JP5326413B2 - アンチスキッド制御装置 - Google Patents

アンチスキッド制御装置 Download PDF

Info

Publication number
JP5326413B2
JP5326413B2 JP2008204101A JP2008204101A JP5326413B2 JP 5326413 B2 JP5326413 B2 JP 5326413B2 JP 2008204101 A JP2008204101 A JP 2008204101A JP 2008204101 A JP2008204101 A JP 2008204101A JP 5326413 B2 JP5326413 B2 JP 5326413B2
Authority
JP
Japan
Prior art keywords
pressure
differential pressure
control
pressure increase
wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008204101A
Other languages
English (en)
Other versions
JP2009107614A (ja
Inventor
元司 沢田
徹 峯松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advics Co Ltd
Original Assignee
Advics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advics Co Ltd filed Critical Advics Co Ltd
Priority to JP2008204101A priority Critical patent/JP5326413B2/ja
Priority to DE102008042534A priority patent/DE102008042534A1/de
Priority to US12/247,586 priority patent/US8567875B2/en
Publication of JP2009107614A publication Critical patent/JP2009107614A/ja
Application granted granted Critical
Publication of JP5326413B2 publication Critical patent/JP5326413B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ブレーキ時に車輪がロックすることを防止するアンチスキッド制御(以下、ABS制御という)を行うABS制御装置に関し、横滑り防止制御やアクティブクルーズコントロール制御さらにはトラクション制御のように自動的にホイールシリンダ(以下、W/Cという)に対してブレーキ液圧を付与する自動ブレーキ制御装置などに適用されるものである。
従来、特許文献1において、車両の走行路面の摩擦係数(以下、路面μもしくはμという)が左右車輪間において異なるμスプリット路面において、路面μが高い側(以下、高μ路という)の前輪を独立制限制御とセレクトロー制御とを切替えて実行することにより、スピン発生を抑制しつつ、できるだけ大きな制動力を得るための制御が開示されている。独立制限制御とは、スリップの大きい前輪により他方の前輪のブレーキ力増加傾向を制限する制御のことを言う。また、セレクトロー制御とは、路面μが低い側(以下、低μ路という)の車輪に対してアンチスキッド制御が開始されたときに高μ路側の車輪がアンチスキッド制御の開始条件を満たしているか否かに関わらず、低μ側の車輪と共に高μ側の車輪もアンチスキッド制御における減圧制御を開始させる制御のことを言う。
独立制限制御は、スプリット路面において低μ路側の車輪の制動力よりも高い制動力を高μ路側の車輪に発生させることで、高μ路側の車輪でできるだけ制動力を稼ぐようにできるが、左右の路面μの差が大きい場合、左右前輪のスリップ率差が大きくなるために車両に加わるヨートルクを抑制しきれず、スピンの可能性がある。このため、左右前輪のスリップ率に大きな差があるような場合には、独立制限制御と比べて制動力を稼ぐことができなくなるものの、セレクトロー制御を選択することで左右前輪に発生させる制動力を同じにし、車両に加わるヨートルクを抑制してスピンを防止している。
特開平6−107156号公報
ABS制御の増圧制御を行う増圧制御弁への指示電流を変化させることで増圧制御弁の上下流間の差圧を線形的に変化させるリニア駆動を行うにあたり、従来では増圧制御弁自体の個体差により、指示電流値に対する発生差圧特性にバラツキが生じる。このため、特性がばらついた増圧制御弁が左右輪それぞれに取り付けられていると、それら左右輪のW/Cに発生させられるブレーキ液圧(以下、W/C圧という)の差圧が所望値に対してばらつくことになる。このため、左右輪のW/C圧の差圧を一定範囲に抑えることができない。
したがって、車両にヨートルクが生じることになり、特に、スプリット路面を走行する際には車両に加わるヨートルクが十分に抑えられなくなり、スピンを効果的に防止できないという問題がある。
本発明は上記点に鑑みて、増圧制御弁の個体差によるW/C圧の昇圧性能ばらつきに起因して左右前輪のW/C圧の差圧を一定範囲に抑えることができなくなることを防止し、スピンを防止できるABS制御装置を提供することを目的とする。
上記目的を達成するため、請求項に記載の発明では、左右前輪それぞれの推定W/C圧を演算する第1手段(115)と、左右前輪それぞれの推定W/C圧の差に基づいてμスプリット路面であること、および、高μ路側と低μ路側との判定を行う第2手段(120)と、μスプリット路面において高μ路側の車輪に対してABS制御の増圧制御を実行する際に、該高μ路側の前輪(FR、FL)に対応する増圧制御弁(17、37)の上下流間に発生させる差圧を第1差圧(Plow)と該第1差圧よりも高い第2差圧(Phigh)に繰り返し切替えるように、該増圧制御弁のソレノイドへの通電量を制御する第3手段(430〜445)と、を備えていることを特徴としている。
このように、高μ路側の前輪と対応する増圧制御弁にて第1差圧とそれよりも大きな第2差圧とに繰り返し切り替えることで、高μ路側の車輪のW/C圧を増圧している。したがって、W/C圧の昇圧性能のばらつきを抑制することができ、左右前輪のW/C圧の差圧を一定範囲に抑えることが可能になる。これにより、車両に加わるヨートルクを抑制でき、スピンを防止することが可能になる。
また、請求項1に記載の発明では、第3手段は、高μ路側の前輪に対応する増圧制御弁を遮断状態にするときのソレノイドの電流量を最大値とすると、第2差圧とするときのソレノイドの電流量を最大値よりも小さい値に設定することを特徴としている。
第2差圧を高μ側の前輪と対応する増圧制御弁の上下流間に発生させるときのソレノイドへの通電量は、増圧制御弁を遮断状態にするときのソレノイドの通電量を最大値として、この最大値かそれよりも低い値とされる。しかしながら、第2差圧のときのソレノイドの通電量を最大値にすると、第1差圧と第2差圧との切替えを行う度に増圧制御弁の弁体が弁座と接触する位置まで移動させられることになり、ブレーキ液圧の脈動油撃が発生する。このため、第2差圧のときのソレノイドの通電量を最大値よりも低い値とした方が好ましい。
また、請求項2に記載の発明では、μスプリット路面においてABS制御が開始され、左右前輪のうち高μ路側の車輪が減圧モードの設定により減圧されたのち、増圧モードが設定されて増圧されているときに、左右前輪のうち低μ路側の車輪にABS制御の減圧モードが設定された場合、および、左右前輪それぞれの推定W/C圧の差が閾値(Phold)を超えている場合に、左右前輪のうち高μ路側の車輪のW/C圧を保持し、左右前輪のうち低μ路側の車輪にABS制御の減圧モードが設定されておらず、かつ、左右前輪それぞれの推定W/C圧の差が閾値を超えていなければ、高μ路側の前輪と対応する増圧制御弁のソレノイドへの通電量を制御することで、該増圧制御弁を連通状態にする場合よりも低い増圧勾配で緩増圧する第4手段(410〜425)を備え、第3手段は、第4手段にて緩増圧が行われるときに、第1差圧と第2差圧とを繰り返し切替えることを特徴としている。
このように、第4手段にて緩増圧が行われる際には、特に個体差に基づく昇圧勾配のばらつきが顕著になる。このため、このような緩増圧が行われる場合に第1差圧と第2差圧とに繰り返し切替えるようにすると好ましい。
例えば、請求項3に示すように、第3手段は、第1差圧を第1時間(Tlow)継続したのち、第2差圧を第2時間(Thigh)継続することを繰り返し行うことができる。
請求項4に記載の発明では、第3手段は、高μ路側の前輪に対応する増圧制御弁を連通状態にするときのソレノイドの電流量を最小値とすると、第1差圧とするときのソレノイドの電流量を最小値よりも大きい値に設定することを特徴としている。
第1差圧を高μ側の前輪と対応する増圧制御弁の上下流間に発生させるときのソレノイドへの通電量は、増圧制御弁を連通状態にするときのソレノイドの通電量を最小値として、この最小値かそれよりも高い値とされる。しかしながら、第1差圧のときのソレノイドの通電量を最小値にすると、第1差圧と第2差圧との切替えを行う度に増圧制御弁の弁体が弁座から最も離れた位置まで移動させられることになり、ブレーキ液圧の脈動油撃が発生する。このため、第1差圧のときのソレノイドの通電量を最小値よりも高い値とした方が好ましい。
なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
以下、本発明の実施形態について図に基づいて説明する。
(第1実施形態)
本発明の第1実施形態について説明する。図1は、本発明の第1実施形態が適用されたABS制御装置を実現するブレーキ制御装置1の各機能のブロック構成を示したものである。このブレーキ制御装置1のうちABS制御を実現する部分がABS制御装置に相当する。
まず、本実施形態のブレーキ制御装置1について説明する。図1に示されるように、ブレーキ制御装置1には、ブレーキペダル11、倍力装置12、M/C13、W/C14、15、34、35およびブレーキ液圧制御用アクチュエータ50が備えられている。また、ブレーキ制御装置1にはブレーキECU70が備えられており、このブレーキECU70が様々な制御手段の一部として機能することで、ブレーキ制御装置1が発生させる制動力を制御するようになっている。具体的には、ブレーキ制御装置1には、各車輪FL、FR、RL、RRの車輪速度に応じたパルス信号を検出信号として出力する車輪速度センサ81〜84が備えられ、各車輪速度センサ81〜84の検出信号や後述する他のセンサの検出信号がブレーキECU70に入力され、ブレーキECU70が入力された検出信号に基づいて各種演算を行うことにより、制動力の制御を行っている。
図2は、ブレーキ制御装置1を構成する各部の詳細構造を示した図である。この図に示されるように、ドライバがブレーキペダル11を踏み込むと、倍力装置12にて踏力が倍力され、M/C13に配設されたマスタピストン13a、13bを押圧する。これにより、これらマスタピストン13a、13bによって区画されるプライマリ室13cとセカンダリ室13dとに同圧のM/C圧が発生する。M/C圧は、ブレーキ液圧制御用アクチュエータ50を通じて各W/C14、15、34、35に伝えられる。
ここで、M/C13は、プライマリ室13cおよびセカンダリ室13dそれぞれと連通する通路を有するマスタリザーバ13eを備える。
ブレーキ液圧制御用アクチュエータ50は、第1配管系統50aと第2配管系統50bとを有している。第1配管系統50aは、左前輪FLと右後輪RRに加えられるブレーキ液圧を制御し、第2配管系統50bは、右前輪FRと左後輪RLに加えられるブレーキ液圧を制御する。
第1配管系統50aと第2配管系統50bとは、同様の構成であるため、以下では第1配管系統50aについて説明し、第2配管系統50bについては説明を省略する。
第1配管系統50aは、上述したM/C圧を左前輪FLに備えられたW/C14及び右後輪RRに備えられたW/C15に伝達し、W/C圧を発生させる主管路となる管路Aを備える。
管路Aは、2つの管路A1、A2に分岐している。管路A1にはW/C14へのブレーキ液圧の増圧を制御する第1増圧制御弁17が備えられ、管路A2にはW/C15へのブレーキ液圧の増圧を制御する第2増圧制御弁18が備えられている。
第1、第2増圧制御弁17、18は、上下流間に発生させられる差圧を線形的(リニア)に制御するリニア弁として機能する。第1、第2増圧制御弁17、18も、基本的には連通・遮断状態を制御できるノーマルオープン型の電磁弁により構成されており、ブレーキECU70から要求差圧に応じた指示電流がソレノイドに流されることにより、第1、第2増圧制御弁17、18をリニア弁として機能させることができる。
管路Aにおける第1、第2増圧制御弁17、18及び各W/C14、15の間とリザーバ20とを結ぶ減圧管路としての管路Bには、連通・遮断状態を制御できる2位置電磁弁により構成される第1減圧制御弁21と第2減圧制御弁22とがそれぞれ配設されている。そして、これら第1、第2減圧制御弁21、22はノーマルクローズ型となっている。
リザーバ20と主管路である管路Aとの間には還流管路となる管路Cが配設されている。この管路Cにはリザーバ20からM/C13側あるいはW/C14、15側に向けてブレーキ液を吸入吐出するモータ60によって駆動される自吸式のポンプ19が設けられている。
また、ブレーキECU70は、ブレーキ制御装置1の制御系を司る本発明のABS制御装置に相当するもので、CPU、ROM、RAM、I/Oなどを備えた周知のマイクロコンピュータによって構成され、ROMなどに記憶されたプログラムに従ってABS制御にかかわる各種演算などの処理を実行する。例えば、ブレーキECU70は、図1および図2に示した各車輪速度センサ81〜84の検出信号を受け取って車輪速度を求め、車輪速度から車速を求めたり、車速を時間微分することにより車両の減速度を求めたりしている。また、ブレーキECU70にはストップランプスイッチ(STP)85の検出信号も入力されており、これにより制動中であるか否かの判定も行えるようになっている。
このブレーキECU70からの電気信号に基づいて、上記のように構成されたブレーキ液圧制御用アクチュエータ50における各制御弁17、18、21、22、37、38、41、42への電流供給制御及びポンプ19、39を駆動するためのモータ60への電圧印加制御が実行されるようになっている。これにより、各W/C14、15、34、35に発生させられるW/C圧が制御され、各車輪FL〜RRの制動力の制御が行われる。
具体的には、ブレーキ液圧制御用アクチュエータ50では、ブレーキECU70からモータ60に対して駆動電圧が印加されると共に各制御弁17、18、21、22、37、38、41、42に備えられたソレノイドに対して指示電流が供給されると、その指示電流に応じてブレーキ液圧制御用アクチュエータ50内の各制御弁17、18、21、22、37、38、41、42が駆動され、ブレーキ配管の経路が設定される。そして、設定されたブレーキ配管の経路に応じたブレーキ液圧がW/C14、15、34、35に発生させられ、各車輪FL〜RRに発生させられる制動力を制御できるようになっている。
続いて、上記のように構成されたブレーキ制御装置1のABS制御の詳細について説明する。図3は、μスプリット路面における制御も含めたABS制御処理の詳細を示したフローチャートである。また、図4〜図6は、ABS制御処理内で実行される個々の処理の詳細を示したフローチャートである。以下、図3〜6を参照してABS制御処理について説明する。なお、図3に示すABS制御処理は、図示しないイグニッションスイッチがオンされたときに各車輪それぞれに対して制御周期毎に実行される。
まず、図3に示すステップ100において、入力処理を行う。具体的には、車輪速度センサ81〜84やストップランプスイッチ85の検出信号を入力する。そして、ステップ105において、各車輪の車輪速度の演算を行ったり、各車輪速度を微分することで車輪加速度を演算する。続いて、ステップ110では、各車輪の車輪速度から周知の手法により推定車体速度を演算すると共に、演算した推定車体速度を微分することで各車輪の推定車輪加速度を演算する。
次に、ステップ115では、推定W/C圧演算を行う。図4は、この推定W/C演算の詳細を示したフローチャートである。
まず、ステップ200では、ABS制御中であるか否かを判定する。後述する図3中のステップ125の制御モード設定においてABS制御開始判定を行っており、ここでABS制御開始条件を満たしたときにABS制御中であることを示すフラグがセットされるため、このフラグがセットされているか否かに基づいてABS制御中か否かを判定することができる。ここでABS制御中ではなく、ABS制御前と判定された場合にはステップ205に進む。
ステップ205では、ストップランプスイッチ85が押されているか否かを判定する。そして、ストップランプスイッチ85が押されていなければ、制動中ではないため、ステップ210に進み、推定車体減速度(推定車体加速度の負値)から推定W/C圧PWCを求める。なお、推定車体減速度と推定W/C圧PWCとの関係は周知のマップもしくは演算式により表すことができるため、これを用いて推定車体減速度から推定W/C圧PWCを求めることができる。ただし、一応推定W/C圧PWCを求めているが、この場合には制動中ではないため、基本的には推定W/C圧PWCは0となる。
逆に、ステップ205でストップランプスイッチ85が押されていれば、制動中であるため、ステップ215に進み、制動開始時間から推定される値と推定車体減速度から求められた値のいずれか小さい方を推定W/C圧PWCとする。なお、制動開始時間からW/C圧を推定することに関しても周知であるため、詳細については説明を省略する。
一方、ステップ200でABS制御中と判定された場合には、ステップ220に進み、制御モードが減圧モードと増圧モードのいずれであるかを判定する。制御モードに関しては、後述する図3のステップ125の制御モード設定において設定されるものであり、その設定されているモードを読み出すことにより本ステップの判定を行う。そして、減圧モードであればステップ225に進み、ABS制御前にステップ215で求められていた推定W/C圧PWCを基準値として、その基準値からABS制御の減圧時間分で減圧されるであろう値を差し引くことにより推定W/C圧PWCを求める。また、増圧モードであればステップ230に進み、ステップ225で求められていた推定W/C圧PWCを基準値として、その基準値にABS制御の増圧勾配から求められる増圧されるであろう値を足し込むことにより推定W/C圧PWCを求める。以上のようにして、図4に示した推定W/C圧演算が行われる。
そして、図3のステップ120に進み、μスプリット判定、つまり走行中の路面がμスプリット路面であるか否か、および、左右車輪いずれの走行路面が高μ路であるかの判定を行う。図5は、μスプリット判定の詳細を示したフローチャートである。
まず、ステップ300では、ABS制御中であるか否かを判定する。上述したステップ200と同様の手法により判定する。そして、ここで否定判定された場合には、ステップ305に進み、μスプリット状態ではないと判定する。この場合には、仮にμスプリット路面を走行していたとしても、左右車輪間での路面μの相違によるスピンが発生する状況ではないため、μスプリット状態ではないとしている。また、ステップ300で肯定判定された場合には、ステップ310に進む。
ステップ310では、右前輪FRの推定W/C圧を求める。右前輪FRの推定W/C圧は、右前輪FRの増圧時間と右前輪の減圧時間の差に比例する値となるため、この差を簡易的に右前輪FRの推定W/C圧とする。なお、右前輪FRの増圧時間と右前輪の減圧時間とは、右前輪FRに対してABS制御の増圧モードおよび減圧モードの際に設定される増圧時間および減圧時間のことを意味している。
同様に、ステップ315では、左前輪FLの推定W/C圧を求める。左前輪FLの推定W/C圧は、左前輪FLの増圧時間と左前輪の減圧時間の差に比例する値となるため、この差を簡易的に左前輪FLの推定W/C圧とする。なお、左前輪FLの増圧時間と左前輪の減圧時間とは、左前輪FLに対してABS制御の増圧モードおよび減圧モードの際に設定される増圧時間および減圧時間のことを意味している。
続いて、ステップ320に進み、ステップ310およびステップ315で求めた右前輪FRの推定W/C圧から左前輪FLの推定W/C圧を引いた差が閾値(所定値)以上であるか否かを判定する。ここで肯定判定されれば、右前輪FRの推定W/C圧が左前輪FLの推定W/C圧よりも大きくなっていることを意味しているため、ステップ325に進み、μスプリット状態であり、かつ、右車輪FR側が高μ路であるとして処理を終了する。
また、ステップ320で否定判定された場合には、逆に、ステップ330において、ステップ315およびステップ310で求めた左前輪FLの推定W/C圧から右前輪FRの推定W/C圧を引いた差が閾値(所定値)以上であるか否かを判定する。この閾値は、ステップ320で用いた閾値と同値とされる。ここで肯定判定されれば、左前輪FLの推定W/C圧が右前輪FRの推定W/C圧よりも大きくなっていることを意味しているため、ステップ335に進み、μスプリット状態であり、かつ、左車輪FL側が高μ路であるとして処理を終了する。
そして、ステップ320でもステップ330でも否定判定された場合、μスプリット路面と呼べるほど左右の車輪FR、RLの推定W/C圧に差が無いため、ステップ305に進んでμスプリット状態ではないとする。このようにしてμスプリット判定が行われる。
続いて、図3のステップ125に進み、制御モード設定を行う。制御モード設定では、ABS制御の開始条件を満たすか否かの判定、ABS制御が開始された場合の減圧モード、保持モード、増圧モードの設定、ABS制御の終了条件を満たすか否かの判定などが行われる。これらに関しては既に周知となっているため、詳細に関しては省略するが、本実施形態では、低μ路側の車輪のスリップ率がABS制御開始しきい値を超えたときに、高μ路側の車輪のスリップ率に関わらず、低μ側の車輪と共に高μ側の車輪もABS制御における減圧制御を開始させるセレクトロー制御を行っている。そして、ABS制御の開始条件を満たすとその旨のフラグをセットし、ABS制御の終了条件を満たすまでそのフラグをセットしたままとしている。また、各モードが設定されると、後述するステップ165の出力処理に基づき各モードに対応する制御が実行され、減圧モードが設定されると減圧制御、保持モードが設定されると保持制御、増圧モードが設定されると増圧制御が実行される。
減圧制御のときには、第1〜第4増圧制御弁17、18、37、38を遮断状態とし、第1〜第4減圧制御弁21、22、41、42を連通状態とする。そして、モータ60を駆動することでポンプ19、39を作動させる。これにより、第1〜第4増圧制御弁17、18、37、38とW/C14、15、34、35の間において、管路A、E内のブレーキ液が第1、第2リザーバ20、40に逃がされる。そして、そのブレーキ液がポンプ19、39によって吸入・吐出され、管路A、EのうちのM/C13と各増圧制御弁17、18、37、38の間に戻される。これにより、各W/C14、15、34、35のW/C圧が減圧される。
保持制御のときには、第1〜第4増圧制御弁17、18、37、38を遮断状態、第1〜第4減圧制御弁21、22、41、42も遮断状態とする。これにより、各W/C14、15、34、35のW/C圧が保持される。
増圧制御のときには、第1〜第4増圧制御弁17、18、37、38への通電を開始すると共に、第1〜第4減圧制御弁21、22、41、42を遮断状態とする。第1〜第4増圧制御弁17、18、37、38に関しては、まず、増圧制御が実行される直前に第1〜第4増圧制御弁17、18、37、38の上下流間に発生させられていた差圧とされ、それから徐々にその差圧が小さくなるように、ソレノイドへの通電量(指示電流)が制御される。これにより、第1〜第4増圧制御弁17、18、37、38の下流に位置するW/C14、15、34、35に発生するW/C圧と高圧な第1〜第4増圧制御弁17、18、37、38の上流側のブレーキ液圧の差圧が小さくなり、W/C14、15、34、35のW/C圧が増圧される。
次に、ステップ130に進み、μスプリット状態であるか否かを判定する。この判定は、ステップ120で行ったμスプリット判定の結果に基づいて行われる。つまり、ステップ325もしくはステップ335でμスプリット状態であるとされた場合には本ステップで肯定判定され、ステップ305でμスプリット状態でないとされた場合には本ステップで否定判定される。
ここで、μスプリット状態でなければステップ135に進み、一般的なスプリット路面ではない場合のABS制御が各車輪FL〜RRに対して独立的に行われる独立制御を行う。また、μスプリット状態であればステップ140に進み、今回のABS制御処理が実行されているのが前輪FL、FRであるか否かを判定する。ここで前輪FL、FRであればステップ145に進み、前輪FL、FRでなければステップ135に進んで独立制御を行う。
ステップ145では、今回のABS制御処理が実行されているのが右前輪FRであるか否かを判定したのち、右前輪FRであればステップ150に進んで右車輪FR側が高μ路であるか否かを判定し、左前輪FLであればステップ155に進んで左車輪FL側が高μ路であるか否かを判定する。そして、高μ路であると判定された車輪に対してステップ160に進んでABS制御中におけるヨーコン制御(以下、制御中ヨーコン制御という)を実行し、高μ路と判定されなかった車輪についてはステップ135に進んで独立制御を実行する。
図6は、制御中ヨーコン制御の詳細を示したフローチャートである。まず、ステップ400では、微小スリップが発生しているか否かを判定する。ここでいう微小スリップとはABS制御の開始条件として用いられる閾値よりも小さい閾値を超える程度のスリップのことを示しており、推定車体速度と車輪速度との偏差として表されるスリップ率が閾値を超えていれば、微小スリップが発生していると判定される。この場合、ステップ405に進み、緩減圧制御が行われる。ここで言う緩減圧制御は、上述した減圧制御における減圧時間をより短くすることで、短時間だけ減圧制御を実行することを意味している。そして、ここではこの緩減圧制御を実行するための第1〜第4増圧制御弁17、18、37、38および第1〜第4減圧制御弁21、22、41、42のソレノイドに流す指示電流を求めている。このような緩減圧制御により、微小スリップが発生した場合に、それに対応して高μ路側の前輪FR、FLのW/C圧を減圧することが可能となり、スリップを低減できる。
一方、ステップ400で否定判定された場合には、ステップ410に進み、対称輪が減圧モードとなっているか否かを判定する。ここでいう対称輪とは、制御中ヨーコン制御が実行されているのが右前輪FRであれば左前輪FLのことを意味しており、左前輪FLであれば右前輪FRのことを意味している。
ここで肯定判定されればステップ415に進んで保持制御を実行する。具体的には、ここでは保持制御を実行するために第1〜第4増圧制御弁17、18、37、38および第1〜第4減圧制御弁21、22、41、42のソレノイドに流す指示電流を求めている。すなわち、対称輪が減圧モードであった場合にまで増圧制御を行ってしまうと左右前輪FR、FLのW/C圧の差が大きくなり、車両が不安定になりかねない。このため、対称輪が減圧モードであった場合には保持制御を実行することで左右前輪FR、FLのW/C圧の差が大きくなり過ぎないようにする。
また、ここで否定判定されればステップ420に進んで左右前輪FR、FLの推定W/C圧PWCの差の絶対値が閾値Phold(例えば1〜5MPa)を超えているか否かを判定する。ここで左右前輪FR、FLの推定W/C圧PWCの差の絶対値が閾値Pholdを超えていなければ、左右前輪FR、FLの推定W/C圧PWCの差がまだ大きくないが、超えていれば左右前輪FR、FLの推定W/C圧PWCの差が大きいと言える。
このため、ステップ420で肯定判定された場合には、ステップ415に進み、上記と同様の保持制御を行う。これにより、左右前輪FR、FLの推定W/C圧PWCの差が大きくなり過ぎることを防止できる。
そして、ステップ420で否定判定されている期間中は、ステップ425に進んで緩増圧制御を実行する。具体的には、この緩増圧制御を実行するために第1〜第4増圧制御弁17、18、37、38および第1〜第4減圧制御弁21、22、41、42のソレノイドに流す指示電流を求めている。ここでいう緩増圧制御とは、比較的緩やかな増圧勾配によって高μ路側の車輪のW/C圧を増圧することを意味している。緩増圧制御による増圧の形態は上述した通常の増圧制御と変わらないが、増圧制御弁17、18、37、38のソレノイドに対する通電量の変化のさせ方を緩やかにすることで緩増圧を行うことが可能となる。
さらに、本実施形態では、この緩増圧制御において、高μ路側の前輪FR、FLと対応する増圧制御弁17、37の上下流間に発生させる要求差圧が比較的低い第1差圧Plowとそれよりも高い第2差圧Phighとに短時間毎に繰り返し設定されるようにしている。具体的には、第1差圧Plowを第1時間Tlowの間継続した後、第2差圧Plowを第2時間Tlowの間継続することを繰り返すように、要求差圧およびそれに対応する指示電流がパルス波形とされる。
ここで、第1差圧Plowとは、高μ側の前輪FR、FLと対応する増圧制御弁17、37を連通状態(全開状態)にしたときに発生させられる差圧(=0)かそれよりも若干高い差圧のことを意味している。この第1差圧Plowを発生させるためには、高μ側の前輪FR、FLと対応する増圧制御弁17、37のソレノイドに対する通電量を最小値(=0)もしくはそれよりも若干高い値にする。また、第1時間Tlowに関しては、第1時間Tlowを長くし過ぎるとW/C圧が増圧され過ぎ、第1時間Tlowを短くし過ぎるとW/C圧があまり増圧されないことになるため、緩増圧の昇圧勾配に応じた時間に設定される。例えば、第1差圧Plowは2MPaに設定され、第1時間Tlowは12msに設定される。
また、第2差圧Phighとは、高μ側の前輪FR、FLと対応する増圧制御弁17、37を遮断状態(全閉状態)にしたときに発生させられる差圧かそれよりも若干小さな差圧のことを意味している。この第2差圧Phighを発生させるためには、高μ側の前輪FR、FLと対応する増圧制御弁17、37のソレノイドに対する通電量を最大値、つまり増圧制御弁17、37を遮断状態にする通電量とするか、もしくはそれよりも若干低い値にする。また、第2時間Thighに関しては、第2時間Thighを長くし過ぎるとW/C圧の増圧が遅くなり過ぎ、第2時間Thighを短くし過ぎると第1差圧Plowにする割合が多過ぎてW/C圧が増圧され過ぎることになるため、緩増圧の昇圧勾配に応じた時間に設定される。例えば、第2差圧Phighは25MPa、第2時間Thighは60msに設定される。
そして、このように高μ路側の前輪FR、FLと対応する増圧制御弁17、37にて第1差圧Plowを第1時間Tlow継続し、第2差圧Phighを第2時間Thigh継続することを繰り返せるように、ステップ430以降の処理を実行する。
すなわち、ステップ430では、高μ路側の前輪FR、FLと対応する増圧制御弁17、37の要求差圧が第1差圧Plowとされている時間が第1時間Tlow経過したか否かを判定する。ここで否定判定されれば、ステップ435に進んで高μ路側の前輪FR、FLと対応する増圧制御弁17、37の要求差圧を第1差圧Plowに設定する。これにより、第1時間Tlowが経過するまで、高μ路側の前輪FR、FLと対応する増圧制御弁17、37の要求差圧が第1差圧Plowとされる。
一方、ステップ430で肯定判定されれば、ステップ440に進み、高μ路側の前輪FR、FLと対応する増圧制御弁17、37の要求差圧が第2差圧Phighとされている時間が第2時間Thigh経過したか否かを判定する。ここで否定判定されれば、ステップ445に進んで高μ路側の前輪FR、FLと対応する増圧制御弁17、37の要求差圧を第2差圧Phighに設定する。これにより、第2時間Thighが経過するまで、高μ路側の前輪FR、FLと対応する増圧制御弁17、37の要求差圧が第2差圧Phighとされる。
このようにして制御中ヨーコン制御が行われると、図3のステップ165に進み、出力処理が実行される。これにより、ステップ135で実行される独立制御や制御中ヨーコン制御で設定された緩減圧制御、保持制御、緩増圧制御を実行すべく、第1〜第4増圧制御弁17、18、37、38および第1〜第4減圧制御弁21、22、41、42のソレノイドに対して指示電流を流す。これにより、各種制御が実行される。
以上のようなABS制御が実行された場合の効果について、図7に示すμスプリット路面でABS制御が実行された場合のタイミングチャートを参照して説明する。
まず、制動が開始されて時点T1において低μ路側の車輪がABS制御開始条件を満たしてABS制御が開始されると、セレクトロー制御により低μ路側と高μ路側共に減圧モードが設定され、減圧制御が開始されてW/C圧が減少していく。そして、高μ路側では推定車体速度と車輪速度との偏差が殆ど発生していないため、直ぐに減圧モードが解除されて増圧モードが設定され、増圧制御が開始される。このため、高μ路側の推定W/C圧と低μ路側の推定W/C圧との差が大きくなっていき、この差が時点T3において閾値Pholdを超える。このため、μスプリット判定(ステップ120)においてμスプリット路面であると判定され、左右車輪FR、FLのいずれが高μ路であるかも判定される(ステップ325、335)。
そして、μスプリット路面と判定されると、高μ路側の車輪に対して制御中ヨーコン制御(ステップ160)が実行される。これにより、対称輪が減圧モードである場合(ステップ410)、もしくは、左右前輪FR、FLの推定W/C圧の差の絶対値が閾値Pholdを超えていれば(ステップ420)、時点T3において高μ路側の車輪のW/C圧が保持される(ステップ415)。このため、高μ路側の車輪のW/C圧を保持して制動力を稼ぎつつ、高μ路側と低μ路側とでW/C圧の差が大きくなることによる左右の制動力差の発生を抑制できる。
次に、低μ路側の車輪の車輪速度が復帰し、保持モードを経て、時点T4において増圧モードが設定されると、再び左右前輪FR、FLの推定W/C圧の差の絶対値が閾値Phold以下になる。このため、高μ路側の車輪のW/C圧が緩増圧される。
このとき、高μ路側の前輪FR、FLと対応する増圧制御弁17、37にて第1差圧Plowを第1時間Tlow継続し、第2差圧Phighを第2時間Thigh継続することを繰り返すことで、高μ路側の車輪のW/C圧が緩増圧される(ステップ430〜445)。つまり、高μ路側の前輪FR、FLと対応する増圧制御弁17、37に対する要求差圧(および指示電流)がパルス波形とされる。このため、増圧制御弁17、37に個体差に起因して要求差圧に対して発生させる差圧が大きくなる側にばらついたとしても、急増圧を抑えることが可能になり、逆に、差圧が小さくなる側にばらついたとしても、ある程度増圧を確保することが可能になる。
以下、このような効果が得られる原理について、図8〜図11を参照して説明する。
図8は、増圧制御弁17、37の個体差に起因する要求差圧または指示電流に対する差圧特性を示したグラフである。また、図9は、図8に示したような個体差がある場合に、従来のように各増圧制御弁17、37に対する要求差圧(または指示電流)を線形的(リニア)に徐々に低下させたときの各車輪FL、FRのW/C圧の変化を示したグラフである。
図8に示されるように、増圧制御弁17、37の個体差により、要求差圧や指示電流に対して実際に発生させられる差圧特性が異なっている場合があり、例えば増圧制御弁17、37のうちの一方が実線で示した特性、他方が破線で示した特性となることがある。この場合、要求差圧や指示電流が同じであっても実際に発生させられる差圧にバラツキが発生する。このため、図9に示されるように、増圧制御弁17、37に対する要求差圧や指示電流を線形的に徐々に低下させた場合には、一方のW/C圧は要求差圧の低下に伴って徐々に増加し、他方はそれに個体差に起因した遅れをもってW/C圧が増加することがある。
したがって、要求差圧や指示電流を徐々に低下させていく際に常に両W/C圧間に個体差に起因した差が生じる。そして、減圧制御から増圧制御に切替えられたときに、増圧制御弁17、37に対する要求差圧は、増圧制御弁17、37を遮断状態とする最大値から、減圧制御から増圧制御に切り替わるときに実際に発生しているM/C圧とW/C圧の間の差圧に対応した値まで瞬間的に低下させられ、その後徐々に線形的に低下させられる。このとき、減圧制御から増圧制御に切り替わるときに発生しているM/C圧とW/C圧の間の差圧は、増圧制御弁17、37に個体差があれば異なった値となるが、個体差を考慮せずに推定W/C圧を演算し、その推定W/C圧を用いてM/C圧とW/C圧の間の差圧を演算している。このため、減圧制御から増圧制御に切り替わるときに、図9に示されるように、要求差圧や指示電流が個体差を考慮した値にならず、増圧制御弁17、37の一方に関しては要求差圧が減圧制御から増圧制御に切り替わるときに発生しているM/C圧とW/C圧の間の差圧となって要求差圧や指示電流の低下に伴って直ぐにW/C圧を増圧させられたとしても、他方は直ぐにW/C圧が増圧させられないことが有る。
このため、増圧制御弁17、37の個体差によってW/C圧を上昇させるのに差がでて、両車輪FL、FRのW/C圧の差が大きくなる。
これに対し、本実施形態では、要求差圧を第1差圧Plowと第2差圧Phighとに切替えている。図10は、図8に示したような個体差がある場合に、要求差圧が第2差圧Phighのときに両前輪FL、FRのW/C圧が双方共に所定値まで減圧されたあと、要求差圧を所定期間T1の間第1差圧Plowに切替えたときの各車輪FL、FRのW/C圧の変化を示したグラフである。また、図11は、図8に示したような個体差がある場合に、本実施形態のように要求差圧を第1差圧Plowと第2差圧Phighとに交互に繰り返して切替えた場合の各車輪FL、FRのW/C圧の変化を示したグラフである。
図10に示されるように、増圧制御弁17、37に個体差があるため、要求差圧を第1差圧Plowにしたときに各増圧制御弁17、37の上下流間に実際に発生させられる差圧に所定期間T1が経過することで誤差が生じ、各車輪FL、FRの増圧勾配に差が生じる。しかしながら、各増圧制御弁17、37の上下流間に実際に発生させられる差圧の誤差は、第2差圧Phighから第1差圧Plowに切替えた後の経過時間の長さに対応して大きくなるため、経過時間が短時間であればあまり大きくならない。
このため、本実施形態のように要求差圧を第1差圧Plowと第2差圧Phighとに短時間で交互に繰り返して切替えた場合、図10の一点鎖線で囲んだ領域A内に対応する短期間Plowが継続することになり、増圧制御弁17、37の個体差に起因して発生する両W/C圧の差はあまり大きくならない。つまり、図11に示されるように、要求差圧を第1差圧Plowと第2差圧Phighとに短時間で交互に繰り返して切替えた場合、第1差圧Plowに切替えられた瞬間から各車輪FL、FRのW/C圧が共に増加する。このとき、増圧制御弁17、37の個体差に起因して図10に示したように増圧勾配に差が生じる。しかしながら、要求差圧を第1差圧Plowに切替えてから第2差圧Phighに切替えるまでの時間が第1時間Tlowと短時間であるため、要求差圧(指示電流)をパルス波形としない場合に比して両W/C圧の差はあまり大きくならない。
これにより、増圧制御弁17、37の個体差に起因して両W/C圧に差が生じても、その差を小さくすることができる。そして、増圧制御弁17、37の個体差があっても要求差圧を第1差圧Plowという低い値まで低下させているため、減圧制御から増圧制御に切り替わるときに、発生しているM/C圧とW/C圧の間の差圧に対応する要求差圧を出す場合のように、いずれかのW/C圧が直ぐには増圧されないような状況(図9参照)を避け、ある程度の増圧を確保することができる。また、要求差圧を第1差圧Plowという低い値にしているが、短時間で第2差圧Phighに切り替わるようにしているため、急増圧を抑えることも可能となる。
したがって、W/C圧の昇圧性能のばらつきを抑制することができ、左右前輪FR、FLのW/C圧の差圧を一定範囲に抑えることが可能になる。これにより、車両に加わるヨートルクを抑制でき、スピンを防止することが可能になる。
この後、再び低μ路側の車輪が減圧モードに切り替わると、高μ路側の車輪のW/C圧が保持され、上記のような動作が繰り返されることになる。
以上説明したように、本実施形態では、高μ路側の前輪FR、FLと対応する増圧制御弁17、37にて第1差圧Plowを第1時間Tlow継続し、第2差圧Phighを第2時間Thigh継続することを繰り返すことで、高μ路側の車輪のW/C圧を緩増圧している。したがって、W/C圧の昇圧性能のばらつきを抑制することができ、左右前輪FR、FLのW/C圧の差圧を一定範囲に抑えることが可能になる。これにより、車両に加わるヨートルクを抑制でき、スピンを防止することが可能になる。
(他の実施形態)
上記実施形態では、第1差圧Plowを高μ側の前輪FR、FLと対応する増圧制御弁17、37の上下流間に発生させる場合のソレノイドへの通電量を、増圧制御弁17、37を連通状態にするときのソレノイドへの通電量を最小値(=0)として、この最小値かそれよりも若干高い値とした。しかしながら、第1差圧Plowのときのソレノイドの通電量を最小値にすると、第1差圧Plowと第2差圧Phighとの切替えを行う度に増圧制御弁17、37の弁体が弁座から最も離れた位置まで移動させられることになり、ブレーキ液圧の脈動油撃が発生する。このため、第1差圧Plowのときのソレノイドの通電量を最小値よりも若干高い値とした方が好ましい。
同様に、第2差圧Phighを高μ側の前輪FR、FLと対応する増圧制御弁17、37の上限流間に発生させる場合のソレノイドの通電量を、増圧制御弁17、37を遮断状態(全閉状態)にするときのソレノイドの通電量を最大値として、この最大値かそれよりも若干小さな値とした。しかしながら、第2差圧Phighのときのソレノイドの通電量を最大値にすると、第1差圧Plowと第2差圧Phighとの切替えを行う度に増圧制御弁17、37の弁体が弁座に接触する位置まで移動させられることになり、ブレーキ液圧の脈動油撃が発生する。このため、第2差圧Phighのときのソレノイドの通電量を最大値よりも若干低い値とした方が好ましい。
また、上記実施形態では、高μ側の前輪FR、FLと対応するW/C圧を緩増圧させる場合に、高μ路側の前輪FR、FLと対応する増圧制御弁17、37にて第1差圧Plowを第1時間Tlow継続し、第2差圧Phighを第2時間Thigh継続することを繰り返すようにした。しかしながら、これは好適な例を示したにすぎず、増圧制御弁17、37がリニア駆動され、かつ、緩増圧ではない通常の増圧を行う制御形態とされる際にも行うことができる。ただし、緩増圧が行われる際には、特に個体差に基づく昇圧勾配のばらつきが顕著になる。このため、このような緩増圧が行われる場合に第1差圧Plowと第2差圧Phighとに繰り返し切替えるようにすると好ましい。
さらに、上記実施形態では、増圧制御弁17、37を増圧制御する場合の一例としてμスプリット路におけるABS制御を例に挙げて説明したが、μスプリット路に限らず、通常のABS制御においても本発明を適用することができる。また、減圧制御から増圧制御に切り替わる場合だけでなく、例えば車輪のスリップ率が大きくなってきたときに保持制御を行い、その後スリップ率に応じて増圧制御を行うことでブレーキ時に車輪がロックすることを防止するようなタイプのABS制御を行うABS制御装置に対しても本発明を適用できる。さらに、W/C圧を自動的に加圧するような自動ブレーキ制御が実行される場合にも、増圧制御を行う場合に、本発明を適用することができる。例えば、横滑り防止制御やアクティブクルーズコントロール制御さらにはトラクション制御のように、ポンプによってブレーキ液を吸引吐出し、制御の対象輪に対してW/C圧を発生させるような自動ブレーキ制御が実行される自動ブレーキ制御装置に対しても本発明を適用することができる。このような自動ブレーキ制御装置は、図2に示したブレーキ制御装置1の構成に対して、例えばM/C13もしくはマスタリザーバ13eからポンプ19、39にブレーキ液が供給される管路を接続するともに、M/C圧とW/C圧との差圧を保持できる差圧制御弁を管路A、Eのうち増圧制御弁17、18、37、38よりもM/C13側に配置することにより実現される。
なお、各図中に示したステップは、各種処理を実行する手段に対応するものである。
本発明の第1実施形態にかかるABS制御装置を実現するブレーキ制御装置1の各機能のブロック構成を示したものである。 図1に示すブレーキ制御装置1を構成する各部の詳細構造を示した図である。 μスプリット路面における制御も含めたABS制御処理の詳細を示したフローチャートである。 推定W/C演算の詳細を示したフローチャートである。 μスプリット判定の詳細を示したフローチャートである。 制御中ヨーコン制御の詳細を示したフローチャートである。 μスプリット路面でABS制御が実行された場合のタイミングチャートである。 増圧制御弁17、37の個体差に起因する要求差圧または指示電流に対する差圧特性を示したグラフである。 各増圧制御弁17、37に対する要求差圧(または指示電流)を線形的に徐々に低下させたときの各車輪FL、FRのW/C圧の変化を示したグラフである。 要求差圧が第2差圧Phighのときに両前輪FL、FRのW/C圧が双方共に所定値まで減圧されたあと、要求差圧を第1差圧Plowに切替えたときの各車輪FL、FRのW/C圧の変化を示したグラフである。 要求差圧を第1差圧Plowと第2差圧Phighとに交互に繰り返して切替えた場合の各車輪FL、FRのW/C圧の変化を示したグラフである。
符号の説明
1…ブレーキ制御装置、11…ブレーキペダル、13…M/C、14、15、34、35…W/C、17、18、37、38…第1〜第4増圧制御弁、19、39…ポンプ、20、40…リザーバ、21、22、41、42…第1〜第4減圧制御弁、50…ブレーキ液圧制御用アクチュエータ、50a、50b…第1、第2配管系統、60…モータ、70…ブレーキECU、81〜84…各車輪速度センサ、85…ストップスイッチ、A〜C、E〜F…管路、FL〜RR…各車輪

Claims (4)

  1. 車両の左右で路面摩擦係数μが異なるμスプリット路面を走行する際に、路面摩擦係数μが低い低μ路側の車輪に対してアンチスキッド制御が開始されたときに路面摩擦係数μが高い高μ路側の車輪がアンチスキッド制御の開始条件を満たしているか否かに関わらず、前記低μ側の車輪と共に前記高μ側の車輪もアンチスキッド制御における減圧制御を開始させるセレクトロー制御を実行し、アンチスキッド制御の増圧制御を行う際に対象輪のホイールシリンダ(14、15、34、35)の増圧を制御する増圧制御弁(17、18、37、38)のソレノイドへの通電量を線形的に変化させることで該増圧制御弁の上下流間の差圧を制御し、前記ホイールシリンダの増圧を行うアンチスキッド制御装置において、
    左右前輪それぞれの推定ホイールシリンダ圧を演算する第1手段(115)と、
    前記左右前輪それぞれの推定ホイールシリンダ圧の差に基づいてμスプリット路面であること、および、高μ路側と低μ路側との判定を行う第2手段(120)と、
    前記μスプリット路面において前記高μ路側の車輪に対してアンチスキッド制御の増圧制御を実行する際に、該高μ路側の前輪(FR、FL)に対応する前記増圧制御弁(17、37)の上下流間に発生させる差圧を第1差圧(Plow)と該第1差圧よりも高い第2差圧(Phigh)に繰り返し切替えるように、該増圧制御弁のソレノイドへの通電量を制御する第3手段(430〜445)と、を備え
    前記第3手段は、前記高μ路側の前輪に対応する前記増圧制御弁を遮断状態にするときの前記ソレノイドの電流量を最大値とすると、前記第2差圧とするときの前記ソレノイドの電流量を前記最大値よりも小さい値に設定することを特徴とするアンチスキッド制御装置。
  2. 車両の左右で路面摩擦係数μが異なるμスプリット路面を走行する際に、路面摩擦係数μが低い低μ路側の車輪に対してアンチスキッド制御が開始されたときに路面摩擦係数μが高い高μ路側の車輪がアンチスキッド制御の開始条件を満たしているか否かに関わらず、前記低μ側の車輪と共に前記高μ側の車輪もアンチスキッド制御における減圧制御を開始させるセレクトロー制御を実行し、アンチスキッド制御の増圧制御を行う際に対象輪のホイールシリンダ(14、15、34、35)の増圧を制御する増圧制御弁(17、18、37、38)のソレノイドへの通電量を線形的に変化させることで該増圧制御弁の上下流間の差圧を制御し、前記ホイールシリンダの増圧を行うアンチスキッド制御装置において、
    左右前輪それぞれの推定ホイールシリンダ圧を演算する第1手段(115)と、
    前記左右前輪それぞれの推定ホイールシリンダ圧の差に基づいてμスプリット路面であること、および、高μ路側と低μ路側との判定を行う第2手段(120)と、
    前記μスプリット路面において前記高μ路側の車輪に対してアンチスキッド制御の増圧制御を実行する際に、該高μ路側の前輪(FR、FL)に対応する前記増圧制御弁(17、37)の上下流間に発生させる差圧を第1差圧(Plow)と該第1差圧よりも高い第2差圧(Phigh)に繰り返し切替えるように、該増圧制御弁のソレノイドへの通電量を制御する第3手段(430〜445)と、を備え
    前記μスプリット路面においてアンチスキッド制御が開始され、前記左右前輪のうち高μ路側の車輪が減圧モードの設定により減圧されたのち、増圧モードが設定されて増圧されているときに、前記左右前輪のうち低μ路側の車輪にアンチスキッド制御の減圧モードが設定された場合、および、前記左右前輪それぞれの推定ホイールシリンダ圧の差が閾値(Phold)を超えている場合に、前記左右前輪のうち高μ路側の車輪のホイールシリンダ圧を保持し、前記左右前輪のうち低μ路側の車輪にアンチスキッド制御の減圧モードが設定されておらず、かつ、前記左右前輪それぞれの推定ホイールシリンダ圧の差が前記閾値を超えていなければ、前記高μ路側の前輪と対応する前記増圧制御弁(17、37)の前記ソレノイドへの通電量を制御することで、該増圧制御弁を連通状態にする場合よりも低い増圧勾配で緩増圧する第4手段(410〜425)を備え、
    前記第3手段は、前記第4手段にて前記緩増圧が行われるときに、前記第1差圧と前記第2差圧とを繰り返し切替えることを特徴とするアンチスキッド制御装置。
  3. 前記第3手段は、前記第1差圧を第1時間(Tlow)継続したのち、前記第2差圧を第2時間(Thigh)継続することを繰り返し行うことを特徴とする請求項1または2に記載のアンチスキッド制御装置。
  4. 前記第3手段は、前記高μ路側の前輪に対応する前記増圧制御弁を連通状態にするときの前記ソレノイドの電流量を最小値とすると、前記第1差圧とするときの前記ソレノイドの電流量を前記最小値よりも大きい値に設定することを特徴とする請求項1ないし3のいずれか1つに記載のアンチスキッド制御装置。
JP2008204101A 2007-10-12 2008-08-07 アンチスキッド制御装置 Expired - Fee Related JP5326413B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008204101A JP5326413B2 (ja) 2007-10-12 2008-08-07 アンチスキッド制御装置
DE102008042534A DE102008042534A1 (de) 2007-10-12 2008-10-01 Antiblockiersteuervorrichtung und Automatikbremssteuervorrichtung
US12/247,586 US8567875B2 (en) 2007-10-12 2008-10-08 Anti-skid control device and automatic brake control device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007266457 2007-10-12
JP2007266457 2007-10-12
JP2008204101A JP5326413B2 (ja) 2007-10-12 2008-08-07 アンチスキッド制御装置

Publications (2)

Publication Number Publication Date
JP2009107614A JP2009107614A (ja) 2009-05-21
JP5326413B2 true JP5326413B2 (ja) 2013-10-30

Family

ID=40776588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008204101A Expired - Fee Related JP5326413B2 (ja) 2007-10-12 2008-08-07 アンチスキッド制御装置

Country Status (1)

Country Link
JP (1) JP5326413B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5447447B2 (ja) * 2011-07-14 2014-03-19 トヨタ自動車株式会社 車両用制動力制御装置
JP5461513B2 (ja) 2011-12-26 2014-04-02 日信工業株式会社 車両用ブレーキ液圧制御装置
JP5411923B2 (ja) * 2011-12-26 2014-02-12 日信工業株式会社 車両用ブレーキ液圧制御装置
JP5502921B2 (ja) * 2012-03-15 2014-05-28 日信工業株式会社 車両用ブレーキ液圧制御装置
JP5502922B2 (ja) * 2012-03-15 2014-05-28 日信工業株式会社 車両用ブレーキ液圧制御装置
JP6197589B2 (ja) * 2013-11-07 2017-09-20 株式会社アドヴィックス 車両の制動制御装置
JP7215239B2 (ja) * 2019-03-07 2023-01-31 トヨタ自動車株式会社 車両用制動力制御装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4293036B2 (ja) * 2004-04-13 2009-07-08 株式会社アドヴィックス 車両のブレーキ液圧制御装置
JP4661340B2 (ja) * 2005-05-12 2011-03-30 株式会社アドヴィックス 車両のブレーキ液圧制御装置

Also Published As

Publication number Publication date
JP2009107614A (ja) 2009-05-21

Similar Documents

Publication Publication Date Title
JP5326770B2 (ja) ブレーキ制御装置
JP5446682B2 (ja) 車両運動制御装置
JP5326413B2 (ja) アンチスキッド制御装置
US8567875B2 (en) Anti-skid control device and automatic brake control device
JP5295750B2 (ja) ブレーキ装置の制御装置
US10384661B2 (en) Vehicle braking control device
JP4462153B2 (ja) 制動力配分制御装置
JP3528415B2 (ja) 制動圧力制御装置
JP4899796B2 (ja) アンチスキッド制御装置
JP4529661B2 (ja) Abs制御装置
JP4978503B2 (ja) 車輌用制動装置
JP5103917B2 (ja) 車両の運動制御装置
JP4736971B2 (ja) 制動時間検出装置およびそれを用いた制動制御装置
JP4998194B2 (ja) アンチスキッド制御装置
JP5998649B2 (ja) 制動制御装置
JP4682641B2 (ja) 車両のトラクション制御装置
JP5375371B2 (ja) 車両運動制御装置
JP4802878B2 (ja) アンチスキッド制御装置
JP2011073576A (ja) 車両運動制御装置
JP5418022B2 (ja) 車両運動制御装置
JP5195129B2 (ja) 車両用ブレーキ制御装置
JP2012171404A (ja) アンチスキッド制御装置
JP3702489B2 (ja) アンチスキッド制御装置
JP6409327B2 (ja) 車両用ブレーキ装置
JP5983303B2 (ja) 車両運動制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130708

R150 Certificate of patent or registration of utility model

Ref document number: 5326413

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees