JP5219355B2 - 太陽電池素子の製造方法 - Google Patents

太陽電池素子の製造方法 Download PDF

Info

Publication number
JP5219355B2
JP5219355B2 JP2006292387A JP2006292387A JP5219355B2 JP 5219355 B2 JP5219355 B2 JP 5219355B2 JP 2006292387 A JP2006292387 A JP 2006292387A JP 2006292387 A JP2006292387 A JP 2006292387A JP 5219355 B2 JP5219355 B2 JP 5219355B2
Authority
JP
Japan
Prior art keywords
solar cell
electrode
weight
oxide
cell element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006292387A
Other languages
English (en)
Other versions
JP2008109016A (ja
Inventor
淳一 跡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2006292387A priority Critical patent/JP5219355B2/ja
Publication of JP2008109016A publication Critical patent/JP2008109016A/ja
Application granted granted Critical
Publication of JP5219355B2 publication Critical patent/JP5219355B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

本発明は、太陽電池素子用銀ペースト及びそれを用いた太陽電池素子の製造方法に関するものである。
従来の一般的な太陽電池素子について、図3を用いて説明する。
図3において、1は半導体基板、2は拡散層、3は反射防止膜、4はBSF層、5は表面電極、6は裏面電極、6aは出力取出電極、6bは集電電極、7は半田層を示す。
まず、p型シリコン基板の受光面となる表面側には、P元素を含むn型の拡散層2と酸化シリコン膜や窒化シリコン膜などからなる反射防止膜3が形成される。半導体基板1の裏面側には、例えばアルミニウムなどを拡散して形成された高濃度p型のBSF層4を有する。
そして、半導体基板1の表裏両面にはそれぞれ、銀等を主成分とする表面電極5と、裏面電極6においては銀等を主成分とする出力取出電極6aとアルミニウムを主成分とする集電電極6bが形成されている。
ここで、表面電極5および出力取出電極6aの表面は、後工程で太陽電池素子同士を接続するために銅箔の周囲が半田で被覆されたインナーリードと接続しやすくする目的と、太陽電池素子の長期信頼性を確保する目的とを満たすために、半田層7で被覆するのが一般的である(例えば、特許文献1参照)。また、長期信頼性を確保するためことを目的として、上記半田層による被覆に代えて、ガラス層等で被覆することも開示されている(例えば、特許文献2参照)。
他方において、電極のインナーリードに対する半田濡れ性を向上させる目的で、無鉛の酸化ビスマス系ガラスフリットを含む銀ペーストをn型半導体基板の受光面側に塗布・焼成して電極を形成する技術が開示されている。(例えば、特許文献3参照)
特開2002−353477号公報 特開2004−247596号公報 特開平11−329072号公報
しかしながら、表面電極や裏面電極の表面を半田やガラス層で被覆する従来技術によると、当該被覆工程が電極形成工程と別に必要となることから、太陽電池素子の製造工程数が多くなって生産性が低下し、またコストも増大するという問題があった。
また、無鉛ガラスフリットを含む銀ペーストを用いて電極を形成する従来技術については、電極の長期信頼性を十分に確保できないという問題があった。
本発明はこのような問題に鑑みてなされたものであり、その目的は、電極表面を半田等で被覆することなく、太陽電池素子用の基板との接着強度(電極強度)を確保し、且つ、その長期信頼性に優れた電極を、高い生産性で作製するための太陽電池素子用銀ペーストとそれを用いた太陽電池素子の製造方法を提供するものである。
本発明の太陽電池素子の製造方法は、酸化物換算で、酸化亜鉛が5重量%以上10重量%以下、酸化ビスマスが78重量%以上83重量%以下、酸化ホウ素と酸化ケイ素とが合計で6重量%以上の組成を有するガラスフリットと、銀粉末と、有機ビヒクルと、を含有する太陽電池素子用銀ペーストを、半導体基板の一主面の少なくとも一部に塗布する工程と、前記太陽電池素子用銀ペーストを焼成する工程とを有するものである。
前記ガラスフリットは、前記銀100重量部に対して、0.5重量部以上7重量部以下の割合で含有されることが好ましい。
前記焼成工程は、ピーク温度が500℃以上600℃未満に設定されることが好ましい。
前記半導体基板の一主面の少なくとも一部であって、前記太陽電池素子用銀ペーストと接する位置に、アルミニウムを主成分とするアルミニウムペーストを塗布する工程、をさらに有することが好ましい。
前記太陽電池素子用銀ペーストおよび前記アルミニウムペーストは同時に焼成されることが好ましい。
本発明の太陽電池素子の製造方法に用いる太陽電池素子用銀ペーストは、酸化物換算で、酸化亜鉛が5重量%以上10重量%以下、酸化ビスマスが7重量%以上8重量%以下、酸化ホウ素と酸化ケイ素とが合計で6重量%以上の組成を有するガラスフリットと、銀粉末と、有機ビヒクルと、を含有することから、当該ペーストを太陽電池素子用半導体基板の表面に塗布・焼成することで形成された電極は、無鉛系のガラスフリットを使用しても、従来のように電極表面に半田層やガラス層をさらに被覆することなく、太陽電池素子用半導体基板との間における電極強度の長期信頼性を確保することができる。
また、ガラスフリットは、銀100重量部に対して、0.5重量部以上7重量部以下の割合で含有されることが好ましく、これによって上記したような電極強度の長期信頼性を十分に確保することができる。
また本発明の太陽電池素子の製造方法は、上記のような太陽電池素子用銀ペーストを、半導体基板の一主面の少なくとも一部に塗布する工程と、該太陽電池素子用導電性ペーストを焼成する工程とを有することから、半導体基板との間における電極強度の長期信頼性を確保することができる。
特に、前記焼成工程は、ピーク温度が500℃以上600℃未満に設定されることが好ましく、これによって、電極強度の低下率を抑制しつつ、焼成温度による基板へのダメージを抑えることができ、良好な太陽電池特性を得ることができる。
また、前記半導体基板の一主面の少なくとも一部であって、前記太陽電池素子用銀ペーストと接する位置に、アルミニウムを主成分とするアルミニウムペーストを塗布する工程を、さらに有することが好ましく、このように電極が重なり合って応力が生じやすい位置関係を有する場合においても、電極強度の低下を効果的に抑制することができる。
さらに、前記太陽電池素子用銀ペーストおよび前記アルミニウムペーストは、生産性向上の観点から、同時に焼成されることが好ましい。
以下、本発明の太陽電池素子用銀ペースト及び本発明の太陽電池素子の製造方法について、図面を参照しつつ詳細に説明する。
≪太陽電池素子用導電性ペースト≫
本発明の太陽電池素子用銀ペーストは、酸化物換算で、酸化亜鉛が5重量%以上10重量%以下、酸化ビスマスが70重量%以上84重量%以下、酸化ホウ素と酸化ケイ素とが合計で6重量%以上の組成を有するガラスフリットと、銀粉末と、有機ビヒクルと、を含有するものである。特に、ガラスフリットの成分としては、酸化鉛を含まないことが環境面からも好ましい。ここで、ガラスフリットは、銀100重量部に対して0.5〜7重量部を添加することが好ましい。なお、ガラスフリットは、上記組成を有するものを単独で用いるのみならず、異なる組成を有する他のガラスフリットを混合して用いてもよい。また、銀ペーストには、所定の有機ビヒクルを、銀100重量部に対して10〜30重量部を添加することが好ましい。
ガラスフリットは、酸化物換算で、酸化亜鉛が5重量%以上10重量%以下、酸化ビスマスが70重量%以上84重量%以下、酸化ホウ素と酸化ケイ素とが合計で6重量%以上の組成を有することから、銀ペーストを半導体基板に塗布し焼成されてなる電極層は、長期使用による電極強度の低下率が抑制される。
この理由として、酸化亜鉛、酸化ビスマス、酸化ホウ素と酸化ケイ素の組成比が上記範囲を満たすことにより、太陽電池素子が複数接続された太陽電池モジュールが長期間野外に設置されることによって入り込んできた水分の影響による無鉛ガラスフリットの溶出量を抑制することができ、銀ペーストを焼成した際に形成される半導体基板と電極の界面のガラス層が破壊されるのを防ぐことによって半導体基板と電極の電極強度を長期間に渡って保つことができる。このように、無鉛ガラスフリットの溶出量を抑えることにより、銀電極は日々の温度サイクルや湿気の影響に耐え、長期信頼性を確保していると推察される。
このように酸化亜鉛が5重量%以上10重量%以下、酸化ビスマスは70重量%以上84重量%以下、酸化ホウ素と酸化ケイ素とが合計で6重量%以上とするガラスフリットを銀ペースト中に含有させることによって、銀電極の長期信頼性が向上する。しかしながら、ガラス成分の酸化亜鉛および酸化ビスマス、酸化ホウ素と酸化ケイ素の合計が上記範囲より少なかったり、多かったりすると、耐湿性試験を行った後における電極強度の低下率を充分に抑えることができなくなり、長期信頼性を確保することが難しくなる。その理由としては、定かではないが、酸化亜鉛が上記範囲より少ない、または、酸化ビスマスが上記範囲より少ないとガラスの溶出量が多くなることで、耐湿性の低下が起きる可能性があり、酸化亜鉛が上記範囲より多いと、ガラスの軟化点が上がり、焼成時にガラスフリットが半導体基板界面に移動する量が少なくなり耐湿性の低下が起きる可能性があると考えられる。また、酸化ビスマスが上記範囲より多くなると、特に、酸化ホウ素と酸化ケイ素の量が必然的に少なくなるので、ガラス化ができず、ガラスフリットを形成することができない。
ガラスフリットには、上述の酸化亜鉛、酸化ビスマス、酸化ホウ素、酸化ケイ素の他に、酸化アルミニウム、酸化アンチモン、酸化カルシウム、酸化ジルコニウム、酸化セレン、酸化バリウム、酸化マグネシウム、酸化マンガン、酸化リチウム及び酸化銅等を適宜含有することができる。なお、長期信頼性をより高めるために、特に、酸化物換算で、酸化アルミニウムを0.01〜1重量%の成分を有することが好ましい。
本発明のガラスフリットは例えば、特許文献3に記載されているような一般的な製法によって作製することができる。つまり、ガラスフリットの原料となる酸化亜鉛、酸化ビスマス、酸化ホウ素、酸化ケイ素等を組成比に合わせて混合し、1500℃〜2500℃以上の高温にてそれらを溶融したのち水中などに投下して急冷してガラス化し、ボールミルなどで微粉化することにより、ガラスフリットが得られる。
ガラスの粒径は、ペースト中の分散性を考慮して、粒径D50が1〜5μmのものを用いることが好ましく、粒径D25が0.4×D50〜0.6×D50μm、粒径D75が1.5×D50〜1.8×D50μmであることがさらに好ましい。なお、粒径D25、D50、D75の測定方法としては、評価対象の試料を水に浸漬し、約10分間超音波処理したのちレーザー回折散乱法を用いることができ、D25、D50およびD75はそれぞれ、レーザー回折散乱法に基づく代表径の個数基準積算ふるい下分布で頻度25、50、75%の粒径であり、一般的なマイクロトラック法により測定から計算が可能である。
ガラスの熱膨張係数は、シリコン(2.5×10−6/deg)と用いる導電性ペーストの主成分となる銀(19×10−6/deg)との中間値であることが好ましい。
特に、比較的耐湿性に乏しい銀を主成分とした電極において、上記ガラスフリットを含有した銀ペーストにより電極を形成することにより、電極の長期信頼性が向上することから、銀ペーストのガラスフリットとして好適に用いることができる。
≪太陽電池素子の製造方法≫
本発明の太陽電池素子の製造方法について詳しく説明する。
図1は、本発明における太陽電池素子の断面の構造を示す図である。また、図2は、本発明に係る電極層形状の一例を示す図であり、(a)は受光面側(表面)、(b)は非受光面側(裏面)である。
半導体基板1は、単結晶または多結晶シリコンなどからなる。このシリコン基板1は、ボロン(B)などの一導電型半導体不純物を含有し、抵抗は例えば0.2〜2.0Ω・cm程度程度である。単結晶シリコン基板の場合には引き上げ法などによって形成され、多結晶シリコン基板の場合は鋳造法などによって形成される。引き上げ法や鋳造法によって形成されたインゴットを10cm×10cm〜25cm×25cm程度の大きさに切断し、500μm以下、より好ましくは250μm以下の厚みにスライスして半導体基板1とする。なお、以下の説明においてはp型半導体基板を用いて説明を行なうが、n型半導体基板を用いてもかまわない。
この半導体基板1は、そのスライス面を清浄化するために、表面をNaOHやKOH、あるいはフッ酸やフッ硝酸等でごく微量エッチングされる。
その後、光入射面となる半導体基板表面(受光面)側に、ドライエッチング方法やウェットエッチング方法などを用いて、光反射率低減機能を有する凹凸(粗面化)構造を形成することが好ましい。
次に、n型の拡散層2を形成する。n型化ドーピング元素としてはP(リン)を用いることが好ましく、シート抵抗が例えば30〜300Ω/□程度のn型とする。これによって、p型バルク領域との間にpn接合部が形成される。
拡散層2は、半導体基板の受光面などに形成されるものであり、例えば、ペースト状態にしたPを塗布して熱拡散させる塗布熱拡散法、ガス状態にしたPOCl(オキシ塩化リン)を拡散源とした気相熱拡散法、及びpイオンを直接拡散させるイオン打ち込み法等によって形成される。この拡散層2は、0.2〜0.5μm程度の深さに形成される。
なお、拡散を予定しない部位にも拡散領域が形成された場合には、後でエッチングによって除去すればよい。半導体基板1の受光面側以外の拡散層2の除去は、半導体基板1の受光面側にレジスト膜を塗布し、フッ酸又はフッ酸と硝酸の混合液を用いてエッチング除去した後、レジスト膜を除去することにより行なえばよい。また、後述するように、裏面(非受光面)のBSF領域4をアルミニウムペーストによって形成する場合は、p型ドープ剤であるアルミニウムを充分な濃度で充分な深さまで拡散させることができるので、既に拡散してあった浅いn型拡散層の影響は無視できるようにすることができ、この裏面側に形成されたn型拡散層を特に除去する必要はない。
なお、拡散層2の形成方法は上記方法に限定されるものではなく、例えば薄膜技術及び条件を用いて、水素化アモルファスシリコン膜や、微結晶シリコン膜を含む結晶質シリコン膜などを形成してもよい。さらに、p型半導体基板1と拡散層2との間にi型シリコン領域(不図示)を形成してもよい。
次に、反射防止膜3を形成する。反射防止膜3の材料としては、SiNx膜(Si34ストイキオメトリを中心にして組成比(x)には幅がある)、TiO2膜、SiO膜、MgO膜、ITO膜、SnO2膜、ZnO膜などを用いることができる。その厚さは、適当な入射光に対して無反射条件を実現できるよう、半導体材料に応じて適宜選択すればよい。例えば半導体基板1がシリコン基板である場合、屈折率は1.8〜2.3程度、厚み500〜1200Å程度にすればよい。
反射防止膜3の製法としては、PECVD法、蒸着法又はスパッタ法などが用いられる。なお、反射防止膜3は、後述するファイヤースルー法で表面電極5を形成しない場合は、表面電極5を形成するために所定のパターンでパターニングしておく。パターニング法としてはレジストなどマスクを用いたエッチング法(ウェットあるいはドライ)や、反射防止膜3形成時にマスクを予め形成しておき、反射防止膜3形成後にこれを除去する方法を用いることができる。一方、反射防止膜3の上に表面電極5の導電性ペーストを直接塗布し焼き付けることによって表面電極5と拡散層2を電気的に接触させる、いわゆるファイヤースルー法を用いる場合は、前記パターニングの必要はない(図2(a))。
次に、BSF層4を形成することが望ましい。ここで、BSF層4とは、半導体基板1の裏面側に一導電型半導体不純物が高濃度に拡散されてなる領域を言い、キャリアの再結合による効率の低下を防ぐ役割を有するものである。不純物元素としてB(ボロン)やAl(アルミニウム)を用いることができ、不純物元素濃度を高濃度にして、p型とすることによって後述する裏面電極6との間にオーミックコンタクトを得ることができる。
BSF層4の製法としては、BBr(三臭化ボロン)を拡散源とした熱拡散法を用いて温度800〜1100℃程度で形成することができ、熱拡散法を用いる場合は、既に形成してある拡散層2には酸化膜などの拡散バリアをあらかじめ形成しておくことが望ましい。他の製法として、アルミニウムを用いる場合、アルミニウム粉末及び有機ビヒクル等からなるアルミニウムペーストを塗布法で塗布したのち、温度600〜850℃程度で熱処理(焼成)してアルミニウムを半導体基板1に向けて拡散する方法を用いることができ、この方法によると塗布面への所望の拡散領域が形成できると同時に、上記した裏面側の不要な拡散層の除去を要しない。しかも、焼成されたアルミニウムは除去せずに、そのまま裏面電極の集電電極6bとして利用することもできる。
次に、表面電極5及び裏面電極6を、半導体基板1の表面側及び裏面側に形成する。これらの電極は、半導体基板1の表面に公知の塗布法を用いて本発明の太陽電池素子用銀ペーストを塗布し、ピーク温度が500〜850℃程度で数十秒〜数十分間焼成して電極を形成する。ここで、焼成のピーク温度を500℃以上600℃未満にすることが好ましい。
裏面電極6は、図2(b)に示すように、本発明の導電性ペーストを塗布・焼成して形成された出力取出電極6aと、アルミニウムを主成分に含むアルミニウムペーストをシリコン基板の略全面に塗布・焼成して形成される集電電極6bとを、互いの一部が重なるように構成されていてもよい。このように、銀を主成分とする出力取出電極6aと、アルミニウムを主成分とする集電電極6bとの重なり部分では、応力が生じやすく、電極強度が低下しやすいため、本発明の太陽電池素子用銀ペーストを用いることにより上記問題を抑制することができる。
なお、出力取出電極6aとなる銀ペーストを塗布し、集電電極6bとなるアルミニウムペーストを塗布した後に、両者を同時に焼成することによって、製造工程数を減らすことができ生産性を向上させるようにすることが好ましい。なお、ペースト塗布の順序は、特に限定されるものではない。
また、導電性ペーストの形成パターンは、太陽電池素子から集電するために一般的に用いられるパターン、例えば表面電極5の場合であれば、図2(a)に示すように、一般的な櫛形パターンとすればよい。なお、電極を所定形状にするためのマスクの材質・形状は特に限定されるものではなく、内部の雰囲気などに大きな影響を及ぼさないものであれば使用可能であるが、電極パターンにあわせたマスクの加工性を考慮すると金属で作製することが好ましい。
以上のようにして、本発明の太陽電池素子用銀ペーストを用いて電極を形成することによって、半導体基板との間における電極強度の長期信頼性を確保することができるとともに、電極層の表面に半田層やガラス層などを被覆する工程を省くことが出来るので、生産性の向上並びにコスト削減を達成することができる。さらに、無鉛ガラスフリットを用いているため、環境保護の観点から好ましい太陽電池素子を形成することができる。
≪太陽電池モジュールの製造方法≫
次に、上述した太陽電池素子を用いて形成された太陽電池モジュールについて、図4を用いて説明する。
図4は、太陽電池モジュールを示す。なお、図4(a)は、一般的な太陽電池モジュールの構造を示す断面図であり、図4(b)は、図4(a)の太陽電池モジュールを光入射面側から見た上視図である。
太陽電池モジュールは、図4(a)に示されるように、透明部材12の上に、透明のエチレンビニルアセテート共重合体(EVA)などからなる表側充填材14、配線部材11によって隣接太陽電池素子の表面電極と裏面電極とを交互に接続された複数の太陽電池素子10、EVAなどからなる裏側充填材15、および、ポリエチレンテレフタレート(PET)や金属箔をポリフッ化ビニル樹脂(PVF)で挟み込んだ裏面保護材13を順次積層し、さらに、ラミネータ中にて脱気、加熱して押圧することによって一体化することにより作製されることが好ましい。
配線部材11は、通常、厚さが0.1〜0.2mm、幅が約2mmの銅箔の全面を半田材料によって被覆したのち、所定の長さに切断することにより得られることが好ましい。また、環境問題を考慮して半田材料は無鉛半田を用いることが望ましく、本発明の太陽電池素子用銀ペーストを用いて形成した電極であれば、鉛入り半田を用いた場合と同等の電極の長期信頼性を得ることが可能である。
太陽電池モジュールとしては、複数の太陽電池素子10を、直列または並列に電気接続したものがあげられる。
太陽電池モジュールは、複数の太陽電池素子10が直列接続されている場合、複数の素子の最初の素子と最後の素子の電極の一端を、出力取出部である端子ボックス17に、出力取出配線16によって接続していることが好ましい。
太陽電池モジュールは、図4(b)に示すように、必要に応じてアルミニウムなどの枠18を周囲にはめ込むことが好ましい。
このような太陽電池モジュールは、通常、長期に渡って野外に設置されるため、日々の温度サイクルストレスが配線部材11と電極との接続部分に加わったり、裏面保護材13や裏側充填材15を通して水分が浸透する等の影響を受けることで、配線部材11が電極から外れたり、電極が半導体基板1から破断するおそれがあるが、本発明の太陽電池素子用銀ペーストを用いて電極を形成することによって、上記問題の発生を効果的に抑制することができる。
特に、太陽電池モジュールの表面側は、例えば、雹等に対する耐久性も必要なことからガラス等の高強度の透明部材12が用いられるため、耐湿性も裏面側に対して非常に高い。よって、本発明の太陽電池素子銀ペーストは裏面電極に用いることがより好ましい。
なお、本発明は上記実施形態に限定されるものではなく、本発明の範囲内で多くの修正および変更を加えることが出来る。
例えば、太陽電池素子の構造はこれに限定されるものではなく、電極が片面にしかない太陽電池素子に使用することも可能であるし、結晶系シリコン太陽電池素子に限定されるものでもない。
実施例として、以下に説明する12種の太陽電池素子を作製した。
まず、厚さ260μm、外形15cm×15cm、比抵抗1.5Ω・cmの多結晶半導体基板1表面のダメージ層をアルカリでエッチングして洗浄した。次に、イオン打ち込み法により半導体基板1の表面にリン(P)を打ち込むことによって、半導体基板1の表面にリン原子を拡散させて拡散層2を形成した。この時、シート抵抗は70Ω/□であった。次に、半導体基板1の表面側に、PECVD法によって反射防止膜3となる窒化シリコン膜を形成した。そして、裏面側にアルミニウムペーストを略全面に塗布・焼成してBSF層4と集電電極6bを形成した。また、表面側と裏面側に、銀ペーストを図2に示す形状となるように塗布・焼成して表面電極5と出力取出電極6aとを形成した。
この出力取出電極6aは、銀粉末及び有機ビヒクルに、No.1〜12(表1)に記載の組成比を有するガラスフリットをそれぞれ、銀粉末100重量部に対して3重量部添加してペースト状にした銀ペーストを、スクリーン印刷法で塗布してピーク温度が580℃となるように3分間焼成した。なお、表1に記載の「その他」の成分としては、酸化アルミニウム、酸化アンチモン、酸化カルシウム、酸化ジルコニウム、酸化セレン、酸化バリウム、酸化マグネシウム、酸化マンガン及び酸化リチウム、酸化銅が含まれる。
また、酸化ホウ素と酸化ケイ素の合計が6重量%未満のものはガラス化しなかったため評価には用いなかった。
Figure 0005219355
その後、電極部にフラックスを用いて銅箔の全面に無鉛半田を被覆したインナーリードを溶着した。
このようにして製造されたインナーリード付きの太陽電池素子No.1〜12(表2)を、耐湿性試験に投入して電極強度の評価を行った。耐湿性試験の条件として、「JIS C 8917」に準拠した温度85℃、湿度85%を採用した。
なお、No.12の酸化物換算で酸化ビスマス:83重量%、酸化ホウ素:13重量%、酸化ケイ素:2重量%、その他:2重量%の成分からなるガラスを含有した銀ペーストを用いて電極を形成した太陽電池素子を従来例とした。
以上の実施例及び比較例No.1〜12について、「耐湿性試験前の電極強度」、「耐湿性試験1000時間後の電極強度」の結果を表2に示す。
ここで、表2に記載の「相対比」とは、耐湿性試験前の電極強度に対する、耐湿性試験1000時間後の電極強度の比を意味する。また、「電極強度」の判定基準として、◎は非常に良い、○は従来以上、×は従来同等または悪いものとした。
さらに、以上のようにして作製された太陽電池素子をモジュール化し、耐湿性試験に投入し、3500時間後の素子特性の信頼性の確認を行った。「素子特性」の判定基準として、「耐湿性試験3500時間後のFF値/耐湿性試験前のFF値」を%表示で表した相対比において、◎は95%以上、○は95%未満から85%以上、×は85%未満とした。なお、耐湿性試験の条件としては、上述したものと同様、「JIS C 8917」に準拠した温度85℃、湿度85%を採用した。
また、「総合判定」の判定基準は、◎は「電極強度」、「素子特性」の評価で両方が◎、○は「電極強度」、「素子特性」の評価で両方が○以上(但し、両方◎は除く)、×は「電極強度」、「素子特性」の評価で一方が×とした。
Figure 0005219355
表2の結果より、酸化亜鉛成分を含まない比較例No.12に対して、酸化亜鉛の含有率が5〜10重量%かつ酸化ビスマスの含有率が70〜84重量%かつ酸化ホウ素と酸化ケイ素とが合計で6重量%以上の範囲のNo.2〜4、6〜10は、耐湿性試験後の電極強度が高く、耐湿性試験前後の電極強度の相対比についても高いことから、電極強度の耐湿性が向上していることがわかる。上記範囲外のNo.1、5、11は、耐湿性試験前の電極強度は高いものの、耐湿性試験後の電極強度が大きく低下し、耐湿性に関して低下が見られている。
また、素子特性のFF値の相対比は、ガラスフリットとして、酸化亜鉛の含有率が5〜10重量%、酸化ビスマスの含有率が70〜84重量%、そして酸化ホウ素と酸化ケイ素とが合計で6重量%以上の範囲で含むものを用いた場合は、96%以上を示しているが、この範囲外のガラスフリットを用いた場合は、85%と低下率が大きいことがわかった。
よって、総合判定においてNo.2、4、8、10の評価は○であり、No.3、6、7、9の評価は◎であった。
以上の結果から、酸化亜鉛の含有率が5〜10重量%、酸化ビスマスの含有率が70〜84重量%、そして酸化ホウ素と酸化ケイ素とが合計で6重量%以上の範囲で含む無鉛ガラスフリットを含有する銀ペーストを用いることによって、電極強度の長期信頼性を得られることが確認できた。
本発明の太陽電池素子用導電性ペーストを用いて形成された太陽電池素子の一実施形態を示す図である。 本発明の太陽電池素子用導電性ペーストを用いて形成された太陽電池素子の電極形状の一例を示す図であり、(a)は受光面側(表面)、(b)は非受光面側(裏面)である。 従来の太陽電池素子の構造を説明するための図である。 (a)は本発明の太陽電池モジュールの構造の一例を示す断面図であり、(b)は(a)の太陽電池モジュールを光入射面側から見た上視図である。
符号の説明
1・・・半導体基板
2・・・拡散層
3・・・反射防止膜
4・・・BSF層
5・・・表面電極
6・・・裏面電極
6a・・出力取出電極
6b・・集電電極
7・・・半田層
10・・太陽電池素子
11・・配線部材
12・・透明部材
13・・裏面保護材
14・・表側充填材
15・・裏側充填材
16・・出力取出配線
17・・端子ボックス
18・・枠

Claims (4)

  1. 酸化物換算で、酸化亜鉛が5重量%以上10重量%以下、酸化ビスマスが78重量%以上83重量%以下、酸化ホウ素と酸化ケイ素とが合計で6重量%以上の組成を有するガラスフリットと、銀粉末と、有機ビヒクルと、を含有する太陽電池素子用銀ペーストを、半導体基板の一主面の少なくとも一部に塗布する工程と、
    前記太陽電池素子用銀ペーストを焼成する工程と、を有する太陽電池素子の製造方法。
  2. 前記ガラスフリットは、前記銀100重量部に対して、0.5重量部以上7重量部以下の割合で含有されることを特徴とする請求項1に記載の太陽電池素子の製造方法
  3. 前記半導体基板の一主面の少なくとも一部であって、前記太陽電池素子用銀ペーストと接する位置に、アルミニウムを主成分とするアルミニウムペーストを塗布する工程、をさらに有する請求項1または請求項2に記載の太陽電池素子の製造方法。
  4. 前記太陽電池素子用銀ペーストおよび前記アルミニウムペーストは同時に焼成されることを特徴とする請求項に記載の太陽電池素子の製造方法。
JP2006292387A 2006-10-27 2006-10-27 太陽電池素子の製造方法 Active JP5219355B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006292387A JP5219355B2 (ja) 2006-10-27 2006-10-27 太陽電池素子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006292387A JP5219355B2 (ja) 2006-10-27 2006-10-27 太陽電池素子の製造方法

Publications (2)

Publication Number Publication Date
JP2008109016A JP2008109016A (ja) 2008-05-08
JP5219355B2 true JP5219355B2 (ja) 2013-06-26

Family

ID=39442102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006292387A Active JP5219355B2 (ja) 2006-10-27 2006-10-27 太陽電池素子の製造方法

Country Status (1)

Country Link
JP (1) JP5219355B2 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5717043B2 (ja) * 2008-09-04 2015-05-13 日本電気硝子株式会社 電極形成用ガラス組成物および電極形成材料
JP2010111520A (ja) * 2008-11-04 2010-05-20 Nippon Electric Glass Co Ltd ビスマス系ガラス粉末の製造方法
US8231934B2 (en) 2008-11-26 2012-07-31 E. I. Du Pont De Nemours And Company Conductive paste for solar cell electrode
JP5649290B2 (ja) 2009-07-30 2015-01-07 株式会社ノリタケカンパニーリミテド 太陽電池電極用無鉛導電性組成物
JP5261310B2 (ja) * 2009-07-30 2013-08-14 京セラ株式会社 太陽電池素子の製造方法
KR101139459B1 (ko) * 2009-08-27 2012-04-30 엘지전자 주식회사 태양전지 및 그 제조방법
CN102754223B (zh) 2010-04-13 2015-05-20 京瓷株式会社 太阳能电池元件及其制造方法
KR20120025950A (ko) * 2010-09-08 2012-03-16 주식회사 동진쎄미켐 ZnO계 글래스 프릿 조성물 및 이를 이용한 태양전지의 후면 전극용 알루미늄 페이스트 조성물
TW201318995A (zh) * 2011-08-31 2013-05-16 Nihon Yamamura Glass Co Ltd 導體形成用無鉛玻璃組成物
EP2607327A1 (en) * 2011-12-23 2013-06-26 Heraeus Precious Metals GmbH & Co. KG Thick-film composition containing antimony oxides and their use in the manufacture of semi-conductor devices
JP2013243279A (ja) 2012-05-22 2013-12-05 Namics Corp 太陽電池の電極形成用導電性ペースト

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3625081B2 (ja) * 1994-11-25 2005-03-02 株式会社村田製作所 太陽電池の製造方法
JPH08181344A (ja) * 1994-12-21 1996-07-12 Asahi Glass Co Ltd 導電性パターン付透明基板とその製造方法
JP2001127317A (ja) * 1999-10-28 2001-05-11 Kyocera Corp 太陽電池の製造方法
JP2001313400A (ja) * 2000-04-28 2001-11-09 Kyocera Corp 太陽電池素子の形成方法
JP2005141996A (ja) * 2003-11-05 2005-06-02 Ngk Spark Plug Co Ltd 色素増感型太陽電池
JP4846219B2 (ja) * 2004-09-24 2011-12-28 シャープ株式会社 結晶シリコン太陽電池の製造方法
JP4688509B2 (ja) * 2005-01-28 2011-05-25 京セラ株式会社 太陽電池素子及びこれを用いた太陽電池モジュール
JPWO2006098160A1 (ja) * 2005-03-14 2008-08-21 株式会社村田製作所 導電性ペーストおよびガラス構造体
US7494607B2 (en) * 2005-04-14 2009-02-24 E.I. Du Pont De Nemours And Company Electroconductive thick film composition(s), electrode(s), and semiconductor device(s) formed therefrom

Also Published As

Publication number Publication date
JP2008109016A (ja) 2008-05-08

Similar Documents

Publication Publication Date Title
JP5219355B2 (ja) 太陽電池素子の製造方法
JP4948876B2 (ja) 太陽電池素子用導電性ペースト及びそれを用いた太陽電池素子の製造方法。
EP2434548B1 (en) Solar cell and method for manufacturing the same
JP5025184B2 (ja) 太陽電池素子及びこれを用いた太陽電池モジュール、並びに、これらの製造方法
JP6189971B2 (ja) 太陽電池セルおよび太陽電池モジュール
JP5258325B2 (ja) 太陽電池モジュール
JP5127207B2 (ja) 太陽電池素子、及びそれを用いた太陽電池モジュール
JP5174817B2 (ja) 太陽電池モジュール
WO2013039158A1 (ja) 太陽電池モジュール
JP6648986B2 (ja) 太陽電池素子および太陽電池モジュール
JP2009152222A (ja) 太陽電池素子の製造方法
JP2008270743A5 (ja)
JP6495649B2 (ja) 太陽電池素子および太陽電池モジュール
CN107112378B (zh) 太阳能电池及其制造方法、以及太阳能电池模块
JP2008034543A (ja) 光電変換素子およびその製造方法
JP5495777B2 (ja) 太陽電池モジュール
JP5430773B2 (ja) 光起電力装置およびその製造方法
WO2012046306A1 (ja) 光起電力装置およびその製造方法
EP2618386B1 (en) Bifacial solar cell
JP2005353836A (ja) 太陽電池素子及びこれを用いた太陽電池モジュール
JP5501549B2 (ja) 光電変換素子、およびそれから構成される光電変換モジュール
JP6298152B2 (ja) 太陽電池およびこれを用いた太陽電池モジュール
JP2016178280A (ja) 太陽電池素子およびこれを用いた太陽電池モジュール
JP4903531B2 (ja) 太陽電池素子
JP2012129407A (ja) 太陽電池素子の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5219355

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150