JP5454987B2 - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP5454987B2
JP5454987B2 JP2012525363A JP2012525363A JP5454987B2 JP 5454987 B2 JP5454987 B2 JP 5454987B2 JP 2012525363 A JP2012525363 A JP 2012525363A JP 2012525363 A JP2012525363 A JP 2012525363A JP 5454987 B2 JP5454987 B2 JP 5454987B2
Authority
JP
Japan
Prior art keywords
converter
fuel cell
value
duty
reactor current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012525363A
Other languages
English (en)
Other versions
JPWO2013098999A1 (ja
Inventor
智彦 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Application granted granted Critical
Publication of JP5454987B2 publication Critical patent/JP5454987B2/ja
Publication of JPWO2013098999A1 publication Critical patent/JPWO2013098999A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • H01M16/003Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
    • H01M16/006Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers of fuel cells with rechargeable batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • H01M8/04626Power, energy, capacity or load of auxiliary devices, e.g. batteries, capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04634Other electric variables, e.g. resistance or impedance
    • H01M8/04656Other electric variables, e.g. resistance or impedance of auxiliary devices, e.g. batteries, capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • H01M8/04947Power, energy, capacity or load of auxiliary devices, e.g. batteries, capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04949Electric variables other electric variables, e.g. resistance or impedance
    • H01M8/04953Electric variables other electric variables, e.g. resistance or impedance of auxiliary devices, e.g. batteries, capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04992Processes for controlling fuel cells or fuel cell systems characterised by the implementation of mathematical or computational algorithms, e.g. feedback control loops, fuzzy logic, neural networks or artificial intelligence
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/505Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/515Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Description

本発明は、燃料電池の出力を昇圧するコンバータを備えた燃料電池システムに関する。
例えば燃料電池車両に搭載される燃料電池システムとして、駆動モータ等の負荷と、負荷に電力を供給する燃料電池と、燃料電池と負荷との間に配置されて燃料電池の出力を昇圧するコンバータと、を備え、コンバータの入力側及び出力側にそれぞれ設けられた2つの電圧センサによって測定したコンバータの入力電圧値と出力電圧値とに基づいて、コンバータに対してフィードバック制御を行なうものが知られている。
また、そのような燃料電池システムにおいては、個々の電圧センサが持っているセンサ誤差によって、コンバータの適正な動作に影響を与える場合があることから、例えば特許文献1に開示されているように、コンバータの入口側電位と出口側電位との間の電位差に基づいてコンバータの入力電圧と出力電圧を制御する技術も開発されている。
特開2011−087439号
ところで、コンバータを備えた燃料電池システムにおいては、コンバータ内のスイッチング素子の周期的なオン/オフに伴い、例えば図3及び図4に示すように、コンバータ内のリアクトルを流れる電流(以下、リアクトル電流)が上下動を繰り返すことが知られている。そして、上下動するリアクトル電流の中点の値がリアクトル電流の平均値に一致することに着目し、この中点の値のみをサンプリングしてそれをコンバータの制御に用いることで、応答性の向上を図ることが可能である。
しかしながら、低負荷運転時(例えば、燃料電池システムが燃料電池車両に搭載された場合においては、アイドリング時や渋滞走行時が該当する)においては、コンバータのリアクトルに電力が溜まらず、例えば図3に示すように、リアクトルに電流が流れない状態が断続的に発生する、いわゆる不連続モードと呼ばれる挙動を示す場合がある。
かかる不連続モードでは、リアクトル電流の中点の値と実際の平均電流値との間に乖離が生じる。そのような乖離は、図4に示すような連続モードと呼ばれる挙動を示している場合には生じないので何の問題もないが、燃料電池の出力状態を何ら考慮せずに常にリアクトル電流の中点の値をそのままコンバータの制御に用いることについては、まだ改善の余地がある。
その対策として、燃料電池の出力状態に応じてリアクトル電流をサンプリングするタイミングを変える処理を行なうことも考えられるが、制御が冗長あるいは複雑になる等の課題は残る。
本発明は、上記事情に鑑みてなされたもので、コンバータ制御の応答性及び精度の向上を図ることが可能な燃料電池システムを提供することを目的としている。
上記の課題を解決するため、本発明に係わる燃料電池システムは、燃料電池と負荷との間に設けられて前記燃料電池の出力を昇圧するコンバータと、前記コンバータを所定のデューティ比で制御するコントロールユニットとを備え、前記コントロールユニットが、前記コンバータ内のリアクトルを流れるリアクトル電流の指令値又は/及び前記リアクトル電流の測定値を用いて算出したフィードフォワード・デューティ及びフィードバック・デューティから前記コンバータに対するデューティ指令値を決定する燃料電池システムであって、前記コントロールユニットは、前記燃料電池に対する要求出力が所定値以下である低負荷運転時においては、前記コンバータ内のスイッチング素子を所定のデューティ比でスイッチング制御することに伴い上下動する前記リアクトル電流の測定値として、オン・デューティである期間の中間のタイミングで測定した中点測定値に所定の係数を乗じたものを設定するものである。
このような構成においては、リアクトル電流の測定値を中点測定値としたまま、その中点測定値に所定の係数を乗じたものをリアクトル電流の測定値として使用することにより、フィードバック制御に使用するリアクトル電流の測定値と実電流の平均値との乖離を抑制することができる。
上記の構成において、前記所定の係数は、前記コンバータの入力電圧及び出力電圧をそれぞれVL及びVH、前記フィードフォワード・デューティをDFFとしたときに、
DFF・VH/(VH−VL)
としてもよい。
このような構成においては、低負荷運転時に限定されることなく、それ以外の運転時においても、フィードバック制御に使用するリアクトル電流の測定値として、共通の式から求められる測定値を使用することが可能になり、制御ロジックの共通化を図ることができる。
つまり、前記コントロールユニットは、前記低負荷運転時以外の運転時においても、前記リアクトル電流の測定値として、前記中点測定値に前記DFF・VH/(VH−VL)を乗じたものを使用することができる。
また、上記DFFの代わりに、当該DFFにフィードバックを反映させた最終指令値(すなわち、フィードフォワード・デューティとフィードバック・デューティとの加算値である前記デューティ指令値)を用いても良い。
つまり、前記所定の係数は、前記コンバータの入力電圧及び出力電圧をそれぞれVL及びVH、前記デューティ指令値をDとしたときに、
D・VH/(VH−VL)
としてもよい。
そして、かかる場合において、前記コントロールユニットは、前記低負荷運転時以外の運転時においても、前記リアクトル電流の測定値として、前記中点測定値に前記D・VH/(VH−VL)を乗じたものを使用することができる。
本発明によれば、コンバータ制御の応答性と精度の向上を図ることができる。
本実施形態に係わる燃料電池車両の電力系の機能ブロック図である。 図1に示す燃料電池用の昇圧コンバータの回路図である。 図2に示すリアクトルを流れる電流の一挙動(不連続モード)を示す図である。 図2に示すリアクトルを流れる電流の他の挙動(連続モード)を示す図である。 図3の要部を拡大等した説明図である。
以下、各図を参照しながら本発明に係わる一実施形態について説明する。
図1は本実施形態に係わる燃料電池システムを搭載した燃料電池車両の電力系の機能ブロックを示す。燃料電池システム10を搭載した燃料電池車両は、酸化ガスと燃料ガスとの電気化学反応により発電する燃料電池20を主電源とし、充放電可能なバッテリ70を補助電源として、トラクションインバータ50に電力を供給し、トラクションモータ(負荷)80を駆動する。
燃料電池20は、例えば、高分子電解質型燃料電池であり、多数の単セルを積層してなるスタック構造を有している。単セルは、イオン交換膜からなる電解質膜の一方の面に形成された空気極と、電解質膜の他方の面に形成された燃料極と、空気極及び燃料極を両側から挟み込む一対のセパレータとを有する。
バッテリ70は、余剰電力の貯蔵源、回生制動時の回生エネルギー貯蔵源、燃料電池車両の加速又は減速に伴う負荷変動時のエネルギーバッファとして機能する蓄電装置であり、例えば、二次電池(ニッケル・カドミウム蓄電池、ニッケル・水素蓄電池、リチウム二次電池等)が好適である。
燃料電池20の出力電圧は、燃料電池用の直流電圧変換器であるDC/DCコンバータ30(以下、第1のコンバータ30と称する)によって所定の直流電圧に昇圧され、トラクションインバータ50に供給される。一方、バッテリ70の出力電圧は、バッテリ用の直流電圧変換器であるDC/DCコンバータ40(以下、第2のコンバータ40と称する)によって所定の直流電圧に昇圧され、トラクションインバータ50に供給される。
トラクションインバータ50は、燃料電池20とバッテリ70との両方又は何れか一方から供給される直流電力を交流電力(例えば、三相交流)に変換し、トラクションモータ80の回転トルクを制御する。トラクションモータ80は、例えば、三相交流モータであり、車両走行時には走行推進力を生成する一方、車両制動時には、モータジェネレータとして機能し、運動エネルギーを電気エネルギーに変換して回生電力を回収する。
第2のコンバータ40は、燃料電池20の余剰電力又はトラクションモータ80が回収した回生電力を降圧してバッテリ70に充電する。
コントロールユニット60は、CPU、ROM、RAM及び入出力インタフェースを備える制御装置であり、燃料電池20の運転制御及び車載電力変換器(第1のコンバータ30、第2のコンバータ40、及びトラクションインバータ50)のスイッチング制御等を行う。
例えば、コントロールユニット60は、イグニッションスイッチからの起動信号を受信すると、燃料電池車両の運転を開始し、アクセルセンサから出力されるアクセル開度信号や、その他のセンサから出力される信号などを基に燃料電池システム10の要求電力を求める。なお、図1では、これらのセンサ類を便宜的に一纏めにして符号90で示している。燃料電池システム10の要求電力は、車両走行電力と補機電力との合計値である。
補機電力には、車載補機類(加湿器、エアコンプレッサ、水素ポンプ、及び冷却水循環ポンプ等)で消費される電力、車両走行に必要な装置(変速機、車輪制御装置、操舵装置、及び懸架装置等)で消費される電力、乗員空間内に配設される装置(空調装置、照明器具、及びオーディオ等)で消費される電力などが含まれる。
コントロールユニット60は、燃料電池20とバッテリ70とのそれぞれの出力電力の配分を決定し、燃料電池20の発電電力が目標電力に一致するように燃料電池20への燃料ガス及び酸化ガスの供給量を制御するとともに、第1のコンバータ30を制御して、燃料電池20の出力電圧を調整することにより、燃料電池20の運転ポイント(出力電圧、出力電流)を制御する。
更に、コントロールユニット60は、アクセル開度に応じた目標トルクが得られるように、例えば、スイッチング指令として、U相、V相、及びW相の各交流電圧指令値をトラクションインバータ50に出力し、トラクションモータ80の出力トルク及び回転数を制御する。
図2は第1のコンバータ30の回路構成を示す。ここでは、第1のコンバータ30の一例として、公知の直流チョッパを示す。第1のコンバータ30は、キャリア周波数に応じて周期的にオン/オフを繰り返すスイッチング素子としてのトランジスタTrと、リアクトルLと、平滑用コンデンサCと、整流素子としてのダイオードDとを備える。
トランジスタTrがオンになると、燃料電池20から供給されるエネルギーがリアクトルLに蓄積され、その蓄積されたエネルギーは、トランジスタTrがオフになると、ダイオードDを介して平滑用コンデンサCに転送される。この過程が繰り返されることで、平滑用コンデンサCに蓄積されるエネルギーが増大し、入力電圧VLに比較して出力電圧VHを高めることができる。
ここで、入力電圧VLは、燃料電池20の出力電圧に相当し、出力電圧VHは、トラクションインバータ50に供給される。このような直流チョッパでは、トランジスタTrのスイッチング動作の1周期内に占めるオン期間とオフ期間との比率(デューティ比)に応じて昇圧の程度が定まる。
図3及び図4は、トランジスタTrのスイッチング動作に伴いリアクトルLに流れるリアクトル電流の挙動を示す図である。特に、図3は、低負荷運転時(例えば、アイドリング中や渋滞走行中が該当する)、言い換えれば、燃料電池20に対する出力要求が所定の閾値以下である場合におけるリアクトル電流の挙動を示したものであり、以下、このような挙動を示す状態を不連続モードという場合がある。
また、図4は、通常運転時を含む上記低負荷運転時以外の場合におけるリアクトル電流の挙動を示したものであり、以下、このような挙動を示す状態を連続モードという場合がある。
本実施形態において、コントロールユニット60から第1のコンバータ30に指令されるデューティDref(デューティ指令値)は、リアクトルLを流れるリアクトル電流をフィードフォワード制御するためのフィードフォワード・デューティ(以下、DFF)と、リアクトル電流をフィードバック制御するためのフィードバック・デューティ項(以下、デューティDFB)との加算値である。
デューティDFFは、コントロールユニット60にて演算またはコントロールユニット60よりも上位のコントロールユニットを備えている場合における当該上位のコントロールユニットから供給されるリアクトル電流の指令値Irefを用いて算出されるものである。また、デューティDFBは、前記リアクトル電流の指令値Irefと、電流センサによって計測されたリアクトル電流の実測値との偏差を用いて算出されるものである。
図3において、Imesは、リアクトル電流を計測する電流センサのセンサ値(より具体的には、センサ出力をA/D変換した値)のうち、オン・デューティである期間の中間のタイミング(以下、中点と称する。)で取得したセンサ値であり、以下、リアクトル電流の中点測定値と称する場合がある。
Iaveは、デューティのオン・オフに伴い上下動するリアクトル電流の平均値である。
そして、本実施形態においては、従来は燃料電池20の出力状態にかかわらず、言い換えれば、リアクトル電流が図3の不連続モードにあるか、図4の連続モードにあるかにかかわらず、リアクトル電流の中点測定値であり、かつ、電流フィードバック制御のデューティDFBの演算に用いていたImesの代わりに、式1に示すImes’を用いることに特徴がある。
Figure 0005454987
この式1からも理解できるように、Imesの代わりにImes’を用いることと、Imesに所定の変換係数である
VH/(VH−VL)・DFF
を乗じてImes’に変換(補正)することとは、等価である。
このImes’は、後述するとおり、リアクトル電流が不連続モードであっても連続モードであっても、式3に示すIaveと同じ値になる。つまり、本実施形態によれば、リアクトル電流のモードが何であるかに関係なく、共通の制御ロジックを用いてリアクトル電流の中点計測値を実電流の平均値に変換することができるので、実電流値を正確に捉えた高精度かつ応答性の高いコンバータ制御が可能となる。
以下、Imes’=Iaveとなる理由について、図2及び図3を参照しながら説明する。
まず、図2の回路構成において、リアクトル電流の時間微分をdI/dtとしたときには、電磁気学的に、
VL=L・(dI/dt)
の式が成立するから、
dI/dt=VL/L
となる。
一方、図3のリアクトル電流挙動において、オン・デューティの時間をTonとしたときには、幾何学的に、
Imes=(dI/dt)・(Ton/2)、
の式が成立する。
ここで、トランジスタTrのスイッチング周期をT、スイッチング周波数をfとしたときには、
Ton =DFF・T
=DFF・(1/f)
となるから、Imesは、式2に示すとおりとなる。
Figure 0005454987
そして、このImesがコントロールユニット60によって認識されるリアクトル電流の中点測定値となる。
また、Iaveの説明用に、図3の要部を拡大して一部にハッチング等を施した図5において、オフ・デューティである時間のうちリアクトル電流がゼロ以上である時間をTx、Tonである間のリアクトル電流の時間積分値をS1、Txである間のリアクトル電流の時間積分値をS2、リアクトル電流のピーク値をIpとしたときには、幾何学的に、
Iave=(S1+S2)/T
の式が成立する。
更に、
Tonである間については、
S1=(1/2)・Ip・Ton、
Ip=(dI/dt)・Ton、及び
VL=L・(dI/dt)、
Txである間については、
S2=(1/2)・Ip・Tx、
Ip=(dI/dt)・Tx、及び
VH−VL=L・(dI/dt)
の式が幾何学的又は電磁気学的に成立することも勘案すると、
Iaveは、式3に示すとおりとなる。なお、Tonである間のdI/dtと、Txである間のdI/dtとは異なるものである。
Figure 0005454987
そして、式3に示すIaveの式は、式2のImesの式を用いることによって、式4に示すとおりにも表すことができる。
Figure 0005454987
式1の右辺と式4の右辺は共通しているため、図3に示す不連続モードにおいては、Imes’=Iaveが成立することが理解できる。
ところで、図4に示す連続モードにおいては、
DFF=1−(VL/VH)
の式が成立するので、この式の右辺を式4のDFFに代入すると、
Iave=Imesとなる。
つまり、図4に示すような連続モードにおいてもImesの代わりに式1に示すImes’を用いることができること、言い換えれば、共通の制御ロジックを使用可能であることが理解できる。
以上説明したように、本実施形態においては、不連続モードでリアクトル電流の中点測定値を使用しても、その中点測定値を平均電流値に変換することができるので、中点測定値と平均電流値との乖離の発生が抑制されることになる。したがって、コンバータ制御の応答性向上と高精度化の両立を図ることができる。
さらに、リアクトル電流のモードにかかわらず、共通の制御ロジックを使用することができることができるので、連続モードと不連続モードとの間で制御ロジックを切り替える必要がない。よって、コンバータ制御の冗長化や複雑化も抑制される。
なお、本発明は上記実施形態に限定されるものではなく、上記実施形態のDFFの代わりに、当該DFFにフィードバックを反映させた最終指令値(すなわち、フィードフォワード・デューティとフィードバック・デューティとの加算値であるデューティ指令値)を用いても良い。
つまり、コンバータの入力電圧及び出力電圧をそれぞれVL及びVH、デューティ指令値をDとしたときに、所定の係数を、
D・VH/(VH−VL)
とすることができる。
そして、かかる場合において、前記コントロールユニットは、低負荷運転時以外の運転時においても、リアクトル電流の測定値として、中点測定値にD・VH/(VH−VL)を乗じたものを使用することができる。
10…燃料電池システム、20…燃料電池、30…第1のコンバータ(コンバータ)、60…コントロールユニット、80…トラクションモータ(負荷)、L…リアクトル、Tr…トランジスタ(スイッチング素子)

Claims (4)

  1. 燃料電池と負荷との間に設けられて前記燃料電池の出力を昇圧するコンバータと、前記コンバータを所定のデューティ比で制御するコントロールユニットとを備え、
    前記コントロールユニットが、前記コンバータ内のリアクトルを流れるリアクトル電流の指令値又は/及び前記リアクトル電流の測定値を用いて算出したフィードフォワード・デューティ及びフィードバック・デューティから前記コンバータに対するデューティ指令値を決定する燃料電池システムであって、
    前記コントロールユニットは、前記燃料電池に対する要求出力が所定値以下である低負荷運転時においては、前記コンバータ内のスイッチング素子を所定のデューティ比でスイッチング制御することに伴い上下動する前記リアクトル電流の測定値として、オン・デューティである期間の中間のタイミングで測定した中点測定値に所定の係数を乗じたものを設定するものであり、
    前記所定の係数は、前記コンバータの入力電圧及び出力電圧をそれぞれVL及びVH、前記フィードフォワード・デューティをDFFとしたときに、
    DFF・VH/(VH−VL)
    である、燃料電池システム。
  2. 請求項に記載の燃料電池システムであって、
    前記コントロールユニットは、前記低負荷運転時以外の運転時においても、前記リアクトル電流の測定値として、前記中点測定値に前記DFF・VH/(VH−VL)を乗じたものを使用する、燃料電池システム。
  3. 燃料電池と負荷との間に設けられて前記燃料電池の出力を昇圧するコンバータと、前記コンバータを所定のデューティ比で制御するコントロールユニットとを備え、
    前記コントロールユニットが、前記コンバータ内のリアクトルを流れるリアクトル電流の指令値又は/及び前記リアクトル電流の測定値を用いて算出したフィードフォワード・デューティ及びフィードバック・デューティから前記コンバータに対するデューティ指令値を決定する燃料電池システムであって、
    前記コントロールユニットは、前記燃料電池に対する要求出力が所定値以下である低負荷運転時においては、前記コンバータ内のスイッチング素子を所定のデューティ比でスイッチング制御することに伴い上下動する前記リアクトル電流の測定値として、オン・デューティである期間の中間のタイミングで測定した中点測定値に所定の係数を乗じたものを設定するものであり、
    前記所定の係数は、前記コンバータの入力電圧及び出力電圧をそれぞれVL及びVH、前記デューティ指令値をDとしたときに、
    D・VH/(VH−VL)
    である、燃料電池システム。
  4. 請求項に記載の燃料電池システムであって、
    前記コントロールユニットは、前記低負荷運転時以外の運転時においても、前記リアクトル電流の測定値として、前記中点測定値に前記D・VH/(VH−VL)を乗じたものを使用する、燃料電池システム。
JP2012525363A 2011-12-28 2011-12-28 燃料電池システム Active JP5454987B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/080428 WO2013098999A1 (ja) 2011-12-28 2011-12-28 燃料電池システム

Publications (2)

Publication Number Publication Date
JP5454987B2 true JP5454987B2 (ja) 2014-03-26
JPWO2013098999A1 JPWO2013098999A1 (ja) 2015-04-30

Family

ID=48696560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012525363A Active JP5454987B2 (ja) 2011-12-28 2011-12-28 燃料電池システム

Country Status (5)

Country Link
US (1) US9124192B2 (ja)
JP (1) JP5454987B2 (ja)
CN (1) CN103430438B (ja)
DE (1) DE112011106077B4 (ja)
WO (1) WO2013098999A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014005296A1 (de) * 2014-04-10 2015-10-15 Daimler Ag Verfahren zum Starten des Normalbetriebs
JP6353477B2 (ja) * 2016-03-09 2018-07-04 本田技研工業株式会社 電力供給システム
JP6399045B2 (ja) * 2016-06-16 2018-10-03 トヨタ自動車株式会社 電圧制御システム、燃料電池システムおよび電圧制御システムの制御方法
US10985389B1 (en) * 2018-04-30 2021-04-20 Tacit Intelligence Llc Methods and devices for temperature controlled fuel cell
EP3648276B1 (en) * 2018-10-29 2023-03-15 ABB Schweiz AG Control of dc voltage distribution system
JP7035980B2 (ja) * 2018-11-20 2022-03-15 トヨタ自動車株式会社 電流制御システム、燃料電池システム、および、昇圧コンバータの制御方法
JP7151686B2 (ja) * 2019-10-15 2022-10-12 トヨタ自動車株式会社 電力変換器の制御装置及び燃料電池システム
FI3866320T3 (fi) * 2020-02-12 2024-04-18 Abb Schweiz Ag Polttokennosähköjärjestelmä
JP7196880B2 (ja) 2020-06-11 2022-12-27 トヨタ自動車株式会社 電力供給システム、制御装置及びリアクトル電流測定方法
JP7247991B2 (ja) * 2020-08-24 2023-03-29 トヨタ自動車株式会社 電力供給システム、制御装置及びリアクトル電流測定方法
CN113644302B (zh) * 2021-07-26 2022-07-12 珠海格力电器股份有限公司 一种燃料电池系统及燃料电池系统控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3657818B2 (ja) * 1999-06-08 2005-06-08 株式会社日立産機システム モータ制御装置
JP2005198370A (ja) * 2003-12-26 2005-07-21 Tdk Corp 平均電流検出回路
JP2010284031A (ja) * 2009-06-05 2010-12-16 Sharp Corp スイッチング電源装置及びそれを用いた照明装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2501012B2 (ja) 1992-12-17 1996-05-29 インターナショナル・ビジネス・マシーンズ・コーポレイション 電流測定装置
JP3783941B2 (ja) * 2002-04-25 2006-06-07 株式会社ジェイテクト モータ制御装置
US20040217732A1 (en) * 2003-04-29 2004-11-04 Ballard Power Systems Inc. Power converter architecture and method for integrated fuel cell based power supplies
JP2005086843A (ja) * 2003-09-04 2005-03-31 Taiyo Yuden Co Ltd 電力供給源の出力制御装置
TWI253554B (en) * 2005-01-14 2006-04-21 Tsai-Fu Wu Power factor corrector control device for accommodating mains voltage distortion and achieving high power factor and low harmonic current
US7911816B2 (en) * 2006-09-13 2011-03-22 Hypertherm, Inc. Linear, inductance based control of regulated electrical properties in a switch mode power supply of a thermal processing system
US7609050B2 (en) 2007-02-20 2009-10-27 Gm Global Technology Operations, Inc. Method and system for determing current in an electrical component in a power conversion system
CN101478236B (zh) * 2008-01-03 2010-12-08 天钰科技股份有限公司 电压转换器
JP4541425B2 (ja) * 2008-02-25 2010-09-08 本田技研工業株式会社 Dc/dcコンバータ装置
WO2010088545A2 (en) 2009-01-30 2010-08-05 Board Of Regents, The University Of Texas System Methods and apparatus for design and control of multi-port power electronic interface for renewable energy sources
JP5104947B2 (ja) * 2009-03-24 2012-12-19 株式会社村田製作所 スイッチング電源装置
JP2011087439A (ja) * 2009-10-19 2011-04-28 Toyota Motor Corp 電源装置システム
JP2011223729A (ja) * 2010-04-08 2011-11-04 Toyota Motor Corp 電源装置
CN102299626A (zh) * 2010-06-24 2011-12-28 飞思卡尔半导体公司 用于直流至直流变换的方法和装置
CN101931323B (zh) 2010-08-05 2012-11-28 西安交通大学 一种提高集成开关dc-dc变换器轻载效率非均匀变化栅宽的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3657818B2 (ja) * 1999-06-08 2005-06-08 株式会社日立産機システム モータ制御装置
JP2005198370A (ja) * 2003-12-26 2005-07-21 Tdk Corp 平均電流検出回路
JP2010284031A (ja) * 2009-06-05 2010-12-16 Sharp Corp スイッチング電源装置及びそれを用いた照明装置

Also Published As

Publication number Publication date
CN103430438A (zh) 2013-12-04
WO2013098999A1 (ja) 2013-07-04
US9124192B2 (en) 2015-09-01
CN103430438B (zh) 2016-09-07
US20130176759A1 (en) 2013-07-11
JPWO2013098999A1 (ja) 2015-04-30
DE112011106077T5 (de) 2014-10-02
DE112011106077B4 (de) 2015-08-20

Similar Documents

Publication Publication Date Title
JP5454987B2 (ja) 燃料電池システム
US7946365B2 (en) Control method for fuel cell vehicle, and fuel cell vehicle
JP5058024B2 (ja) Dc/dcコンバータの故障検出方法
JP4163222B2 (ja) 燃料電池車両の電源システム
JP4444343B2 (ja) 燃料電池車両
JP5207055B2 (ja) コンバータ制御装置
CN102449893B (zh) 转换器控制装置
JP4513130B2 (ja) 燃料電池システム及び移動体
JP4505767B2 (ja) 燃料電池システム
US20090243386A1 (en) Method of controlling fuel cell vehicle and method of controlling dc/dc converter apparatus
JP2008098134A (ja) 燃料電池システム
US11427179B2 (en) Power supply system
JP5928401B2 (ja) コンバータ装置
US11070156B2 (en) Power system
JP4712895B2 (ja) 燃料電池車両
JP2007300774A (ja) 燃料電池車両の制御装置
JP5717004B2 (ja) 移動体の運転方法及び移動体
JP2008304290A (ja) 漏電検出器
JP5220571B2 (ja) Dc/dcコンバータ装置及びdc/dcコンバータの駆動方法
WO2010140227A1 (ja) コンバータ制御装置
JP5682764B2 (ja) コンバータの制御方法、コンバータの制御装置及び燃料電池システム
JP5148424B2 (ja) Dc/dcコンバータ装置、dc/dcコンバータの制御システム及び電気車両
JP5083275B2 (ja) 燃料電池システム及び移動体

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131225

R151 Written notification of patent or utility model registration

Ref document number: 5454987

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151