JP5452715B2 - モータ制御装置 - Google Patents

モータ制御装置 Download PDF

Info

Publication number
JP5452715B2
JP5452715B2 JP2012515822A JP2012515822A JP5452715B2 JP 5452715 B2 JP5452715 B2 JP 5452715B2 JP 2012515822 A JP2012515822 A JP 2012515822A JP 2012515822 A JP2012515822 A JP 2012515822A JP 5452715 B2 JP5452715 B2 JP 5452715B2
Authority
JP
Japan
Prior art keywords
value
simulated
physical quantity
motor
calculation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012515822A
Other languages
English (en)
Other versions
JPWO2011145475A1 (ja
Inventor
浩一郎 上田
英俊 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012515822A priority Critical patent/JP5452715B2/ja
Publication of JPWO2011145475A1 publication Critical patent/JPWO2011145475A1/ja
Application granted granted Critical
Publication of JP5452715B2 publication Critical patent/JP5452715B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/041Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a variable is automatically adjusted to optimise the performance

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Presses (AREA)

Description

この発明は、対象物に機械負荷を押し当てるためのモータの駆動を制御するモータ制御装置に関する。
射出成形機やプレス成形機等の各種成形機や、ボンディング機械等の加工装置(加工機械)では、電動機構(機械駆動部)がモータによって駆動されて、加圧対象物に圧力を加える。また、このような加工装置では、一般的に、加圧対象物である成形材料等やワークに機械負荷が押し当てられたときの圧力情報である実圧力値が検出され、この検出された実圧力値と圧力指令値とに基づいて圧力制御が行われる。このような圧力制御によって、実圧力値が圧力指令値に追従するようにモータを制御するための信号である、電流指令値や速度指令値等が算出される。
このような圧力制御の演算の一例としては、圧力指令値と実圧力値との偏差(差分)に比例ゲインを乗じて速度指令値を算出し、この速度指令値に基づくモータの速度の演算が挙げられる。一般的に、圧力制御の演算のゲイン特性を比較的大きく設定することによって、実圧力値の圧力指令値に対する追従性を向上させることができる。その反面、比例ゲインを過大に設定すると、制御系の安定性が損なわれて、制御系が不安定になったり、加圧対象物に加わる圧力に高周波の振動が載る発振現象が発生したりする。
制御系が不安定になるのは勿論好ましくないが、発振現象が生じることにより、振動によって成形品や加工品の品質に悪影響が生じる。一方、ゲイン特性を比較的小さく設定しておけば、発振現象は生じないが、実圧力値の圧力指令値に対する追従性能が低下する。これによって、所望の圧力である圧力指令値に対し、実際に加えている圧力である実圧力値との間に誤差が発生し、成形品や加工品の成形精度、加工精度に悪影響を及ぼすという問題がある。
このような問題に対して、例えば、特許文献1に示すような従来装置では、ダイクッション制御装置が、圧力指令値の微分値に係数を乗じた補正値を作成し、これを速度指令値に加えることによって、実圧力値の圧力指令値に対する追従特性を向上させる。
特開2007−111704号公報
しかしながら、特許文献1に示すような従来装置では、機械負荷から加えられる力学的物理量に対して加圧対象物が非線形な特性を示す場合、補正値が正確ではなくなる。このため、オーバーシュートが発生したり、十分な指令追従特性が得られなかったりするという問題がある。
なお、このような問題は、圧力制御のみならず、力制御でも同様に発生する。
この発明は、上記のような課題を解決するためになされたものであり、機械負荷から加えられる力学的物理量に対して対象物が非線形な特性を示す場合であっても、対象物に加わる力学的物理量の物理量指令値に対する追従性を向上させることができるモータ制御装置を得ることを目的とする。
この発明のモータ制御装置は、モータを有し、力及び圧力のいずれか一方である力学的物理量を対象物に加えるための機械負荷に接続され、前記モータの動力によって、前記機械負荷を変位させて前記対象物に押し付けることにより、前記対象物に前記力学的物理量を加える電動機構に設けられるものであって、前記機械負荷から前記対象物に作用する前記力学的物理量の値を物理量取得値として取得し、前記物理量取得値を予め設定された物理量目標値とするための物理量指令値を生成して、その生成した物理量指令値を用いて前記モータの駆動を制御するモータ制御装置本体を備え、前記モータ制御装置本体は、前記物理量指令値と模擬物理量算出値との差分から、所定の模擬物理量制御演算を行うことにより、モータ速度についての模擬速度算出値を算出する模擬物理量制御部と、前記模擬速度算出値に対して、一回の積分特性を含む伝達特性を用いた演算を行うことにより、モータ位置及び前記機械負荷の位置のいずれか一方についての模擬位置算出値を算出する模擬位置算出部と、前記機械負荷から前記対象物に作用する前記力学的物理量の情報と、モータ位置及び前記機械負荷の位置のいずれか一方の情報とを互いに対応付けて模擬演算用情報として予め記憶し、前記模擬位置算出値に対して、前記模擬演算用情報を用いた演算を行って、前記力学的物理量を模擬した値である前記模擬物理量算出値を算出する模擬物理量算出部と、前記物理量取得値及び前記模擬物理量算出値に基づいて、圧力制御演算を行うことによって、モータ速度についての実速度指令値を算出する物理量制御部とを有し、前記モータ制御装置本体は、前記模擬速度指令値と前記実速度指令値との和に基づいてモータ速度を制御するものである。
この発明のモータ制御装置によれば、モータ制御装置本体が、模擬物理量制御部、模擬位置算出部、模擬物理量算出部と、物理量制御部とを有し、模擬速度算出値と実速度指令値との和に基づいてモータ速度を制御するので、機械負荷から加えられる力学的物理量に対して対象物が非線形な特性を示す場合であっても、対象物に加わる力学的物理量の物理量指令値に対する追従性を向上させることができる。
この発明の実施の形態1によるモータ制御装置を示すブロック図である。 圧力と位置との関係を示すグラフである。 この発明の実施の形態2によるモータ制御装置を示すブロック図である。 信号の変化を説明するためのグラフである。 この発明の実施の形態3によるモータ制御装置を示すブロック図である。 この発明の実施の形態3によるモータ制御装置の他の例を示すブロック図である。 この発明の実施の形態3によるモータ制御装置の他の例を示すブロック図である。 この発明の実施の形態4によるモータ制御装置を示すブロック図である。 この発明の実施の形態5によるモータ制御装置を示すブロック図である。
以下、この発明を実施するための形態について、図面を参照して説明する。
実施の形態1.
図1は、この発明の実施の形態1によるモータ制御装置を示すブロック図である。
図1において、加工装置1は、回転式のモータ(加圧用モータ)2及びエンコーダ3を含む電動機構4と、機械負荷としての機械負荷5と、圧力検出器6とを有している。
エンコーダ3は、モータ2の回転速度に応じた実モータ速度信号3aを生成する速度検出手段である。電動機構4は、回転運動を並進運動に変換する送りねじ機構であり、ねじ4aと、ボールねじナット4bとを有している。ねじ4aは、モータ2によって、その周方向へ回転される。ボールねじナット4bは、ねじ4aの回転に伴って、ねじ4aの軸方向へ変位する。
機械負荷5は、ボールねじナット4bに取り付けられている。機械負荷5の先端部は、加圧対象物(対象物)7と対向している。また、機械負荷5は、ボールねじナット4bとともに、ねじ4aの軸方向へ変位する。加圧対象物7は、機械負荷5によって加圧される。圧力検出器6は、例えばロードセルや各種力センサ等である。また、圧力検出器6は、機械負荷5に取り付けられている。さらに、圧力検出器6は、機械負荷5の加圧対象物7への加圧時の実圧力値に応じた実圧力信号6aを出力する。
加工装置1のモータ2の駆動は、モータ制御装置本体10によって制御される。モータ制御装置本体10は、圧力指令信号生成部11、模擬圧力制御部12、模擬位置算出部13、模擬圧力信号生成部14、圧力制御部15、速度制御部16及び電流制御部17を有している。圧力指令信号生成部11は、実圧力信号6aの実圧力値(物理量取得値)を所望の目標圧力値とするための圧力指令値(物理量指令値)の信号、即ち圧力指令信号11aを生成する。
模擬圧力制御部(模擬物理量制御部)12は、圧力指令信号生成部11からの圧力指令信号11aの圧力指令値と、模擬圧力信号生成部14によって生成される模擬圧力信号14aの模擬圧力算出値(模擬物理量算出値)との偏差(差分)の信号11bを受ける。また、模擬圧力制御部12は、圧力指令値及び模擬圧力算出値の偏差に基づいて、模擬圧力制御演算(模擬物理量制御演算)を行うことにより、模擬速度算出値を算出し、その信号である模擬モータ速度信号12aを生成する。この模擬速度算出値とは、モータ2のモータ速度について模擬したものである。
この模擬圧力制御演算の一例としては、圧力指令値及び模擬圧力算出値の偏差に、比例ゲインを乗じる比例制御を行うことによって、模擬速度算出値を算出すること等が挙げられる。なお、これに限られるものではなく、例えば、圧力指令値及び模擬圧力算出値の偏差に対して、比例制御と積分制御とを行う比例+積分制御を用いてもよい。また、模擬圧力制御演算に、低域通過特性をもつフィルタや、位相遅れフィルタ、位相進みフィルタ等を組み合わせてもよい。
模擬位置算出部13は、模擬圧力制御部12からの模擬モータ速度信号12aを受ける。また、模擬位置算出部13は、模擬速度算出値に対して伝達特性演算を行って、モータ位置についての模擬位置算出値を算出し、その信号である模擬位置信号13aを生成する。模擬位置算出部13の模擬速度算出値から模擬位置算出値への伝達特性には、1回の積分特性が含まれている。このように、伝達特性に1回の積分特性が含まれていれば、モータ速度とモータ位置との関係を模擬することができる。
模擬位置算出部13の演算の一例としては、sをラプラス演算子とし、vm(s)を模擬速度算出値のラプラス変換とし、xm(s)を模擬位置算出値のラプラス変換とした場合に、次の式(1)のような演算が挙げられる。
xm(s)=(1/s)・vm(s) (1)
なお、この式(1)は、模擬速度算出値から模擬位置算出値への伝達特性に一回の積分特性が含まれていることを表している。
また、この式(1)の他に、伝達特性に1回の積分特性以外に低域通過特性をさらに含んでいてもよい。例えば、Tを低域通過特性フィルタの時定数としたときに、次の式(2)のような演算を行って、模擬位置算出値を算出してもよい。
xm(s)=(1/s)・{1/(Ts+1)}・vm(s) (2)
模擬圧力信号生成部14は、模擬位置算出部13から模擬位置信号13aを受ける。また、模擬圧力信号生成部14は、モータ2のモータ位置の値と、加圧対象物7に作用する圧力の値とを、1対1で対応付けて記憶している。さらに、模擬圧力信号生成部14は、模擬位置信号13aの模擬位置算出値をモータ位置とし、そのモータ位置に対応する圧力を、模擬圧力算出値として算出する。また、模擬圧力信号生成部14は、算出した模擬圧力算出値についての信号である模擬圧力信号14aを生成する。
ここで、機械負荷5が加圧対象物7に接触するまで圧力は発生しない。また、機械負荷5が加圧対象物7に接触すると圧力が発生するが、機械負荷5が停止状態であっても加圧対象物7に接触していれば圧力は発生する。また、機械負荷5の位置が加圧対象物7の方向に大きく動くほど、大きな圧力が発生する。つまり、機械負荷5の位置にのみに依存して圧力は決定される。但し、位置と圧力との間には必ずしも線形な関係があるわけではなく、加圧対象物7の種類によっては、非線形な特性がある場合もある。なお、図2は、加圧対象物7の特性が非線形な場合の位置と圧力との関係の一例を示すグラフである。
このように、模擬圧力信号生成部14がモータ位置の変化と、圧力の変化とを1対1で対応付けて記憶していることから、加圧対象物7が機械負荷5から加えられた圧力に対して非線形な特性を示す場合であっても、模擬圧力算出値を算出可能となる。
模擬圧力信号生成部14の実現方法の一例としては、モータ位置と圧力とが対応付けられたテーブル(模擬演算用情報)を予め記憶し、模擬位置信号13aを受けたら、テーブルを参照して、模擬位置信号13aの模擬位置算出値に対応する圧力を、模擬圧力算出値として算出することが挙げられる。また、模擬圧力信号生成部14の実現方法は、テーブルに限らず、モータ位置と圧力との関係を模擬するための近似関数(模擬演算用情報)を予め記憶し、この近似関数を用いて模擬圧力算出値を算出してもよい。
圧力制御部(物理量制御部)15は、模擬圧力信号生成部14からの模擬圧力信号14aと、圧力検出器6からの実圧力信号6aとを受ける。また、圧力制御部15は、圧力制御演算を実行して、圧力指令値と実圧力値とが一致するように実モータ速度指令値を算出し、その実モータ速度指令値(実速度指令値)の信号である実モータ速度指令信号15aを生成する。この圧力制御部15による圧力制御演算の一例としては、圧力指令値と実圧力値との偏差に、比例ゲインパラメータで定義される比例定数を乗じて、実モータ速度指令値を算出する比例制御が挙げられる。
速度制御部16は、圧力制御部15からの実モータ速度指令信号15aの実モータ速度指令値と、模擬モータ速度信号12aの模擬速度算出値との和の信号であるモータ速度指令信号15bを受ける。また、速度制御部16は、エンコーダ3からの実モータ速度信号3aを受ける。さらに、速度制御部16は、モータ速度指令信号15bのモータ速度指令値と、実モータ速度信号3aの実モータ速度とに基づいて、速度制御演算を実行する。
また、速度制御部16は、速度制御演算を実行することによって、モータ速度指令値と実モータ速度との偏差に応じたモータ電流指令値を算出し、そのモータ電流指令値の信号であるモータ電流指令信号16aを生成する。この速度制御部16による速度制御演算の一例としては、比例ゲインパラメータ及び積分ゲインパラメータの2つのパラメータに基づく比例+積分制御等が挙げられる。
電流制御部17は、速度制御部16からのモータ電流指令信号16aを受ける。また、電流制御部17は、モータ電流指令信号16aのモータ電流指令値に基づいて、モータ2に電流を供給する。
ここで、モータ制御装置本体10は、演算処理部(CPU)、記憶部(ROM及びRAM等)及び信号入出力部を持ったコンピュータ(図示せず)と、モータに電流を供給するインバータ等(図示せず)とにより構成することができる。モータ制御装置本体10のコンピュータの記憶部には、圧力指令信号生成部11、模擬圧力制御部12、模擬位置算出部13、模擬圧力信号生成部14、圧力制御部15、速度制御部16及び電流制御部17の機能を実現するためのプログラムが格納されている。
次に、この実施の形態1の構成によって得られる効果について説明する。従来の圧力制御系の構成であれば、圧力制御部のゲイン特性を大きくしなければ、実圧力値の圧力指令値に対する追従性能を向上させることが困難である。しかしながら、電流制御部や、圧力検出部、実位置検出部及び速度信号検出部の各検出部には、遅れ要素が存在する。このため、圧力制御部のゲインを過大に設定すると、制御系の安定性に影響を及ぼし、制御ループが不安定化したり、制御系の安定性が低下することに伴い、検出圧力信号に振動が発生する等の好ましくない現象が発生したりする。
これに対して、実施の形態1のモータ制御装置では、図1のように模擬圧力制御部12、模擬位置算出部13及び模擬圧力信号生成部14からなる仮想的なループである模擬演算系がモータ制御装置本体10の計算機上で構成されている。この模擬演算系によって生成される模擬圧力信号14a、模擬モータ速度信号12a及び模擬位置信号13aは、計算機上で生成されるため、遅れ要素が含まれる電流制御部や、圧力検出部、実位置検出部及び速度信号検出部の各検出部に依存せずに決定される。
従って、模擬圧力制御部12のゲイン特性が大きく設定された場合でも、制御系の安定性に影響が及ばない。このことから、模擬圧力制御部12のゲイン特性を比較的大きく設定すると、圧力指令信号11aの圧力指令値に対する模擬圧力信号14aの模擬圧力算出値の追従性を向上させることができる。
また、模擬演算系によって模擬圧力信号14aとともに生成される模擬モータ速度信号12aの模擬速度算出値は、模擬圧力信号14aの模擬圧力算出値が圧力指令信号11aの圧力指令値に対して高応答に追従するためのモータ速度となる。この模擬モータ速度信号12aを、フィードフォワード的に圧力制御部15の出力である実モータ速度指令信号15aに加えることによって、実際にモータに与えるモータ速度指令信号15bが、圧力の追従性向上を実現できるモータ速度指令信号となる。
さらに、模擬圧力信号生成部14が、加圧対象物7の特性を正確に模擬しているので、模擬圧力信号14aと実圧力信号6aとのそれぞれの値がほぼ等しくなる。この結果、模擬圧力信号14aと実圧力信号6aとのそれぞれの値の誤差もほぼ0となるため、圧力制御部15の出力である実モータ速度指令信号15aの実モータ速度指令値は、ほぼ0となる。このことから、モータ速度指令信号15bのうち、模擬モータ速度信号12aの模擬速度算出値がモータ速度指令信号15bの主要な成分となり、モータ2が動作すべきモータ速度指令値となる。なお、実モータ速度指令信号15aは、模擬圧力信号14aの模擬圧力算出値が実圧力信号6aの実圧力値と誤差が生じたときに、この誤差を補正するための信号となる。
模擬モータ速度信号12aは、模擬圧力制御部12のゲイン特性を大きくしても、遅れ要素を含む電流制御部17や、実モータ速度信号3aや実圧力信号6aに依存せずに決まる信号である。このため、制御系の安定性に影響を及ぼさずに、圧力指令信号11aの圧力指令値に高速に追従するためのモータ2の動作すべきモータ速度指令値を生成することができる。
また、機械負荷5から加わる圧力に対して加圧対象物7が非線形な特性を示す場合であっても、模擬圧力信号生成部14が、テーブル、あるいは近似関数を用いて模擬位置信号13aの模擬位置算出値から、模擬圧力信号14aの模擬圧力算出値を算出する。この構成により、実圧力信号6aの値の指令追従特性を向上させることができるモータ速度指令信号となる模擬モータ速度信号12aの模擬速度算出値を、より正確に算出することができる。
実施の形態2.
実施の形態1では、模擬圧力制御部12の例として、圧力指令値と模擬圧力算出値との偏差の信号に対して、比例制御あるいは比例+積分制御等の線形な制御演算を行うことによって、模擬速度算出値を算出する例について説明した。これに対して、実施の形態2では、比例制御等の線形な伝達特性に関する演算に加え、制限処理を加えた例について説明する。
図3は、この発明の実施の形態2によるモータ制御装置の一部を示すブロック図である。図3において、実施の形態2のモータ制御装置の構成の概要は、実施の形態1の構成と同様であり、実施の形態2では、実施の形態1の模擬圧力制御部12に代えて、模擬圧力制御部21が用いられる。
実施の形態2の模擬圧力制御部21は、伝達特性演算部22及び制限処理部23を有している。伝達特性演算部22は、圧力指令信号11aの圧力指令値と模擬圧力信号14aの模擬圧力算出値との偏差(差分)に基づいて、実施の形態1の模擬圧力制御部12と同様に、比例制御あるいは比例+積分制御等の線形な制御演算を行う。これにより、伝達特性演算部22は、模擬速度算出値を算出し、その信号(伝達特性出力信号)22aを制限処理部23に送る。
制限処理部23は、伝達特性演算部22からの信号22aの模擬速度算出値が所定値以下である場合には、信号22aをそのまま模擬モータ速度信号23aとする。他方、制限処理部23は、伝達特性演算部22からの信号22aの模擬速度算出値が所定値を超過している場合には、所定値を模擬速度算出値とし、その所定値の信号を模擬モータ速度信号23aとする。
ここで、制限処理部23の所定値を、モータ2の最高速度以下とすることによって、模擬速度算出値が、モータ2の最高速度よりも、大きな値をとることがなくなる。この結果、モータ速度指令信号15bのモータ速度指令値も、モータ2の最高速度を超えない状態で制御を行うことができる。
次に、実施の形態2の効果について説明する。図4は、実施の形態2の効果を説明するためのグラフである。図4(a)には、模擬圧力信号14a及び圧力指令信号11aの時間に対する変化を示し、図4(b)には、模擬モータ速度信号23aの時間に対する変化を示す。また、図4では、制限処理部23を用いた場合の模擬圧力信号14a及び模擬モータ速度信号23aの変化を実線で示し、制限処理部23を用いていない場合の模擬圧力信号14a及び模擬モータ速度信号23aの変化を一点鎖線で示し、圧力指令信号11aの変化を破線で示す。なお、図4における制限処理部23を用いた場合における制限処理部23の所定値として、モータ最高速度が設定された場合を示している。
制限処理部23の処理を加えることにより、制限処理部23を用いていない場合に比べて、模擬圧力信号14aの模擬圧力算出値の圧力指令信号11aの圧力指令値に対する追従性が若干鈍くなる。他方、模擬モータ速度信号23aの模擬速度算出値は、制限処理部23を用いていない場合には、モータ最高速度以下になるという保証がなく、モータ最高速度を越える可能性がある。これに対して、制限処理部23を用いた場合には、模擬モータ速度信号23aの模擬速度算出値がモータ最高速度を超えることはない。
ここで、制限処理部23を用いた場合、別の見方をすると、モータ2の最高速度に応じて、最大限追従性能が向上するように、圧力指令信号11aを模擬圧力信号14aへ整形し、さらに、その動きを実現するための模擬速度算出値(模擬モータ速度信号23a)を算出していることになる。このときに、モータ最高速度以下の模擬速度算出値の模擬モータ速度信号23aが、速度制御部16にフィードフォワード的に加えられる。
このため、速度制御部16は、この模擬モータ速度信号23aの模擬速度算出値に追従しようと、モータ最高速度以下にモータ速度を制御しようとする。また、模擬モータ速度信号23aは、模擬圧力信号14aを実現するための信号であり、模擬圧力信号生成部14が加圧対象物7の特性を模擬できているので、加圧対象物7に加えられる圧力は、模擬圧力信号14aの模擬圧力算出値とほとんど同じ大きさとなる。
このとき、模擬圧力信号14aの模擬圧力算出値と実圧力信号6aの実圧力値との間の差が0に近い状態に保たれ、実モータ速度指令信号15aの実モータ速度指令値も0に近い値となる。この結果、模擬モータ速度信号23aの模擬速度算出値と、実モータ速度指令信号15aの実モータ速度指令値との和であるモータ速度指令信号15bのモータ速度指令値も、モータ最高速度を超えることがなくなる。
ところで、モータ速度指令信号15bのモータ速度指令値を、モータ2の最高速度以下にするためであれば、図1における模擬圧力制御部12に図3のような制限処理部23を設けずに、モータ2のモータ速度指令信号15bのモータ速度指令値に直接制限処理を行うことも考えられる。このようにした場合であっても、速度制御の参照信号であるモータ速度指令信号15bのモータ速度指令値は、モータ2の最高速度以下となる。
この場合、模擬圧力制御部12に制限処理部23を設けていないため、図4に示したように、圧力指令信号11aの圧力指令値に対する模擬圧力信号14aの模擬圧力算出値の追従性は向上する。しかしながら、この場合には、モータ速度指令信号15bに対して制限処理を設けているため、モータ2は、モータ最高速度以上に動作することはできない。このため、モータ速度に依存する実圧力値は、模擬圧力信号14aの模擬圧力算出値ほど、圧力指令信号11aの圧力指令値に対する追従性が向上しない。
このとき、実圧力信号6aの実圧力値は、模擬圧力信号14aの模擬圧力算出値に対して、大きく偏差を生じるようになり、この結果、圧力制御部15が生成する実モータ速度指令信号15aの実モータ速度指令値は、比較的大きな値をとるようになり、モータ速度指令信号15bにおける実モータ速度指令信号15aの占める割合も大きくなる。
このようにモータ速度指令信号15bにおける実モータ速度指令信号15aの割合が大きくなると、圧力指令信号11aの圧力指令値に対する追従性を向上させるためには、圧力制御部15のゲイン特性を大きくする必要がある。しかしながら、前述のように圧力制御部15のゲイン特性を大きくすることには、制御系の安定性の観点から限界があり、モータ速度指令信号15bのモータ速度指令値も、圧力指令信号11aの圧力指令値に対する高い追従性が得られないことになる。
これに対して、実施の形態2の構成によれば、模擬圧力制御部21における模擬モータ速度信号23aの模擬速度算出値の算出過程で、制限処理部23によって、模擬速度算出値が所定値以下とされる。この構成により、模擬圧力信号14aの模擬圧力算出値と、実圧力信号6aの実圧力値との偏差をほぼ0にすることができる。この結果、上記のような問題の発生を抑えることができる。これとともに、モータ速度指令信号15bのモータ速度指令値をモータ最高速度以下に保つことができる。これに加えて、実施の形態1と同様の効果も同時に得ることができる。
ここで、特許文献1に示すような従来装置では、補正速度信号の補正値の大きさが、モータの最高速度を越えることがあり、モータ速度制御の参照信号となるモータ速度指令信号のモータ速度指令値として、モータの性能(最高速度)以上のモータ速度指令値を与えてしまう場合がある。このような場合には、実圧力信号(圧力検出信号)にオーバーシュートや振動が発生するといった問題が発生し、成形品や加工品の品質に悪影響を及ぼしていた。
これに対して、実施の形態2では、模擬圧力制御部21における模擬モータ速度信号23aの算出過程で、制限処理部23によって、模擬速度算出値が所定値以下とされるので、実圧力信号6aに発生するオーバーシュートや振動を抑制することができる。
実施の形態3.
実施の形態1,2では、圧力指令信号11aから模擬圧力信号14aを発生させる仮想的なループである模擬演算系が構成され、この模擬圧力信号14aの模擬圧力算出値の算出過程で得られる模擬モータ速度信号12aを利用し、この模擬モータ速度信号12aの模擬速度算出値に基づいてモータ2の駆動を制御する構成について説明した。
これに対して、実施の形態3では、実施の形態1,2と同様の考え方で、圧力指令信号11aから模擬圧力信号14aを発生させる仮想的なループである模擬演算系を用いて、モータ2が動作すべき模擬電流算出値を算出し、この模擬電流算出値の信号である模擬モータ電流信号に基づいてモータ2の駆動を制御する構成について説明する。
図5は、この発明の実施の形態3によるモータ制御装置を示すブロック図である。図5において、実施の形態3のモータ制御装置本体30の構成の概要は、実施の形態1の構成と同様であり、実施の形態3のモータ制御装置本体30は、模擬速度算出部31と模擬電流算出部32とをさらに有している。
実施の形態3の模擬圧力制御部12は、圧力指令信号11aの圧力指令値と、模擬圧力信号14aの模擬圧力算出値との偏差の信号11bに基づいて、模擬加速度算出値を算出し、その信号である模擬モータ加速度信号12bを生成する。この模擬圧力制御部12の制御の一例としては、信号11bの値に対して、比例ゲインパラメータで定義される比例定数を乗じて、模擬加速度算出値を算出する比例制御が挙げられる。なお、この比例制御に限るものではなく、比例+積分制御等であってもよい。
模擬電流算出部32は、モータ2の回転子、機械負荷5、及び電動機構4のそれぞれのイナーシャを合計した機械総イナーシャに、モータ電流に対する発生するトルクの比であるトルク定数で割った定数を、模擬モータ加速度信号12bの模擬加速度算出値に乗じることによって、模擬電流算出値を算出する。また、模擬電流算出部32は、その模擬電流算出値の信号である模擬モータ電流信号32aを生成する。
模擬速度算出部31は、模擬モータ加速度信号12bの模擬加速度算出値に対して、1回の積分特性を含む伝達特性を用いた演算を行うことによって、模擬速度算出値を算出し、その信号である模擬モータ速度信号31aを生成する。模擬速度算出部31の後段において、実施の形態3の模擬位置算出部13は、模擬モータ速度信号31aの模擬速度算出値に対して、実施の形態1と同様に、1回積分特性を含む伝達特性に関する演算を行うことによって、モータ位置についての模擬位置算出値を算出し、その信号である模擬位置信号13aを生成する。
実施の形態3の速度制御部16は、圧力制御部15からの実モータ速度指令信号15aの実モータ速度指令値と、模擬モータ速度信号31aの模擬速度算出値との和であるモータ速度指令値の信号、即ちモータ速度指令信号15cを受ける。また、速度制御部16は、モータ実速度信号3aの実モータ速度がモータ速度指令信号15cのモータ速度指令信号16bのモータ速度指令値に追従するように、実電流指令値を算出し、その信号である実モータ電流指令信号16aを生成する。
実施の形態3の電流制御部17は、実モータ電流指令信号16aの実電流指令値と模擬モータ電流信号32aの模擬電流算出値との和の値についての信号であるモータ電流指令信号16bを受ける。また、電流制御部17は、モータ電流指令信号16bの電流指令値に、電流17aが一致するように制御を行う。他の構成は、実施の形態1と同様である。
次に、実施の形態3の効果について説明する。実モータ電流指令信号16aの実電流指令値と模擬モータ電流信号32aの模擬電流算出値との和(モータ電流指令信号16b)に基づいて、モータ速度を制御することについての効果は、実施の形態1の効果と同様である。また、模擬モータ電流信号32aは、模擬圧力信号14aの模擬圧力算出値が圧力指令信号11aの圧力指令値に高応答に追従するためのモータ2の電流信号となる。この模擬モータ電流信号32aを、速度制御部16の出力である実モータ電流指令信号16aにフィードフォワード的に加えることによって、実際にモータ2に与えるモータ電流指令信号16bが、圧力の追従性向上を実現可能となる信号となる。
また、模擬圧力信号生成部14が、加圧対象物7の特性を模擬しているので、模擬圧力信号14aの模擬圧力算出値と、実圧力信号6aの実圧力値とがほぼ等しくなり、この結果、圧力制御部15の出力である実モータ速度指令信号15aの実速度指令値は、ほぼ0となる。これとともに、模擬モータ速度信号31aの模擬速度算出値と、実モータ速度信号3aの実モータ速度とがほぼ等しくなり、実モータ電流指令信号16aの実電流指令値がほぼ0となる。この結果、モータ2は、主に模擬モータ電流信号32aに基づいて駆動されることになる。一般的に、モータ2の制御では、速度に対する応答よりも電流に対する応答のほうが高い。このため、モータ電流指令信号16bの主要成分となる模擬モータ電流信号32aをフィードフォワード的に加えることによって、圧力指令信号11aの圧力指令値に対する追従性がより向上するという効果がある。
さらに、模擬圧力信号生成部14が、テーブル、あるいは近似関数を用いて模擬位置信号13aの模擬位置算出値から、模擬圧力信号14aの模擬圧力算出値を算出する。この構成により、実圧力信号6aの指令追従特性を向上させることができるモータ電流指令信号となる模擬モータ電流信号32aを、より正確に算出することができる。なお、実モータ電流指令信号16aは、模擬圧力信号生成部14が生成する模擬圧力信号14aの模擬圧力算出値が、実圧力信号6aの実圧力値と誤差が生じたときに、この誤差を補正するための信号となる。
なお、図4では、模擬モータ電流信号32aを実モータ電流指令信号16aに加える以外に、模擬モータ速度信号31aを実モータ速度指令信号15aに加えた構成として説明した。しかしながら、この例に限定するものではなく、模擬モータ速度信号31aを実モータ速度指令信号15aに加えずに、模擬モータ電流信号32aを実モータ電流指令信号16aに加える構成であっても、同様の効果を得ることができる。
次に、実施の形態3の他の例について説明する。ここでは、図5の模擬圧力制御部12に代えて、実施の形態2のような制限処理を行う模擬圧力制御部41を用いた構成について説明する。図6に示すように、模擬圧力制御部41は、伝達特性演算部42及び制限処理部43を有している。
伝達特性演算部42は、圧力指令信号11aの圧力指令値と模擬圧力信号14aの模擬圧力算出値との偏差(差分)に基づいて、比例制御のような制御演算を行う。これにより、伝達特性演算部42は、模擬加速度算出値を算出し、その信号(伝達特性出力信号)42aを制限処理部43に送る。
制限処理部43は、伝達特性演算部42からの信号42aの模擬加速度算出値が所定値以下である場合には、信号42aをそのまま模擬モータ加速度信号43aとする。他方、制限処理部43は、伝達特性演算部42からの信号42aの模擬加速度算出値が所定値を超過している場合には、所定値を模擬加速度算出値とし、その所定値の信号を模擬モータ加速度信号43aとする。
ここで、制限処理部43の所定値としては、モータ2の最大電流、モータが動作することに伴い可動する部分の機械イナーシャ(図5においては、モータ2のイナーシャ、電動機構4、機械負荷5、圧力検出器6の合計イナーシャに相当)、及びモータ2のトルク定数から決まる最大加速度(モータの最大電流にトルク定数を乗じ、モータ2、電動機構4及び機械負荷5のイナーシャを合計した機械総イナーシャで割ることにより得られる加速度)以下とすることが好ましい。また、リニアモータを使用して、電動機構4を駆動する場合には、リニアモータの最大電流に推力定数を乗じ、リニアモータの可動子及びモータが動作することに伴い可動する部分の機械質量を合計した機械質量で割ることにより得られる最大加速度とすればよい。上記最大加速度は、モータ最大電流を使用して加速したときの加速度に相当する。
これにより、模擬モータ加速度信号43aの模擬加速度算出値が、モータ2の最大加速度よりも大きな値をとることがなくなり、モータ電流指令信号16bの電流指令値もモータ2の最大電流を超えない状態で制御を行えるという効果がある。仮に、モータ最大電流を越えるようなモータ電流指令値を与えると、電流を制御できずに電流に振動が発生し、この結果、圧力や速度にも振動が発生し、これにより加圧対象物の加工精度に悪影響を及ぼす。さらに、最悪の場合、過大な電流によりモータが破壊される可能性がある。
これに対して、制限処理部の制限値を、モータの最大電流にトルク定数を乗じ、モータのイナーシャとモータ動作に伴い可動する部分の機械イナーシャを合計した機械総イナーシャで割ることにより得られる加速度以下にすることにより、模擬電流信号は、モータ最大電流以下になるように制限されるため、モータ最大電流以下でモータが動作したときの模擬圧力信号が算出される。このときの模擬電流信号をフィードフォワード的に加えることによって、模擬電流算出値と電流とがほぼ等しい制御が実現され、この結果、模擬圧力算出値と実圧力値ともほぼ等しい値となる制御となる。これにより、実圧力値と模擬圧力算出値との間に大きな偏差を生じないので、圧力制御部15のゲイン特性を大きくすることなく、模擬電流算出値を用いて、圧力指令値への実圧力値の追従性を向上させることが可能となる。
次に、図5の模擬速度算出部31に代えて、実施の形態2のような制限処理を行う模擬速度算出部51を用いた構成について説明する。図7に示すように、模擬速度算出部51は、一回積分特性演算部52及び制限処理部53を有している。一回積分特性演算部52は、模擬モータ加速度信号12bの模擬加速度算出値に対して、一回の積分特性を含む伝達特性に関する演算を行い、模擬速度算出値を算出し、その信号51aを生成する。
制限処理部53は、一回積分特性演算部52からの信号52aの模擬速度算出値が所定値以下である場合には、信号52aをそのまま模擬モータ速度信号53aとする。他方、制限処理部53は、一回積分特性演算部52からの信号51aの模擬速度算出値が所定値を超過している場合には、所定値を模擬速度算出値とし、その所定値の信号を模擬モータ速度信号53aとする。
ここで、制限処理部53の所定値としては、モータ2の最大速度以下とすることが挙げられる。これにより、模擬モータ速度信号53aの模擬速度算出値が、モータ2の最高速度よりも大きな値をとることがなくなり、この結果、モータ速度指令信号15cの速度指令値もモータ2の最高速度を超えない状態で制御を行えるという効果がある。
制限処理部の制限値を、モータの最高速度以下にすることにより、模擬速度信号は、モータ最高速度以下になるように制限されるため、モータ最高速度以下でモータが動作したときの模擬圧力信号が算出される。このときの模擬速度信号をフィードフォワード的に加えることによって、模擬速度算出値と速度とがほぼ等しい制御が実現され、この結果、模擬圧力算出値と実圧力値ともほぼ等しい値となる制御となる。これにより、実圧力値と模擬圧力算出値との間に大きな偏差を生じないので、圧力制御部15のゲイン特性を大きくすることなく、模擬速度算出値を用いて、圧力指令値への実圧力値の追従性を向上させることが可能となる。
なお、実施の形態3の模擬速度算出部31及び模擬位置算出部13の伝達特性は、1回積分特性だけであってもよく、実施の形態1と同様に、1回積分特性に加えて低域通過特性等を含んでいてもよい。
実施の形態4.
実施の形態1〜3では、圧力制御部15が速度の次元を持つ信号を出力するための制御を行う構成、即ち圧力制御部15のマイナーループに速度制御を置く構成について説明した。これに対して、実施の形態4では、圧力制御部15が電流の次元を持つ信号を出力する制御を行う構成、即ち圧力制御部15のマイナーループに電流制御を置く構成について説明する。
図8は、この発明の実施の形態4によるモータ制御装置を示すブロック図である。図8において、実施の形態4のモータ制御装置本体60の構成は、実施の形態3と同様の模擬電流算出部32を有する点と、速度制御部16が省略された点を除き、実施の形態1のモータ制御装置本体10の構成と同様である。ここでは、実施の形態1,3との違いを中心に説明する。
実施の形態4の模擬圧力制御部12は、圧力指令信号11a及び模擬圧力信号14aのそれぞれの値の偏差の信号11bに基づいて、模擬加速度算出値を算出し、その信号である模擬モータ加速度信号12bを生成する。模擬圧力制御部12の制御の一例としては、比例制御や、比例+積分制御等が挙げられる。実施の形態4の模擬位置算出部13は、模擬圧力制御部12からの模擬モータ加速度信号12bを受けて、二回積分特性を含む伝達特性演算を行い、模擬位置算出値を算出し、その信号である模擬位置信号13aを生成する。
実施の形態4の模擬電流算出部32は、模擬モータ加速度信号12bを入力信号とし、モータ2の回転子、電動機構4及び機械負荷5のイナーシャを合計した機械総イナーシャに、モータ電流に対する発生するトルクの比であるトルク定数で割った定数を、模擬加速度算出値に乗じることによって、模擬電流算出値を算出し、その信号である模擬モータ電流信号32aを生成する。実施の形態4の電流制御部17は、モータ電流指令信号15eの電流指令値に基づいて、モータ2に流れる電流を制御する。
ここで、模擬モータ電流信号32aを、フィードフォワード的に圧力制御部15の出力である実モータ電流指令信号15dに加えることによって、実際にモータ2に与える電流を決定するためのモータ電流指令信号15eが、圧力の追従性向上を実現できる信号となる。また、模擬圧力信号生成部14が、加圧対象物7の特性を正確に模擬しているので、模擬圧力信号14a及び実圧力信号6aの値がほぼ等しくなる。
この結果、圧力制御部15の出力である実モータ電流指令信号15dの実電流指令値は、ほぼ0となる。これによって、モータ電流指令信号15eのうち、模擬モータ電流信号32aがモータ電流指令信号15eの主要な成分となり、モータ2が動作すべき信号となる。なお、実モータ電流指令信号15dは、模擬圧力信号生成部14が発生する模擬圧力信号14aの模擬圧力算出値が、実圧力値と誤差が生じたときに、この誤差を補正するための信号となる。
また、加圧対象物7が非線形な特性を示す場合であっても、模擬圧力信号生成部14が、テーブル、あるいは近似関数を用いて模擬位置信号13aの模擬位置算出値から、模擬圧力信号14aの模擬圧力算出値を算出する。この構成により、実圧力信号6aの指令追従特性を向上させることができるモータ電流指令信号となる模擬モータ電流信号32aを生成することができるという効果がある。
以上のように、実施の形態4によれば、圧力制御部15のマイナーループに電流制御を置く構成であっても、実施の形態1,3と同様の効果を得ることができる。
なお、実施の形態4の模擬圧力制御部12に、実施の形態2,3と同様の制限処理を設けてもよい。具体的には、模擬圧力制御部12を、実施の形態3における図6のように構成してもよい。制限処理を設けて得られる効果は、実施の形態3で説明した効果と同様である。
実施の形態5.
実施の形態4では、圧力制御のマイナーループとして電流制御ループを用いた構成について説明した。これに対して、実施の形態5では、圧力制御のマイナーループとして位置制御ループを用いる構成について説明する。
図9は、この発明の実施の形態5によるモータ制御装置を示すブロック図である。図9において、実施の形態5のモータ制御装置本体70の構成は、位置制御部71をさらに有する点を除いて、実施の形態3のモータ制御装置本体30の構成と同様である。ここでは、実施の形態3との違いを中心に説明する。
実施の形態5のエンコーダ3は、実モータ速度信号3aのみならず、モータ位置(回転位置)に応じた信号である実モータ位置信号3bも出力する。実施の形態5の圧力制御部15は、模擬圧力信号14a及び実圧力信号6aのそれぞれの値に基づいて、実位置指令値を算出し、その信号である実位置指令信号15fを生成する。圧力制御部15の制御の一例としては、模擬圧力信号14a及び実圧力信号6aの値の偏差に対して、比例ゲインパラメータで定義される比例定数を乗じて、実位置指令値を算出する比例制御や、比例+積分制御や、積分制御等が挙げられる。
位置制御部71は、実位置指令信号15d及び模擬位置信号13aのそれぞれの値の和の信号である位置指令信号15gを受ける。また、位置制御部71は、実モータ位置信号3bの実モータ位置が位置指令信号15gの位置指令値に追従するように、実速度指令値を算出し、その信号である実モータ速度指令信号71aを生成する。この位置制御部71の制御の一例としては、位置指令信号15gの値と、実モータ位置信号3bの値との偏差に対して、比例定数を乗じることにより、実速度指令値を算出する比例制御等が挙げられる。
速度制御部16は、実モータ速度指令信号71a及び模擬モータ速度信号31aのそれぞれの値の和の信号であるモータ速度指令信号71bを受ける。また、速度制御部16は、実モータ速度信号3aを受ける。さらに、速度制御部16は、実モータ速度信号3aの実モータ速度がモータ速度指令信号71bの速度指令値に追従するように、速度制御演算を行って、実電流指令値を算出し、その信号である実モータ電流指令信号16aを生成する。電流制御部17は、モータ電流指令信号16bの電流指令値に基づいてモータ2に流れる電流を制御し、モータ2に駆動力を発生させる。
以上のように、実施の形態5では、模擬圧力信号生成部14、模擬圧力制御部12、模擬速度算出部31、模擬位置算出部13及び模擬電流算出部32からなる仮想的なループである模擬演算系(仮想的な制御回路)がモータ制御装置本体70の計算機上で構成されている。この模擬演算系によって生成される模擬位置信号13a、模擬モータ速度信号31a及び模擬モータ電流信号32aのそれぞれの値は、実圧力信号6aが圧力指令信号11aに高応答に追従するための位置、速度及び電流に相当する。これらをフィードフォワード的に加えることにより、位置指令信号15g、モータ速度指令信号71b及びモータ電流指令信号16dが生成されるため、制御中の発振現象の要因となる圧力制御部のゲイン特性を大きくすることなく、圧力指令信号に対する追従性を向上させる制御を実現することができる。
この効果は、加圧対象物7が非線形な特性を示す場合であっても、模擬圧力信号生成部14が加圧対象物7の特性を模擬するので、同様に得ることができる。
なお、実施の形態5では、模擬位置信号13a、模擬モータ速度信号31a及び模擬モータ電流信号32aの3種類の信号を全て使用して、それぞれの信号に基づいて、位置指令信号15g、モータ速度指令信号71b及びモータ電流指令信号16dが生成された。しかしながら、これらの3種類の信号全てを使用しなくてもよく、少なくとも1つの模擬信号を使用して、モータ2の駆動制御を行ってもよい。例えば、模擬モータ速度信号31a及び模擬モータ電流信号32aを、フィードフォワード的に加えず、それぞれ実モータ速度指令信号71a及び実モータ電流指令信号16aを、それぞれモータ速度指令信号71b及びモータ電流指令信号16bとし、模擬位置信号13aだけを、実位置指令信号15fに加えることによって、位置指令信号15gを生成して、この位置指令信号15gに基づいて、モータ2の駆動制御を行っても同様の効果を得ることができる。
また、実施の形態5の模擬圧力制御部12及び模擬速度算出部31の少なくともいずれか一方に、実施の形態3の図6,7に示すような制限処理を設けてもよい。この場合、模擬圧力制御部12及び模擬速度算出部31の少なくともいずれか一方に、図6や図7で説明した制限処理を設けてもよい。制限処理を設けて得られる効果は、実施の形態3で説明した効果と同様である。
さらに、実施の形態1〜5では、圧力制御に関する構成について説明したが、実施の形態1〜5の圧力制御を、そのまま力制御に置き換えることもできる。即ち、力学的物理量として力を用いることもできる。
また、実施の形態1〜5では、回転型モータを使用し、回転運動を並進運動に変換することにより、機械負荷を加圧対象物に加圧を行う圧力制御の例について説明を行った。しかしながら、回転型モータに代えてリニアモータを使用した場合でも、本発明を適用することができる。この場合、実施の形態3,4においては、機械総イナーシャを、モータ2、電動機構4及び機械負荷5の総質量に置き換えて、モータ最大トルク定数を推力定数に置き換えることによって、実施の形態3,4と同様の処理を適用することができる。
さらに、実施の形態1〜5では、圧力検出器6を用いたが、この圧力検出器6を必ずしも物理的に設ける必要はない。この場合、モータの電流や速度情報から圧力を推定して取得し、この推定値(物理量取得値)に基づいて、圧力を制御してもよい。

Claims (10)

  1. モータを有し、力及び圧力のいずれか一方である力学的物理量を対象物に加えるための機械負荷に接続され、前記モータの動力によって、前記機械負荷を変位させて前記対象物に押し付けることにより、前記対象物に前記力学的物理量を加える電動機構に設けられるモータ制御装置であって、
    前記機械負荷から前記対象物に作用する前記力学的物理量の値を物理量取得値として取得し、前記物理量取得値を予め設定された物理量目標値とするための物理量指令値を生成して、その生成した物理量指令値を用いて前記モータの駆動を制御するモータ制御装置本体を備え、
    前記モータ制御装置本体は、
    前記物理量指令値と模擬物理量算出値との差分から、所定の模擬物理量制御演算を行うことにより、モータ速度についての模擬速度算出値を算出する模擬物理量制御部と、
    前記模擬速度算出値に対して、一回の積分特性を含む伝達特性を用いた演算を行うことにより、モータ位置及び前記機械負荷の位置のいずれか一方についての模擬位置算出値を算出する模擬位置算出部と、
    前記機械負荷から前記対象物に作用する前記力学的物理量の情報と、モータ位置及び前記機械負荷の位置のいずれか一方の情報とを互いに対応付けて模擬演算用情報として予め記憶し、前記模擬位置算出値に対して、前記模擬演算用情報を用いた演算を行って、前記力学的物理量を模擬した値である前記模擬物理量算出値を算出する模擬物理量算出部と、
    前記物理量取得値及び前記模擬物理量算出値に基づいて、圧力制御演算を行うことによって、モータ速度についての実速度指令値を算出する物理量制御部と
    を有し、
    前記モータ制御装置本体は、前記模擬速度算出値と前記実速度指令値との和に基づいてモータ速度を制御する
    ことを特徴とするモータ制御装置。
  2. モータを有し、力及び圧力のいずれか一方である力学的物理量を対象物に加えるための機械負荷に接続され、前記モータの動力によって、前記機械負荷を変位させて前記対象物に押し付けることにより、前記対象物に前記力学的物理量を加える電動機構に設けられるモータ制御装置であって、
    前記機械負荷から前記対象物に作用する前記力学的物理量の値を物理量取得値として取得し、前記物理量取得値を予め設定された物理量目標値とするための物理量指令値を生成して、その生成した物理量指令値を用いて前記モータの駆動を制御するモータ制御装置本体を備え、
    前記モータ制御装置本体は、
    前記物理量指令値と模擬物理量算出値との差分から、所定の模擬物理量制御演算を行うことにより、モータ加速度についての模擬加速度算出値を算出する模擬物理量制御部と、
    前記模擬加速度算出値に対して、比例特性を含む伝達特性を用いた演算を行うことにより、モータ電流についての模擬電流算出値を算出する模擬電流算出部と、
    前記模擬加速度算出値に対して、一回の積分特性を含む伝達特性を用いた演算を行うことにより、前記モータ速度についての模擬速度算出値を算出する模擬速度算出部と、
    前記模擬速度算出値に対して、一回の積分特性を含む伝達特性を用いた演算を行うことにより、モータ位置及び前記機械負荷の位置のいずれか一方についての模擬位置算出値を算出する模擬位置算出部と、
    前記機械負荷から前記対象物に作用する前記力学的物理量の情報と、モータ位置及び前記機械負荷の位置のいずれか一方の情報とを互いに対応付けて模擬演算用情報として予め記憶し、前記模擬位置算出値に対して、前記模擬演算用情報を用いた演算を行って、前記力学的物理量を模擬した値である前記模擬物理量算出値を算出する模擬物理量算出部と、
    前記物理量取得値及び前記模擬物理量算出値に基づいて、圧力制御演算を行うことによって、モータ速度についての実速度指令値を算出する物理量制御部と
    を有し、
    前記モータ制御装置本体は、前記実速度指令値を用いた速度制御演算を行うことにより、モータ電流についての実電流指令値を算出し、前記実電流指令値及び前記模擬電流算出値の和に基づいて、モータ電流を制御する
    ことを特徴とするモータ制御装置。
  3. モータを有し、力及び圧力のいずれか一方である力学的物理量を対象物に加えるための機械負荷に接続され、前記モータの動力によって、前記機械負荷を変位させて前記対象物に押し付けることにより、前記対象物に前記力学的物理量を加える電動機構に設けられるモータ制御装置であって、
    前記機械負荷から前記対象物に作用する前記力学的物理量の値を物理量取得値として取得し、前記物理量取得値を予め設定された物理量目標値とするための物理量指令値を生成して、その生成した物理量指令値を用いて前記モータの駆動を制御するモータ制御装置本体を備え、
    前記モータ制御装置本体は、
    前記物理量指令値と模擬物理量算出値との差分から、所定の模擬物理量制御演算を行うことにより、モータ加速度についての模擬加速度算出値を算出する模擬物理量制御部と、
    前記模擬加速度算出値に対して、比例特性を含む伝達特性を用いた演算を行うことにより、モータ電流についての模擬電流算出値を算出する模擬電流算出部と、
    前記模擬加速度算出値に対して、二回の積分特性を含む伝達特性を用いた演算を行うことにより、モータ位置及び前記機械負荷の位置のいずれか一方についての模擬位置算出値を算出する模擬位置算出部と、
    前記機械負荷から前記対象物に作用する前記力学的物理量の情報と、モータ位置及び前記機械負荷の位置のいずれか一方の情報とを互いに対応付けて模擬演算用情報として予め記憶し、前記模擬位置算出値に対して、前記模擬演算用情報を用いた演算を行って、前記力学的物理量を模擬した値である前記模擬物理量算出値を算出する模擬物理量算出部と、
    前記物理量取得値及び前記模擬物理量算出値に基づいて、圧力制御演算を行うことによって、モータ電流についての実電流指令値を算出する物理量制御部と
    を有し、
    前記モータ制御装置本体は、前記実電流指令値及び前記模擬電流算出値の和に基づいて、モータ電流を制御する
    ことを特徴とするモータ制御装置。
  4. モータを有し、力及び圧力のいずれか一方である力学的物理量を対象物に加えるための機械負荷に接続され、前記モータの動力によって、前記機械負荷を変位させて前記対象物に押し付けることにより、前記対象物に前記力学的物理量を加える電動機構に設けられるモータ制御装置であって、
    前記機械負荷から前記対象物に作用する前記力学的物理量の値を物理量取得値として取得し、前記物理量取得値を予め設定された物理量目標値とするための物理量指令値を生成して、その生成した物理量指令値を用いて前記モータの駆動を制御するモータ制御装置本体を備え、
    前記モータ制御装置本体は、
    前記物理量指令値と模擬物理量算出値との差分を用いて、モータ位置についての模擬位置算出値を算出する模擬物理量制御部と、
    前記機械負荷から前記対象物に作用する前記力学的物理量の情報と、モータ位置及び前記機械負荷の位置のいずれか一方の情報とを互いに対応付けて模擬演算用情報として予め記憶し、前記模擬位置算出値に対して、前記模擬演算用情報を用いた演算を行って、前記力学的物理量を模擬した値である前記模擬物理量算出値を算出する模擬物理量算出部と、
    前記物理量取得値及び前記模擬物理量算出値に基づいて、圧力制御演算を行うことによって、モータ位置についての実位置指令値を算出する物理量制御部と
    を有し、
    前記モータ制御装置本体は、前記模擬位置算出値及び前記実位置指令値の和に基づいてモータ位置を制御する
    ことを特徴とするモータ制御装置。
  5. モータを有し、力及び圧力のいずれか一方である力学的物理量を対象物に加えるための機械負荷に接続され、前記モータの動力によって、前記機械負荷を変位させて前記対象物に押し付けることにより、前記対象物に前記力学的物理量を加える電動機構に設けられるモータ制御装置であって、
    前記機械負荷から前記対象物に作用する前記力学的物理量の値を物理量取得値として取得し、前記物理量取得値を予め設定された物理量目標値とするための物理量指令値を生成して、その生成した物理量指令値を用いて前記モータの駆動を制御するモータ制御装置本体を備え、
    前記モータ制御装置本体は、
    前記物理量指令値と模擬物理量算出値との差分を用いて、モータ速度についての模擬速度算出値を算出する模擬物理量制御部と、
    前記模擬速度算出値に対して、一回の積分特性を含む伝達特性を用いた演算を行うことにより、モータ位置及び前記機械負荷の位置のいずれか一方についての模擬位置算出値を算出する模擬位置算出部と、
    前記機械負荷から前記対象物に作用する前記力学的物理量の情報と、モータ位置及び前記機械負荷の位置のいずれか一方の情報とを互いに対応付けて模擬演算用情報として予め記憶し、前記模擬位置算出値に対して、前記模擬演算用情報を用いた演算を行って、前記力学的物理量を模擬した値である前記模擬物理量算出値を算出する模擬物理量算出部と、
    前記物理量取得値及び前記模擬物理量算出値に基づいて、圧力制御演算を行うことによって、モータ位置についての実位置指令値を算出する物理量制御部と
    を有し、
    前記モータ制御装置本体は、前記実位置指令値を用いた位置制御演算を行うことにより前記実位置指令値にモータ位置を追従させるためのモータ速度についての速度指令値を算出し、前記模擬速度算出値及び前記速度指令値の和に基づいて、モータ速度を制御する
    ことを特徴とするモータ制御装置。
  6. 前記模擬物理量制御部は、
    前記物理量指令値と前記模擬物理量算出値との差分に基づいて、前記模擬速度算出値を算出するための所定の伝達特性の演算を行う伝達特性演算部と、
    前記伝達特性演算部の演算結果が所定値以下の場合には、その演算結果を前記模擬速度算出値とし、前記伝達特性演算部の演算結果が所定値よりも大きい場合には、前記所定値を前記模擬速度算出値とする制限処理部と
    を有していることを特徴とする請求項1又は請求項5に記載のモータ制御装置。
  7. 前記模擬速度算出部は、
    前記模擬加速度算出値に基づいて、前記模擬速度算出値を算出するための所定の伝達特性の演算を行う伝達特性演算部と、
    前記伝達特性演算部の演算結果が所定値以下の場合には、その演算結果を前記模擬速度算出値とし、前記伝達特性演算部の演算結果が所定値よりも大きい場合には、前記所定値を前記模擬速度算出値とする制限処理部と
    を有していることを特徴とする請求項2記載のモータ制御装置。
  8. 前記制限処理部の所定値は、モータ最大速度以下である
    ことを特徴とする請求項又は請求項に記載のモータ制御装置。
  9. 前記模擬物理量制御部は、
    前記物理量指令値と前記模擬物理量算出値との差分に基づいて、前記模擬加速度算出値を算出するための所定の伝達特性の演算を行う伝達特性演算部と、
    前記伝達特性演算部の演算結果が所定値以下の場合には、その演算結果を前記模擬加速度算出値とし、前記伝達特性演算部の演算結果が所定値よりも大きい場合には、前記所定値を前記模擬加速度算出値とする制限処理部と
    を有していることを特徴とする請求項2又は請求項3に記載のモータ制御装置。
  10. 前記制限処理部の所定値は、前記モータの最大電流に、トルク定数もしくは推力定数を乗じて、その乗じて得た値をモータの動作に伴い可動する部分の機械イナーシャもしくは機械総質量で割った値以下である
    ことを特徴とする請求項記載のモータ制御装置。
JP2012515822A 2010-05-18 2011-05-10 モータ制御装置 Active JP5452715B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012515822A JP5452715B2 (ja) 2010-05-18 2011-05-10 モータ制御装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010114204 2010-05-18
JP2010114204 2010-05-18
JP2012515822A JP5452715B2 (ja) 2010-05-18 2011-05-10 モータ制御装置
PCT/JP2011/060738 WO2011145475A1 (ja) 2010-05-18 2011-05-10 モータ制御装置

Publications (2)

Publication Number Publication Date
JPWO2011145475A1 JPWO2011145475A1 (ja) 2013-07-22
JP5452715B2 true JP5452715B2 (ja) 2014-03-26

Family

ID=44991584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012515822A Active JP5452715B2 (ja) 2010-05-18 2011-05-10 モータ制御装置

Country Status (7)

Country Link
US (1) US8786245B2 (ja)
JP (1) JP5452715B2 (ja)
KR (1) KR101347461B1 (ja)
CN (1) CN102893515B (ja)
DE (1) DE112011101682B4 (ja)
TW (1) TWI446703B (ja)
WO (1) WO2011145475A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8860355B2 (en) 2010-07-14 2014-10-14 Mitsubishi Electric Corporation Motor control device
JP5844768B2 (ja) * 2013-04-11 2016-01-20 アイダエンジニアリング株式会社 ダイクッション装置
WO2014171191A1 (ja) * 2013-04-18 2014-10-23 三菱電機株式会社 モータ制御装置
US10269062B2 (en) 2014-05-08 2019-04-23 Xero Limited Systems and methods of mobile banking reconciliation
AT517731B1 (de) * 2015-10-08 2018-12-15 Anton Paar Gmbh Verfahren zur Ansteuerung eines Elektromotors
MX2018007123A (es) * 2015-12-14 2019-01-30 Imflux Inc Control remoto para el control de aparatos mediante la desviacion de la señal de realimentacion del control nativo al control remoto y metodos para el mismo.
JP6895965B2 (ja) * 2015-12-14 2021-06-30 アイエムフラックス インコーポレイテッド ネイティブコントローラからリモートコントローラにフィードバック信号を迂回させることにより装置を制御するためのリモートコントローラ及びその制御方法
EP3389980B1 (en) * 2015-12-14 2021-04-28 iMFLUX Inc. Remote controller for controlling apparatus by diverting feedback signal from native controller to the remote controller and methods for same
JP6407490B1 (ja) * 2017-12-21 2018-10-17 三菱電機株式会社 モータ制御装置
JP6592118B2 (ja) * 2018-01-16 2019-10-16 ファナック株式会社 モータ制御装置
CN110815928B (zh) * 2019-11-22 2021-09-03 山东省科学院激光研究所 一种伺服压力机的非线性压力位置控制装置及方法
TWI763528B (zh) * 2021-06-09 2022-05-01 國立中興大學 應用伺服馬達於沖壓模墊之預加速參數設計方法及預加速控制方法
CN114244230B (zh) * 2021-12-24 2023-11-14 杭州电子科技大学 一种压铸机用永磁同步电机液压系统的压力过冲抑制方法
JP7400887B1 (ja) 2022-07-13 2023-12-19 富士電機株式会社 電動機の制御装置、制御方法、及びプログラム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08107690A (ja) * 1994-10-05 1996-04-23 Mitsubishi Electric Corp 電動機の制御装置
JPH10202327A (ja) * 1997-01-22 1998-08-04 Aida Eng Ltd プレス機械のダイクッション制御装置
JP2004070790A (ja) * 2002-08-08 2004-03-04 Mitsubishi Electric Corp 機械の位置制御装置および機械の位置制御システム
JP2004272883A (ja) * 2003-02-20 2004-09-30 Mitsubishi Electric Corp サーボ制御装置
JP2007111704A (ja) * 2005-10-18 2007-05-10 Fanuc Ltd ダイクッション制御装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62218118A (ja) * 1986-03-20 1987-09-25 Fanuc Ltd 射出成形機の射出制御装置
DE69218525T2 (de) * 1991-01-14 1997-07-03 Fanuc Ltd Verfahren zur steuerung des druckverlaufes beim spritzgiessen und spritzgiessmaschine
US6695994B2 (en) * 2001-09-29 2004-02-24 Van Dorn Demag Corporation Melt pressure observer for electric injection molding machine
US6936990B2 (en) * 2002-03-29 2005-08-30 Matsushita Electric Industrial Co., Ltd. Method for controlling electric motor and apparatus for controlling the same
TWI239287B (en) * 2002-12-19 2005-09-11 Ind Tech Res Inst Device and method for velocity-pressure switching and pressure maintaining for electrically-operated injection molding machine
JP3741150B2 (ja) * 2003-09-17 2006-02-01 宇部興産機械株式会社 電動式射出成形機の圧力制御方法および装置
JP4015139B2 (ja) * 2004-06-28 2007-11-28 ファナック株式会社 鍛圧機械のサーボモータ制御装置
JP2006122944A (ja) * 2004-10-28 2006-05-18 Fanuc Ltd ダイクッション制御装置
JP4820564B2 (ja) * 2005-03-16 2011-11-24 株式会社小松製作所 ダイクッション制御装置
JP4576639B2 (ja) * 2005-05-16 2010-11-10 アイダエンジニアリング株式会社 プレス機械のダイクッション装置
JP4027380B2 (ja) * 2005-06-02 2007-12-26 ファナック株式会社 射出成形機の制御装置
JP4787642B2 (ja) * 2006-03-22 2011-10-05 コマツ産機株式会社 プレス機械のダイクッション制御装置
JP4221022B2 (ja) * 2006-11-20 2009-02-12 ファナック株式会社 モータ制御装置
WO2008117515A1 (ja) * 2007-03-27 2008-10-02 Panasonic Corporation モータ制御装置とその制御方法、及びモータ装置
WO2009001678A1 (ja) * 2007-06-26 2008-12-31 Kabushiki Kaisha Yaskawa Denki トルク制御装置とその制御方法
JP4410816B2 (ja) * 2007-10-02 2010-02-03 日精樹脂工業株式会社 射出成形機の制御装置
WO2010134359A1 (ja) * 2009-05-18 2010-11-25 Akasaka Noriyuki 電動射出成形機の圧力制御装置および圧力制御方法
US9073255B2 (en) * 2010-02-09 2015-07-07 Noriyuki Akasaka Device and method for plasticization control of electric injection molding machine
JP4674923B1 (ja) * 2010-11-01 2011-04-20 則之 赤坂 電動射出成形機の圧力制御装置および圧力制御方法
US8119044B1 (en) * 2010-11-07 2012-02-21 Noriyuki Akasaka Device and method for plasticization control of electric injection molding machine
JP5998009B2 (ja) * 2011-12-12 2016-09-28 東芝機械株式会社 成形機の制御装置及び成形機の制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08107690A (ja) * 1994-10-05 1996-04-23 Mitsubishi Electric Corp 電動機の制御装置
JPH10202327A (ja) * 1997-01-22 1998-08-04 Aida Eng Ltd プレス機械のダイクッション制御装置
JP2004070790A (ja) * 2002-08-08 2004-03-04 Mitsubishi Electric Corp 機械の位置制御装置および機械の位置制御システム
JP2004272883A (ja) * 2003-02-20 2004-09-30 Mitsubishi Electric Corp サーボ制御装置
JP2007111704A (ja) * 2005-10-18 2007-05-10 Fanuc Ltd ダイクッション制御装置

Also Published As

Publication number Publication date
JPWO2011145475A1 (ja) 2013-07-22
TWI446703B (zh) 2014-07-21
KR20130002345A (ko) 2013-01-07
CN102893515B (zh) 2015-04-15
US8786245B2 (en) 2014-07-22
US20130033221A1 (en) 2013-02-07
DE112011101682B4 (de) 2016-12-08
DE112011101682T5 (de) 2013-05-02
CN102893515A (zh) 2013-01-23
KR101347461B1 (ko) 2014-01-02
TW201208245A (en) 2012-02-16
WO2011145475A1 (ja) 2011-11-24

Similar Documents

Publication Publication Date Title
JP5452715B2 (ja) モータ制御装置
JP5372250B2 (ja) モータ制御装置
US7187148B2 (en) Controller
KR101354221B1 (ko) 모터 제어 장치
KR101723326B1 (ko) 모터 제어 장치
JP6457569B2 (ja) サーボモータ制御装置、サーボモータ制御方法、及びサーボモータ制御用プログラム
JPWO2012008222A1 (ja) モータ制御装置
JP6370866B2 (ja) サーボモータ制御装置、サーボモータ制御方法、及びサーボモータ制御用プログラム
US8890460B2 (en) Servo control device
JP6233351B2 (ja) モータ制御装置、モータ制御方法、及びモータ制御プログラム
JP6568035B2 (ja) サーボモータ制御装置、サーボモータ制御方法、及びサーボモータ制御用プログラム
JP7050624B2 (ja) モータ制御装置及びこれを備えた電動ブレーキ装置
JP2018112972A (ja) サーボモータ制御装置、サーボモータ制御方法、及びサーボモータ制御用プログラム
KR101780700B1 (ko) 전동식 조향 장치의 제어 장치 및 방법
JP2001202136A (ja) モーションコントローラにおける動的たわみ補正方法およびモーションコントローラ
WO2019012799A1 (ja) 電動機の制御装置及び電動ブレーキ装置
JP6316905B1 (ja) サーボモータ制御装置
JPH04129602A (ja) 非真円創成装置
JP6048174B2 (ja) 数値制御装置とロストモーション補償方法
JP2009175946A (ja) 位置制御装置
JP2017022933A (ja) フィードバック制御装置
KR20170080420A (ko) 전동식 조향 장치의 제어 장치 및 방법
JP2003339181A (ja) 電動回転機の2変数制御装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5452715

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250