JP5395713B2 - ベーンポンプ - Google Patents

ベーンポンプ Download PDF

Info

Publication number
JP5395713B2
JP5395713B2 JP2010062861A JP2010062861A JP5395713B2 JP 5395713 B2 JP5395713 B2 JP 5395713B2 JP 2010062861 A JP2010062861 A JP 2010062861A JP 2010062861 A JP2010062861 A JP 2010062861A JP 5395713 B2 JP5395713 B2 JP 5395713B2
Authority
JP
Japan
Prior art keywords
vane
back pressure
discharge
rotor
suction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010062861A
Other languages
English (en)
Other versions
JP2011157954A (ja
Inventor
正昭 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2010062861A priority Critical patent/JP5395713B2/ja
Priority to CN2010101578078A priority patent/CN102116289A/zh
Priority to US12/763,697 priority patent/US20110165010A1/en
Publication of JP2011157954A publication Critical patent/JP2011157954A/ja
Application granted granted Critical
Publication of JP5395713B2 publication Critical patent/JP5395713B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/34Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
    • F04C2/344Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C2/3441Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • F01C21/0818Vane tracking; control therefor
    • F01C21/0854Vane tracking; control therefor by fluid means
    • F01C21/0863Vane tracking; control therefor by fluid means the fluid being the working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • F01C21/089Construction of vanes or vane holders for synchronised movement of the vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • F01C21/104Stators; Members defining the outer boundaries of the working chamber
    • F01C21/108Stators; Members defining the outer boundaries of the working chamber with an axial surface, e.g. side plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/18Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber
    • F04C14/22Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber by changing the eccentricity between cooperating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components

Description

本発明は、ベーンポンプに関する。
従来、ロータのスリット溝にベーンを出没可能に収容し、カムリング内周面とロータ外周面とベーンとの間に形成したポンプ室の容積をカムリングの揺動により変化させる可変容量形のベーンポンプが知られている。例えば、特許文献1に記載のベーンポンプは、ベーンの先端部がポンプの吐出領域または吸込領域のいずれかにあるとき、当該ベーンの基端部にベーン先端部と略同一の圧力(背圧)を作用させる。これにより、ベーン先端部がカムリング内周面に摺動するときの抵抗を減らし、ポンプを駆動する動力の損失を低減する。また、ポンプの吸入領域において吐出領域へ移行する手前からベーンの基端部に吐出側圧力(高圧)を作用させる。これにより、作動流体の粘性が高い低温時においても、当該ベーンをスリットから飛び出させ、ポンプ室のシール性の低下を抑制して、ポンプ作動性の向上を図っている。
特開平7−259754号公報
しかし、特許文献1に記載のベーンポンプでは、騒音が発生するという問題があった。本発明の目的とするところは、騒音を低減することが可能なベーンポンプを提供することにある。
上記目的を達成するため、本発明のベーンポンプは、吐出側の圧力が導入されるとともに、先端部が吸入ポートの終端側に位置するベーンを収容するスリットの基端部に連通する第2背圧ポートにおいて、この第2背圧ポートの始端から吸入ポートの終端を越えない所定の角度範囲に、第2背圧ポートの本体部よりも流路断面積が小さい絞り部を設けた。


よって、騒音を低減することができる。
ベーンポンプが適用されるCVTのブロック図である。 サイドプレートを取り外した状態のベーンポンプを回転軸方向から見た一部断面図である。 第1プレートの平面図である。 図3のI−I視断面図である。 図3のII−II視断面図である。 図2において図3のIII−III線に相当する部位の軸方向断面を示す。 図6の破線で囲んだ部分IVの拡大図であり、始端部の断面形状を示す。 図6のV−V視断面図である。 吸入領域に臨む吐出側背圧ポートの流路断面積と角度範囲と騒音レベルとの相関特性を示すグラフである。 図6のV−V視断面図(比較例1)である。 図6のV−V視断面図(比較例2)である。 始端部の平面形状を示す(実施例2の変形例)。 始端部の断面形状を示す(実施例2の変形例)。 始端部の平面形状を示す(実施例3の変形例)。 始端部の断面形状を示す(実施例3の変形例)。
以下、本発明のベーンポンプを実現する形態を、実施例を用いて図面に基づき説明する。
(ベーンポンプの構成)
まず、本実施例1のベーンポンプ(以下、ポンプ1という。)の構成を説明する。
ポンプ1は、自動車の油圧式アクチュエータへの油圧供給源として用いられる。具体的には、ベルト式の連続可変トランスミッション(CVT100)の油圧供給源として使用される。なお、他の油圧式アクチュエータ、例えばパワーステアリングシステムの油圧供給源として使用してもよい。
ポンプ1は内燃機関のクランクシャフトにより駆動され、作動流体を吸入・吐出する。作動流体として作動油、具体的にはATF(オートマチック・トランスミッション・フルード)を用いる。作動油(ATF)は、弾性係数が比較的小さく、僅かな容積変化に対して圧力が大きく変化する性質を有している。
図1は、ポンプ1が適用されるCVT100の一例を示すブロック図である。
コントロールバルブ200内には、CVTコントロールユニット300により制御される各種のバルブ201〜213が設けられている。ポンプ1から吐出された作動油は、コントロールバルブ200を介してCVT100の各部(プライマリプーリ101、セカンダリプーリ102、フォワードクラッチ103、リバースブレーキ104、トルクコンバータ105、潤滑・冷却系等106等)に供給される。
図2は、ポンプ1の内部を回転軸方向から見た一部断面図である。説明の便宜上、三次元直交座標系を設け、ポンプ1の径方向にx軸およびy軸、ポンプ1の回転軸方向にz軸を設定する。ポンプ1の回転軸O上にz軸を設け、回転軸Oに対してカムリング8の中心軸Pが揺動する方向にx軸を設け、x軸およびz軸に直交する方向にy軸を設ける。図2の紙面上方をz軸正方向とし、Oに対してPが離れる側(第2閉じ込み領域に対する第1閉じ込み領域の側。図3参照。)をx軸正方向とし、吸入領域に対して吐出領域の側をy軸正方向とする。
ポンプ1は、吐出容量(1回転当たりに吐出する流体量。以下、ポンプ容量という。)を可変にできる可変容量形であり、作動油を吸入・吐出するポンプ部2と、吐出容量を制御する制御部3とを、一体のユニットとして有している。
ポンプ部2は、ハウジング4に収容されており、駆動軸5とロータ6とベーン7とカムリング8を有している。ハウジング4は、ハウジング本体40と第1プレート41と第2プレート42を有している。これらがボルト等で一体に締結されることでハウジング4が形成される。
ハウジング本体40には、z軸方向に延びる略円筒状の貫通孔400が形成されている。貫通孔400には、円環状のアダプタリング9が設置されている。
アダプタリング9の内周面は、z軸方向に延びる略円筒状の収容孔90を構成している。
収容孔90のx軸正方向側には、yz平面と略平行な第1平面部91が形成されている。
収容孔90のx軸負方向側には、yz平面と略平行な第2平面部92が形成されている。第2平面部92のz軸方向略中央には、段差部920がx軸負方向側に形成されている。
収容孔90のy軸正方向側であって回転軸Oに対して若干x軸正方向寄りには、z軸と略平行な第3平面部93が形成されている。第3平面部93には、z軸方向から見て半円状の溝(凹部930)が形成されている。凹部930を挟んだ両側には、アダプタリング9を径方向に貫通する連通路931,932が形成されている。凹部930のx軸正方向側における第3平面部93には第1連通路931が開口し、第3平面部93のx軸負方向側に隣接して第2連通路932が開口している。
収容孔90のy軸負方向側には、xz平面と略平行な第4平面部94が形成されている。第4平面部94には、z軸方向から見て矩形状の溝(凹部940)が形成されている。
収容孔90内には、円環状のカムリング8が揺動自在に設置されている。言い換えると、アダプタリング9は、カムリング8を取り囲むように配置されている。
z軸方向から見て、カムリング8の内周面80および外周面81は略円形であり、カムリング8の径方向幅は略一定である。
カムリング8のy軸正方向側の外周面81には、z軸方向から見て半円状の溝(凹部810)が形成されている。
カムリング8のx軸負方向側の外周面81には、x軸方向に軸を有する略円筒状の凹部811が所定深さまで穿設されている。
アダプタリング内周の凹部930とカムリング外周の凹部810との間には、z軸方向に延びるピン10が、これらの凹部930,810に挟み込まれるように、各凹部930,810に当接して設置される。
アダプタリング内周の凹部940には、シール部材11が設置される。シール部材11は、カムリング外周面81のy軸負方向側に当接する。
アダプタリング内周の段差部920には、弾性部材としてのスプリング12の一端が設置される。スプリング12はコイルスプリングである。カムリング外周の凹部811には、スプリング12の他端が嵌挿される。スプリング12は圧縮状態で設置され、アダプタリング9(ハウジング4)に対してカムリング8をx軸正方向側に常時付勢する。
収容孔90のx軸方向寸法、すなわち第1平面部91と第2平面部92との間の距離は、カムリング外周81の直径よりも大きく設けられている。カムリング8は、アダプタリング9(ハウジング4)に対して平面部93で支持され、平面部93を支点にxy平面内で揺動自在に設置されている。ピン10はアダプタリング9に対するカムリング8の位置ズレ(相対回転)を抑制する。
カムリング8の揺動は、x軸正方向側では、カムリング外周面81が第1平面部91に当接することで規制され、x軸負方向側では、カムリング外周面81が第2平面部92に当接することで規制される。カムリング8の中心軸Pの回転軸Oに対する偏心量をδとする。カムリング外周面81が第2平面部92に当接する位置(最小偏心位置)では、カムリング中心軸Pが回転軸Oと略一致して、偏心量δが略ゼロとなる。カムリング外周面81が第1平面部91に当接する図2の位置(最大偏心位置)では、偏心量δが最大となる。
カムリング8が揺動する際には、平面部93がカムリング外周面81に摺接するとともに、シール部材11がカムリング外周面81に摺接する。
アダプタリング内周とカムリング外周との間の空間は、そのz軸方向両側が第1、第2プレート41,42により封止される一方、平面部93とシール部材11とにより、2つの制御室R1,R2に液密に隔成されている。
x軸正方向側には第1制御室R1が形成され、x軸負方向側には第2制御室R2が形成されている。第1制御室R1には第1連通路931が開口し、第2制御室R2には第2連通路932が開口している。
なお、上記規制位置で、カムリング外周とアダプタリング内周との間には所定の隙間が確保されており、第1、第2制御室R1,R2の容積は所定以上でありゼロとならない。
ハウジング4(第1、第2プレート41,42)には駆動軸5が回転自在に軸支されている。駆動軸5は、チェーンを介して内燃機関のクランクシャフトに結合されており、クランクシャフトに同期して回転する。駆動軸5の外周には、ロータ6が同軸に固定(スプライン結合)されている。ロータ6は略円柱状であり、カムリング8の内周側に設置されている。言い換えると、カムリング8は、ロータ6を取り囲むように配置されている。ロータ6の外周面60とカムリング8の内周面80と第1、第2プレート41,42との間に、環状室R3が形成されている。ロータ6は、駆動軸5とともに、回転軸Oの周りに、図2の時計回り方向に回転する。
ロータ6には、複数の溝(スリット61)が放射状に形成されている。各スリット61は、z軸方向から見て、ロータ外周面60から回転軸Oに向かって所定深さまで、ロータ径方向に延びて直線状に設けられており、ロータ6のz軸方向全範囲にわたって形成されている。スリット61は、ロータ6を周方向に等分割する位置に11箇所、形成されている。
ベーン7は、略矩形状の板部材(羽根)であり、複数(11枚)設けられ、各スリット61に1枚ずつ出没可能に収容されている。ベーン7のロータ外径側(回転軸Oから離れる側)の先端部(ベーン先端部70)は、カムリング内周面80に対応して緩やかな曲面状に形成されている。なお、スリット61とベーン7の数は11に限らない。
各スリット61のロータ内径側(回転軸Oに向かう側)の端部(スリット基端部610)は、略円筒状に形成されており、z軸方向から見て、ロータ周方向におけるスリット本体部611の幅よりも大径の略円形である。なお、スリット基端部610を特に円筒状に形成しなくてもよく、例えばスリット本体部611と同様の溝形状としてもよい。
スリット基端部610と、このスリット61に収容されたベーン7のロータ内径側の端部(ベーン基端部71)との間には、このベーン7の背圧室br(受圧部)が形成されている。
ロータ外周面60には、各ベーン7に対応する位置に、z軸方向から見て略台形状の突出部62が設けられている。突出部62は、ロータ6のz軸方向全範囲にわたって、ロータ外周面60から所定高さまで突出するように形成されている。突出部62の略中央位置には、各スリット61の開口部が設けられている。
(突出部62およびスリット基端部610を含めた)スリット61のロータ径方向長さは、ベーン7のロータ径方向長さと略同じに設けられている。
突出部62を設けることで、スリット61のロータ径方向長さが所定以上確保され、(例えば第1閉じ込み領域でベーン7がスリット61から最大限突出したとしても)スリット61におけるベーン7の保持性が確保されている。言い換えると、突出部62によりベーン7の保持性を向上しつつ、ロータ外周面60から突出部62以外の肉を除いているため、この除肉分だけポンプ室rの容積を大きくしてポンプ効率を向上し、かつロータ6全体を軽量化して動力損失を軽減している。
環状室R3は、複数のベーン7によって、複数(11個)のポンプ室(容積室)rに区画されている。以下、ロータ6の回転方向(図2の時計回り方向。以下、単に回転方向という。)において隣り合うベーン7同士の間(2つのベーン7の側面間)の距離を、1ピッチという。
1つのポンプ室rの回転方向幅は、1ピッチであり不変である。
カムリング8の中心軸Pが回転軸Oに対して(x軸正方向側に)偏心した状態では、x軸負方向側からx軸正方向側に向かうにつれて、ロータ外周面60とカムリング内周面80との間のロータ径方向距離(ポンプ室rの径方向寸法)が大きくなる。この距離の変化に応じ、ベーン7がスリット61から出没することで、各ポンプ室rが隔成されるとともに、x軸正方向側のポンプ室rのほうが、x軸負方向側のポンプ室rよりも、容積が大きくなる。このポンプ室rの容積の差異により、x軸を境としてy軸負方向側では、ロータ6の回転方向(図2の時計回り方向)であるx軸正方向側に向かうにつれて、ポンプ室rの容積が拡大する一方、x軸を境としてy軸正方向側では、ロータ6の回転方向(図2の時計回り方向)であるx軸負方向側に向かうにつれて、ポンプ室rの容積が縮小する。
第1、第2プレート41,42は、一対の円盤状の板部材(プレッシャプレートないしサイドプレート)である。第1、第2プレート41,42は、ロータ6(およびベーン7)とカムリング8のz軸方向端部(回転軸方向端面)に配置され、これらをz軸方向両側から挟みこんでいる。第1プレート41はロータ6等のz軸負方向側に配置されている。
図3は、第1プレート41をz軸正方向側から見た平面図である。簡単のため、第1プレート41の輪郭を円形で描き、ボルト穴等を省略する。図4は図3のI−I視断面図であり、図5は図3のII−II視断面図である。
第1プレート41のz軸負方向側には、ポンプカバー49が設置されている。図5で、ポンプカバー49の断面を併せて示す。ポンプカバー49には、貫通孔490、連通路491、および連通路492が形成されている。貫通孔490には駆動軸5が挿入され回転自在に設置される。連通路491はポンプカバー49のz軸正方向側の面に設けられた吸入側の連通溝であり、z軸方向から見て、第1プレート41の後述する連通孔451,432(のz軸負方向側の開口)と重なる範囲に設けられている。連通路492はポンプカバー49のz軸正方向側の面に設けられた吐出側の連通溝であり、z軸方向から見て、第1プレート41の後述する連通孔441,461(のz軸負方向側の開口)と重なる範囲に設けられている。
ポンプカバー49のz軸正方向側の面には、連通路492の外周を取り囲んでシール溝494が設けられている。シール溝494にはシール部材としてのOリング496が設置される。第1プレート41のz軸負方向側の面がポンプカバー49のz軸正方向側の面と対向して設置された状態では、Oリング496がz軸方向に圧縮されて第1プレート41のz軸負方向側の面に密着し、これにより、高圧となる連通路492内の液密性を向上している。
第1プレート41には、吸入ポート43および吐出ポート44と、吸入側背圧ポート45および吐出側背圧ポート46と、ピン設置孔47と、貫通孔48とが形成されている。
ピン設置孔47にはピン10が挿入され固定設置される。貫通孔48には駆動軸5が挿入され回転自在に設置される。
第2プレート42にも、第1プレート41と同様の各ポートおよび孔が、同様の位置に形成されている。なお、第2プレート42のポートを省略してもよい。本実施例1のように、第2プレート42にもこれらのポートを形成することで、ロータ6やベーン7に対して各ポート44等から作用する油圧力をz軸方向で均等化し、片当たりによる摩耗や抵抗を抑制等することができる。また、両方のプレート41,42にこれらのポート43等のいずれかを適宜分配してもよい。
吸入ポート43は、外部から吸入側のポンプ室rに作動油を導入する際の入り口となる部分であり、ロータ6の回転に応じてポンプ室rの容積が拡大するy軸負方向側の区間に設けられている。
吸入ポート43は、吸入側円弧溝430と吸入孔431と連通孔432とを有している。
吸入側円弧溝430は、第1プレート41のz軸正方向側の面410に形成され、ポンプ吸入側の油圧が導入される溝であって、吸入側のポンプ室rの配置に沿って、回転軸Oを中心とする略円弧状に形成されている。
吸入側円弧溝430に対応する角度範囲、すなわち回転軸Oに対して吸入側円弧溝430のx軸負方向側の始点Aとx軸正方向側の終点Bとがなす略4.5ピッチ分に相当する角度αの範囲に、ポンプ1の吸入領域が設けられている。
吸入側円弧溝430の始点Aおよび終点Bは、x軸に対して略0.5ピッチに相当する角度βだけy軸負方向側に離れた位置に設けられている。
吸入側円弧溝430の終端部436は、回転方向に凸の略半円弧状に形成されている。
吸入側円弧溝430の始端部435には、逆回転方向に凸の略半円弧状に形成された本体始端部433と、本体始端部433に連続するノッチ434とが形成されている。ノッチ434は、本体始端部433からポンプ回転方向と逆回転方向に延びるように、略0.5ピッチの長さだけ形成されており、その先端は始点Aと一致している。
吸入側円弧溝430のロータ径方向幅は、回転方向全範囲で略等しく設けられており、カムリング8が最小偏心位置にあるときの環状室R3のロータ径方向幅と略等しい(図2参照)。吸入側円弧溝430のロータ内径側の縁437は、(突出部62を除く)ロータ外周面60よりも若干ロータ外径側に位置する。吸入側円弧溝430のロータ外径側の縁438は、最小偏心位置にあるカムリング8の内周面80よりも若干ロータ外径側に位置し、その終端側で、最大偏心位置にあるカムリング8の内周面80よりも僅かにロータ外径側に位置する。カムリング8の偏心位置に関わらず、吸入側の各ポンプ室rは、z軸方向から見て吸入側円弧溝430と重なり、吸入側円弧溝430と連通している。
吸入側円弧溝430の回転方向略中央には、吸入孔431が開口している。吸入孔431は、z軸方向から見て略長円状であり、ロータ径方向幅が吸入側円弧溝430と略等しく、回転方向における長さが略1ピッチである。吸入孔431は、第1プレート41をz軸方向に貫通して、y軸と重なる位置に形成されている。
吸入側円弧溝430には、吸入孔431に隣接して逆回転方向寄り(始点A側)に、連通孔432が開口している。連通孔432は、吸入孔431と同様の形状であり、第1プレート41をz軸方向に貫通している。
吸入側円弧溝430は、本体始端部433、連通孔432と吸入孔431との間、および終端部436において、第1プレート41の(z軸方向)厚さの20%弱の(z軸方向)深さを有している。
本体始端部433から連通孔432までの間は、傾斜が設けられており、回転方向に徐々に深くなり、連通孔432に達する部位では第1プレート41の厚さと同じ深さとなるように形成されている。
吸入孔431から終端部436までの間は、傾斜が設けられており、回転方向に徐々に浅くなり、終端部436に達する部位では本体始端部433と同じ深さとなるように形成されている。
ノッチ434は、z軸方向から見て、回転方向に向かうにつれて徐々にロータ径方向幅が大きくなる略鋭三角形状に設けられている。ノッチ434のロータ径方向幅の最大値は、吸入側円弧溝430の幅よりも小さく設けられている。ノッチ434の(z軸方向)深さは、回転方向に向かうにつれてゼロから第1プレート41の厚さの数%まで徐々に増加する。すなわち、ノッチ434の流路断面積は、吸入側円弧溝430の本体部よりも小さく、ノッチ434は、回転方向に流路断面積が徐々に大きくなる絞り部を構成している。
吐出ポート44は、吐出側のポンプ室rから外部へ作動油を吐出する際の出口となる部分であり、ロータ6の回転に応じてポンプ室rの容積が縮小するy軸正方向側の区間に設けられている。
吐出ポート44は、吐出側円弧溝440と連通孔441と吐出孔442とを有している。
吐出側円弧溝440は、第1プレート41の面410に形成され、ポンプ吐出側の油圧が導入される溝であって、吐出側のポンプ室rの配置に沿って、回転軸Oを中心とする略円弧状に形成されている。
吐出側円弧溝440に対応する角度範囲、すなわち回転軸Oに対して吐出側円弧溝440のx軸正方向側の始点Cとx軸負方向側の終点Dとがなす角度αの範囲に、ポンプ1の吐出領域が設けられている。
吐出側円弧溝440の始点Cおよび終点Dは、x軸に対して略0.5ピッチ分に相当する角度βだけy軸正方向側に離れた位置に設けられている。
吐出側円弧溝440のロータ径方向幅は、回転方向全範囲で略等しく設けられており、吸入側円弧溝430のロータ径方向幅よりも若干小さい。吐出側円弧溝440のロータ内径側の縁446は、(突出部62を除く)ロータ外周面60よりも若干ロータ外径側に位置する。吐出側円弧溝440のロータ外径側の縁447は、最小偏心位置にあるカムリング8の内周面80と略重なる。吐出側の各ポンプ室rは、カムリング8の偏心位置に関わらず、z軸方向から見て吐出側円弧溝440と重なり、吐出側円弧溝440と連通している。
吐出側円弧溝440の回転方向側の終端部444には、吐出孔442が開口している。吐出孔442は、z軸方向から見て略長円状であり、ロータ径方向における幅が吐出側円弧溝440と略等しく、回転方向における長さが略1ピッチよりも若干長い。吐出孔442は、第1プレート41をz軸方向に貫通して形成されている。吐出孔442の回転方向側縁は、回転方向に凸の略半円弧状に形成されており、終端部444の回転方向側縁と一致している。
吐出側円弧溝440の逆回転方向寄りには、回転軸Oを挟んで吸入側の連通孔432と対向する位置に、連通孔441が開口している。連通孔441は、吐出孔442と同様の形状であり、回転方向における長さが略1ピッチであり、第1プレート41をz軸方向に貫通して形成されている。
吐出側円弧溝440の始端部443は、始点Cから連通孔441の逆回転方向側の縁445まで延びて形成されている。縁445は、z軸方向から見て、逆回転方向に凸の略半円弧状に形成されており、その先端Eは、始点Cから回転方向に略1ピッチの距離をおいた位置にある。回転方向で吸入側円弧溝430の終点Bと対向する始端部443の先端は、z軸方向から見て略矩形状に形成されており、ロータ径方向に延びる縁を有している。
吐出側円弧溝440の連通孔441と吐出孔442との間に設けられた本体部448の(z軸方向)深さは、第1プレート41の(z軸方向)厚さの略25%である。
始端部443は本体部448よりも溝深さが浅く、始点Cから縁445に至るまで傾斜が設けられている。始点Cでの溝深さは0で、縁445に向かうにつれて徐々に深くなり、縁445に達する部位では第1プレート41の厚さの10%弱の深さとなる。
始端部443は、その流路断面積が本体部448よりも小さく、かつ回転方向に向かうにつれて徐々に(z軸方向)深さが大きくなる形状に設けられており、回転方向に流路断面積が徐々に大きくなる絞り部を構成している。
吸入側円弧溝430の終点Bと吐出側円弧溝440の始点Cとの間の面410には溝が設けられておらず、この区間に対応する角度範囲、すなわち回転軸Oに対して終点Bと始点Cとがなす角度2βの範囲に、ポンプ1の第1閉じ込み領域が設けられている。第1閉じ込み領域の角度範囲は、略1ピッチ分に相当する。
同様に、吐出側円弧溝440の終点Dと吸入側円弧溝430の始点Aとの間の面410には溝が設けられておらず、この区間に対応する角度範囲、すなわち回転軸Oに対して終点Dと始点Aとがなす角度2βの範囲に、第2閉じ込み領域が設けられている。第2閉じ込み領域の角度範囲は、略1ピッチ分に相当する。
第1閉じ込み領域および第2閉じ込み領域は、この領域内にあるポンプ室rの作動油を閉じ込め、吐出側円弧溝440と吸入側円弧溝430とが連通することを抑制する部分であり、x軸に跨る区間に設けられている。
第1プレート41には、ベーン7の根元(背圧室br、スリット基端部610)に連通する背圧ポート45,46が、吸入側と吐出側でそれぞれ分離して設けられている。
吸入側背圧ポート45は、吸入領域の大部分に位置する複数のベーン7の背圧室brと吸入ポート43とを連通するポートである。ベーン7が「吸入領域に位置する」とは、z軸方向から見て、ベーン7の先端部70が吸入ポート43(吸入側円弧溝430)と重なっていることをいう。吸入側背圧ポート45は、吸入側背圧円弧溝450と連通孔451とを有している。
吸入側背圧円弧溝450は、第1プレート41の面410に形成され、ポンプ吸入側の油圧が導入される溝であって、ベーン7の背圧室br(ロータ6のスリット基端部610)の配置に沿って、回転軸Oを中心とする略円弧状に形成されている。
吸入側背圧円弧溝450は、略3ピッチ分に相当する角度の範囲(吸入側円弧溝430よりも狭い範囲)で形成されている。
吸入側背圧円弧溝450の始点aは、吸入側円弧溝430(ノッチ434)の始点Aよりも若干回転方向側であって本体始端部433の回転方向側に隣接する位置にある。
吸入側背圧円弧溝450の終点bは、吸入側円弧溝430の終点Bよりも逆回転方向側に略1.5ピッチ分に相当する角度だけ離れた位置にある。
吸入側背圧円弧溝450のロータ径方向寸法(溝幅)は、回転方向全範囲で略等しく設けられており、吸入側円弧溝430と略等しく、スリット基端部610のロータ径方向寸法と略等しい。
吸入側背圧円弧溝450のロータ内径側の縁454は、スリット基端部610のロータ内径側縁よりも若干ロータ内径側に位置する。吸入側背圧円弧溝450のロータ外径側の縁455は、スリット基端部610のロータ外径側縁よりも僅かにロータ内径側に位置する。カムリング8の偏心位置に関わらず、z軸方向から見て、吸入側背圧円弧溝450は、スリット基端部610(背圧室br)と大部分重なるロータ径方向位置に設けられており、スリット基端部610(背圧室br)と重なるとき、これと連通する。
吸入側背圧円弧溝450の逆回転方向寄り(始点a側)には、ロータ径方向で吸入側円弧溝430の連通孔432と重なる位置に、連通孔451が開口している。連通孔451は、z軸方向から見て略長円状であり、ロータ径方向における幅が吸入側背圧円弧溝450と略等しく、回転方向における長さが略1ピッチである。連通孔451は、第1プレート41をz軸方向に貫通して形成されており、連通路491を介して吸入側円弧溝430の連通孔432と連通している。
吸入側背圧円弧溝450において、始点aから連通孔431までの間には、始端部452が設けられている。z軸方向から見て、始端部452の先端は、逆回転方向に凸の略半円弧状に形成されている。吸入側背圧円弧溝450の終端部453は、回転方向に凸の略半円弧状に形成されている。
始端部452の(z軸方向)深さは、第1プレート41の厚さの40%弱であり、終端部453の深さは、第1プレート41の厚さの20%弱である。終端部453から連通孔451までの区間には傾斜が設けられており、逆回転方向に連通孔451に向かうにつれて徐々に深くなり、連通孔451に達する部位では第1プレート41の厚さと同じ深さとなるように形成されている。
吐出側背圧ポート46は、吐出領域、第1閉じ込み領域、第2閉じ込み領域の大半、および吸入領域の一部に位置する複数のベーン7の背圧室brと、吐出ポート44とを連通するポートである。ベーン7が「吐出領域等に位置する」とは、z軸方向から見て、ベーン7の先端部70が吐出ポート44(吐出側円弧溝440)等と重なっていることをいう。吐出側背圧ポート46は、吐出側背圧円弧溝460と連通孔461とを有している。
吐出側背圧円弧溝460は、第1プレート41の面410に形成され、ポンプ吐出側の油圧が導入される溝であって、ベーン7の背圧室br(スリット基端部610)の配置に沿って、回転軸Oを中心とする略円弧状に形成されている。
吐出側背圧円弧溝460は、略7ピッチ分に相当する角度の範囲(吐出側円弧溝440よりも広い範囲)で形成されている。
吐出側背圧円弧溝460は吸入領域まで臨むように形成されており、吐出側背圧円弧溝460の始点cは、吐出側円弧溝440の始点Cよりも逆回転方向側に、第1閉じ込み領域を越え、さらに吸入側円弧溝430の終点Bよりも逆回転方向側に位置している。始点cは、終点Bから略1ピッチの(2βに相当する)距離をおいた位置にある。
吐出側背圧円弧溝460の終点dは、吐出側円弧溝440の終点Dよりも回転方向側に1ピッチ弱に相当する角度だけ離れており、第2閉じ込み領域の終端部近くに位置している。
吐出側背圧円弧溝460のロータ径方向寸法(溝幅)は、回転方向全範囲で略等しく設けられており、吐出側円弧溝440よりも僅かに小さく、スリット基端部610のロータ径方向寸法よりも若干小さい。
吐出側背圧円弧溝460のロータ内径側の縁464は、スリット基端部610のロータ内径側縁よりも若干ロータ外径側に位置する。吐出側背圧円弧溝460のロータ外径側の縁465は、スリット基端部610のロータ外径側縁よりも僅かにロータ内径側に位置する。カムリング8の偏心位置に関わらず、z軸方向から見て、吐出側背圧円弧溝460は、スリット基端部610(背圧室br)と大部分重なるロータ径方向位置に設けられており、スリット基端部610(背圧室br)と重なるとき、これと連通する。
吐出側背圧円弧溝460の逆回転方向寄り(始点c側)には、第1閉じ込み領域の始端側において、吸入側円弧溝430の終点Bとx軸(第1閉じ込み領域の中間点)とに挟まれた角度位置に、連通孔461が開口している。連通孔461の直径は、吐出側背圧円弧溝460のロータ径方向幅と略等しい。連通孔461は、第1プレート41内をz軸負方向側に向かうにつれてロータ外径側に位置するように、z軸方向に対して斜めに第1プレート41を貫通して形成されている。連通孔461は、第1プレート41のz軸負方向側の面に開口し、連通路492を介して吐出ポート44(吐出側円弧溝440)の連通孔441と連通している。
吐出側背圧円弧溝460は、始端部462と背圧ポート本体部468を有している。
図6は、図3のIII−III線に沿ったポンプ部2のz軸方向断面を部分的に示す。
背圧ポート本体部468は、吐出側背圧円弧溝460の本体部分であり、始点eから、終点dまで延びて形成されている。始点eは、吸入ポート43の終点Bから逆回転方向に0.4ピッチ弱に相当する角度だけ離れた位置にある。背圧ポート本体部468の(z軸方向)深さは略一定である。
z軸方向から見て、背圧ポート本体部468の始端側の縁467は、逆回転方向に凸の略半円弧状に形成されている。背圧ポート本体部468(吐出側背圧円弧溝460)の終端部463は、回転方向に凸の略半円弧状に形成されている。
始端部462は、吸入領域に臨んで、吐出側背圧円弧溝460(背圧ポート本体部468)の始端側に形成された部分であり、始点cから縁467(始点e)まで延びて0.5ピッチ強の範囲で形成されている。吸入側背圧円弧溝450の終点bと対向する始端部462の先端は、略矩形状に形成されており、ロータ径方向に延びる縁を有している。
図7は、図6の破線で囲んだ部分IVの拡大図であり、始端部462の断面形状を示す。
始端部462の(z軸負方向側の)底面は、略平面状である。始端部462を回転方向から見たときの断面は略矩形状であり、回転方向に沿って略一定の断面積を有している。始端部462の溝深さ(z軸負方向の深さ)は略一定に設けられている。
始端部462は、背圧ポート本体部468よりも流路断面積が小さい絞り部を構成している。
なお、本実施例1において、始端部462を回転方向から見たときの断面形状は特に限定されず、上記断面積が回転方向に沿って略一定であればよく、例えば上記底面の中央が緩やかに盛り上がった形状でもよい。
また、始端部462の深さを背圧ポート本体部468に対してどの程度浅く設けるかは、適宜設定可能である。
また、第2プレート42の吐出側背圧円弧溝460は、始端部462を有しておらず、始点eから始まる背圧ポート本体部468のみを有している。言い換えると、第2プレート42のz軸負方向側の面において、第1プレート41の始端部462に相当する箇所には、溝が形成されていない。これにより、第1プレート41の始端部462による後述の絞り効果を向上している。なお、第2プレート42においても、吐出側背圧円弧溝460に、第1プレート41と同様の始端部462を設けることとしてもよい。
図6に示すように、第1、第2プレート41,42のロータ6との合わせ面において、吐出側背圧円弧溝460が設けられていない部位(第1閉じ込み領域その他の部位)では、これらの間のz軸方向隙間が十分に小さく設けられており、この隙間を通って作動油が流通することが抑制されている。一方、吐出側背圧円弧溝460が設けられている部位では、この溝460を通って作動油が流通する。
連通孔461には、吐出側背圧ポート46(吐出側背圧円弧溝460)への開口部において絞り(オリフィス466)が設けられており、吐出側背圧ポート46内の作動油が吐出ポート44側へ流出する時に流路を絞ることで、吐出側背圧ポート46内の圧力を高め、ベーン7の突き出しを良好にしてポンプの始動性をより確実にしている。
図2に戻って説明すると、制御部3は、ハウジング4に設けられており、制御弁30と第1、第2油路31,32と制御室R1,R2とを有している。
制御弁30は油圧制御弁(スプール弁)であり、ハウジング本体40内の収容孔401に収容されたスプール300を、ハウジング4に設置されたソレノイド301により駆動することで、ハウジング本体40内に形成された第1通路31、第2通路32への作動油の供給を切り替える。第1通路31は第1連通路931と連通して第1制御油路を構成している。第2通路32は第2連通路932と連通して第2制御油路を構成している。制御弁30の作動は、CVTコントロールユニット300により、例えば内燃機関の回転数とスロットルバルブ開度とに基き制御される。
次に、ポンプ1の作用を説明する。
(ポンプ作用)
カムリング8を回転軸Oに対してx軸正方向に偏心して配置した状態でロータ6を回転させることにより、ポンプ室rは回転軸周りに回転しつつ周期的に拡縮する。ポンプ室rが回転方向に拡大するy軸負方向側で、吸入ポート43からポンプ室rに作動油を吸入し、ポンプ室rが回転方向に縮小するy軸正方向側で、ポンプ室rから吐出ポート44へ上記吸入した作動油を吐出する。
具体的には、あるポンプ室rに着目すると、吸入領域において、このポンプ室rの逆回転方向側のベーン7(以下、後側ベーン7)が吸入側円弧溝430の終点Bを通過するまで、言い換えると、回転方向側のベーン7(以下、前側ベーン7)が吐出側円弧溝440の始点Cを通過するまで、当該ポンプ室rの容積は増大する。この間、当該ポンプ室rは吸入側円弧溝430と連通しているため、作動油を吸入ポート43から吸入する。
第1閉じ込み領域において、当該ポンプ室rの後側ベーン7(の回転方向側の面)が吸入側円弧溝430の終点Bと一致し、前側ベーン7(の逆回転方向側の面)が吐出側円弧溝440の始点Cと一致する回転位置では、当該ポンプ室rは吸入側円弧溝430とも吐出側円弧溝440とも連通せず、液密に確保される。
当該ポンプ室rの後側ベーン7が吸入側円弧溝430の終点Bを通過(前側ベーン7が吐出側円弧溝440の始点Cを通過)した後は、吐出領域において、回転に応じて当該ポンプ室rの容積は減少し、吐出側円弧溝440と連通するため、ポンプ室rから作動油を吐出ポート44へ吐出する。
第2閉じ込み領域において、当該ポンプ室rの後側ベーン7(の回転方向側の面)が吐出側円弧溝440の終点Dと一致し、前側ベーン7(の逆回転方向側の面)が吸入側円弧溝430の始点Aと一致する位置では、当該ポンプ室rは吐出側円弧溝440とも吸入側円弧溝430とも連通せず、液密に確保される。
本実施例1では、第1、第2閉じ込み領域の範囲がそれぞれ1ピッチ分(1つのポンプ室rの分)だけ設けられているため、吸入領域と吐出領域とが連通することを抑制しつつ、ポンプ効率を向上することができる。なお、閉じ込み領域(吸入ポート43と吐出ポート44の間隔)を1ピッチ以上の範囲にわたって設けることとしてもよい。言い換えると、閉じ込み領域の角度範囲は、吐出領域と吸入領域を連通させない範囲であれば、任意に設定可能である。
なお、前側ベーン7(の逆回転方向側の面)が第1閉じ込み領域から吐出領域へ移行するとき、始端部443の絞り作用により、ポンプ室rと吐出側円弧溝440の連通が急激に行われないため、吐出ポート44およびポンプ室rの圧力の変動が抑制される。すなわち、高圧の吐出ポート44から低圧のポンプ室rへ作動油が急激に流入することが抑制されるため、吐出ポート44から吐出孔442を介して接続された外部の配管に供給される流量の急激な減少が抑制される。よって、配管における圧力変動(油撃)を抑制することができる。また、ポンプ室rに供給される流量の急激な増加が抑制されるため、ポンプ室rにおける圧力変動も抑制することができる。なお、始端部443を適宜省略することとしてもよい。
また、前側ベーン7(の逆回転方向側の面)が第2閉じ込み領域から吸入領域へ移行するとき、ノッチ434の絞り作用により、ポンプ室rと吸入側円弧溝430の連通が急激に行われないため、吸入ポート43およびポンプ室rの圧力の変動が抑制される。すなわち、ポンプ室rの容積が一気に増大することが抑制され、高圧のポンプ室rから低圧の吸入ポート43へ作動油が急激に流出することが抑制されるため、気泡の発生(キャビテーション)を抑制することができる。なお、ノッチ434を適宜省略することとしてもよい。
(容量可変)
カムリング8がx軸正方向側に揺動して偏心量δがゼロでないとき、y軸負方向側では、ロータ6が回転するにつれてポンプ室rの容積は拡大し、x軸正方向側でx軸上に位置するとき最大となる。y軸正方向側では、ロータ6が回転するにつれてポンプ室rの容積は縮小し、x軸負方向側でx軸上に位置するとき最小となる。図2に示す最大偏心位置で、ポンプ室rの縮小時と拡大時の容積差は最大となり、ポンプ容量も最大となる。
一方、カムリング8がx軸負方向側に揺動して偏心量δが最小(ゼロ)となる最小偏心位置で、y軸負方向側でもy軸正方向側でも、ロータ6の回転につれてポンプ室rの容積は拡大も縮小もしない。言い換えると、ポンプ室r間の容積差は最小(ゼロ)となり、ポンプ容量も最小となる。
このように、カムリング8の揺動量に応じて容積差が変化し、これに対応してポンプ容量も変化する。
第1、第2制御室R1,R2に作動油が供給されていない状態で、カムリング8はスプリング12によりx軸正方向側に付勢され、偏心量δは最大となっている。
第1制御室R1には、制御弁30から第1制御油路を介して作動油が供給される。供給された作動油圧は、スプリング12の付勢力に抗してカムリング8をx軸負方向側に向かって押圧する第1油圧力を発生する。第2制御室R2には、制御弁30から第2制御油路を介して作動油が供給される。供給された作動油圧は、スプリング12の付勢力に加勢してカムリング8をx軸正方向側に向かって押圧する第2油圧力を発生する。
CVTコントロールユニット300は、制御弁30の作動を制御し、第1、第2制御室R1,R2に供給する作動油(カムリング8に作用する第1、第2油圧力)を適宜変化させることで、カムリング8が揺動し、偏心量δを変化させる。これにより、ポンプ容量を可変制御する。
具体的には、第1制御室R1の作動油圧が高くなると、第1油圧力が大きくなる。また、第2制御室R2の作動油の圧力が高くなると、第2油圧力が大きくなる。第1、第2油圧力の合計がカムリング8をx軸負方向側に押す方向である場合、この油圧力よりも、スプリング12による(カムリング8をx軸正方向側に押す)付勢力が小さいと、カムリング8はx軸負方向側に移動する。すると、偏心量δが小さくなり、ポンプ室rの縮小時と拡大時の容積差が小さくなるため、ポンプ容量が減少する。
逆に、第1、第2油圧力の合計がカムリング8をx軸負方向側に押す方向である場合であって、この油圧力よりもスプリング12による付勢力が大きいときや、上記油圧力の合計がカムリング8をx軸正方向側に押す方向である場合には、カムリング8はx軸正方向側に移動する。すると、偏心量δが大きくなり、ポンプ室rの縮小時と拡大時の容積差が大きくなるため、ポンプ容量が増える。
なお、第2制御室R2を設けず、第1制御室R1の油圧力のみにより制御してもよい。また、カムリング8を付勢する弾性部材として、コイルスプリング以外のものを利用してもよい。
所定の高回転域では、このようにポンプ容量を可変制御することで、駆動に必要なトルク(駆動トルク)を低減し、出力を必要最低限に抑える。これにより、固定容量ポンプに比べて損失トルク(動力損失)を低減することができる。
(背圧ポートの分離による動力損失低減)
ロータ6の回転時、ベーン7には遠心力(ベーン7をロータ外径方向へ移動させる力)が作用するため、回転数が十分に高い等、所定の条件が整えば、ベーン7の先端部70はスリット61から突出し、カムリング8の内周面80に摺接する。先端部70がカムリング内周面80に当接することで、ベーン7のロータ外径方向の移動が規制される。ベーン7がスリット61から突出するとベーン7の背圧室brの容積が拡大し、ベーン7がスリット61へ没入する(収納される)とベーン7の背圧室brの容積が縮小する。
カムリング8が回転軸に対してx軸正方向に偏心した状態でロータ6が回転すると、カムリング内周面80に摺接する各ベーン7の背圧室brは、回転軸の周りで回転しながら周期的に拡縮する。
ここで、背圧室brが拡大するy軸負方向側では、ベーン7の背圧室brに作動油が供給されないと、ベーン7の突出(飛び出し)が阻害され、先端部70がカムリング内周面80に当接せず、ポンプ室rの液密性が確保されないおそれがある。一方、背圧室brが縮小するy軸正方向側では、ベーン7の背圧室brから作動油が円滑に排出されないと、ベーン7のスリット61への収納(引込み)が阻害され、ベーン先端部70とカムリング内周面80との摺動抵抗が増加する。
ポンプ1では、y軸負方向側では、吸入側背圧ポート45から背圧室brに作動油を供給する。これにより、ベーン7の飛び出し性を向上する。y軸正方向側では、背圧室brから吐出側背圧ポート46へ作動油を排出する。これにより、ベーン7の摺動抵抗を低減する。
ここで、y軸負方向側では、ベーン7の先端部70には吸入ポート43内の圧力が作用し、基端部71(根元)には吸入側背圧ポート45内の圧力が作用する。吸入側背圧ポート45は吸入ポート43と連通路491を介して連通しているため、吸入ポート43内の圧力と吸入側背圧ポート45内の圧力は略等しい。よって、ベーン7の先端部70と基端部71には略同一の圧力が作用する。したがって、例えば背圧室brに吐出側のポートから高圧の作動油を供給した場合に比べて、ベーン先端部70がカムリング内周面80に(遠心力以外の油圧力により)不必要に強く押し付けられることが抑制され、ベーン7がカムリング内周面80に摺接する際の摩擦による損失トルクが低く抑えられる。言い換えると、ベーン先端部70のカムリング内周面80への摺動抵抗が軽減され、吸入領域における全てのベーン基端部71に高圧のポンプ吐出側圧力を作用させる場合に比べ、動力損失を低減できる。
一方、y軸正方向側では、ベーン7の先端部70には吐出ポート44内の圧力が作用し、基端部71には吐出側背圧ポート46内の圧力が作用する。吐出側背圧ポート46は吐出ポート44と連通路492を介して連通しているため、ベーン7の先端部70と基端部71には略同一の圧力が作用する。よって、ベーン先端部70がカムリング内周面80に不必要に強く押し付けられることが抑制され、ベーン7がカムリング内周面80と摺接する際の摩擦による損失トルクが低く抑えられる。
このように、ポンプ1では、ベーン7の背圧室brと連通する背圧ポートが吸入側と吐出側とで分離しており、吸入工程と吐出工程の両方で、ベーン7の先端部70と基端部71に略同じ圧力が作用する。このため、遠心力によりベーン7を適度にカムリング8に押し付けつつ、摺動抵抗を低減することができる。よって、摩耗を低減できるとともに、ロータ6を回転させるために余分な駆動トルクが浪費されることがないため、動力損失を低減できる。
言い換えると、ポンプ1は、回転数に対する駆動トルクが低く、高効率な(すなわち動力損失を低減して燃費を向上できる)、いわゆる低トルク式ポンプであり、通常の可変容量ベーンポンプに比べ、同一体格でも吐出量が大きい(すなわち小型化できる)という特長を有している。
(ベーン押し付けによる吹き抜け抑制)
上記のように、吸入工程のベーン7は、スリット61内に没した状態からカムリング内周面80に向かって突き出すために、主に遠心力を利用している。よって、内燃機関の始動時やアイドル状態等のポンプ低回転域では、遠心力が小さく、吸入工程でベーン7の突き出しが不十分となり、ベーン先端部70がカムリング内周面80から離間した状態になるおそれがある。すなわち、ベーンの突き出し量は、ベーン7を突き出す(または突き出しを妨げる)方向に作用する力に応じて決まる。この作用力は、主に遠心力と、作動油の粘性抵抗と、スリット61に対するベーン7の摩擦力とで決まる。これらのうち、遠心力の割合が最も大きい。
複数のポンプ室rは順番に、ロータ6の回転に応じて第1、第2閉じ込み領域に差し掛かると、吸入工程と吐出工程が切り替わる。突き出し量が小さい任意のベーン7が、カムリング内周面80から離間した状態のままで、吸入領域と吐出領域が切り替わる上記回転位置に差し掛かると、以下の問題が生じる。
すなわち、ポンプ1では、第1閉じ込み領域が1ピッチ分だけ設定されているため、あるポンプ室r(第1ポンプ室rという。)の後側ベーン7(上記突き出し量の小さいベーン7)が第1閉じ込み領域内にあるとき、第1ポンプ室rの前側ベーン7は吐出領域にあり、第1ポンプ室rは吐出ポート44と連通しているため、高圧である。一方、第1ポンプ室rに対して逆回転方向側に隣接するポンプ室r(第2ポンプ室rという。)の後側ベーン7は吸入領域にあるため、第2ポンプ室rは吸入ポート43と連通しており、低圧である。
このように、あるベーン7を挟んで隣り合うポンプ室rの圧力が、一方のポンプ室rは低圧であり他方のポンプ室rは高圧である場合、当該ベーン7の突出(カムリング8への押し付け)が不十分であると、ベーン先端部70とカムリング内周面80との間の隙間を通って、高圧のポンプ室rから低圧のポンプ室rへと作動油が漏出する現象(作動油の吹き抜け)が発生する。特に低温環境下では、吹き抜けが発生する可能性が高まる。吹き抜けにおいては、急激な作動油の流れが発生する。
この場合、吐出ポート44内および吸入ポート43内の圧力が大きく変動して、騒音が発生する。また、ロータ6の回転に伴い周期的に吐出ポート44内の圧力低下が生じるため、吐出圧の脈動が発生する原因となる。また、吐出量が低下してポンプ吐出側の圧力が十分に得られないため、ポンプ効率が低下するとともに、ポンプ吐出圧を利用したシステム(CVT100)の始動性が悪化する。
ポンプ1では、ベーン7が閉じ込み領域に移行する手前で、このベーン7の背圧室brに高圧を作用させる。よって、このベーン7の閉じ込み領域内における突出を確保し、このベーン7を挟んで隣り合う高圧のポンプ室rと低圧のポンプ室rとを液密に隔成(シール)することができる。
図8は、図6のV−V視断面図である。説明の便宜上、ロータ6の外周やカムリング8の内周や溝430等の形状を直線的に描いたり、ロータ6の突出部62を省略したりする等の簡略化を施した模式図を示す。
図8に示すように、吐出側背圧ポート46(吐出側背圧円弧溝460)は吸入領域まで臨むように形成されており、その始点cは、吸入ポート43(吸入側円弧溝430)の終点Bよりも逆回転方向側に距離L0(1ピッチ分)をおいて設けられている。なお、距離L0は1ピッチより大きくても小さくてもよい。
よって、ベーン7が第1閉じ込み領域に移行する手前(吸入ポート43の終点Bより逆回転方向側)で、このベーン7の背圧室brが吐出側背圧ポート46へ開口する。吸入領域の終端部で、離間したベーン7の背圧室brが吐出側背圧ポート46にかかると、吐出側背圧ポート46から吐出側圧力がベーン7の基端部71に作用し、この油圧力によりベーン7が突出してカムリング8に押し付けられる。ロータ6の回転によりこのベーン7が吸入ポート43の終点Bを越えて第1閉じ込み領域に移動しても、当該ベーン7はすでにカムリング8へ押し付けられているため、吸入ポート43と吐出ポート44の連通が抑制される。言い換えると、吸入領域から吐出領域へ切り替わる回転位置で、吐出工程を開始するポンプ室rが液密に保たれる。
また、ベーン7が第1閉じ込み領域に移行した後においても、このベーン7の背圧室brを吐出側背圧ポート46と連通させ、高圧を作用させることで、ベーン7の押し付けを確保している。
言い換えると、吸入工程から吐出工程へ切り替わる部位(第1閉じ込み領域)にあるポンプ室rを区画するベーン7には、その背圧室brに高圧を作用させ、ベーン先端と根元の圧力差により、ベーン先端をカムリング内周面80に押し付ける。これにより、吐出工程へ切り替わる直前のポンプ室rの液密性を確保し、低圧の吸入側と高圧の吐出側との間をシールしている。
よって、低温始動時等において作動油の粘性が高く、遠心力によるベーン7の飛び出し性が悪くても、油圧によりベーン7を突出させ、ポンプの吸入・吐出動作を行わせることが可能である。よって、低温時の始動性を向上させることができる。
(吐出側背圧ポートの範囲設定による動力損失低減)
一方、第1閉じ込み領域に移行する手前の吸入領域でベーン7の背圧室brに高圧を作用させる角度範囲が広すぎると、ベーン7がカムリング内周面80に摺接する範囲も広がり、摩擦による損失トルクが増大して、動力損失の低減効果を十分に得られない。
すなわち、可変容量形ポンプは、固定容量形ポンプに対して同一吐出量ではより大型となるため、ポンプ容量を変化させない低回転域(固定容量域)では、可変容量化することで却って固定容量形ポンプよりも効率が低くなる(回転数に対する駆動トルクが高くなる)。よって、ポンプ1を低トルク式としても、固定容量形ポンプよりも効率が低くなる低回転域が存在し、この回転域では、低トルク式化による動力損失低減効果が十分に得られない。よって、さらに動力損失を低減することが望まれる。
これに対し、ポンプ1では、吐出側背圧ポート46の形状(流路断面積と始点cの位置)を調節し、第1閉じ込み領域に移行する手前でベーン7の背圧室brに高圧を作用させる範囲を最適化する。これにより、吹き抜けを抑制しつつ、効率が比較的低い低回転域であっても、動力損失をより低減することができる。
すなわち、突出量が比較的小さい任意のベーン7(これを第1ベーン7と呼ぶ。)の回転方向側の面が吸入ポート43の終点Bを越え始めると、第1ベーン7に回転方向側に隣接するベーン7(これを第2ベーン7と呼ぶ。)の逆回転方向側の面が、吐出ポート44の始点Cを越え始める。よって、吸入領域において第1ベーン7の先端部70がカムリング内周面80から離間していた場合、第1ベーン7の回転方向側の面が吸入ポート43の終点Bに達するまでの間に、上記離間量に相当する作動油量が、吐出側背圧ポート46から第1ベーン7の背圧室brに供給されればよい。このとき、第1ベーン7の回転方向側の面が吸入ポート43の終点Bに達するまでに、第1ベーン7のカムリング内周面80への押し付けが完了する。このため、第1ベーン7と第2ベーン7とで画成されるポンプ室rが吐出ポート44との連通を開始する手前でこのポンプ室rの液密性が確保され、吹き抜けが抑制される。
また、第1ベーン7の回転方向側の面が吸入ポート43の終点Bにできるだけ近づいたときに、上記離間量に相当する作動油量の供給が完了するようにすれば、この時点までは押し付けに必要な油量が第1ベーン7の背圧室brに供給されないため、終点Bよりも逆回転方向側で、油圧によりベーン7の先端部70がカムリング内周面80に押し付けられる範囲が小さくなる。これにより、損失トルクをより抑制できる。
よって、ポンプ1では、第1ベーン7の回転方向側の面が吸入ポート43の終点Bにできるだけ近づいたときに、上記離間量に相当する作動油量の供給が完了するように、吐出側背圧ポート46の形状を設定する。
具体的には、吐出側背圧ポート46からベーン7の背圧室brへ向かう流路の断面積(回転方向から見た吐出側背圧ポート46の断面積に相当する。以下、流路断面積という。)をA、吐出側背圧ポート46から背圧室brに流入する単位時間当たりの作動油量(体積流量)をQ、流量係数をC、作動油の密度をρ、上記流路の前後の差圧(すなわち吐出側背圧ポート46と背圧室brとの間の圧力差≒吐出圧)をΔPとすると、
Q=C×A×√(2×ΔP÷ρ)
である。
そして、ベーン7の背圧室brに供給されるトータルの作動油量∫Q(Qの時間積分)は、吐出側背圧ポート46とベーン7の背圧室brが連通する時間Tと、流路断面積Aとの積に比例する。上記連通時間Tは、ロータ6の回転数(ベーン7の移動速度)と、吸入領域に臨む吐出側背圧ポート46におけるベーン7の回転方向移動距離L*(具体的には、背圧室brが吐出側背圧ポート46の始点cから移動する角度範囲)によって決まる。よって、回転数を一定と仮定すると、時間Tは距離L*によって決まる。したがって、作動油量∫Qは、吐出側背圧ポート46の流路断面積Aと距離L*(始点cの位置)によって設定可能である。
ポンプ1では、始点cから背圧ポート本体部468の始点eまでの距離(角度範囲)Lと、吐出側背圧ポート46(始端部462)の流路断面積Aとが、作動油量∫Qが上記離間量に相当する値となるように設定されている。言い換えると、ベーン7が始端部462の始点cから背圧ポート本体部468の始点eまで移動すると、背圧室brに供給されるトータルの作動油量∫Qが上記離間量に相当する作動油量となり、ベーン7の先端部70がカムリング内周面80に当接し始めるように、距離Lと流路断面積Aの関係が設定されている。
よって、ベーン7がカムリング内周面80に当接する地点(タイミング)が、終点Bに近い位置である始点eとなるため、吹き抜けを抑制しつつ、不要な押し付けによる損失トルクを抑制することができる。
図9(下側の象限)は、吹き抜けを抑制しつつ損失トルクを低減し、動力損失を許容範囲内に収めることが可能な吐出側背圧ポート46(始端部462)の流路断面積Aと距離Lとの組み合わせ(相関特性)を示すグラフである。この特性は、実験により求めてもよいし、各種設計値に基き求めてもよい。
ポンプ1では、流路断面積Aと距離Lが、最適な特性を示す図9の斜線の範囲に位置するように設けられている。
動力損失の上記許容範囲として、例えば、固定容量域を含む所定の低回転域(このような低回転域を多用する走行モード)におけるトータルの損失トルクが、固定容量形ポンプと同程度か、これよりも小さくなるような範囲を設定することができる。これにより、CVTの油圧供給源としてポンプを使用し、かつ効率が比較的低い低回転域を多用するモードであっても、固定容量形ポンプと同程度以上に動力損失を低減することができる。また、効率が比較的低い低回転域を常用するパワーステアリングシステムの油圧供給源としてポンプを用いた場合であっても、固定容量形ポンプと同程度以上に動力損失を低減することができる。
すなわち、仮に回転数や油温その他の条件によって、始点eの手前の地点でベーン7がカムリング8に摺接し始めても、ベーン7の押し付けによる損失トルク(ベーン損失トルク)が許容可能な上限値以下となるような最適範囲(図9の斜線の範囲)に、面積Aと距離Lが設けられている(吸入工程でベーン7がカムリング8に対して離間していない状態の場合は、始端部462の始点cからベーン7がカムリング8に押し付けられることになるため、この場合に損失トルクが最適範囲内で最大になる)。
よって、距離Lの最大値は、ベーン損失トルクの許容される範囲内である図9のLmaxに設定される。
また、回転数や油温その他の条件により、始点eを越えた地点でベーン7がカムリング8に摺接し始めることがあっても、背圧ポート本体部468の流路断面積Aは、始端部462よりも大きく設定されているため、始点eを越えると、背圧室brにはそれまでよりも多量の作動油が供給される。よって、第1ベーン7の回転方向側の面が始点eを越えて終点Bに位置する時点までには、上記離間量に相当する作動油量の供給が完了するように設けられているため、吹き抜けはより確実に抑制される。
なお、第1ベーン7の回転方向側の面が吸入ポート43の終点Bに位置したときに、必要な作動油量の供給が完了するようにしてもよい。例えば、始点eを終点Bの位置まで移動させ、始端部462を始点cから終点Bまでの範囲で設けることとしてもよい。この場合、ベーン7の摺動範囲をさらに減らし、損失トルクをより効果的に抑制することが可能である。このとき、吸入ポート43の終点Bを基準位置として、終点Bからの角度範囲に基き始点cの最適位置(距離Lの最適範囲)を規定することができる。
(絞り部による騒音低減)
上記のように、吹き抜けを抑制しつつ損失トルクを低減する形状に吐出側背圧ポート46を設けた場合でも、流路断面積Aが大きければ、騒音が発生するという問題がある。
すなわち、吸入領域においてベーン7が離間した状態で、吐出側背圧ポート46から高圧の作動油を大きな流路断面積Aを介してそのままベーン背圧室brに流入させると、作動油が急激に流入し、突き出したベーン7がカムリング8に勢いよく衝突して打音が発生する場合がある。すなわち、衝突による騒音が発生する。
これに対し、ポンプ1では、吸入領域に臨む吐出側背圧ポート46に、流路断面積Aを制限した始端部462を設けることで、絞り部を構成している。
すなわち、ベーン7がカムリング内周面80から離間した状態で、このベーン7の背圧室br(スリット基端部610)が始端部462(始点cから始点eまでの間)に差し掛かると、作動油が背圧ポート本体部468から始端部462を通って上記背圧室brへ流入する。背圧室brへの作動油の流路となる始端部462の断面積(流路断面積A)は、吐出側背圧ポート本体468の流路断面積Aよりも小さく設けられているため、上記流入量(背圧室brへの作動油供給量Q)が制限される。このように、始点cから始点eまでの角度範囲で、背圧室brへの作動油の絞り部が構成されている。
具体的には、始端部462の流路断面積Aを調節し、これにより、ベーン7の衝突による騒音が許容範囲内となるように、(先端部70がカムリング内周面80に当接するときの)ベーン7の突き出し速度(ロータ外径方向への移動速度V)を最適化している。例えば、低温始動時にはある程度の騒音が発生することは許容し、アイドル状態では騒音が発生することを抑制する、というような速度Vを設定する。
速度Vは、ベーン7の断面積(回転方向幅×z軸方向幅=受圧面積)Sおよび始端部462の流路断面積Aと相関がある。
すなわち、
V=Q÷S=C×A/S×√(2×ΔP÷ρ)
であり、面積比S/AをHとすると、
H=C/V×√(2×ΔP÷ρ)
である。
よって、最適に設定された速度Vを実現できるような面積比Hを、上記式に基いて設定する。言い換えると、(ベーン断面積Sに対する比率で規定された)始端部462の流路断面積Aを調節することで、最適に設定された速度Vを実現する。具体的には、始端部462の流路断面積Aを、所定の最小値Amin〜最大値Amaxの範囲内に限定する。この最大値Amaxは、許容される騒音レベルとの関係に基き設定される。最小値Aminは、上記距離Lとの関係に基き設定される。
図9(上側の象限)は、吸入領域に臨む吐出側背圧ポート46の流路断面積Aと、騒音レベルとの相関特性を示すグラフである。この特性は、実験により求めてもよいし、各種設計値に基き求めてもよい。
ポンプ1では、吐出側背圧ポート46(始端部462)の流路断面積Aが、騒音レベルが許容可能な上限値以下となるような最適範囲Amin〜Amaxに設けられている。(結果として、流路断面積Aと距離Lとの最適な組み合わせは、図9の網掛けの範囲内に設けられる。)
よって、吸入工程で離間したベーン7の背圧室brが吐出側背圧ポート46にかかる際、始端部462の絞り効果により、単位時間当たりに背圧室brに流入する作動油量Qが制限される。したがって、ベーン7がカムリング8に当接する部位(始点e)における速度Vが抑制され、カムリング8へのベーン7の衝突速度が緩和される。したがって、衝突による騒音の発生が抑制される。
また、始端部462の絞り効果により、単位時間当たりに背圧ポート本体部468から失われる油量Qが制限されるため、背圧ポート本体部468における圧力の変動(脈動)をも抑制して、背圧ポート本体部468と連通する各背圧室brにおいてベーン7に作用する油圧力を略一定にさせることができる。すなわち、吐出領域における各ベーン7のカムリング8への当接状態を保持することができる。
なお、始端部462はz軸方向から見て略矩形状であり、回転方向に沿って深さが不変である。すなわち、始端部462のロータ径方向寸法(溝幅)は回転方向で略一定(背圧ポート本体部468と同じ)であり、溝深さも略一定である。このため、始端部462の流路断面積Aは回転方向で略一定であり、始端部462に位置するベーン7の背圧室brへ供給される作動油量Qも略一定となる。よって、ベーン7がカムリング8に当接する際の速度Vを任意に設定することが容易である。
(比較例との対比における作用効果の説明)
図10および図11は、図8と同様、図6のV−V視断面図に相当し、図10は比較例1、図11は比較例2をそれぞれ示す。
図10に示すように、比較例1では、吐出側背圧ポート46(吐出側背圧円弧溝460)は吸入領域に臨むように形成されているものの、始点cの位置は吸入ポート43の終点Bに近いc1であり、距離L(始点cと終点Bとの間の距離)は、最適範囲の最小値Lminよりも大幅に小さいL1である(L1≪Lmin)。また、吸入領域に臨む吐出側背圧ポート46の流路断面積Aは、本実施例1の背圧ポート本体部468の流路断面積と同様の大きさであり、最適範囲の最大値Amaxよりも大幅に大きい値A0である(A0≫Amax)。
比較例1では、第1閉じ込み領域に移行しつつあるベーン7の背圧室brに供給される作動油量が不十分であるため、ベーン7の突出が遅れ、吹き抜けが発生する。具体的には、図9に示すように、比較例1の流路断面積A0と距離L1との組み合わせは、最適な特性を示す範囲内になく、吹き抜けが発生する領域に位置する。すなわち、比較例1では、ベーン7の回転方向側の面が始点c1から終点Bまで移動する間に背圧室brに供給される作動油量∫Qは、ベーン7の当初の離間量に相当する(すなわち、最初の離間量を埋め合わせる)値未満となる。よって、ベーン7の回転方向側の面が終点Bまで移動した時点で、ベーン7の先端部70はカムリング内周面80に未だ当接しないため、吹き抜けが発生する。
また、比較例1では、流路断面積Aが過大であるため、ベーン7の衝突速度が大きい。具体的には、図9に示すように、比較例1の流路断面積A0は、騒音レベルが許容可能範囲内となる最大値Amaxより大きい値に設けられている。すなわち、吸入領域に臨む吐出側背圧ポート46には、本実施例1のような絞り部(始端部462)が設けられておらず、その流路断面積Aが大きいため、背圧室brに作動油が急激に流入する。よって、ベーン7が(終点Bを越えて移動した後に)カムリング内周面80に当接する際、その速度Vが大きい。したがって、ベーン7の衝突による騒音が許容範囲を超える。
図11に示すように、比較例2の始点c2の位置は本実施例1と同様であり、比較例2の距離L2(始点c2と終点Bとの間の距離)は、本実施例1の全長L0と略等しく、最適範囲の最大値Lmaxよりも小さい(L2≒L0<Lmax)。また、吸入領域に臨む吐出側背圧ポート46の流路断面積Aは、本実施例1の背圧ポート本体部468の流路断面積と同様の大きさであり、最適範囲の最大値Amaxよりも大幅に大きい値A0である(A0≫Amax)。
比較例2では、第1閉じ込み領域に移行しつつあるベーン7の背圧室brに供給される作動油量が充分であるため、吹き抜けは抑制されるが、実施例1に比較してより早めにベーン7がカムリング8に摺接し始める。すなわち、比較例2では、吸入領域に臨む吐出側背圧ポート46の流路断面積Aが本実施例1よりも大きいため、ベーン7の回転方向側の面が始点c2から本実施例1の(始点cと始点eとの間の)距離L**だけ移動する手前の地点Fで、供給される作動油量∫Qは、すでにベーン7の当初の離間量に相当する(すなわち、最初の離間量を埋め合わせる)値を上回る。よって、終点Bよりも逆回転方向側の領域で、油圧によりベーン7の先端部70が不必要にカムリング内周面80に押し付けられる範囲が本実施例1よりも大きくなるため、損失トルクが大きめとなるが、許容範囲(図9の斜線範囲)内である。
一方、比較例2では、本実施例1のような絞り部(始端部462)が設けられておらず、流路断面積Aが過大であるため、ベーン7の衝突速度が大きい。具体的には、図9に示すように、比較例2の流路断面積A0は、騒音レベルが許容可能範囲内となる最大値Amaxより大きい値に設けられている。よって、比較例1と同様、ベーン7がカムリング内周面80に当接する際、その速度Vが大きく、ベーン7の衝突による騒音が許容範囲を超える。
これに対し、本実施例1では、吸入領域に臨む吐出側背圧ポート46の流路断面積Aおよび距離Lと、吸入領域と吐出領域との切り替わり時におけるポンプ室rのシール性や損失トルクおよび騒音の大きさとの間に、所定の相関関係(図9)が成立することに着目し、後者(シール性と許容可能な損失トルクおよび騒音の大きさ)を最適化するように、前者(流路断面積Aおよび距離L)を設定した(図9の網掛け範囲)。
よって、吹き抜けを抑制して、脈動・騒音の発生を抑制しつつ、ポンプ効率の低下や始動性の悪化を抑制できる。また、ベーン7の不要な押し付け範囲を縮小して、動力損失をより低減できる。さらに、ベーン7の背圧室brに作動油が急激に流入することを抑制して、騒音の発生を抑制できる。特に、低温状態での始動時であって作動油の粘性が高いときや、(内燃機関の)低回転域を多用する走行モードであってベーン7に作用する遠心力が小さいときに、より効果的に上記作用効果を得ることができる。
[実施例1の効果]
以下、実施例1から把握される本発明のポンプ1の効果を列挙する。
(1)駆動軸5により回転駆動されるロータ6と、ロータ6の外周に形成された複数のスリット61のそれぞれに突没可能に収容されたベーン7と、ロータ6を取り囲んで揺動自在に配置されたカムリング8と、カムリング8およびロータ6の軸方向側面に配置され、カムリング8、ロータ6、およびベーン7とともに複数のポンプ室rを形成するプレート(第1、第2プレート41,42)と、を備え、ロータ6およびベーン7と対向するプレート(第1プレート41)の側面410に、ロータ6の回転に応じて複数のポンプ室rの容積が拡大する吸入領域に開口する吸入ポート43と、ロータ5の回転に応じて複数のポンプ室rの容積が縮小する吐出領域に開口する吐出ポート44と、吸入側の圧力が導入されるとともに、吸入領域に位置する複数のベーン7を収容するスリット61の基端部(背圧室br)に連通する第1背圧ポート(吸入側背圧ポート45)と、吐出側の圧力が導入されるとともに、先端部70が吸入ポート43の終端(終点B)側に位置するベーン7を収容するスリット61の基端部(背圧室br)に連通する第2背圧ポート(吐出側背圧ポート46)と、を形成し、第2背圧ポートにおいて、吐出側の圧力が導入される部位(背圧ポート本体部468)とスリット61の基端部(背圧室br)との間の流量を制限する絞り部(始端部462)を設けた。
よって、動力損失を低減するとともに、低温時のポンプ作動性を向上し、かつ騒音を低減することができる。
(2)ロータ6の回転に関わらず絞り部(始端部462)の流路断面積は一定であることとした。
よって、絞り部(始端部462)の深さを変化させるだけでベーン7がカムリング8に当接する際の速度Vを変化させることができるため、速度Vの設定を容易化できる。
(3)第2背圧ポート(吐出側背圧ポート46)は、先端部70が吸入ポート43の終端(終点B)と吐出ポート44の始端Cの間に位置するベーン7よりもロータ6の回転方向で1つ手前のベーン7を収容する第1スリット61の基端部(背圧室br)に連通し、第1スリット61の基端部が第2背圧ポートと連通し始めてから、第1スリット61に収容されるベーン7が吸入ポート43を通過するまでの間に、第2背圧ポートから第1スリット61の基端部(背圧室br)へ供給される作動油の量が、第1スリット61に収容されるベーン7の先端部70がカムリング内周面80に当接するのに必要な量以上となることとした。
よって、吹き抜けをより効果的に抑制して低温時のポンプ作動性を向上することができる。
実施例1では、絞り部(始端部462)の形状を、深さおよび幅が略一定の矩形状とし、流路断面積Aが略一定となるように形成したが、これに限らず、例えば作動油の粘度や密度その他の要因に応じて、図12〜15に示すように、絞り部(始端部462)の形状をノッチ状に適宜変形し、流路断面積Aが変化するように形成してもよい。
なお、図12〜15の例では、実施例1と異なり、背圧ポート本体部468の始端側の縁467を半円弧状ではなく矩形状に形成している。その他の構成は実施例1と同様であるため説明を省略する。
図12〜15の各例においては、実施例1と同様、作動油量∫Qを、絞り部(始端部462)の流路断面積Aと距離L(始点cからの距離)によって設定可能であり、これらの相関(図9)に基き、流路断面積Aおよび距離Lは、吹き抜けを抑制しつつ、不要な押し付けを抑制することができる値に設定されている。実施例1と異なり、始端部462の回転方向での断面積は一定ではないため、流路断面積Aとして、例えば始端部462の断面積を回転方向で平均した値を用いることができる。
実施例2では、始端部462の形状を、回転方向に向かうにつれて流路断面積が大きくなるように形成した。これにより、始端部462を通過するベーン7の突出速度の特性を下記のように設定することが可能である。
図12は、実施例2の始端部462の平面形状(z軸方向から見た形状)を示す概略図である。実施例2では、始端部462の(ロータ径方向)幅を、回転方向に向かうにつれて大きくなるように形成している。(a)〜(d)で各変形例を示す。
(a)〜(d)において、始端部462の(z軸負方向側の)底面は、実施例1と同様、略平面状であり、(z軸方向)深さは略一定である。ただし、始端部462は、実施例1よりも幅(の平均値)が狭い分だけ、実施例1よりも深く設定されており、流路断面積が過度に小さくならないようにしている。なお、上記底面の形状は適宜変更可能である。
(a)では、始端部462の平面形状が鋭角の略三角形状であり、回転方向に向かって、始端部462の幅がゼロから(背圧ポート本体部468よりも狭い)所定値まで略一定の割合で徐々に増加する。よって、ベーン7が始端部462を通過するのに応じて、背圧室brへの流路断面積は、ゼロから所定値まで略一定の割合で徐々に増加する。したがって、背圧室brへ供給される油量Qはゼロから徐々に増大するため、ベーン7の突出速度は、最初はゆっくりであるが、略一定の割合で徐々に増大していく。(a)の構成は、このような特性を得たい場合に効果的である。
(b)では、始端部462の平面形状が、略台形状であり、回転方向に向かって、始端部462部の幅が所定値からより大きな(背圧ポート本体部468よりも狭い)所定値まで略一定の割合で徐々に増加する。よって、ベーン7が始端部462を通過するのに応じて、背圧室brへの流路断面積は、所定値からより大きな所定値まで略一定の割合で徐々に増加する。したがって、背圧室brへ供給される油量Qは最初からある程度確保されており、この油量から徐々に増大するため、ベーン7の突出速度も最初からある程度確保され、略一定の割合で徐々に増大していく。よって、カムリング内周面80に当接するまでの時間を、(a)よりも短縮しやすい。(b)の構成は、このような特性を得たい場合に効果的である。
(c)では、始端部462の平面形状が、略半楕円形状であり、回転方向に向かって、始端部462の幅が略ゼロから(背圧ポート本体部468よりも狭い)所定値まで増加する。その増加割合は、最初は大きく、後に小さい。このため、ベーン7が始端部462を通過するのに応じて、背圧室brへの流路断面積は、略ゼロから上記増加割合で所定値まで増加する。よって、背圧室brへ供給される油量Qは略ゼロから急速に増大し、その後、ゆっくりと増大するため、ベーン7の突出速度も最初は急速に増大し、その後、ゆっくりと増大していく。カムリング内周面80に当接するまでの時間を(a)よりも短縮しやすい点は、(b)と同様である。(c)の構成は、このような特性を得たい場合に効果的である。
(d)では、始端部462の平面形状が、実施例1の矩形状と(b)の台形状とを組み合わせた形状であり、回転方向に向かって、始端部462の幅が、最初は略一定値であるが途中から増加し始め、略一定の割合で(背圧ポート本体部468よりも狭い)所定値まで徐々に増加する。よって、ベーン7が始端部462を通過するのに応じて、背圧室brへの流路断面積(背圧室brへ供給される油量Q)は、最初は略一定値であるが、途中から略一定の割合で徐々に増加する。このため、ベーン7の突出速度も、最初は略一定であるが、途中から徐々に増大していく。よって、ベーン7の突出速度は、全体として、(a)〜(c)ほどは大きく変化しない。また、始端部462の平面形状が単に矩形状のものよりも、カムリング内周面80への押し付けが確実になる。(d)の構成は、このような特性を得たい場合に効果的である。
図13は、実施例2の他の変形例における始端部462の断面形状を示す。図13は、始端部462の(z軸方向)底面を、深さが回転方向に向かうにつれて大きくなるように傾斜して形成した例である。(a)(b)で各変形例を示す。なお、始端部462の(ロータ径方向)幅は回転方向で略一定である。
(a)では、始端部462が斜面と平坦面とから構成されており、回転方向に向かって、始端部462の深さがゼロから略一定の割合で徐々に増加する(深くなる)第1の傾斜面と、所定値に達すると所定区間だけこの深さが保持される平坦面と、その後、深さが再び略一定の割合で徐々に増加して第2の所定値に達すると背圧ポート本体部468に接続する第2の傾斜面とを有している。第1の傾斜面の勾配は、第2の傾斜面よりも大きい。よって、ベーン7が始端部462を通過するのに応じて、背圧室brへの流路断面積は、ゼロから所定値まで略一定の割合で徐々に増加し、次に、略一定に保持され、その後、最初よりも緩やかな略一定の割合で徐々に増加する。背圧室brへ供給される油量Qも同様に変化するため、ベーン7の突出速度は、最初は急速に増大し、次に略一定となって、その後、ゆっくり増大していく。よって、ベーン7の加速を一旦和らげつつ、カムリング内周面80への押し付けをより確実にすることができる。(a)の構成は、このような特性を得たい場合に効果的である。なお、第1の傾斜面の勾配を、第2の傾斜面よりも小さく設定することとしてもよい。
(b)では、始端部462の深さが、回転方向に向かって、ゼロから(背圧ポート本体部468よりも浅い)所定値まで略一定の割合で徐々に増加する。よって、ベーン7が始端部462を通過するのに応じて、背圧室brへの流路断面積は、ゼロから所定値まで略一定の割合で徐々に増加し、背圧室brへ供給される油量Qも同様に変化するため、ベーン7の突出速度は最初はゆっくりであるが略一定の割合で徐々に増大する(加速される)。(a)の構成は、このような特性を得たい場合に効果的である。
なお、図12の構成と図13の構成を適宜組み合わせ、所望の特性を得ることとしてもよい。
以上の実施例2では、始端部462の形状が、回転方向に向かうにつれて流路断面積が大きくなるように形成されているため、カムリング内周面80への押し付けをより確実にすることができる。言い換えると、実施例2では、始端部462そのものが、実施例1における始点eから終点Bまでにおける背圧ポート本体部468の機能、すなわち(流路断面積が略一定の)始端部462よりも大きな流路断面積を有して多量の作動油を供給することで吹き抜けをより確実に抑制する、という機能を果たす。
よって、実施例2において、背圧ポート本体部468の始点eの角度位置を、吸入ポート43の終点Bと一致させ、始端部462の始点cから始点eまでの距離を略1ピッチ分(L0)とすることとしてもよい。
[実施例2の効果]
ロータ6が回転するにつれて絞り部(始端部462)の流路断面積は大きくなることとした。よって、実施例1と同様の効果のほか、吹き抜け抑制効果を向上することができるという効果を有する。
実施例3では、始端部462の形状を、回転方向に向かうにつれて流路断面積が小さくなるように形成した。これにより、始端部462を通過するベーン7の突出速度の特性を下記のように設定することが可能である。
図14は、実施例3の始端部462の平面形状を示す。図14は、始端部462の(ロータ径方向)幅を、回転方向に向かうにつれて小さくなるように形成した例であって、(a)〜(d)で各変形例を示す。
(a)〜(d)の始端部462の底面形状や深さについては、実施例2の図12(a)〜(d)の例と同様である。
(a)では、始端部462の平面形状が、略円形の端部と略長方形の柄部とが接続した形であり、回転方向に向かって、始端部462のロータ径方向幅(背圧室brへの流路断面積)が、端部では急速に増加・減少するとともに、柄部では端部よりも小さい略一定値に保たれる。ベーン7が始端部462を通過するのに応じて、背圧室brへ供給される油量Qは、始端部462の幅(背圧室brへの流路断面積)と同様に変化し、また保持されるため、ベーン7の突出速度は、最初は急速に増大・減少し、その後は、小さな略一定値に保たれる。(a)の構成は、このような特性を得たい場合に効果的である。
(b)では、始端部462の平面形状が、図12(a)とは逆向きの略三角形状であり、回転方向に向かって、始端部462の幅(背圧室brへの流路断面積)が、(背圧ポート本体部468よりも狭い)所定値から略ゼロに近い値まで略一定の割合で徐々に減少する。ベーン7が始端部462を通過するのに応じて、背圧室brへ供給される油量Qは同様に変化するため、ベーン7の突出速度は、最初は急速であるが、略一定の割合で、略ゼロ近くまで徐々に減少していく。(b)の構成は、このような特性を得たい場合に効果的である。
(c)では、始端部462の平面形状が、図12(c)とは逆向きの略半楕円形状であり、回転方向に向かって、始端部462の幅(背圧室brへの流路断面積)が、(背圧ポート本体部468よりも狭い)所定値から略ゼロに近い値まで減少する。その減少割合は、最初は小さく、後に大きい。ベーン7が始端部462を通過するのに応じて、背圧室brへ供給される油量Qは同様に変化するため、ベーン7の突出速度も、所定値から最初はゆっくりと減少し、その後、急速に減少していく。(c)の構成は、このような特性を得たい場合に効果的である。
(d)では、始端部462の平面形状が、図12(d)とは逆向きの略台形状と略矩形状とを組み合わせた形状であり、回転方向に向かって、始端部462の幅(背圧室brへの流路断面積)が、(背圧ポート本体部468よりも狭い)所定値から略一定の割合で徐々に減少し、途中から略一定値になる。ベーン7が始端部462を通過するのに応じて、背圧室brへ供給される油量Qは同様に変化するため、ベーン7の突出速度は、所定値から略一定の割合で徐々に減少し、途中から略一定速度になる。(d)の構成は、このような特性を得たい場合に効果的である。
図15は、実施例3の他の変形例における始端部462の断面形状を示す。図15は、始端部462の(z軸方向)深さが、回転方向に向かうにつれて浅くなるように、傾斜面を形成した例である。なお、図15において、始端部462の(ロータ径方向)幅は回転方向で略一定である。
始端部462の深さは、回転方向に向かって、(背圧ポート本体部468よりも若干浅い)所定値からゼロに近い値まで、略一定の割合で徐々に減少する(浅くなる)。よって、ベーン7が始端部462を通過するのに応じて、背圧室brへの流路断面積は、所定値から略ゼロ近くまで略一定の割合で徐々に減少し、背圧室brへ供給される油量Qも同様に変化する。したがって、ベーン7の突出速度は、最初は大きいが、徐々に略ゼロ近くまで減少する(減速される)。図15の構成は、このような特性を得たい場合に効果的である。なお、実施例2の図13(a)と同様、傾斜面の途中に平坦面を設け、ベーン7の減速を一旦和らげることとしてもよい。
また、図14の構成と図15の構成を適宜組み合わせ、所望の特性を得ることとしてもよい。
以上の実施例3では、ベーン7が突出し始める最初の段階で、ベーン7がカムリング8に当接する(カムリング内周面80に対する離間量の分だけ移動する)ために必要な作動油量の多くを供給することで、始端部462の回転方向長さ(距離L)を容易に短くすることができる。一方、ベーン7がカムリング8に当接する最後の段階で、ベーン7への供給油量を減らして突出速度を小さく(遅くする)することで、ベーン7の衝突による騒音を効果的に低減できる。
また、実施例3の始端部462は、回転方向に向かうにつれて流路断面積が小さくなる形状に形成され、始端部462と背圧ポート本体部468との間の作動油の連通が、実施例1,2に比べて制限されている。よって、始端部462内の作動油がベーン7の背圧室brに供給され始めることで始端部462内の圧力が急激に減少しても、これを補おうと吐出側背圧ポート46から始端部462へ単位時間当たりに漏出する作動油量が制限されるため、背圧ポート本体部468内の圧力の急変(急激な減少)が抑制される。よって、実施例1で説明した始端部462の機能の1つ、すなわち「背圧ポート本体部468における圧力の変動(脈動)を抑制して、背圧ポート本体部468と連通する背圧室brにおいてベーン7に作用する油圧力を安定させる」という機能を発揮し、吐出領域におけるベーン7のカムリング8への当接状態を安定化できる。
[実施例3の効果]
ロータ6が回転するにつれて絞り部(始端部462)の流路断面積は小さくなることとした。よって、実施例1と同様の効果のほか、騒音低減効果を向上することができるという効果を有する。
以上、本発明を実現するための形態を、実施例1〜3に基づいて説明してきたが、本発明の具体的な構成は実施例1〜3に限定されるものではなく、発明の要旨を逸脱しない範囲の設計変更等があっても、本発明に含まれる。
例えば、作動流体として、油(ATF)以外の流体を用いることも可能である。
実施例1では、ベーン(スリット61)は、ロータ径方向に延びるように設けたが、ロータ径方向に対して傾斜して設けてもよい。
吸入領域に臨む吐出側背圧ポート(始端部を含む部位)は、吐出領域にある吐出側背圧ポートとは別の溝であってもよい。言い換えると、「吐出側の圧力が導入されるとともに、先端部が吸入ポートの終端側に位置するベーンを収容するスリットの基端部に連通する部分の吐出側背圧ポート」を、「吐出側の圧力が導入されるとともに、吐出領域に位置する複数のベーンを収容するスリットの基端部に連通する吐出側背圧ポート」とは分離して設けてもよい。
41 第1プレート
410 側面
43 吸入ポート
44 吐出ポート
45 吸入側背圧ポート(第1背圧ポート)
46 吐出側背圧ポート(第2背圧ポート)
468 背圧ポート本体部
462 始端部(絞り部)
6 ロータ
61 スリット
611 基端部
7 ベーン
70 先端部

Claims (4)

  1. 駆動軸により回転駆動されるロータと、
    前記ロータの外周に形成された複数のスリットのそれぞれに突没可能に収容されたベーンと、
    前記ロータを取り囲んで揺動自在に配置されたカムリングと、
    前記カムリングおよび前記ロータの軸方向側面に配置され、前記カムリング、前記ロータ、および前記ベーンとともに複数のポンプ室を形成するプレートと、
    を備えたベーンポンプにおいて、
    前記ロータおよび前記ベーンと対向する前記プレートの側面に、
    前記ロータの回転に応じて前記複数のポンプ室の容積が拡大する吸入領域に開口する吸入ポートと、
    前記ロータの回転に応じて前記複数のポンプ室の容積が縮小する吐出領域に開口する吐出ポートと、
    吸入側の圧力が導入されるとともに、前記吸入領域に位置する前記複数のベーンを収容する前記スリットの基端部に連通する第1背圧ポートと、
    吐出側の圧力が導入されるとともに、先端部が前記吸入ポートの終端側に位置する前記ベーンを収容する前記スリットの基端部に連通する第2背圧ポートと、
    を形成し、
    前記第2背圧ポートにおいて、前記第2背圧ポートの始端から前記吸入ポートの終端を越えない所定の角度範囲に、前記第2背圧ポートの本体部よりも流路断面積が小さい絞り部を設け
    前記絞り部は、先端部が前記吸入ポートの終端と前記吐出ポートの始端の間に位置する前記ベーンよりも前記ロータの回転方向で手前の前記ベーンを収容する第1スリットの基端部に連通し、
    前記第1スリットの基端部が前記絞り部の始端から終端まで移動すると、前記第2背圧ポートから前記絞り部を介して前記第1スリットの基端部へ供給される作動油の量が、前記第1スリットに収容される前記ベーンの先端部が前記カムリングの内周面に当接するのに必要な量となるように、前記所定の角度範囲と前記絞り部の流路断面積との関係を設定した
    ことを特徴とするベーンポンプ。
  2. 請求項1に記載のベーンポンプにおいて、
    前記ロータの回転に関わらず前記絞り部の流路断面積は一定であることを特徴とするベーンポンプ。
  3. 請求項1に記載のベーンポンプにおいて、
    前記ロータが回転するにつれて前記絞り部の流路断面積は大きくなることを特徴とするベーンポンプ。
  4. 請求項1に記載のベーンポンプにおいて、
    前記ロータが回転するにつれて前記絞り部の流路断面積は小さくなることを特徴とするベーンポンプ。
JP2010062861A 2010-01-05 2010-03-18 ベーンポンプ Expired - Fee Related JP5395713B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010062861A JP5395713B2 (ja) 2010-01-05 2010-03-18 ベーンポンプ
CN2010101578078A CN102116289A (zh) 2010-01-05 2010-03-31 叶片泵
US12/763,697 US20110165010A1 (en) 2010-01-05 2010-04-20 Vane pump

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010000528 2010-01-05
JP2010000528 2010-01-05
JP2010062861A JP5395713B2 (ja) 2010-01-05 2010-03-18 ベーンポンプ

Publications (2)

Publication Number Publication Date
JP2011157954A JP2011157954A (ja) 2011-08-18
JP5395713B2 true JP5395713B2 (ja) 2014-01-22

Family

ID=44215185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010062861A Expired - Fee Related JP5395713B2 (ja) 2010-01-05 2010-03-18 ベーンポンプ

Country Status (3)

Country Link
US (1) US20110165010A1 (ja)
JP (1) JP5395713B2 (ja)
CN (1) CN102116289A (ja)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7794217B2 (en) * 2004-12-22 2010-09-14 Magna Powertrain Inc. Variable capacity vane pump with dual control chambers
US9181803B2 (en) 2004-12-22 2015-11-10 Magna Powertrain Inc. Vane pump with multiple control chambers
DE102011076197A1 (de) * 2011-05-20 2012-11-22 Ford Global Technologies, Llc Brennkraftmaschine mit Ölkreislauf und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
US9109597B2 (en) 2013-01-15 2015-08-18 Stackpole International Engineered Products Ltd Variable displacement pump with multiple pressure chambers where a circumferential extent of a first portion of a first chamber is greater than a second portion
JP6200164B2 (ja) * 2013-02-22 2017-09-20 Kyb株式会社 可変容量型ベーンポンプ
JP6122659B2 (ja) * 2013-02-26 2017-04-26 Kyb株式会社 ベーンポンプ
JP6111093B2 (ja) * 2013-03-06 2017-04-05 Kyb株式会社 ベーンポンプ
US20140271299A1 (en) * 2013-03-14 2014-09-18 Steering Solutions Ip Holding Corporation Hydraulically balanced stepwise variable displacement vane pump
DE102013105437A1 (de) * 2013-05-28 2014-12-04 Zf Lenksysteme Gmbh Verdrängerpumpe, insbesondere flügelzellenpumpe
CN104251245B (zh) * 2013-06-28 2016-12-28 伊顿公司 伺服泵控制系统及方法
JP6182821B2 (ja) * 2013-09-19 2017-08-23 日立オートモティブシステムズ株式会社 可変容量形ベーンポンプ
JP6329775B2 (ja) * 2014-01-27 2018-05-23 Kyb株式会社 ベーンポンプ
JP6355389B2 (ja) * 2014-04-02 2018-07-11 豊興工業株式会社 ベーンポンプ
CN107110158B (zh) * 2014-12-24 2019-01-22 康奈可关精株式会社 气体压缩机
JP6628592B2 (ja) * 2015-12-16 2020-01-08 株式会社ショーワ ベーンポンプ装置
JP6647862B2 (ja) 2015-12-25 2020-02-14 株式会社ショーワ ベーンポンプ装置
JP6568474B2 (ja) 2015-12-25 2019-08-28 株式会社ショーワ ベーンポンプ装置
JP6621326B2 (ja) * 2015-12-25 2019-12-18 株式会社ショーワ ベーンポンプ装置
JP6625429B2 (ja) * 2015-12-25 2019-12-25 株式会社ショーワ ベーンポンプ装置
DE102016205687A1 (de) * 2016-04-06 2017-10-12 Zf Friedrichshafen Ag Flügelzellenpumpe
DE102016111770A1 (de) * 2016-06-28 2017-12-28 Robert Bosch Gmbh Verdrängerpumpe, Verfahren zum Betreiben einer Verdrängerpumpe und Getriebe für ein Kraftfahrzeug
DE102016111772A1 (de) * 2016-06-28 2017-12-28 Robert Bosch Automotive Steering Gmbh Verdrängerpumpe, Verfahren zum Betreiben einer Verdrängerpumpe und Getriebe für ein Kraftfahrzeug
JP6825530B2 (ja) * 2017-09-29 2021-02-03 株式会社豊田自動織機 ベーン型圧縮機
JP7153534B2 (ja) * 2018-11-01 2022-10-14 Kyb株式会社 ベーンポンプ
JP7213126B2 (ja) * 2019-04-12 2023-01-26 Kyb株式会社 気泡含有液体製造装置
JP7421419B2 (ja) * 2020-05-27 2024-01-24 カヤバ株式会社 ベーンポンプ

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2968252A (en) * 1959-03-16 1961-01-17 New York Air Brake Co Engine
US3781145A (en) * 1972-05-10 1973-12-25 Abex Corp Vane pump with pressure ramp tracking assist
US4072451A (en) * 1976-10-12 1978-02-07 Sperry Rand Corporation Power transmission
JPS59192893A (ja) * 1983-04-15 1984-11-01 Hitachi Ltd 車両用冷房装置における圧縮機の容量制御装置
CN2037781U (zh) * 1988-08-03 1989-05-17 邱作儒 放射型转子液压马达
US5111660A (en) * 1991-03-11 1992-05-12 Ford Motor Company Parallel flow electronically variable orifice for variable assist power steering system
DE4143466C2 (de) * 1991-03-20 1997-05-15 Rexroth Mannesmann Gmbh Steuerscheibe für Flügelzellenpumpe
US5290155A (en) * 1991-09-03 1994-03-01 Deco-Grand, Inc. Power steering pump with balanced porting
JP3631264B2 (ja) * 1994-03-22 2005-03-23 ユニシア ジェーケーシー ステアリングシステム株式会社 可変容量形ポンプ
JPH1089266A (ja) * 1996-09-17 1998-04-07 Toyoda Mach Works Ltd ベーンポンプ
JPH1193856A (ja) * 1997-09-18 1999-04-06 Jidosha Kiki Co Ltd 可変容量形ポンプ
JP4342647B2 (ja) * 1999-08-20 2009-10-14 株式会社ショーワ 可変容量型ベーンポンプの背圧溝構造
US6422845B1 (en) * 2000-12-01 2002-07-23 Delphi Technologies, Inc. Rotary hydraulic vane pump with improved undervane porting
JP4193554B2 (ja) * 2003-04-09 2008-12-10 株式会社ジェイテクト ベーンポンプ
JP4759474B2 (ja) * 2006-08-30 2011-08-31 日立オートモティブシステムズ株式会社 ベーンポンプ
US7628596B2 (en) * 2006-09-22 2009-12-08 Ford Global Technologies, Llc Power steering pump
JP4927601B2 (ja) * 2007-03-05 2012-05-09 日立オートモティブシステムズ株式会社 可変容量型ベーンポンプ
JP5022139B2 (ja) * 2007-08-17 2012-09-12 日立オートモティブシステムズ株式会社 可変容量型ベーンポンプ

Also Published As

Publication number Publication date
US20110165010A1 (en) 2011-07-07
JP2011157954A (ja) 2011-08-18
CN102116289A (zh) 2011-07-06

Similar Documents

Publication Publication Date Title
JP5395713B2 (ja) ベーンポンプ
JP5443428B2 (ja) ベーンポンプ
JP5897943B2 (ja) ベーンポンプ
JP5364606B2 (ja) ベーンポンプ
JP5084536B2 (ja) オイルポンプ
JP6182821B2 (ja) 可変容量形ベーンポンプ
US9206690B2 (en) Variable displacement pump
JP5897945B2 (ja) ベーンポンプ
US20070224066A1 (en) Variable displacement vane pump
US9828991B2 (en) Variable displacement vane pump
US9903366B2 (en) Variable displacement vane pump
JP2010223110A (ja) 可変容量形ベーンポンプ
JP5475701B2 (ja) ベーンポンプ
JP2009036137A (ja) 可変容量型ベーンポンプ
US8562316B2 (en) Variable capacity vane pump
JP5412342B2 (ja) ベーンポンプ
JP2012163040A (ja) ベーンポンプ
JP5443427B2 (ja) 可変容量型ベーンポンプ
WO2018084105A1 (ja) ベーンポンプ
JP5412341B2 (ja) ベーンポンプ
JP4260661B2 (ja) ベーンポンプ
JP2015059523A (ja) 可変容量形ベーンポンプ
CN111630276A (zh) 泵装置
WO2023037737A1 (ja) 可変容量形オイルポンプ
JP5829958B2 (ja) ベーンポンプ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131018

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees