WO2013039158A1 - 太陽電池モジュール - Google Patents
太陽電池モジュール Download PDFInfo
- Publication number
- WO2013039158A1 WO2013039158A1 PCT/JP2012/073494 JP2012073494W WO2013039158A1 WO 2013039158 A1 WO2013039158 A1 WO 2013039158A1 JP 2012073494 W JP2012073494 W JP 2012073494W WO 2013039158 A1 WO2013039158 A1 WO 2013039158A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- solar cell
- thin wire
- bus bar
- wire electrode
- Prior art date
Links
- 230000007774 longterm Effects 0.000 abstract description 5
- 239000004065 semiconductor Substances 0.000 description 99
- 239000010410 layer Substances 0.000 description 77
- 239000000758 substrate Substances 0.000 description 47
- 238000000034 method Methods 0.000 description 41
- 239000010408 film Substances 0.000 description 26
- 238000000605 extraction Methods 0.000 description 19
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 13
- 238000010586 diagram Methods 0.000 description 13
- 239000000945 filler Substances 0.000 description 12
- 229910052782 aluminium Inorganic materials 0.000 description 11
- 239000000463 material Substances 0.000 description 9
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 8
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 8
- 238000009792 diffusion process Methods 0.000 description 8
- 229910052710 silicon Inorganic materials 0.000 description 8
- 239000010703 silicon Substances 0.000 description 8
- 229910052709 silver Inorganic materials 0.000 description 8
- 239000004332 silver Substances 0.000 description 8
- 239000002019 doping agent Substances 0.000 description 7
- 239000007772 electrode material Substances 0.000 description 7
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000000853 adhesive Substances 0.000 description 6
- 230000001070 adhesive effect Effects 0.000 description 6
- 238000002161 passivation Methods 0.000 description 6
- 238000007650 screen-printing Methods 0.000 description 6
- 229910052581 Si3N4 Inorganic materials 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000007639 printing Methods 0.000 description 5
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 4
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229910021417 amorphous silicon Inorganic materials 0.000 description 3
- 229910021419 crystalline silicon Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- CNQCVBJFEGMYDW-UHFFFAOYSA-N lawrencium atom Chemical compound [Lr] CNQCVBJFEGMYDW-UHFFFAOYSA-N 0.000 description 3
- 229910000679 solder Inorganic materials 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 2
- 101000679735 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) 60S ribosomal protein L16-A Proteins 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- 230000003667 anti-reflective effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- ILAHWRKJUDSMFH-UHFFFAOYSA-N boron tribromide Chemical compound BrB(Br)Br ILAHWRKJUDSMFH-UHFFFAOYSA-N 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 239000005038 ethylene vinyl acetate Substances 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910021424 microcrystalline silicon Inorganic materials 0.000 description 2
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 2
- XHXFXVLFKHQFAL-UHFFFAOYSA-N phosphoryl trichloride Chemical compound ClP(Cl)(Cl)=O XHXFXVLFKHQFAL-UHFFFAOYSA-N 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920002620 polyvinyl fluoride Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910004205 SiNX Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011231 conductive filler Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000013035 low temperature curing Methods 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- VMWYVTOHEQQZHQ-UHFFFAOYSA-N methylidynenickel Chemical compound [Ni]#[C] VMWYVTOHEQQZHQ-UHFFFAOYSA-N 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- ORQBXQOJMQIAOY-UHFFFAOYSA-N nobelium Chemical compound [No] ORQBXQOJMQIAOY-UHFFFAOYSA-N 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- RLOWWWKZYUNIDI-UHFFFAOYSA-N phosphinic chloride Chemical compound ClP=O RLOWWWKZYUNIDI-UHFFFAOYSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- -1 polyethylene terephthalate Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 150000003378 silver Chemical class 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
- H01L31/05—Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
- H01L31/0504—Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
- H01L31/0508—Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0224—Electrodes
- H01L31/022408—Electrodes for devices characterised by at least one potential jump barrier or surface barrier
- H01L31/022425—Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
- H01L31/022433—Particular geometry of the grid contacts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Definitions
- the present invention relates to a solar cell module.
- the solar cell element provided in the solar cell module has a surface electrode formed on the first surface side.
- the surface electrode includes, for example, a finger electrode that collects carriers generated on a silicon substrate constituting a part of the solar cell element. Furthermore, this surface electrode is equipped with the bus-bar electrode connected to the wiring member which collects the said carrier and electrically connects adjacent solar cell elements.
- Japanese Patent Application Laid-Open No. 2010-027778 discloses a solar cell element using a strip-shaped bus bar electrode.
- One object of the present invention is to provide a solar cell module with high long-term reliability.
- a solar cell module includes a plurality of solar cell elements each having a surface and a surface electrode provided on the surface side, and the first and the plurality of solar cell elements are electrically connected to each other. And a wiring member extending in the direction.
- the surface electrode is a bus bar electrode extending in the first direction and a finger electrode arranged side by side in the first direction with a plurality of gaps connected to the bus bar electrode.
- a linear first finger electrode and a finger electrode having a plurality of second finger electrodes not connected to the bus bar electrode.
- the surface electrode is a fine wire electrode that is located on a longitudinal direction of the bus bar electrode and is electrically connected to the second finger electrode, and intersects the first fine wire electrode and the first fine wire electrode.
- a thin wire electrode having two thin wire electrodes is provided.
- the thin wire electrode has a width W1 smaller than a first dimension D1 of the bus bar electrode in the first direction and a second dimension D2 of the bus bar electrode in a second direction orthogonal to the first direction. have.
- the said wiring member is connected to the cross
- FIG. It is a schematic diagram explaining the solar cell module which concerns on the 1st Embodiment of this invention, (a) is a partial cross section enlarged view of a solar cell module, (b) is a solar cell module from the 1st surface side.
- FIG. It is the plane schematic diagram which looked at the solar cell element of the solar cell module which concerns on the 2nd Embodiment of this invention from the 1st surface side, (a) is a general view, (b) is the expansion of the part D of (a).
- a plan view, (c) is an enlarged plan view of a portion D of (a) for explaining a state where wiring members are connected.
- the solar cell module 201 includes a plurality of solar cell elements 101 arranged adjacent to each other, and a wiring member 25 that electrically connects the adjacent solar cell elements 101 to each other.
- the solar cell element 101 has a light receiving surface (upper surface in FIG. 5, hereinafter referred to as a first surface) 10a on which light is incident and a non-light receiving surface (lower surface in FIG. 5) corresponding to the back surface of the first surface 10a. (Hereinafter referred to as the second surface) 10b. That is, the first surface 10 a corresponds to the front surface of the solar cell module 201, and the second surface 10 b corresponds to the back surface of the solar cell module 201.
- the solar cell module 201 further includes a translucent member 21, a front side filler 22, a back side filler 23, and a back surface protective material 24. As shown in FIG. 5, these members are arranged and laminated in the order of a translucent member 21, a front side filler 22, a plurality of solar cell elements 101, a back side filler 23, and a back surface protective material 24.
- the translucent member 21 is disposed on the first surface 10a side of the solar cell element 101 and has a function of protecting the first surface 10a, and is made of, for example, glass.
- the front side filler 22 and the back side filler 23 have a function of sealing the solar cell element 101.
- Examples of the front-side filler 22 include transparent olefin-based resins.
- As the olefin-based resin ethylene vinyl acetate copolymer (EVA) or the like can be used.
- Examples of the back side filler 23 include a transparent or white olefin resin.
- the back surface protective material 24 has a function of protecting the second surface 10b side of the solar cell element 101, and is composed of, for example, a single layer or a laminated structure such as polyethylene terephthalate (PET) or polyvinyl fluoride resin (PVF). .
- PET polyethylene terephthalate
- PVF polyvinyl fluoride resin
- the wiring member 25 has a function of electrically connecting adjacent solar cell elements 101 and has, for example, a long shape.
- the wiring member 25 is provided on the first surface 6 provided on the first surface 10 a side of one solar cell element 101 and the second surface 10 b side of the other solar cell element 10 with respect to the adjacent solar cell elements 101.
- the connected second electrode 7 is connected. Thereby, the adjacent solar cell elements 101 are electrically connected to each other in series.
- a member in which the entire surface of a copper foil having a thickness of about 0.1 to 0.2 mm and a width of about 2 mm is covered with a solder material can be used.
- the solar cell element 101 has a light receiving surface (first surface) 10a on which light is incident and a non-light receiving surface (second surface) corresponding to the back surface of the first surface 10a.
- Surface 10b a light receiving surface (first surface) 10a on which light is incident and a non-light receiving surface (second surface) corresponding to the back surface of the first surface 10a.
- the solar cell element 101 includes a semiconductor substrate 1 (first semiconductor layer 2, second semiconductor layer 3 and third semiconductor layer 4), antireflection layer 5, first layer.
- One electrode 6 and a second electrode 7 are provided.
- the semiconductor substrate 1 is a plate-like silicon substrate, for example.
- the semiconductor substrate 1 includes, for example, a first semiconductor layer (p-type semiconductor layer) 2 that is a one-conductivity type semiconductor layer, and the first surface 10 a side of the first semiconductor layer 2.
- the second semiconductor layer (n-type semiconductor layer) 3 which is a semiconductor layer of a reverse conductivity type provided in the semiconductor device.
- the first semiconductor layer 2 for example, a p-type plate-like semiconductor can be used.
- the semiconductor constituting the first semiconductor layer 2 a single crystal silicon substrate, a polycrystalline silicon substrate, or the like is used.
- the thickness of the first semiconductor layer 2 can be, for example, 250 ⁇ m or less, and further 150 ⁇ m or less.
- the shape of the 1st semiconductor layer 2 is not specifically limited, From a viewpoint on a manufacturing method, it is good also as polygonal shape by planar view, for example, square shape. If the first semiconductor layer 2 made of a silicon substrate has a p-type, for example, boron or gallium can be used as the dopant element.
- the second semiconductor layer 3 is a semiconductor layer that forms a pn junction with the first semiconductor layer 2.
- the second semiconductor layer 3 is a layer having a conductivity type opposite to that of the first semiconductor layer 2, that is, an n-type.
- the second semiconductor layer 3 can be formed by diffusing impurities such as phosphorus on the first surface 10a side of the silicon substrate.
- an uneven shape 1 a is provided on the first surface 10 a side of the semiconductor substrate 1.
- the height of the convex portion of the concavo-convex shape 1a is about 0.1 to 10 ⁇ m and the width of the convex portion is about 0.1 to 20 ⁇ m.
- the shape of the concavo-convex shape 1a is not limited to the pyramid shape as shown in FIG. 3, and may be, for example, a concavo-convex shape in which the concave portion is substantially spherical.
- the height of the convex portion is a distance from the reference line to the top surface of the convex portion in a direction perpendicular to the reference line with a line passing through the bottom surface of the concave portion as a reference line.
- the width of the convex portion is a distance between the top surfaces of adjacent convex portions in a direction parallel to the reference line.
- the antireflection layer 5 is a film for improving light absorption, and is formed on the first surface 10 a side of the semiconductor substrate 1. More specifically, the antireflection layer 5 is disposed on the first surface 10 a side of the second semiconductor layer 3.
- the antireflection layer 5 is formed of, for example, a silicon nitride film, a titanium oxide film, a silicon oxide film, a magnesium oxide film, an indium tin oxide film, a tin oxide film, or a zinc oxide film.
- the thickness of the antireflection layer 5 can be appropriately selected depending on the material, and may be a thickness that can realize a non-reflection condition with respect to appropriate incident light.
- the antireflective layer 5 can have a refractive index of about 1.8 to 2.3 and a thickness of about 500 to 1200 mm. Further, when the antireflection layer 5 is made of a silicon nitride film, it can also have a passivation effect.
- the third semiconductor layer 4 is formed on the second surface 10 b side of the semiconductor substrate 1 and has the same conductivity type as the first semiconductor layer 2. Therefore, in the present embodiment, the third semiconductor layer 4 has a p-type.
- the concentration of the dopant contained in the third semiconductor layer 4 is higher than the concentration of the dopant contained in the first semiconductor layer 2. That is, the dopant element is present in the third semiconductor layer 4 at a concentration higher than the concentration of the dopant element doped to have one conductivity type in the first semiconductor layer 2.
- the third semiconductor layer 4 has a role of reducing a decrease in conversion efficiency due to carrier recombination in the vicinity of the second surface 10b of the semiconductor substrate 1.
- the third semiconductor layer 4 forms an internal electric field on the second surface 10 b side in the semiconductor substrate 1.
- the third semiconductor layer 4 can be formed, for example, by diffusing a dopant element such as boron or aluminum on the second surface 10b side of the semiconductor substrate 1.
- the concentration of the dopant element contained in the third semiconductor layer 4 may be, for example, about 1 ⁇ 10 18 to 5 ⁇ 10 21 atoms / cm 3 .
- the second electrode 7 is an electrode (back surface electrode) provided on the second surface 10b side of the semiconductor substrate 1, and has a second output extraction electrode 7a and a second current collecting electrode 7b as shown in FIG.
- the second output extraction electrode 7 a is a portion of the second electrode 7 that is connected to the wiring member 25.
- the thickness of the second output extraction electrode 7a is about 10 to 30 ⁇ m, and the width in the short direction (X direction in FIG. 2) is about 1.3 to 7 mm.
- the second output extraction electrode 7a may be formed by, for example, applying a conductive paste containing silver as a main component into a desired shape and then baking it.
- the second collector electrode 7b is electrically connected to the second output extraction electrode 7a, and is a part that collects the electric power generated in the semiconductor substrate 1 and sends it to the second output extraction electrode 7a.
- the second collector electrode 7b has a thickness of about 15 to 50 ⁇ m, and is formed, for example, on the substantially entire surface of the second surface 10b of the semiconductor substrate 1 excluding the region where the second output extraction electrode 7a is formed.
- the second current collecting electrode 7b can be formed, for example, by applying an aluminum paste in a desired shape and baking it.
- the first electrode 6 is an electrode (surface electrode) provided on the first surface 10a side of the semiconductor substrate 1, and as shown in FIG. 1, a bus bar electrode 11 and a thin wire electrode 13 corresponding to the first output extraction electrode, And finger electrodes 12 corresponding to a plurality of linear first current collecting electrodes.
- the bus bar electrode 11 has, for example, a long shape extending along the wiring direction corresponding to the first direction (Y direction). Such a bus bar electrode 11 has, for example, a strip shape in which the first direction is the longitudinal direction.
- the plurality of finger electrodes 12 are arranged side by side at a predetermined interval in the wiring direction (Y direction in FIG. 1), and the longitudinal direction of the finger electrodes 12 is a direction perpendicular to the wiring direction (X in FIG. 1).
- the wiring direction means an arrangement direction in which the solar cell elements 101 are arranged.
- the plurality of finger electrodes 12 include an electrode connected to the bus bar electrode 11 (first finger electrode 12a) and an electrode not connected to the bus bar electrode 11 (second finger electrode 12b). Yes.
- the first finger electrode 12a is connected to the side surface of the bus bar electrode 11 parallel to the wiring direction. At least one of the plurality of second finger electrodes 12 b is electrically connected to the thin wire electrode 13. In the present embodiment, as shown in FIG. 1, all the second finger electrodes 12 b are electrically connected to the thin wire electrodes 13.
- the thin wire electrode 13 has a width W1 in the short side direction having a first dimension D1 in the longitudinal direction (first direction) of the bus bar electrode 11 and a second dimension D2 in a direction orthogonal to the longitudinal direction of the bus bar electrode 11 (second direction). Smaller than. Moreover, the thin wire electrode 13 has the 1st thin wire electrode 13a extended in the longitudinal direction (X direction in FIG. 1) of the finger electrode 12, as shown in FIG.1 (b). Further, the thin wire electrode 13 has a second thin wire electrode 13b extending in the wiring direction (Y direction in FIG. 1) as shown in FIG. Thereby, the 2nd fine wire electrode 13b comes to cross
- the thin wire electrode 13 is formed with an intersection S where the first thin wire electrode 13a and the second thin wire electrode 13b intersect. If the thin wire electrode 13 is formed so as to have the intersection S, the first thin wire electrode 13a and the second thin wire electrode 13b may not be orthogonal to each other.
- the intersection S between the first thin wire electrode 13 a and the second thin wire electrode 13 b and the first bus bar electrode 11 are connected to the wiring member 25.
- the stress is dispersed to the second thin wire electrode 13b side through the intersection S.
- the connecting portion between the wiring member 25 and the first thin wire 13 a may have a lower adhesive strength than the connecting portion between the wiring member 25 and the bus bar electrode 11.
- the solar cell module 201 since the wiring member 25 is connected to the intersection S, the stress is dispersed and the adhesive force between the wiring member 25 and the thin wire electrode 13 is maintained. As a result, the long-term reliability of the solar cell module 201 is increased. Further, as described above, in the present embodiment, the linear thin wire electrode 13 having the width W1 smaller than the first dimension D1 and the second dimension D2 of the bus bar electrode 11 is provided, so that the usage amount of the electrode material is reduced. While reducing, it becomes easy to take out the electric power collected by the second finger electrode 12b from the wiring member 25. Thereby, the solar cell module 201 can be manufactured at low cost.
- the second thin wire electrode 13b may be connected so as to connect at least a pair of adjacent first thin wire electrodes 13a (finger electrodes 12). Thereby, even if the wiring member 25 is detached from a part of the first thin wire electrode 13a, the second thin wire electrode 13b is connected to the wiring member 25, and further to the adjacent first thin wire electrode 13a through the second thin wire electrode 13b. The collected power can be supplied. Thereby, power loss is reduced.
- the width W12 in the short direction (X direction in FIG. 1) of the second thin wire electrode 13b is equal to the short direction (Y direction in FIG. 1) of the first thin wire electrode 13a. ) Width W11.
- the width W12 in the short direction of the second thin wire electrode 13b is formed to be about 1.5 to 3 times larger than the width W11 in the short direction of the first thin wire electrode 13a.
- the second thin wire electrode 13b is a pair of electrodes provided along the wiring direction (Y direction in FIG. 1).
- the second thin wire electrodes 13b are connected to the bus bar electrode 11 and arranged side by side with a first distance L1 smaller than the second dimension D2 of the bus bar electrode 11.
- the first thin wire electrode 13 a may be a part of the finger electrode 12. That is, in such a form, the wiring member 25 is connected to the finger electrode 12. Therefore, the second finger electrode 12 b that is not connected to the bus bar electrode 11 is directly connected to the wiring member 25. Thereby, the electric power collected by the second finger electrode 12b can be suitably taken out to the wiring member 25.
- the second dimension D2 in the short direction is about 1.3 to 2.5 mm, and in the longitudinal direction (FIG. 1B).
- the first dimension D1 in the Y direction may be about 1.5 to 10 mm.
- the widths W3 and W1 in the short direction (Y direction in FIG. 1B) of the finger electrode 12 and the fine wire electrode 13 are smaller than the width in the longitudinal direction (first dimension D1) of the bus bar electrode 11, respectively. Thereby, the usage-amount of electrode material can be reduced. Further, the width W1 (W11) in the short direction of the thin wire electrode 13 may be equal to or larger than the width W3 in the short direction of the finger electrode 12. Thereby, the usage-amount of electrode material can be reduced more. For example, the widths W3 and W1 in the short direction of the finger electrode 12 and the fine wire electrode 13 are about 50 to 200 ⁇ m.
- a plurality of finger electrodes 12 are provided with an interval L12 of about 1.5 to 3 mm.
- the interval L12 can be appropriately selected according to the sheet resistance of the second semiconductor layer 3 and the like.
- the thickness of the first electrode 6 is, for example, about 10 to 40 ⁇ m.
- Such a first electrode 6 can be formed, for example, by applying a conductive paste containing silver as a main component into a desired shape by screen printing or the like and then baking it.
- the end of the wiring member 25 may be connected to the bus bar electrode 11 when viewed from the first surface 10a side.
- the solar cell element 101 is provided by providing the bus-bar electrode 11 with the large 1st dimension D1 in the part connected with the edge part of the wiring member 25 which is easy to apply a big stress by a daily temperature cycle. Even if the wiring member 25 is used for a long period of time, the wiring member 25 can be hardly detached from the first electrode 6. Thereby, the long-term reliability of the solar cell module 201 is further increased.
- the manufacturing method of the solar cell module 201 according to the present embodiment will be described in detail with reference to FIGS. 5 (a) and 5 (b).
- the solar cell module 201 connects the plurality of solar cell elements 101 described above by the wiring member 25.
- each component of the solar cell module 201 described above is prepared.
- the solar cell element 101 according to the present embodiment can be manufactured as follows.
- the manufacturing method of the solar cell element 101 will be described in detail in order along each step.
- the semiconductor substrate 1 is formed by, for example, an existing casting method.
- an example in which a p-type polycrystalline silicon substrate is used as the semiconductor substrate 1 will be described.
- an ingot of polycrystalline silicon is produced by a casting method.
- the ingot is sliced to a thickness of 250 ⁇ m or less, for example.
- the surface of the semiconductor substrate 1 may be etched by a very small amount with NaOH, KOH, hydrofluoric acid, or hydrofluoric acid.
- an uneven shape 1 a is formed on the first surface 10 a of the semiconductor substrate 1.
- the uneven shape 1a can be formed by a wet etching method using an alkaline solution such as NaOH or an acid solution such as hydrofluoric acid, or a dry etching method using RIE or the like.
- corrugated shape can be formed by the method similar to the said uneven
- a step of forming the second semiconductor layer 3 is performed on the first surface 10a of the semiconductor substrate 1 having the uneven shape 1a formed by the above steps. Specifically, the n-type second semiconductor layer 3 is formed in the surface layer on the first surface 10a side in the semiconductor substrate 1 having the uneven shape 1a.
- Such a second semiconductor layer 3 has a coating thermal diffusion method in which P 2 O 5 in a paste state is applied to the surface of the semiconductor substrate 1 for thermal diffusion, and POCl 3 (phosphorus oxychloride) in a gas state is a diffusion source.
- the gas phase thermal diffusion method is used.
- the second semiconductor layer 3 is formed to have a sheet resistance value of about 40 to 200 ⁇ / ⁇ at a depth of about 0.2 to 2 ⁇ m.
- the method for forming the second semiconductor layer 3 is not limited to the above method.
- a thin film technique is used to form a crystalline silicon film including an n-type hydrogenated amorphous silicon film or a microcrystalline silicon film.
- Two semiconductor layers 3 may be formed.
- an i-type silicon region may be formed between the first semiconductor layer 2 and the second semiconductor layer 3.
- the second semiconductor layer 3 which is an n-type semiconductor layer, is arranged on the first surface 10 a side, and includes the p-type semiconductor layer (first semiconductor layer) 2 in which the uneven shape 1 a is formed on the surface.
- a crystalline silicon substrate (semiconductor substrate) 1 can be prepared.
- the antireflection layer 5 is formed on the first surface 10 a side of the semiconductor substrate 1, that is, on the second semiconductor layer 3.
- the antireflection layer 5 is formed using, for example, a PECVD (plasma enhanced chemical vapor deposition) method, a vapor deposition method, a sputtering method, or the like.
- PECVD plasma enhanced chemical vapor deposition
- a vapor deposition method a vapor deposition method
- a sputtering method or the like.
- a mixed gas of silane (SiH 4 ) and ammonia (NH 3 ) is diluted with nitrogen (N 2 ), and glow discharge decomposition is performed.
- the antireflective layer 5 is formed by depositing the plasma.
- the film formation chamber at this time may be about 500 ° C.
- the third semiconductor layer 4 in which one conductivity type semiconductor impurity is diffused at a high concentration is formed.
- Examples of the method of forming the third semiconductor layer 4 include the following two methods. As a first method, there is a method of forming at about 800 to 1100 ° C. using a thermal diffusion method using boron tribromide (BBr 3 ) as a diffusion source. As a second method, there is a method in which an aluminum paste made of aluminum powder, an organic vehicle, or the like is applied by a printing method and then heat-treated (fired) at about 600 to 850 ° C. to diffuse aluminum into the semiconductor substrate 1.
- BBr 3 boron tribromide
- the second method not only a desired diffusion region can be formed only on the printing surface, but also the n-type reverse conductivity type formed on the second surface 10b side in the formation process of the second semiconductor layer 3. There is no need to remove the layer. Therefore, when the second method is used, after forming a desired diffusion region, pn separation may be performed only on the outer peripheral portion of the first surface 10a or the second surface 10b using a laser or the like.
- the method for forming the third semiconductor layer 4 is not limited to the above method, and the third semiconductor layer 4 is made of crystalline silicon including a hydrogenated amorphous silicon film or a microcrystalline silicon film by using, for example, a thin film technique. A film or the like may be formed. Further, an i-type silicon region may be formed between the semiconductor substrate 1 and the third semiconductor layer 4.
- the first electrode 6 bus bar electrode 11, finger electrode 12, fine wire electrode 13
- second electrode 7 second output extraction electrode 7a, second current collecting electrode 7b
- the first electrode 6 is manufactured using a conductive paste containing a metal powder made of, for example, silver (Ag) or the like, an organic vehicle, and glass frit. This conductive paste is applied to the first surface 10a of the semiconductor substrate 1, and then baked at 600 to 850 ° C. for several tens of seconds to several tens of minutes to form the first electrode 6.
- a screen printing method or the like can be used, and after coating, the solvent may be evaporated and dried at a predetermined temperature.
- the first electrode 6 includes the bus bar electrode 11, the finger electrode 12, and the fine wire electrode 13.
- the bus bar electrode 11, the finger electrode 12, and the fine wire electrode 13 have one It can be formed in a process.
- the bus bar electrode 11, the finger electrode 12, and the fine wire electrode 13 may be formed by separate printing processes.
- the bus bar electrode 11, the finger electrode 12, and the fine wire electrode 13 may be formed by screen printing only again in order to form the finger electrode 12 thick after forming the finger electrode 12 thickly after forming in one printing process. .
- the second electrode 7 is formed.
- the 2nd current collection electrode 7b is produced using the aluminum paste containing an aluminum powder and an organic vehicle, for example. This aluminum paste is applied to almost the entire second surface 10b except for a part of the portion where the second output extraction electrode 7a is to be formed. As a coating method, a screen printing method or the like can be used. After applying the aluminum paste in this way, the solvent may be evaporated and dried at a predetermined temperature. In this case, since the aluminum paste is less likely to adhere to other parts during the subsequent work, workability is improved. Further, as described above, the third semiconductor layer 4 and the second current collecting electrode 7b may be formed in the same process.
- the second output extraction electrode 7a is manufactured using, for example, a silver paste containing a metal powder made of silver powder or the like, an organic vehicle, and glass frit. This silver paste is applied to the second surface 10b in a predetermined shape. At this time, the silver paste that becomes the second output extraction electrode 7a is applied at a position in contact with a part of the aluminum paste that becomes the second current collection electrode 7b, so that the second output extraction electrode 7a and the second output extraction electrode 7a are applied. It is formed so as to partially overlap with the electric electrode 7b.
- a coating method for example, a screen printing method or the like can be used. After this application, the solvent may be evaporated and dried at a predetermined temperature.
- the semiconductor substrate 1 thus coated with the aluminum paste and the silver paste is baked in the baking furnace at a temperature of 600 to 850 ° C. for about several tens of seconds to several tens of minutes, so that the second electrode 7 becomes the semiconductor substrate. 1 is formed on the second surface 10b side.
- both the first electrode 6 and the second electrode 7 are formed by the printing / firing method, but may be formed by using a method such as vapor deposition, sputtering, or plating.
- the solar cell element 101 can be manufactured as described above.
- a solar cell module 201 is produced using the solar cell element 101 obtained in this way.
- a wiring member 25 is prepared, and a plurality of adjacent solar cell elements 101 are electrically connected by the wiring member 25.
- the wiring member 25 as described above, one covered with a solder material or one made of a metal foil can be used.
- connection method of the wiring member 25 when the wiring member 25 covered with the solder material is used, a method such as a soldering iron, hot air, laser, or pulse heat can be used. By such a method, the wiring member 25 is soldered to the bus bar electrode 11, the fine wire electrode 13, the second output extraction electrode 7a, and the like.
- the wiring member 25 can be connected to the bus bar electrode 11, the fine wire electrode 13, the second output extraction electrode 7 a and the like by using a low-temperature curing type conductive adhesive. Can do.
- a conductive adhesive after providing a conductive adhesive between the bus bar electrode 11, the fine wire electrode 13 or the second output extraction electrode 7a and the wiring member 25, 150 to 250 is provided. Heat treatment may be performed at about ° C.
- the composition containing binders such as an epoxy resin, a silicon resin, a polyimide resin, or a polyurethane resin, and conductive fillers, such as silver or nickel carbon, can be used, for example.
- a front side filler 22, a plurality of solar cell elements 101 connected to each other by a wiring member 25, a back side filler 23, and a back surface protective material 24 are sequentially laminated on the translucent member 21.
- a module substrate is produced.
- the module base is integrated by degassing, heating and pressing in a laminator to produce a solar cell module 201.
- the frames 26, such as aluminum, may be inserted in the outer periphery of the solar cell module 201 as needed.
- the terminal which takes out an output to the one end part and the exterior of the electrode of the 1st solar cell element 101 and the last solar cell element 101 among the several solar cell elements 101 connected in series
- the box 27 is connected by the output extraction wiring 28.
- the solar cell module 201 according to this embodiment can be obtained by the procedure described above.
- the solar cell module according to the second embodiment of the present invention is different from the solar cell element 101 in the shape of the first electrode 6 of the solar cell element, as shown in FIG.
- the first thin wire electrode 13a of the solar cell element 102 is further formed between the adjacent second finger electrodes 12b.
- the first thin wire electrode 13a is electrically connected to the second thin wire electrode 13b.
- the number of the first thin wire electrodes 13a provided between the second finger electrodes 12b may be any number, but may be one or two.
- the distance L13a between the first thin wire electrodes 13a is about 1/4 to 1/2 of the distance L12 between the adjacent second finger electrodes 12b. In such a case, the effect of reducing the electrode material and reducing the power loss is easily obtained.
- the solar cell module according to the third embodiment of the present invention is different from the solar cell element 101 in the shape of the first electrode 6 of the solar cell element, as shown in FIG.
- the thin wire electrode 13 of the solar cell element 103 connects the adjacent second finger electrodes 13 b to each other in the first direction (Y direction) when viewed from the first surface 10 a as shown in FIG. 7. And a third thin wire electrode 13c connected to a pair of side portions of the bus bar electrode 11 extending in FIG. At this time, the third thin wire electrode 13c is arranged to extend in the Y direction.
- the third thin wire electrode 13 c is provided apart from the wiring member 25 and in the vicinity of both sides of the wiring member 25.
- the third thin wire electrode 13c is formed so as to extend from the pair of side portions of the bus bar electrode 11, respectively, but is not limited thereto.
- one third thin wire electrode 13c may be formed so as to be continuous with at least one side portion. Even in such a form, power loss is reduced.
- the width W2 in the short direction (X direction in FIG. 7) of the third thin wire electrode 13c may be larger than the width W3 in the short direction (Y direction in FIG. 7) of the finger electrode 12. Thereby, power loss can be reduced more.
- the width W2 of the third thin wire electrode 13c in the short direction is formed to be about 1.5 to 3 times larger than the width W3 of the finger electrode 12 in the short direction.
- the width W2 in the short direction of the third thin wire electrode 13c is about 75 to 600 ⁇ m.
- the distance L14 between the third thin wire electrodes 13c is short of the wiring member 25 as shown in FIG. What is necessary is just to form larger than the width W25 of a hand direction (X direction in FIG. 7).
- the third thin wire electrode 13 c is formed so as to be continuous with the side portion of the bus bar electrode 11, but is not limited thereto. If the third thin wire electrode 13c is formed so as to satisfy the distance L14> the width W25, the power loss is reduced.
- the solar cell module according to the fourth embodiment of the present invention is different from the solar cell element 103 in the shape of the first electrode 6 of the solar cell element, as shown in FIG.
- a plurality of bus bar electrodes 11 of the solar cell element 104 are arranged along a wiring direction (Y direction in FIG. 8) corresponding to the first direction.
- region with the wiring member 25 can be enlarged rather than the solar cell element 103.
- the connection area between the bus bar electrode 11 and the wiring member 25 may be 2% or more and less than 50% with respect to the entire surface area of the wiring member 25 facing the solar cell element 104.
- the usage-amount of an electrode material is reduced, maintaining high connection reliability.
- the bus-bar electrode 11 is provided in the both ends part in the wiring direction (Y direction).
- the solar cell module according to the fifth embodiment of the present invention is different from the solar cell element 104 in the shape of the first electrode 6 of the solar cell element.
- the solar cell element 105 is provided with bus bar electrodes 11 in addition to both ends in the wiring direction (Y direction) of the solar cell element 105. More specifically, in the solar cell element 105, four bus bar electrodes 11 are provided along the wiring direction. In such a form, it becomes easy to divide one solar cell element 105 to produce a plurality of small solar cell elements. At this time, the solar cell element 105 is divided so that the bus bar electrodes 11 are respectively arranged at the positions where the end portions of the wiring members 25 are located in the divided small solar cell elements. Thereby, also in the small solar cell element after the division, the same effect as described above can be obtained.
- the wiring direction of the bus bar electrode 11 (first bus bar electrode 11a) connected to the end portion of the wiring member 25 in the divided small solar cell element is larger than the fifth dimension D5 in the wiring direction of the other bus bar electrodes 11 (second bus bar electrodes 11b).
- the solar cell module according to the sixth embodiment of the present invention is different from the solar cell element 105 in the shape of the first electrode 6 of the solar cell element 106.
- the solar cell element 106 includes a plurality of island portions 14 in which the bus bar electrodes 11 are arranged in the wiring direction (Y direction in FIG. 10) and a connection portion 15 that connects the plurality of island portions 14. Accordingly, the bus bar electrode 11 of the solar cell element 106 is provided with a plurality of gaps 16 arranged along the first direction (Y direction) and extending in the second direction (X direction). Further, the end portion of the wiring member 25 is connected to the island portion 14. And the connection part 15 is connected with the edge part of the island part 14 in the direction (X direction in FIG. 10) orthogonal to a wiring direction. Then, as shown in FIG. 10B, the island portion 14 has a third dimension D3 in the wiring direction (Y direction in FIG.
- the third dimension D3 corresponds to the distance between adjacent gaps 16.
- the island portion 14 constituting the bus bar electrode 11 By providing the island portion 14 constituting the bus bar electrode 11 in such a shape, even if the end portion of the wiring member 25 is detached from the connected island portion 14 due to the action of stress, the wiring member 25 is not connected to other islands. The connection with the unit 14 can be maintained. Thereby, the wiring member 25 becomes difficult to completely peel from the bus bar electrode 11, and partial connection is maintained.
- the third dimension D3 in the short direction of the island part 14 is larger than the width W11 in the short direction of the first thin wire electrode 13a.
- the second distance L2 between the adjacent island portions 14 is smaller than the third dimension D3 in the short direction of the island portions 14.
- the third dimension D3 in the short direction (Y direction in FIG. 10) of the island part 14 is, for example, about 300 to 1000 ⁇ m.
- the sixth dimension D6 in the longitudinal direction (X direction in FIG. 10) of the island part 14 is substantially the same as the second dimension D2 in the direction orthogonal to the wiring direction of the bus bar electrode 11 in the first embodiment. .About 3 to 2.5 mm.
- the second distance L2 between the adjacent island portions 14 has a size of about 50 to 250 ⁇ m, for example.
- the distance L13a between the adjacent first thin wire electrodes 13a is larger than the second distance L2 between the adjacent island portions 14.
- the solar cell module according to the seventh embodiment of the present invention is different from the solar cell element 106 in the shape of the first electrode 6 of the solar cell element, as shown in FIG.
- the solar cell element 107 includes bus bar electrodes 11 provided at both ends of the first electrode 6, and a second thin wire electrode 13 b and a third thin wire electrode 13 c that extend toward the outside of the semiconductor substrate 1. Yes.
- the second thin wire electrode 13b and the third thin wire electrode 13c are connected to the finger electrode 12 located outside the bus bar electrode 11. Thereby, current can be collected also from the finger electrode 12 located outside the bus bar electrode 11 through the second thin wire electrode 13b and the third thin wire electrode 13c.
- the second thin wire electrode 13b and the third thin wire electrode 13c are provided, but it is sufficient that at least one thin wire electrode is provided.
- the amount of electrode material used can be reduced.
- the number of the finger electrodes 12 located outside the bus bar electrode 11 may be, for example, 5 or less. At this time, if the number of finger electrodes 12 is one, the resistance loss can be further reduced.
- a passivation film may be provided on the second surface 10b side of the semiconductor substrate 1.
- This passivation film has a role of reducing carrier recombination on the second surface 10 b which is the back surface of the semiconductor substrate 1.
- a silicon nitride film such as a silicon nitride (Si 3 N 4 ) film, an amorphous Si nitride (a-SiNx) film, silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), or titanium oxide ( A film such as TiO 2 ) can be used.
- the thickness of the passivation film may be about 100 to 2000 mm.
- the passivation film may be formed using, for example, a PECVD method, a vapor deposition method, a sputtering method, or the like.
- the structure on the second surface 10b side of the semiconductor substrate 1 may be a structure on the second surface 10b side used in a PERC (Passivated Emitter and Rear Cell) structure or a PERL (Passivated Emitter Rear Locally Diffused) structure.
- the shape of the second electrode 7 may be the same as that of the first electrode 6 described above.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Sustainable Energy (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
<第1の実施形態>
本発明の第1の実施形態に係る太陽電池モジュール201は、互いに隣り合って配列された複数の太陽電池素子101と、隣り合う太陽電池素子101同士を電気的に接続する配線部材25とを備える。太陽電池素子101は、光が入射する受光面(図5における上面であり、以下では第1面という)10aとこの第1面10aの裏面に相当する非受光面(図5における下面であり、以下では第2面という)10bとを有する。すなわち、第1面10aは、太陽電池モジュール201の表側の面に相当し、第2面10bは、太陽電池モジュール201の裏側の面に相当する。
透光性部材21は、太陽電池素子101の第1面10a側に配置されて第1面10aを保護する機能を有しており、例えば、ガラス等からなる。
表側充填材22および裏側充填材23は、太陽電池素子101を封止する機能を有している。表側充填材22としては、例えば、透明のオレフィン系樹脂等が挙げられる。オレフィン系樹脂としては、エチレンビニルアセテート共重合体(EVA)等を使用することができる。裏側充填材23としては、例えば、透明または白色のオレフィン系樹脂等が挙げられる。
裏面保護材24は、太陽電池素子101の第2面10b側を保護する機能を有しており、例えば、ポリエチレンテレフタレート(PET)やポリフッ化ビニル樹脂(PVF)等の単層または積層構造からなる。
配線部材25は、隣接する太陽電池素子101を電気的に接続する機能を有しており、例えば、長尺状の形状を有する。配線部材25は、隣接する太陽電池素子101に対して、一方の太陽電池素子101の第1面10a側に設けられた第1電極6と他方の太陽電池素子10の第2面10b側に設けられた第2電極7とを接続する。これによって、隣接する太陽電池素子101は互いに電気的に直列に接続されている。配線部材25としては、厚さ0.1~0.2mm程度、幅2mm程度の銅箔の全面を半田材料によって被覆された部材等を使用することができる。
図1乃至図4に示すように、太陽電池素子101は、前述したように、光が入射する受光面(第1面)10aおよびこの第1面10aの裏面に相当する非受光面(第2面)10bを有する。
本実施形態に係る太陽電池モジュール201の製造方法について、図5(a)および図5(b)を用いて、詳細に説明する。太陽電池モジュール201は、上述した複数の太陽電池素子101を配線部材25により接続する。
次に、本発明の他の実施形態について説明する。なお、以下の説明において、第1の実施形態と同様の構成については、同様の符号を付し、説明を省略する。
本発明の第3の実施形態に係る太陽電池モジュールは、図7に示すように、太陽電池素子の第1電極6の形状が太陽電池素子101と異なる。
本発明の第4の実施形態に係る太陽電池モジュールは、図8に示すように、太陽電池素子の第1電極6の形状が太陽電池素子103と異なる。
本発明の第5の実施形態に係る太陽電池モジュールは、図9に示すように、太陽電池素子の第1電極6の形状が太陽電池素子104と異なる。
本発明の第6の実施形態に係る太陽電池モジュールは、図10に示すように、太陽電池素子106の第1電極6の形状が太陽電池素子105と異なる。
本発明の第7の実施形態に係る太陽電池モジュールは、図11に示すように、太陽電池素子の第1電極6の形状が太陽電池素子106と異なる。
2:第1半導体層
3:第2半導体層
4:第3半導体層
5:反射防止層
6:第1電極(表面電極)
7:第2電極(裏面電極)
10a:第1面
10b:第2面
11:バスバー電極(第1出力取出電極)
12:フィンガー電極(第1集電電極)
13:細線電極
14:島部
15:接続部
16:隙間部
25:配線部材
101~107:太陽電池素子
201:太陽電池モジュール
S:交差部
Claims (13)
- 表面および該表面側に設けられた表面電極をそれぞれ有した複数の太陽電池素子と、該複数の太陽電池素子を電気的に接続するとともに第1方向に伸びる配線部材とを備えており、
前記表面電極は、
前記第1方向に伸びるバスバー電極と、
前記第1方向に間隔をあけて並べて配列されたフィンガー電極であって、前記バスバー電極に接続された複数の線状の第1フィンガー電極および前記バスバー電極に接続されていない複数の第2フィンガー電極を有するフィンガー電極と、
前記バスバー電極の長手方向上に位置するとともに前記第2フィンガー電極に電気的に接続された細線電極であって、第1細線電極および該第1細線電極に交差した第2細線電極を有する細線電極とを具備し、
該細線電極は、前記バスバー電極の前記第1方向における第1寸法D1および前記バスバー電極の前記第1方向に直交する第2方向における第2寸法D2よりも小さい幅W1を有しており、
前記配線部材は、前記第1細線電極と前記第2細線電極との交差部および前記バスバー電極に接続されている、太陽電池モジュール。 - 前記第1方向における前記配線部材の端部は、前記バスバー電極に接続されている、請求項1に記載の太陽電池モジュール。
- 前記第1細線電極は前記第2方向に伸びており、
前記第2細線電極は前記第1方向に伸びている、請求項1に記載の太陽電池モジュール。 - 前記第1細線電極は、前記第2フィンガー電極の一部である、請求項3に記載の太陽電池モジュール。
- 前記第1細線電極は、隣接する前記第2フィンガー電極間に配置されている、請求項3に記載の太陽電池モジュール。
- 前記第2細線電極の幅W12は、前記第1細線電極の幅W11よりも大きい、請求項1に記載の太陽電池モジュール。
- 前記第2細線電極は、前記バスバー電極に接続されるとともに前記バスバー電極の前記第2寸法D2よりも小さい第1距離L1を隔てて並べて配列された一対の電極である、請求項1に記載の太陽電池モジュール。
- 前記細線電極は、隣り合う前記第2フィンガー電極同士を接続するとともに、前記バスバー電極の前記第1方向に伸びる一対の側部のうち少なくとも一方に接続されて前記第1方向に沿って伸びる第3細線電極をさらに有する、請求項1に記載の太陽電池モジュール。
- 前記第3細線電極は、前記バスバー電極の前記一対の側部にそれぞれ接続されて前記第1方向に沿って伸びるように配置されている、請求項8に記載の太陽電池モジュール。
- 前記第3細線電極の幅W2は、前記第2フィンガー電極の幅W3よりも大きい、請求項8に記載の太陽電池モジュール。
- 前記バスバー電極は、前記第1方向に沿って配列された、前記第2方向に伸びる複数の隙間部を有しており、
隣接する前記隙間部間の前記第1方向における第3寸法D3は、前記第1細線電極の幅W11よりも大きく、
前記第1方向における前記隙間部の第2距離L2は、前記第3寸法D3よりも小さい、請求項1に記載の太陽電池モジュール。 - 前記バスバー電極は、前記第1方向に沿って複数配列されている、請求項1に記載の太陽電池モジュール。
- 前記バスバー電極は、前記第1方向に沿って複数配列されており、
前記複数配列されたバスバー電極において、前記配線部材の端部が接続される前記バスバー電極の前記第1方向における第4寸法D4は、他のバスバー電極の前記第1方向における第5寸法D5よりも大きい、請求項2に記載の太陽電池モジュール。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12831457.2A EP2757591B1 (en) | 2011-09-13 | 2012-09-13 | Solar cell module |
JP2012554155A JP5289625B1 (ja) | 2011-09-13 | 2012-09-13 | 太陽電池モジュール |
US14/344,251 US9006559B2 (en) | 2011-09-13 | 2012-09-13 | Solar cell module |
CN201280044669.XA CN103797583B (zh) | 2011-09-13 | 2012-09-13 | 太阳能电池模块 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011199209 | 2011-09-13 | ||
JP2011-199209 | 2011-09-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013039158A1 true WO2013039158A1 (ja) | 2013-03-21 |
Family
ID=47883375
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/073494 WO2013039158A1 (ja) | 2011-09-13 | 2012-09-13 | 太陽電池モジュール |
Country Status (5)
Country | Link |
---|---|
US (1) | US9006559B2 (ja) |
EP (1) | EP2757591B1 (ja) |
JP (1) | JP5289625B1 (ja) |
CN (1) | CN103797583B (ja) |
WO (1) | WO2013039158A1 (ja) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015005754A (ja) * | 2013-06-21 | 2015-01-08 | エルジー エレクトロニクス インコーポレイティド | 太陽電池 |
JP2015046566A (ja) * | 2013-07-30 | 2015-03-12 | 京セラ株式会社 | 太陽電池素子およびその製造方法並びに太陽電池モジュール |
JP2015070260A (ja) * | 2013-09-27 | 2015-04-13 | エルジー エレクトロニクス インコーポレイティド | 太陽電池 |
WO2015064696A1 (ja) * | 2013-10-30 | 2015-05-07 | 京セラ株式会社 | 太陽電池セルおよび太陽電池モジュール |
WO2015146413A1 (ja) * | 2014-03-27 | 2015-10-01 | 京セラ株式会社 | 太陽電池およびこれを用いた太陽電池モジュール |
WO2016068237A1 (ja) * | 2014-10-29 | 2016-05-06 | 京セラ株式会社 | 太陽電池モジュール |
JP2016178280A (ja) * | 2014-11-28 | 2016-10-06 | 京セラ株式会社 | 太陽電池素子およびこれを用いた太陽電池モジュール |
JP2016213460A (ja) * | 2015-04-30 | 2016-12-15 | エルジー エレクトロニクス インコーポレイティド | 太陽電池及びこれを含む太陽電池パネル |
JP2018107478A (ja) * | 2014-09-30 | 2018-07-05 | エルジー エレクトロニクス インコーポレイティド | 太陽電池及びそれを含む太陽電池パネル |
KR20180088354A (ko) * | 2014-08-04 | 2018-08-03 | 엘지전자 주식회사 | 태양 전지 모듈 |
KR20190125258A (ko) * | 2019-10-29 | 2019-11-06 | 엘지전자 주식회사 | 태양 전지 모듈 |
EP3627562A1 (en) * | 2018-09-18 | 2020-03-25 | Lg Electronics Inc. | Solar cell and solar cell panel including the same |
KR20200104266A (ko) * | 2019-10-29 | 2020-09-03 | 엘지전자 주식회사 | 태양 전지 모듈 |
JP2022020793A (ja) * | 2014-07-07 | 2022-02-01 | エルジー エレクトロニクス インコーポレイティド | 太陽電池モジュールとその製造方法 |
JP7049514B1 (ja) | 2021-08-27 | 2022-04-06 | 上海晶科緑能企業管理有限公司 | セル及び太陽電池モジュール |
CN115377232A (zh) * | 2022-10-24 | 2022-11-22 | 浙江晶科能源有限公司 | 太阳能电池及光伏组件 |
US11769842B2 (en) | 2014-09-30 | 2023-09-26 | Shangrao Jinko Solar Technology Development Co., Ltd | Solar cell and solar cell panel including the same |
US12080819B2 (en) | 2022-10-24 | 2024-09-03 | Zhejiang Jinko Solar Co., Ltd. | Solar cell and photovoltaic module |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USD750556S1 (en) * | 2014-11-19 | 2016-03-01 | Sunpower Corporation | Solar panel |
USD1009775S1 (en) | 2014-10-15 | 2024-01-02 | Maxeon Solar Pte. Ltd. | Solar panel |
USD767484S1 (en) | 2014-11-19 | 2016-09-27 | Sunpower Corporation | Solar panel |
USD933584S1 (en) | 2012-11-08 | 2021-10-19 | Sunpower Corporation | Solar panel |
USD999723S1 (en) | 2014-10-15 | 2023-09-26 | Sunpower Corporation | Solar panel |
USD913210S1 (en) | 2014-10-15 | 2021-03-16 | Sunpower Corporation | Solar panel |
USD933585S1 (en) | 2014-10-15 | 2021-10-19 | Sunpower Corporation | Solar panel |
USD896747S1 (en) | 2014-10-15 | 2020-09-22 | Sunpower Corporation | Solar panel |
CN106057941B (zh) * | 2016-08-16 | 2018-07-06 | 青岛汇智盈创知识产权运营有限公司 | 抗缓冲性防水型太阳能电池组件 |
US11462652B2 (en) * | 2016-09-27 | 2022-10-04 | Lg Electronics Inc. | Solar cell and solar cell panel including the same |
FR3089060B1 (fr) * | 2018-11-27 | 2022-12-30 | Commissariat Energie Atomique | Cellule et guirlande photovoltaiques et procedes de fabrication associes |
CN112635586A (zh) * | 2020-12-30 | 2021-04-09 | 通威太阳能(成都)有限公司 | 一种高效高可靠性perc太阳能电池及其正面电极和制作方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000261012A (ja) * | 1999-03-09 | 2000-09-22 | Mitsubishi Electric Corp | 太陽電池 |
JP2002164550A (ja) * | 2000-11-27 | 2002-06-07 | Kyocera Corp | 太陽電池 |
JP2005252108A (ja) * | 2004-03-05 | 2005-09-15 | Kyocera Corp | 太陽電池モジュール |
JP2007287861A (ja) * | 2006-04-14 | 2007-11-01 | Sharp Corp | 太陽電池、太陽電池ストリング、および太陽電池モジュール |
WO2009099179A1 (ja) * | 2008-02-08 | 2009-08-13 | Sanyo Electric Co., Ltd. | 太陽電池モジュール及び太陽電池 |
JP2010027778A (ja) | 2008-07-17 | 2010-02-04 | Shin-Etsu Chemical Co Ltd | 太陽電池 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3903428A (en) * | 1973-12-28 | 1975-09-02 | Hughes Aircraft Co | Solar cell contact design |
EP0881694A1 (en) * | 1997-05-30 | 1998-12-02 | Interuniversitair Micro-Elektronica Centrum Vzw | Solar cell and process of manufacturing the same |
US7144751B2 (en) * | 2004-02-05 | 2006-12-05 | Advent Solar, Inc. | Back-contact solar cells and methods for fabrication |
JP4138795B2 (ja) * | 2005-10-14 | 2008-08-27 | シャープ株式会社 | インターコネクタ付き太陽電池セル、および、それを用いる太陽電池ストリング、ならびに、その太陽電池ストリングを用いる太陽電池モジュール |
US20090277491A1 (en) * | 2005-10-14 | 2009-11-12 | Sharp Kabushiki Kaisha | Solar Cell, Interconnector-Equipped Solar Cell, Solar Cell String And Solar Cell Module |
US20080105297A1 (en) * | 2005-11-28 | 2008-05-08 | Mitsubishi Electric Corporation | Solar Cell |
US8049099B2 (en) * | 2006-03-01 | 2011-11-01 | Sanyo Electric Co., Ltd. | Solar cell and solar cell module including the same |
US8440907B2 (en) | 2006-04-14 | 2013-05-14 | Sharp Kabushiki Kaisha | Solar cell, solar cell string and solar cell module |
EP2105970A4 (en) * | 2006-12-26 | 2015-08-05 | Kyocera Corp | SOLAR CELL MODULE |
JP2008282926A (ja) * | 2007-05-09 | 2008-11-20 | Sanyo Electric Co Ltd | 太陽電池モジュール |
JP2009088203A (ja) * | 2007-09-28 | 2009-04-23 | Sanyo Electric Co Ltd | 太陽電池、太陽電池モジュール及び太陽電池の製造方法 |
JP2009135338A (ja) * | 2007-11-30 | 2009-06-18 | Sanyo Electric Co Ltd | 太陽電池及び太陽電池の製造方法 |
EP2426728B1 (en) * | 2009-04-27 | 2017-01-04 | Kyocera Corporation | Solar cell element, solar cell module and electronic appliance with this solar cell element |
KR101656118B1 (ko) * | 2009-09-18 | 2016-09-08 | 파나소닉 아이피 매니지먼트 가부시키가이샤 | 태양 전지, 태양 전지 모듈 및 태양 전지 시스템 |
US20120211049A1 (en) * | 2009-10-26 | 2012-08-23 | Kyocera Corporation | Solar cell element and solar cell module |
CN201859886U (zh) * | 2010-05-13 | 2011-06-08 | 无锡尚德太阳能电力有限公司 | 太阳电池、网版及其太阳电池组件 |
CN101950761A (zh) * | 2010-09-29 | 2011-01-19 | 上海晶澳太阳能科技有限公司 | 一种新型太阳能电池及由其组成的太阳能光伏组件 |
CN201838602U (zh) * | 2010-10-19 | 2011-05-18 | 温州昌隆光伏科技有限公司 | 一种分段栅线晶体硅太阳能电池 |
-
2012
- 2012-09-13 WO PCT/JP2012/073494 patent/WO2013039158A1/ja active Application Filing
- 2012-09-13 US US14/344,251 patent/US9006559B2/en active Active
- 2012-09-13 JP JP2012554155A patent/JP5289625B1/ja active Active
- 2012-09-13 CN CN201280044669.XA patent/CN103797583B/zh active Active
- 2012-09-13 EP EP12831457.2A patent/EP2757591B1/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000261012A (ja) * | 1999-03-09 | 2000-09-22 | Mitsubishi Electric Corp | 太陽電池 |
JP2002164550A (ja) * | 2000-11-27 | 2002-06-07 | Kyocera Corp | 太陽電池 |
JP2005252108A (ja) * | 2004-03-05 | 2005-09-15 | Kyocera Corp | 太陽電池モジュール |
JP2007287861A (ja) * | 2006-04-14 | 2007-11-01 | Sharp Corp | 太陽電池、太陽電池ストリング、および太陽電池モジュール |
WO2009099179A1 (ja) * | 2008-02-08 | 2009-08-13 | Sanyo Electric Co., Ltd. | 太陽電池モジュール及び太陽電池 |
JP2010027778A (ja) | 2008-07-17 | 2010-02-04 | Shin-Etsu Chemical Co Ltd | 太陽電池 |
Cited By (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015005754A (ja) * | 2013-06-21 | 2015-01-08 | エルジー エレクトロニクス インコーポレイティド | 太陽電池 |
JP2015046566A (ja) * | 2013-07-30 | 2015-03-12 | 京セラ株式会社 | 太陽電池素子およびその製造方法並びに太陽電池モジュール |
JP2015070260A (ja) * | 2013-09-27 | 2015-04-13 | エルジー エレクトロニクス インコーポレイティド | 太陽電池 |
US11139406B2 (en) | 2013-09-27 | 2021-10-05 | Lg Electronics Inc. | Solar cell |
WO2015064696A1 (ja) * | 2013-10-30 | 2015-05-07 | 京セラ株式会社 | 太陽電池セルおよび太陽電池モジュール |
JPWO2015064696A1 (ja) * | 2013-10-30 | 2017-03-09 | 京セラ株式会社 | 太陽電池セルおよび太陽電池モジュール |
US9608140B2 (en) | 2013-10-30 | 2017-03-28 | Kyocera Corporation | Solar cell and solar cell module |
JPWO2015146413A1 (ja) * | 2014-03-27 | 2017-04-13 | 京セラ株式会社 | 太陽電池およびこれを用いた太陽電池モジュール |
WO2015146413A1 (ja) * | 2014-03-27 | 2015-10-01 | 京セラ株式会社 | 太陽電池およびこれを用いた太陽電池モジュール |
CN106133917A (zh) * | 2014-03-27 | 2016-11-16 | 京瓷株式会社 | 太阳能电池及使用该太阳能电池的太阳能电池模块 |
EP3125300A4 (en) * | 2014-03-27 | 2017-11-22 | KYOCERA Corporation | Solar cell and solar cell module using same |
JP2022020793A (ja) * | 2014-07-07 | 2022-02-01 | エルジー エレクトロニクス インコーポレイティド | 太陽電池モジュールとその製造方法 |
JP7432571B2 (ja) | 2014-07-07 | 2024-02-16 | シャンラオ シンユエン ユエドン テクノロジー デベロップメント シーオー.,エルティーディー | 太陽電池モジュールとその製造方法 |
KR102273014B1 (ko) * | 2014-08-04 | 2021-07-06 | 엘지전자 주식회사 | 태양 전지 모듈 |
KR20180088354A (ko) * | 2014-08-04 | 2018-08-03 | 엘지전자 주식회사 | 태양 전지 모듈 |
JP2018107478A (ja) * | 2014-09-30 | 2018-07-05 | エルジー エレクトロニクス インコーポレイティド | 太陽電池及びそれを含む太陽電池パネル |
US11769842B2 (en) | 2014-09-30 | 2023-09-26 | Shangrao Jinko Solar Technology Development Co., Ltd | Solar cell and solar cell panel including the same |
JPWO2016068237A1 (ja) * | 2014-10-29 | 2017-08-03 | 京セラ株式会社 | 太陽電池モジュール |
WO2016068237A1 (ja) * | 2014-10-29 | 2016-05-06 | 京セラ株式会社 | 太陽電池モジュール |
JP2016178280A (ja) * | 2014-11-28 | 2016-10-06 | 京セラ株式会社 | 太陽電池素子およびこれを用いた太陽電池モジュール |
KR101772542B1 (ko) | 2015-04-30 | 2017-08-29 | 엘지전자 주식회사 | 태양 전지 및 이를 포함하는 태양 전지 패널 |
JP2016213460A (ja) * | 2015-04-30 | 2016-12-15 | エルジー エレクトロニクス インコーポレイティド | 太陽電池及びこれを含む太陽電池パネル |
EP3627562A1 (en) * | 2018-09-18 | 2020-03-25 | Lg Electronics Inc. | Solar cell and solar cell panel including the same |
US11569394B2 (en) | 2018-09-18 | 2023-01-31 | Shangrao Jinko Solar Technology Development Co Ltd | Solar cell and solar cell panel including the same |
EP3826074A1 (en) * | 2018-09-18 | 2021-05-26 | Lg Electronics Inc. | Solar cell and solar cell panel including the same |
KR102266951B1 (ko) * | 2019-10-29 | 2021-06-18 | 엘지전자 주식회사 | 태양 전지 모듈 |
KR20190125258A (ko) * | 2019-10-29 | 2019-11-06 | 엘지전자 주식회사 | 태양 전지 모듈 |
KR20200104266A (ko) * | 2019-10-29 | 2020-09-03 | 엘지전자 주식회사 | 태양 전지 모듈 |
KR102149926B1 (ko) * | 2019-10-29 | 2020-08-31 | 엘지전자 주식회사 | 태양 전지 모듈 |
KR102353317B1 (ko) * | 2020-08-24 | 2022-01-19 | 엘지전자 주식회사 | 태양 전지 모듈 |
KR102387654B1 (ko) * | 2020-08-24 | 2022-04-18 | 엘지전자 주식회사 | 태양 전지 모듈 |
KR20210074264A (ko) * | 2020-08-24 | 2021-06-21 | 엘지전자 주식회사 | 태양 전지 모듈 |
KR20220012388A (ko) * | 2020-08-24 | 2022-02-03 | 엘지전자 주식회사 | 태양 전지 모듈 |
JP7049514B1 (ja) | 2021-08-27 | 2022-04-06 | 上海晶科緑能企業管理有限公司 | セル及び太陽電池モジュール |
JP2023033040A (ja) * | 2021-08-27 | 2023-03-09 | 上海晶科緑能企業管理有限公司 | セル及び太陽電池モジュール |
US11973150B2 (en) | 2021-08-27 | 2024-04-30 | Shanghai Jinko Green Energy Enterprise Management Co., Ltd. | Solar cell and solar cell module |
CN115377232A (zh) * | 2022-10-24 | 2022-11-22 | 浙江晶科能源有限公司 | 太阳能电池及光伏组件 |
CN115377232B (zh) * | 2022-10-24 | 2023-10-27 | 浙江晶科能源有限公司 | 太阳能电池及光伏组件 |
US12080819B2 (en) | 2022-10-24 | 2024-09-03 | Zhejiang Jinko Solar Co., Ltd. | Solar cell and photovoltaic module |
Also Published As
Publication number | Publication date |
---|---|
JPWO2013039158A1 (ja) | 2015-03-26 |
JP5289625B1 (ja) | 2013-09-11 |
US20140338719A1 (en) | 2014-11-20 |
EP2757591B1 (en) | 2017-08-23 |
CN103797583B (zh) | 2015-07-15 |
CN103797583A (zh) | 2014-05-14 |
US9006559B2 (en) | 2015-04-14 |
EP2757591A1 (en) | 2014-07-23 |
EP2757591A4 (en) | 2015-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5289625B1 (ja) | 太陽電池モジュール | |
JP5869608B2 (ja) | 太陽電池モジュール | |
JP5025184B2 (ja) | 太陽電池素子及びこれを用いた太陽電池モジュール、並びに、これらの製造方法 | |
JP4738149B2 (ja) | 太陽電池モジュール | |
KR101719949B1 (ko) | 태양전지 셀 및 그 제조 방법, 태양전지 모듈 | |
US9608140B2 (en) | Solar cell and solar cell module | |
CN104956495B (zh) | 太阳能电池单元以及其制造方法 | |
JP4334455B2 (ja) | 太陽電池モジュール | |
JP6495649B2 (ja) | 太陽電池素子および太陽電池モジュール | |
JP2016122749A (ja) | 太陽電池素子および太陽電池モジュール | |
WO2016068237A1 (ja) | 太陽電池モジュール | |
JP5495777B2 (ja) | 太陽電池モジュール | |
JP2013048126A (ja) | 光起電力装置およびその製造方法 | |
WO2012053079A1 (ja) | 光起電力装置およびその製造方法 | |
JP2013048146A (ja) | 太陽電池モジュール | |
JP4953562B2 (ja) | 太陽電池モジュール | |
KR101092468B1 (ko) | 태양 전지 및 그 제조 방법 | |
WO2012046306A1 (ja) | 光起電力装置およびその製造方法 | |
KR101135585B1 (ko) | 태양 전지 및 그 제조 방법 | |
WO2010150358A1 (ja) | 光起電力装置およびその製造方法 | |
JP2015130406A (ja) | 光起電力装置およびその製造方法、光起電力モジュール | |
WO2018173125A1 (ja) | 太陽電池セルおよび太陽電池モジュール | |
EP3125300B1 (en) | Solar cell and solar cell module using same | |
JP5452755B2 (ja) | 光起電力装置の製造方法 | |
JP2016178280A (ja) | 太陽電池素子およびこれを用いた太陽電池モジュール |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2012554155 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12831457 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2012831457 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14344251 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |