な硬化膜である。
<5%重量減少温度>
得られた硬化膜について、TG−DTA(セイコー電子工業社製)を用いて、窒素雰囲気下、温度範囲20℃〜500℃、昇温速度10℃/minで処理した際の、5%重量減少温度を求めた。結果を表2に示した。その5%重量減少温度の値が高いほど、耐熱性が良好な硬化膜である。
<水浸漬前後の吸水率と屈折率変化>
実施例で得られた硬化膜を、純水に24時間浸漬させて、その浸漬の前後における重量変化より吸水率を測定するとともに、屈折率を多波長アッベ屈折率計DR−M2(Atago社製)を用いて、測定温度25℃で測定した。結果を表3に示す。吸水率が低いほど、また屈折率の変化が小さいほど、耐環境性に優れている。
<85℃、85%飽和湿度中に50hr保管後の屈折率変化>
実施例で得られた硬化膜を、恒温恒湿器にて85℃、85%飽和湿度中に50hr保管し、その前後における屈折率を多波長アッベ屈折率計DR−M2(Atago社製)を用いて、測定温度25℃で測定した。結果を表3に示す。屈折率の変化が小さいほど、硬化膜は耐環境性に優れている。
<屈折率の温度依存係数>
実施例で得られた硬化膜について、多波長アッベ屈折率計DR−M2(Atago社製)を用いて、測定温度を25℃〜55℃まで5℃刻みで温度を変えて屈折率を測定し、温度に対する屈折率をプロットした際の傾きを屈折率温度依存係数として、その絶対値を求めた。結果を表3に示す。その値が小さいほど、硬化膜は耐環境性に優れている。
Figure 0005466640
Figure 0005466640
表2より、実施例1及び2は、硬化性組成物は低粘度であるためハンドリング性が良好であり、且つその成形硬化膜は、成形加工性に優れるとともに、透明性、耐熱性ともに優れるものである。
比較例5、7においては、シリカ微粒子の硬化性組成物中への分散性が極めて悪く、硬化物調製時にゲル化が生じた。
比較例4及び6は、成形加工性に乏しい。また、比較例2は、成形加工性が不十分であるとともに、シリカ微粒子の分散性が悪いため400nmの透過率が低く透明性が劣る。
比較例1及び3は、成形加工性に優れるものの、シリカ微粒子の硬化性組成物中への分散性がまだ不十分なために、硬化物の耐熱性に劣り、270℃、3分加熱処理による400nmの透過率の低下量が大きい。
実施例1、実施例2の硬化膜は、水浸漬24時間後の吸水率は0.88%、1.26%であり、その吸水前後における屈折率変化がほとんど無く、耐環境性に優れている。
また、実施例1、実施例2の成形硬化物は、その屈折率の温度依存係数の絶対値は、それぞれ4.1×10-5/℃、4.5×10-5/℃である。従来光学レンズに使用されているポリメチルメタクリレートは、その屈折率の温度依存係数の絶対値が10.5×10-5/℃である。本発明の成形硬化膜は、温度に対する屈折率の変化量がポリメチルメタクリレートに比較して半分以下である。つまり、本発明の硬化物は、その屈折率の温度に対する依存性が少なく、耐環境性に優れている。
特定の2種類のシラン化合物で表面処理したシリカ微粒子と、特定の2種類の(メタ)アクリレートと、重合開始剤とを含有する本発明の硬化性組成物は、低粘度でハンドリング性が良好である。
また、該硬化性組成物を硬化することにより、透明板、光学レンズ、光ディスク基板、液晶表示素子用プラスチック基板、カラーフィルター用基板、有機EL表示素子用プラスチック基板、太陽電池基板、タッチパネル、光学素子、光導波路、LED封止材等に好適に用いることができる、透明性、耐熱性および成形加工性に優れた硬化物が得られる。
さらには、本発明により、吸水率が低く、温度変化に対する屈折率の変化が少なく、光学レンズや光導波路等に好適に用いることができる耐環境性に優れた硬化物が提供される。

Claims (7)

  1. (a)シリカ微粒子と、
    (b)2以上のエチレン性不飽和基を有し且つ環構造を有しない(メタ)アクリレートと、
    (c)エチレン性不飽和基を有し且つ脂環式構造を有する(メタ)アクリレートと、
    (d)重合開始剤と
    を含み、
    前記シリカ微粒子(a)が、下記一般式(1)で表されるシラン化合物(e)及び下記一般式(2)で表されるシラン化合物(f)で表面処理されたものであり、
    前記シリカ微粒子(a)の含有量が、表面処理されたシリカ微粒子として20〜80質量%であり、
    前記(メタ)アクリレート(c)の単独重合体のガラス転移温度が150℃以上であることを特徴とする硬化性組成物。
    Figure 0005466640
    (式(1)中、R1は水素原子又はメチル基を表し、R2は炭素数1〜3のアルキル基又はフェニル基を表し、R3は水素原子又は炭素数1〜10の炭化水素基を表し、qは1〜6の整数であり、rは0〜2の整数である。);
    Figure 0005466640
    (式(2)中、R4は炭素数1〜3のアルキル基又はフェニル基を表し、R5は水素原子又は炭素数1〜10の炭化水素基を表し、sは0〜6の整数であり、tは0〜2の整数である。)。
  2. 前記(メタ)アクリレート(b)が、3つのエチレン性不飽和基を有し且つ環構造を有しない(メタ)アクリレートであることを特徴とする請求項1に記載の硬化性組成物。
  3. 前記シリカ微粒子(a)が、
    該シリカ微粒子(a)100質量部に対して5〜25質量部の前記シラン化合物(e)と、
    シリカ微粒子(a)100質量部に対して5〜25質量部の前記シラン化合物(f)とで表面処理されていることを特徴とする請求項1または2に記載の硬化性組成物。
  4. 前記(メタ)アクリレート(b)の単独重合体のガラス転移温度が150℃以上であることを特徴とする請求項1〜3のいずれかに記載の硬化性組成物。
  5. 前記硬化性組成物の粘度が30〜300mPa・sであることを特徴とする請求項1〜4のいずれかに記載の硬化性組成物。
  6. 請求項1〜5のいずれかに記載の硬化性組成物を硬化させてなる硬化物。
  7. 請求項6に記載の硬化物からなる光学レンズ。
JP2010519072A 2008-07-03 2009-06-30 硬化性組成物及びその硬化物 Expired - Fee Related JP5466640B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010519072A JP5466640B2 (ja) 2008-07-03 2009-06-30 硬化性組成物及びその硬化物

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2008174522 2008-07-03
JP2008174522 2008-07-03
JP2008225946 2008-09-03
JP2008225946 2008-09-03
PCT/JP2009/061903 WO2010001875A1 (ja) 2008-07-03 2009-06-30 硬化性組成物及びその硬化物
JP2010519072A JP5466640B2 (ja) 2008-07-03 2009-06-30 硬化性組成物及びその硬化物

Publications (2)

Publication Number Publication Date
JPWO2010001875A1 JPWO2010001875A1 (ja) 2011-12-22
JP5466640B2 true JP5466640B2 (ja) 2014-04-09

Family

ID=41465970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010519072A Expired - Fee Related JP5466640B2 (ja) 2008-07-03 2009-06-30 硬化性組成物及びその硬化物

Country Status (7)

Country Link
US (1) US20110098411A1 (ja)
EP (1) EP2298822B1 (ja)
JP (1) JP5466640B2 (ja)
KR (1) KR101265411B1 (ja)
CN (1) CN102076723A (ja)
TW (1) TWI465466B (ja)
WO (1) WO2010001875A1 (ja)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105669900A (zh) * 2008-12-09 2016-06-15 出光兴产株式会社 光学部件用树脂原料组合物、光学部件用树脂和光学部件
JP5513095B2 (ja) * 2008-12-18 2014-06-04 出光興産株式会社 光学部品用樹脂原料組成物、光学部品用樹脂および光学部品
TWI510355B (zh) * 2010-01-29 2015-12-01 Aji Co Ltd 造形方法
JPWO2012063644A1 (ja) * 2010-11-09 2014-05-12 昭和電工株式会社 硬化性組成物およびその硬化物
JP6132776B2 (ja) 2012-02-10 2017-05-24 昭和電工株式会社 硬化性組成物およびその用途
JP2013163785A (ja) * 2012-02-13 2013-08-22 Asahi Kasei E-Materials Corp 感光性シリコーン樹脂組成物
JP5885585B2 (ja) * 2012-05-21 2016-03-15 昭和電工株式会社 硬化性組成物およびその硬化物
JP6107323B2 (ja) * 2013-03-29 2017-04-05 凸版印刷株式会社 低屈折率層形成用樹脂組成物および低屈折率膜並びに反射防止フィルム
WO2015019941A1 (ja) * 2013-08-09 2015-02-12 昭和電工株式会社 半導体ナノ粒子含有硬化性組成物、硬化物、光学材料および電子材料
JP6387270B2 (ja) * 2013-08-29 2018-09-05 旭化成株式会社 光反射材用樹脂組成物、光反射材、光半導体部品用リフレクタ、及び光半導体部品
CN104419234B (zh) * 2013-09-10 2017-05-24 昭和电工株式会社 固化性组合物及其固化物以及硬涂材和硬涂膜
WO2015055280A1 (en) * 2013-10-15 2015-04-23 Merck Patent Gmbh Coated silica particles for ink-jet printing of organic electronic devices, a method for their production and devices produced therewith
JP6265469B2 (ja) * 2013-11-14 2018-01-24 日本ゼオン株式会社 重合体修飾シリカの製造方法
JP6245742B2 (ja) * 2013-12-04 2017-12-13 昭和電工株式会社 半導体ナノ粒子含有硬化性組成物、硬化物、光学材料および電子材料
JP6379582B2 (ja) * 2014-03-28 2018-08-29 凸版印刷株式会社 断熱層形成用樹脂組成物、透明断熱層及び透明断熱フィルム
JPWO2015186521A1 (ja) 2014-06-02 2017-04-20 昭和電工株式会社 半導体ナノ粒子含有硬化性組成物、硬化物、光学材料および電子材料
CN108473811B (zh) * 2015-12-31 2021-05-07 3M创新有限公司 包含官能化二氧化硅纳米粒子和多官能(甲基)丙烯酸酯单体的防雾涂料组合物
JP6893721B2 (ja) * 2016-10-03 2021-06-23 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 紫外線硬化型シリコーン樹脂組成物、及びそれを用いた物品
JP7251724B2 (ja) 2017-12-28 2023-04-04 Kjケミカルズ株式会社 t-ブチルシクロヘキシル(メタ)アクリレートを用いた重合性樹脂組成物
KR102608886B1 (ko) 2018-09-28 2023-12-01 동우 화인켐 주식회사 자발광 감광성 수지 조성물, 이를 이용한 색변환층을 포함하는 컬러필터 및 화상표시장치
KR102607350B1 (ko) 2018-12-06 2023-11-29 동우 화인켐 주식회사 자발광 감광성 수지 조성물, 이를 이용한 색변환층을 포함하는 컬러필터 및 화상표시장치
CN109836545A (zh) * 2019-02-01 2019-06-04 涌奇材料技术(上海)有限公司 一种表面改性有机硅微米球的制备方法及其应用
US11851557B2 (en) 2019-02-15 2023-12-26 AGC Inc. Curable composition, cured product and laminate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61203108A (ja) * 1985-03-04 1986-09-09 Toyobo Co Ltd 光硬化型可撓性組成物
JPH02116036A (ja) * 1988-10-25 1990-04-27 Seiko Epson Corp 光記録媒体
JP2005003772A (ja) * 2003-06-10 2005-01-06 Olympus Corp 光学材料用組成物および光学素子
JP2006249322A (ja) * 2005-03-11 2006-09-21 Mitsubishi Rayon Co Ltd 光硬化性シート及びそれを用いた成形品の製造方法
JP2008001895A (ja) * 2006-05-25 2008-01-10 Konica Minolta Opto Inc 光学用樹脂材料及び光学素子
WO2008015999A1 (fr) * 2006-08-04 2008-02-07 Konica Minolta Opto, Inc. Matériau composite et élément optique

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5332779A (en) * 1990-06-04 1994-07-26 Kawasaki Steel Corporation Polymerizable silica sol, adamantane derivative for use in the sol and cured resin prepared using the same
JP2902525B2 (ja) 1991-09-24 1999-06-07 三菱レイヨン株式会社 透明性に優れた複合体組成物およびその製法
US5385988A (en) * 1991-09-24 1995-01-31 Mitsubishi Rayon Co., Ltd. Composite composition having high transparency and process for producing same
JP3540115B2 (ja) 1996-07-09 2004-07-07 三菱化学株式会社 樹脂組成物及びこれを活性エネルギー線により硬化させてなる部材
JPH10231339A (ja) 1997-02-19 1998-09-02 Mitsubishi Rayon Co Ltd 硬化性組成物
JPH10298252A (ja) 1997-04-23 1998-11-10 Mitsubishi Rayon Co Ltd 硬化性組成物およびその製造方法
EP1293521B1 (en) * 2001-09-13 2008-02-13 JSR Corporation Cyclic olefin addition copolymer and process for producing same, crosslinkable composition, crosslinked product and process for producing same, and optically transparent material and application thereof
JP4008246B2 (ja) 2002-01-28 2007-11-14 住友ベークライト株式会社 複合体組成物、及びこれを架橋させてなる成形硬化物
EP1811517A1 (en) * 2004-11-11 2007-07-25 Mitsubishi Kagaku Media Co., Ltd. Optical recording medium and method for producing same
US20060251901A1 (en) * 2005-05-09 2006-11-09 Armstrong Sean E Curable composition and substrates possessing protective layer obtained therefrom
CN102037035A (zh) * 2008-05-23 2011-04-27 昭和电工株式会社 含有反应性(甲基)丙烯酸酯聚合物的固化性组合物及其固化物
KR101203301B1 (ko) * 2008-12-16 2012-11-21 쇼와 덴코 가부시키가이샤 경화성 조성물 및 그의 경화물

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61203108A (ja) * 1985-03-04 1986-09-09 Toyobo Co Ltd 光硬化型可撓性組成物
JPH02116036A (ja) * 1988-10-25 1990-04-27 Seiko Epson Corp 光記録媒体
JP2005003772A (ja) * 2003-06-10 2005-01-06 Olympus Corp 光学材料用組成物および光学素子
JP2006249322A (ja) * 2005-03-11 2006-09-21 Mitsubishi Rayon Co Ltd 光硬化性シート及びそれを用いた成形品の製造方法
JP2008001895A (ja) * 2006-05-25 2008-01-10 Konica Minolta Opto Inc 光学用樹脂材料及び光学素子
WO2008015999A1 (fr) * 2006-08-04 2008-02-07 Konica Minolta Opto, Inc. Matériau composite et élément optique

Also Published As

Publication number Publication date
CN102076723A (zh) 2011-05-25
TW201014870A (en) 2010-04-16
KR101265411B1 (ko) 2013-05-16
WO2010001875A1 (ja) 2010-01-07
JPWO2010001875A1 (ja) 2011-12-22
EP2298822A1 (en) 2011-03-23
EP2298822A4 (en) 2011-06-29
US20110098411A1 (en) 2011-04-28
KR20110038107A (ko) 2011-04-13
TWI465466B (zh) 2014-12-21
EP2298822B1 (en) 2013-02-27

Similar Documents

Publication Publication Date Title
JP5466640B2 (ja) 硬化性組成物及びその硬化物
JP5587869B2 (ja) 硬化性組成物及びその硬化物
JP6607510B2 (ja) 光硬化性コーティング組成物、低屈折層および反射防止フィルム
JP5885585B2 (ja) 硬化性組成物およびその硬化物
KR101203301B1 (ko) 경화성 조성물 및 그의 경화물
JP6132776B2 (ja) 硬化性組成物およびその用途
WO2015019941A1 (ja) 半導体ナノ粒子含有硬化性組成物、硬化物、光学材料および電子材料
JP5551084B2 (ja) 造形方法
WO2012114986A1 (ja) 硬化性組成物及びその硬化物
JP4008246B2 (ja) 複合体組成物、及びこれを架橋させてなる成形硬化物
CN111183164A (zh) 固化性组合物及固化物
JP2014234458A (ja) 硬化性組成物およびその硬化物
WO2016182007A1 (ja) 酸化ジルコニウム粒子と(メタ)アクリレート類を含む重合性組成物とその製造方法
JP2006306008A (ja) 帯電防止用積層体
JP2011037943A (ja) 硬化性樹脂組成物、その硬化物、及びプラスチックレンズ
JP2013018827A (ja) 硬化性組成物およびその硬化物
JP5769636B2 (ja) レンズ又はレンズアレイの造形方法
JP2007022071A (ja) 帯電防止用積層体
JPWO2012063644A1 (ja) 硬化性組成物およびその硬化物
JP2003160606A (ja) 硬化性組成物および樹脂硬化物

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140124

R150 Certificate of patent or registration of utility model

Ref document number: 5466640

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees