JP5391159B2 - レーザ光によるガラス基板加工装置 - Google Patents

レーザ光によるガラス基板加工装置 Download PDF

Info

Publication number
JP5391159B2
JP5391159B2 JP2010156570A JP2010156570A JP5391159B2 JP 5391159 B2 JP5391159 B2 JP 5391159B2 JP 2010156570 A JP2010156570 A JP 2010156570A JP 2010156570 A JP2010156570 A JP 2010156570A JP 5391159 B2 JP5391159 B2 JP 5391159B2
Authority
JP
Japan
Prior art keywords
glass substrate
pair
wedge prisms
laser light
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010156570A
Other languages
English (en)
Other versions
JP2012017231A (ja
Inventor
尚久 林
政二 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuboshi Diamond Industrial Co Ltd
Original Assignee
Mitsuboshi Diamond Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuboshi Diamond Industrial Co Ltd filed Critical Mitsuboshi Diamond Industrial Co Ltd
Priority to JP2010156570A priority Critical patent/JP5391159B2/ja
Publication of JP2012017231A publication Critical patent/JP2012017231A/ja
Application granted granted Critical
Publication of JP5391159B2 publication Critical patent/JP5391159B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Laser Beam Processing (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Description

本発明は、ガラス基板加工装置、特に、ガラス基板にレーザ光を照射して加工を行うガラス基板加工装置に関する。
レーザ光によるガラス基板加工装置としては、例えば特許文献1に示された装置が知られている。この種の加工装置では、波長が532nm程度のグリーンレーザ光がガラス基板等のワークに照射される。グリーンレーザ光は、一般的にはガラス基板を透過するが、レーザ光を集光し、その強度があるしきい値を越えると、ガラス基板はレーザ光を吸収することになる。このような状態では、レーザ光の集光部にプラズマが発生し、これによりガラス基板は蒸散する。以上のような原理を利用して、ガラス基板に孔を形成する等の加工が可能である。
また、特許文献2には、レーザ光を、ワークの表面上で、円、楕円等の軌跡を描くように回転させたり、左右、上下、斜め等、任意の方向に走査させたりするためのレーザ加工装置が示されている。
特開2007−118054号公報 特開平8−192286号公報
前述のような従来のレーザ光による加工装置を用いて、ガラス基板に例えば孔を形成する場合、孔の円周(加工ライン)に沿ってレーザ光を走査し、その加工ラインの内部を抜き落とすことにより孔が形成される。また、その際に、特許文献2に示されたような機構を用い、レーザ光を螺旋回転させながら加工を行うことにより、加工を容易にしている。
しかし、従来のレーザ光を用いたガラス基板の加工方法では、加工時間がかかるという問題がある。したがって、加工時間の短縮化が望まれている。
そこで、集光されたレーザ光を小さい回転半径で高速回転させて小円を描かせると同時に、この小円全体を加工ラインに沿って走査してガラス基板に孔開け等の加工を行うことが考えられる。このようなレーザ加工装置では、レーザ光で小円を描かせるために、レーザ光を偏向するための手段が必要になる。また、この偏向手段を高速で回転させる必要がある。
レーザ光を偏向させるための手段としては、(a)光軸(回転軸)に対してレンズを偏芯して配置する、(b)反射ミラーを用いる、(c)1枚又は2枚のプリズムを用いる、(d)回折光学素子を用いる、等が考えられる。
しかし、レンズ、反射ミラー、あるいは1枚のプリズムを用いた場合は、これらを回転させると大きなアンバランスが生じるので、高速回転させることはできない。また、2枚のプリズムを用いる場合、偏角が0の場合を除いて、やはり高速回転には不向きである。一方で、回折光学素子を用いる場合は、回転バランスについては特に問題はないが、高価である。
本発明の課題は、レーザ光を用いたガラス基板の加工に際し、安価な構成で、加工時間を短縮できるようにすることにある。
第1発明に係るレーザ光によるガラス基板加工装置は、ガラス基板にレーザ光を照射して加工を行う装置であって、加工すべきガラス基板が載置されるワークテーブルと、レーザ光を出力するレーザ光出力部と、偏向・回転手段と、集光手段と、走査手段と、を備えている。偏向・回転手段はレーザ光出力部から出射されたレーザ光を偏向させるための1対の第1ウェッジプリズム及び1対の第1ウェッジプリズムを回転させる駆動手段を有している。集光手段は、偏向・回転手段からのレーザ光を、ガラス基板上に集光させる。走査手段は集光されたレーザ光をガラス基板上で走査する。そして、偏向・回転手段を構成する1対の第1ウェッジプリズムは、互いの屈折率が異なり、かつそれぞれの対向する近接面が平行で、かつ互いの離れた面が平行に配置されるとともに、1対のウェッジプリズム全体の重心が回転軸上にある。
この装置では、レーザ光出力部から出力されたレーザ光は、1対の第1ウェッジプリズムを通過することによって偏向される。
ここで、1対の第1ウェッジプリズムは、それぞれの対向する近接面が平行で、かつ互いの離れた面が平行に配置されているので、仮に同じ仕様のプリズムを用いた場合は、偏角は0になる。しかし、ここでは、屈折率の異なるプリズムを用いているので、互いの近接面及び離れた面同士を平行にして配置しても、偏角は0にはならない。
以上のようにして1対の第1ウェッジプリズムを通過して偏向されたレーザ光は、入射光軸の周りに回転させられる。この偏向され、かつ回転するレーザ光は、ガラス基板上に集光され、円形を描く。そして、この円形の軌跡全体が加工ラインに沿って走査される。
このような1対の第1ウェッジプリズムは重心が回転軸上にあるので、回転バランスが良好であり、したがって高速回転させてもアンバランスによる振動等を抑えることができる。また、レーザを1対のウェッジプリズムによって偏向させているので、レーザ光を偏向させるための構成を安価に実現できる。さらに、レーザ光を高速回転させながら加工ラインに沿って走査し、ガラス基板を加工するので、加工時間を短縮することができる。
第2発明に係るレーザ光によるガラス基板加工装置は、第1発明の加工装置において、1対の第1ウェッジプリズムは同じ形状である。この場合は、さらに回転バランスを良好にすることができる。
第3発明に係るレーザ光によるガラス基板加工装置は、第2発明の加工装置において、1対の第1ウェッジプリズムは同じ比重である。この場合は、回転バランスをより良好にすることができる。
第4発明に係るレーザ光によるガラス基板加工装置は、第1から第3発明のいずれかの加工装置において、偏向・回転手段を構成する駆動手段は、1対の第1ウェッジプリズムが内部に配置された第1中空モータである。
第5発明に係るレーザ光によるガラス基板加工装置は、第1から第4発明のいずれかの加工装置において、走査手段は、対向して配置された1対の第2ウェッジプリズムと、1対の第2ウェッジプリズムが内部に配置された第2中空モータと、を含む。
ここでは、レーザ光は1対の第2ウェッジプリズムによってさらに偏向される。そして、1対の第2ウェッジプリズムを回転させることによって、レーザ光の走査軌跡は円形になり、この円形の直径を内径とする孔を形成することができる。ここでは、簡単な構成によって孔を加工することができる。
第6発明に係るレーザ光によるガラス基板加工装置は、第5発明の加工装置において、1対の第2ウェッジプリズムは、一方に対して他方を回転させて偏角を調整可能である。
ここで、1対の第1ウェッジプリズムにおける加工誤差や取付誤差等によって、第1ウェッジプリズムによって偏向、回転させられたレーザ光により描かれる円の径に誤差が生じる。この誤差によって、最終的に加工される孔の径に誤差が生じる。
そこで、第2ウェッジプリズムにおける偏角を調整することによって、最終の加工径を調整することができ、高い精度の孔加工を行うことができる。
以上のような本発明では、レーザ光を用いたガラス基板の加工において、安価な構成でレーザ光を偏向でき、従来に比較して加工時間の短縮化を図ることができる。
本発明の一実施形態によるガラス基板加工装置の外観斜視図。 ワークテーブルの拡大斜視図。 レーザ照射ヘッドの構成を拡大して示す斜視図。 第1中空モータ及び第1ウェッジプリズムの配置を模式的に示した図。 プリズムの頂角と偏角との関係を示す図。 第2中空モータ、第2ウェッジプリズム及び集光レンズの配置を模式的に示した図。 レーザ光の軌跡を示す図。 集光点をz軸方向に制御する作用を説明する模式図。
[全体構成]
図1に本発明の一実施形態によるガラス基板加工装置の全体構成を示す。このガラス基板加工装置は、ガラス基板に加工ラインに沿ってレーザ光を照射し、孔開け等の加工を行うための装置である。この装置は、ベッド1と、ワークとしてのガラス基板が載置されるワークテーブル2と、ガラス基板にレーザ光を照射するためのレーザ光照射ヘッド3と、を備えている。ここで、図1に示すように、ベッド1の上面に沿った平面において、互いに直交する軸をx軸、y軸とし、これらの軸に直交する鉛直方向の軸をz軸と定義する。また、x軸に沿った両方向(+方向及び−方向)をx軸方向、y軸に沿った両方向をy軸方向、z軸に沿った両方向をz軸方向と定義する。
[ワークテーブル及びその移動機構]
<ワークテーブル>
ワークテーブル2は、矩形状に形成されており、ワークテーブル2の下方には、ワークテーブル2をx軸方向及びy軸方向に移動させるためのテーブル移動機構5が設けられている。
ワークテーブル2は、図2に拡大して示すように、複数のブロック6を有している。この複数のブロック6は、図中、一点鎖線で示すガラス基板Gをワークテーブル2の表面から持ち上げて支持するための部材であり、ガラス基板Gの加工ラインL(破線で示す)を避けるために、ワークテーブル2の任意の位置に取り付けることが可能である。また、ワークテーブル2には複数の吸気口2aが格子状に形成されるとともに、各ブロック6には上下方向に貫通する吸気孔6aが形成されている。そして、ブロック6の吸気孔6aとワークテーブル2の吸気口2aとを接続することによって、ブロック6上に配置されるガラス基板Gを吸着固定することが可能である。なお、吸気のための機構は、周知の排気ポンプ等によって構成されており、詳細は省略する。
<テーブル移動機構>
テーブル移動機構5は、図1に示すように、それぞれ1対の第1及び第2ガイドレール8,9と、第1及び第2移動テーブル10,11と、を有している。1対の第1ガイドレール8はベッド1の上面にy軸方向に延びて設けられている。第1移動テーブル10は、第1ガイドレール8の上部に設けられ、第1ガイドレール8に移動自在に係合する複数のガイド部10aを下面に有している。第2ガイドレール9は第1移動テーブル10の上面にx軸方向に延びて設けられている。第2移動テーブル11は、第2ガイドレール9の上部に設けられ、第2ガイドレール9に移動自在に係合する複数のガイド部11aを下面に有している。第2移動テーブル11の上部には、固定部材12を介してワークテーブル2が取り付けられている。
以上のようなテーブル移動機構5によって、ワークテーブル2は、x軸方向及びy軸方向に移動自在である。なお、第1及び第2移動テーブル10,11は、詳細は省略するが、周知のモータ等の駆動手段によって駆動されるようになっている。
[レーザ光照射ヘッド]
レーザ光照射ヘッド3は、図1及び図3に示すように、ベッド1の上面に配置された門型フレーム1aに装着されており、レーザ光出力部15と、光学系16と、内部に1対の第1ウェッジプリズム(後述)が組み込まれた第1中空モータ17と、内部に1対の第2ウェッジプリズム(後述)及び集光レンズが組み込まれた第2中空モータ18と、を有している。また、レーザ光照射ヘッド3をx軸方向に移動させるためのx軸方向移動機構21と、第1中空モータ17及び第2中空モータ18をz軸方向に移動させるためのz軸方向移動機構22と、が設けられている。
<レーザ光出力部>
レーザ光出力部15は従来と同様のレーザ管により構成されている。このレーザ光出力部15によって、波長532nmのグリーンレーザがy軸に沿ってワークテーブル2とは逆側に出射される。
<光学系>
光学系16は、レーザ光出力部15からのレーザ光を第1中空モータ17に組み込まれた1対の第1ウェッジプリズムに導くものである。この光学系16は、図3に拡大して示すように、第1〜第4ミラー25〜28と、レーザ出力を計測するパワーモニタ29と、ビームエキスパンダ30と、を有している。
第1ミラー25は、レーザ光出力部15の出力側の近傍に配置されており、y軸方向に出射されたレーザ光をx軸方向に反射する。第2ミラー26は、x軸方向において第1ミラー25と並べて配置されており、x軸方向に進行するレーザ光をy軸方向に反射して、ワークテーブル2側に導く。第3ミラー27及び第4ミラー28は、第1中空モータ17の上方にx軸方向に並べて配置されている。第3ミラー27は第2ミラー26によって反射されてきたレーザ光を第4ミラー28側に導く。第4ミラー28は第3ミラー27によって反射されてきたレーザ光を下方の第1中空モータ17に導く。ビームエキスパンダ30は、第2ミラー26と第3ミラー27との間に配置され、第2ミラー26によって反射されてきたレーザ光を一定の倍率の平行光束に拡げるために設けられている。このビームエキスパンダ30によって、レーザ光をより小さなスポットに集光させることが可能となる。
<第1ウェッジプリズム及び第1中空モータ>
内部に第1ウェッジプリズム321,322が配置された第1中空モータ17の模式図を図4に示している。第1中空モータ17は、中心にz軸方向に延びる回転軸Rを有し、この回転軸Rを含む中央部が中空になっている。そして、この中空部に1対の第1ウェッジプリズム321,322が固定されている。1対のウェッジプリズム321,322は、同形状、同比重であって、屈折率のみが異なっている。各ウェッジプリズム321,322は、それぞれ回転軸Rに対して傾斜する斜面321a,322aと、回転軸Rに垂直な垂直面321b,322bと、を有している。そして、1対のウェッジプリズム321,322は、互いの垂直面321b,322bが近接して対向するように配置され、2つの垂直面321b,322bが平行で、かつ2つの斜面321a,322aが平行になるように配置されている。
同形状、同比重の2つの第1ウェッジプリズム321,322を以上のように配置することにより、2つの第1ウェッジプリズム321,322の全体の重心は回転軸R上に位置することになる。このため、これらの第1ウェッジプリズム321,322を高速で回転させても、動的アンバランス量を非常に小さくすることができる。
<2つのウェッジプリズムを用いた場合の偏角について>
図5を参照して、プリズムの頂角をδ、屈折率をnとした場合、このプリズムの偏角θは、δが小さい場合、
(n−1)・δ
である。なお、上式は、sinδ=δ(単位はラジアン)で近似できる程度にδが小さい場合の近似式である。本実施形態で用いるプリズムでは、頂角δは大きくても5°程度なので、sinδ=δと近似しても差し支えない。したがって、同形状(同じ頂角)で屈折率がそれぞれn1,n2である2つのウェッジプリズムのそれぞれの偏角θ1,θ2は、
θ1=(n1−1)・δ
θ2=(n2−1)・δ
である。そして2つのウェッジプリズムの斜面が平行になるように組み合わせて配置した場合の偏角θは、
θ=(n1−1)・δ−(n2−1)・δ=(n1−n2)・δ
となる。以上から明らかなように、頂角δが同じで、かつ同じ材質のウェッジプリズムの組合せであれば、n1=n2で、トータルの偏角は「0」になる。
しかし、n1≠n2であれば、トータルの偏角は、「0」にならず、2つのウェッジプリズムの屈折率の差に比例することになる。
そこで、ここでは、2つの第1ウェッジプリズム321,322の屈折率を異ならせて、第1ウェッジプリズム321,322を通過するレーザ光を偏向するようにしている。すなわち、このような第1ウェッジプリズム321,322を用いることによって、回転バランスの良いレーザ光偏向手段を構成することができる。
なお、同比重で屈折率の異なるウェッジプリズムの例としては、例えば以下のような組み合わせが考えられる。
<例1> S-BSM22+S-TIH11(比重:3.24、株式会社オハラ製)
この組合せの場合の偏角(°)は、頂角1°に対して、「0.169」である。
<例2> N-SSK2+N-SF57(比重:3.53、ショット日本株式会社製)
この組合せの場合の偏角(°)は、頂角1°に対して、「0.232」である。
<例3> BACD11+E-FD10(比重:3.07、HOYA株式会社製)
この組合せの場合の偏角(°)は、頂角1°に対して、「0.170」である。
なお、両ウェッジプリズム321,322の形状(頂角)については、後述する集光レンズの焦点距離fと偏角θによって決まるレーザ光の回転半径r(=f・tanθ又はf・θ)が、所望の値になるように設定される。
<第2ウェッジプリズム、第2中空モータ、集光レンズ>
内部に1対の第2ウェッジプリズム341,342が配置された第2中空モータ18を、図6に模式的に示す。この第2中空モータ18は、中心にz軸方向に延びる回転軸を有している。この回転軸は、第1中空モータ17の回転軸Rと同軸である。この第2中空モータ18は、回転軸Rを含む中心部に中空部を有している。この中空部に、1対の第2ウェッジプリズム341,342が装着されている。また、これらの第2ウェッジプリズム341,342は、一方のウェッジプリズム342に対して他方のウェッジプリズム341が回転軸Rの回りに相対回転自在に取り付けられている。すなわち、1対の第2ウェッジプリズム341,342は偏角が調整可能である。
1対の第2ウェッジプリズム341,342は、同形状、同材質(同比重)であり、したがって屈折率も同じである。また、1対の第2ウェッジプリズム341,342は、それぞれ回転軸に対して傾斜する斜面341a,342aと、回転軸に対して垂直な垂直面341b,342bを有している。そして、この第2ウェッジプリズム341,342においては、偏角が「0」の状態(互いの斜面が平行な状態)から、他方のウェッジプリズム342が回転されて配置されており、2つのウェッジプリズム341,342の斜面341a,342aは平行ではない。このような2つの第2ウェッジプリズム341,342の組合せによって、1対の第2ウェッジプリズム341,342は所定の偏角を有している。この偏角は、第1ウェッジプリズム321,322の偏角よりも大きい。
なお、1対の第2ウェッジプリズム341,342は、一方が他方に対して回転させられているので、これらの回転バランスは第1ウェッジプリズム321,322に比較して良くない。しかし、第2ウェッジプリズム341,342は、レーザ光を走査するための手段であるので、回転速度は低速であり、加工時において動的アンバランスが加工品質に悪影響を与えることはない。
また、この第2中空モータ18の内部で、1対の第2ウェッジプリズム341,342の出力側には、集光レンズ35が固定されている。なお、集光レンズ35は第2中空モータ18とは別に単独で配置するようにしても良い。
<レーザ照射ヘッドの支持及び搬送系>
以上のようなレーザ照射ヘッド3は、前述のように、ベッド1の門型フレーム1aに支持されている。より詳細には、図3に示すように、門型フレーム1aの上面にはx軸方向に延びる1対の第3ガイドレール36が設けられており、この1対の第3ガイドレール36及び図示しない駆動機構がx軸方向移動機構21を構成している。そして、1対の第3ガイドレール36には、支持部材37が移動自在に支持されている。支持部材37は、第3ガイドレール36に支持された横支持部材38と、横支持部材38のワークテーブル2側の一端側から下方に延びる縦支持部材39と、を有している。縦支持部材39の側面には、z軸方向に延びる1対の第4ガイドレール40が設けられており、この1対の第4ガイドレール40及び図示しない駆動機構がz軸方向移動機構22を構成している。第4ガイドレール40には、z軸方向に移動自在に第3移動テーブル41が支持されている。
そして、レーザ光出力部15、第1〜第4ミラー25〜28、パワーモニタ29、及びビームエキスパンダ30が、横支持部材38に支持されている。また、第3移動テーブル41にはモータ支持部材42が固定されており、このモータ支持部材42に、第1中空モータ17及び第2中空モータ18が支持されている。
[動作]
次に、レーザ光によるガラス基板の加工動作について説明する。
まず、ワークテーブル2の表面に複数のブロック6を設置する。このとき、複数のブロック6は、図2に示すように、ガラス基板Gの加工ラインLを避けるように配置する。以上のようにして設置された複数のブロック6上に、加工すべきガラス基板Gを載置する。
次に、x軸方向移動機構21によってレーザ照射ヘッド3をx軸方向に移動し、またテーブル移動機構5によってワークテーブル2をy軸方向に移動し、レーザ照射ヘッド3によるレーザ光の集光点が加工ラインLのスタート位置にくるように位置させる。
以上のようにしてレーザ照射ヘッド3及びガラス基板Gを加工位置に移動させた後、レーザ光をガラス基板に照射して加工を行う。ここでは、レーザ光出力部15から出射されたレーザ光は、第1ミラー25によって反射されて第2ミラー26に導かれる。なお、第1ミラー25に入射したレーザ光はパワーモニタ29によってレーザ出力が計測される。第2ミラー26に入射したレーザ光はy軸方向に反射され、ビームエキスパンダ30によって光束が拡げられて第3ミラー27に導かれる。そして、第3ミラー27で反射され、さらに第4ミラー28で反射されたレーザ光は、第1中空モータ17の中心部に設けられた1対の第1ウェッジプリズム321,322に入力される。
1対の第1及び第2ウェッジプリズム321,322に入力されたレーザ光は、2つの第1ウェッジプリズム321,322の屈折率が異なることにより、偏向されて出力される。また、第1ウェッジプリズム321,322は,例えば15000rpm以上で高速回転させられるので、第1ウェッジプリズム321,322を透過したレーザ光は、小さい回転半径(例えば直径0.4mm〜0.8mm)で高速回転している。
第1ウェッジプリズム321,322から出射されたレーザ光は、第2ウェッジプリズム341,342に入力される。この第2ウェッジプリズム341,342は、一方が他方に対して回転させられており、第1ウェッジプリズム321,322に比較して大きな偏角を有している。このため、第2ウェッジプリズム341,342を回転させることにより、高速回転するレーザ光が、比較的大きな回転半径(例えば外側直径5.0mm)で回転走査される。なお、第2ウェッジプリズム341,342の回転数は低く、例えば400〜800rpm程度である。
以上のようなレーザ光のガラス基板上での軌跡を図7に示している。ここで、1対の第1ウェッジプリズム321,322における加工誤差や取付誤差等によって、第1ウェッジプリズム321,322によって偏向、回転されたレーザ光により描かれる円の径に誤差が生じる。この誤差によって、最終的に加工される孔の径に誤差が生じる。この場合は、第2ウェッジプリズム341,342の一方を他方に対して回転させて、偏角を調整し、第2ウェッジプリズム341,342を通過したレーザ光による走査軌跡を調整すればよい。これにより、高い精度で所望の径の孔を加工することができる。
ここで、レーザ光による1回の加工でガラスが除去される高さは数十μmである。したがって、ガラス基板Gに孔開け加工を行う場合、集光点を加工ラインに沿って一度だけ走査しても孔を形成すること、すなわち加工ラインの内側の部分を抜き落とすことは、一般的に困難である。
そこで通常は、まず、集光点(加工部位)がガラス基板の下面に形成されるように、集光レンズ35を含む第2中空モータ18のz軸方向の位置をz軸移動装置22によって制御する(図8(a)参照)。この状態で集光点を加工ラインに沿って1周させた後、第2中空モータ18のz軸方向の位置を制御することにより、図8(b)に示すように、集光点を上昇させる。そして、同様に集光点を加工ラインに沿って1周させた後、さらに集光点を上昇させる。以上の動作を繰り返し実行することにより、加工ラインの内側部分を抜き落として孔を形成することができる。
あるいは、集光点を加工ラインに沿って1周させる毎に上昇させる代わりに、適切な速さで連続的にz軸方向に上昇させ、螺旋状に加工することでも同様に孔開け加工を行うことができる。
[特徴]
以上のような本実施形態では、レーザ光の偏向手段を、1対のウェッジプリズムによって構成しているので、安価に実現できる。そして、高速回転させる1対の第1ウェッジプリズム321,322については、同形状、同比重にし、かつ互いの斜面が平行になるように配置しているので、回転バランスが良好であり、高速回転させても振動を少なく抑えることができ、精度の良い加工を行うことができる。そして、集光点を高速回転させつつ走査してガラス基板を加工ラインに沿って加工するので、従来の装置に比較して加工時間を短縮することができる。
[他の実施形態]
本発明は以上のような実施形態に限定されるものではなく、本発明の範囲を逸脱することなく種々の変形又は修正が可能である。
(a)前記実施形態では、走査手段を、第2中空モータ18及び1対の第2ウェッジプリズム341,342で構成し、ガラス基板に孔を形成する場合について説明したが、走査手段はこのような構成に限定されない。
例えば、第2中空モータ及び1対の第2プリズムに代えて、2つのガルバノミラーを設けて、任意の形状に走査できるようにしても良い。具体的には、ガラス基板表面に沿った平面内においてx軸方向にレーザ光を走査するためのx方向ガルバノミラーと、ガラス基板表面に沿った平面内においてy軸方向にレーザ光を走査するためのy方向ガルバノミラーと、を設けるとともに、fθレンズを配置することにより、レーザ光を、ガラス基板表面において任意の形状に走査することができる。
(b)前記実施形態では、集光点をz軸方向に移動させる機構として、集光レンズ35を含む第2中空モータ18をz軸移動装置22によって移動させるようにしたが、集光レンズ35を含む第2中空モータ18を固定しておき、ワークテーブル2をz軸方向に移動させるようにしても良い。
(c)光学系の具体的な構成は前記実施形態に限定されない。レーザ光出力部15のレーザ光を、光軸の調整が容易で、かつ効果的に第1中空モータ17の第1ウェッジプリズム321,322に入力できればよい。
(d)第1ウェッジプリズム321,322の具体例は一例であって、これらに限定されるものではない。また、加工例の各数値も一例にすぎない。
2 ワークテーブル
15 レーザ出力部
16 光学系
17 第1中空モータ
18 第2中空モータ
321,322 第1ウェッジプリズム
341,342 第2ウェッジプリズム
35 集光レンズ
G ガラス基板

Claims (6)

  1. ガラス基板にレーザ光を照射して加工を行う加工装置であって、
    加工すべきガラス基板が載置されるワークテーブルと、
    レーザ光を出力するレーザ光出力部と、
    レーザ光出力部から出射されたレーザ光を偏向させるための1対の第1ウェッジプリズム及び前記1対の第1ウェッジプリズムを回転させる駆動手段を有する偏向・回転手段と、
    前記偏向・回転手段からのレーザ光を、前記ガラス基板上に集光させる集光手段と、
    集光されたレーザ光を前記ガラス基板上で走査する走査手段と、
    を備え、
    前記偏向・回転手段を構成する1対の第1ウェッジプリズムは、互いの屈折率が異なり、かつそれぞれの対向する近接面が平行で、かつ互いの離れた面が平行に配置されるとともに、前記1対のウェッジプリズム全体の重心が回転軸上にある、
    レーザ光によるガラス基板加工装置。
  2. 前記1対の第1ウェッジプリズムは同じ形状である、請求項1に記載のレーザ光によるガラス基板加工装置。
  3. 前記1対の第1ウェッジプリズムは同じ比重である、請求項2に記載のレーザ光によるガラス基板加工装置。
  4. 前記偏向・回転手段を構成する駆動手段は、前記1対の第1ウェッジプリズムが内部に配置された第1中空モータである、請求項1から3のいずれかに記載のレーザ光によるガラス基板加工装置。
  5. 前記走査手段は、
    対向して配置された1対の第2ウェッジプリズムと、
    前記1対の第2ウェッジプリズムが内部に配置された第2中空モータと、
    を含む、請求項1から4のいずれかに記載のレーザ光によるガラス基板加工装置。
  6. 前記1対の第2ウェッジプリズムは、一方に対して他方を回転させて偏角を調整可能である、請求項5に記載のレーザ光によるガラス基板加工装置。
JP2010156570A 2010-07-09 2010-07-09 レーザ光によるガラス基板加工装置 Expired - Fee Related JP5391159B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010156570A JP5391159B2 (ja) 2010-07-09 2010-07-09 レーザ光によるガラス基板加工装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010156570A JP5391159B2 (ja) 2010-07-09 2010-07-09 レーザ光によるガラス基板加工装置

Publications (2)

Publication Number Publication Date
JP2012017231A JP2012017231A (ja) 2012-01-26
JP5391159B2 true JP5391159B2 (ja) 2014-01-15

Family

ID=45602758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010156570A Expired - Fee Related JP5391159B2 (ja) 2010-07-09 2010-07-09 レーザ光によるガラス基板加工装置

Country Status (1)

Country Link
JP (1) JP5391159B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104384727A (zh) * 2014-11-19 2015-03-04 苏州德龙激光股份有限公司 光纤激光加工氧化铝陶瓷的装置及其方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5189684B1 (ja) * 2012-03-07 2013-04-24 三菱重工業株式会社 加工装置、加工ユニット及び加工方法
US9868179B2 (en) * 2012-03-09 2018-01-16 TOYOKOH, Co., Ltd. Laser irradiation device, laser irradiation system, and method for removing coating or adhering matter
WO2014010107A1 (ja) * 2012-07-11 2014-01-16 北陽電機株式会社 走査式測距装置
JP5983933B2 (ja) * 2012-10-12 2016-09-06 株式会社トヨコー 塗膜除去方法及びレーザー照射装置
CN103056519B (zh) * 2012-12-26 2014-11-26 中科中涵激光设备(福建)股份有限公司 一种锥度可控的激光微孔加工光束扫描装置及其控制方法
JP5496375B2 (ja) * 2013-01-23 2014-05-21 三菱重工業株式会社 加工装置、加工ユニット及び加工方法
JP6071641B2 (ja) 2013-02-27 2017-02-01 三菱重工業株式会社 加工装置、加工方法
JP5364856B1 (ja) * 2013-02-27 2013-12-11 三菱重工業株式会社 加工装置、加工方法
CN103149686B (zh) * 2013-03-07 2015-06-03 同济大学 同步带驱动旋转棱镜装置
US20160067820A1 (en) * 2013-04-26 2016-03-10 United Technologies Corporation Selective laser melting system
JP6484204B2 (ja) * 2016-09-09 2019-03-13 ファナック株式会社 ガルバノスキャナ
CN112008238B (zh) * 2020-07-22 2021-06-22 中国科学院西安光学精密机械研究所 一种激光螺旋扫描加工头的初始相位标定方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61259891A (ja) * 1985-05-15 1986-11-18 Hitachi Ltd レ−ザ加工装置
JP2690466B2 (ja) * 1995-01-11 1997-12-10 住友電気工業株式会社 レーザビームスピンナ
US7820941B2 (en) * 2004-07-30 2010-10-26 Corning Incorporated Process and apparatus for scoring a brittle material
JP2007118054A (ja) * 2005-10-28 2007-05-17 Aisin Seiki Co Ltd レーザ加工方法及びレーザ加工装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104384727A (zh) * 2014-11-19 2015-03-04 苏州德龙激光股份有限公司 光纤激光加工氧化铝陶瓷的装置及其方法

Also Published As

Publication number Publication date
JP2012017231A (ja) 2012-01-26

Similar Documents

Publication Publication Date Title
JP5391159B2 (ja) レーザ光によるガラス基板加工装置
JP5416492B2 (ja) レーザ光によるガラス基板加工装置
JP5409711B2 (ja) レーザ光によるワーク加工装置
TWI395630B (zh) 使用雷射光之玻璃基板加工裝置
JP4386137B2 (ja) レーザ加工装置及びレーザ加工方法
JP2014231071A (ja) レーザ光による基板切断装置
JP2013146780A (ja) 脆性材料基板のレーザ加工方法
JP5667347B2 (ja) レーザ光によるガラス基板加工装置
KR20140028196A (ko) 레이저 드릴링 장치
JP2013180298A (ja) レーザ加工装置
JP2014042916A (ja) レーザ加工装置
JP6437424B2 (ja) 光走査装置、光走査方法および表面検査装置
JP6240497B2 (ja) レーザ加工装置
JP4246981B2 (ja) レーザ加工装置
JP2007171281A (ja) 調芯装置
JP6035096B2 (ja) レーザ加工装置
JP2013226591A (ja) レーザビームによる基板加工装置
TWI825210B (zh) 雷射加工裝置
JP2003025084A (ja) レーザー加工装置及び加工方法
JP7208703B2 (ja) 調整方法
JP2015196172A (ja) レーザ加工装置及びレンズユニット
JP6451339B2 (ja) レーザ加工装置
JP2015123483A (ja) レーザ加工装置
JP2015006689A (ja) レーザ光による基板加工装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131011

R150 Certificate of patent or registration of utility model

Ref document number: 5391159

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees