WO2012046306A1 - 光起電力装置およびその製造方法 - Google Patents

光起電力装置およびその製造方法 Download PDF

Info

Publication number
WO2012046306A1
WO2012046306A1 PCT/JP2010/067482 JP2010067482W WO2012046306A1 WO 2012046306 A1 WO2012046306 A1 WO 2012046306A1 JP 2010067482 W JP2010067482 W JP 2010067482W WO 2012046306 A1 WO2012046306 A1 WO 2012046306A1
Authority
WO
WIPO (PCT)
Prior art keywords
back surface
semiconductor substrate
film
electrode
photovoltaic device
Prior art date
Application number
PCT/JP2010/067482
Other languages
English (en)
French (fr)
Other versions
WO2012046306A9 (ja
Inventor
濱本 哲
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to DE112010005921T priority Critical patent/DE112010005921T5/de
Priority to CN201080069176.2A priority patent/CN103180964B/zh
Priority to US13/813,865 priority patent/US20130133741A1/en
Priority to JP2012537513A priority patent/JP5496354B2/ja
Priority to PCT/JP2010/067482 priority patent/WO2012046306A1/ja
Priority to TW099143445A priority patent/TWI415280B/zh
Publication of WO2012046306A1 publication Critical patent/WO2012046306A1/ja
Publication of WO2012046306A9 publication Critical patent/WO2012046306A9/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/056Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means the light-reflecting means being of the back surface reflector [BSR] type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a photovoltaic device and a manufacturing method thereof.
  • the wavelength that has not been fully utilized before can be achieved by confining light in the photovoltaic device and suppressing the recombination speed of carriers on the front and back surfaces. It is important to realize structures and manufacturing methods that contribute to the generation of light in the region. Therefore, it is very important to improve the back surface structure of the substrate that plays the role.
  • Patent Document 1 a film that suppresses the recombination rate is formed after the back electrode is printed and baked. In this case, especially during firing, the attachment and fixation of contaminants proceeds on the back surface of the substrate, and therefore it is extremely difficult to keep the carrier recombination rate on the back surface of the substrate low as intended. There is.
  • an electrode paste is printed so as to cover almost the entire surface of the film that suppresses the recombination speed to form a back electrode that also functions as a light reflection function. This contact is partially made.
  • the back electrode is made of, for example, a paste containing aluminum (Al), which is a typical material, the light reflectivity on the back surface cannot be increased, and sufficient photovoltaic power can be introduced into the photovoltaic device. There is a problem that the optical confinement effect cannot be obtained.
  • the back electrode is made of, for example, a paste containing silver (Ag), which is a typical material
  • a film that suppresses the recombination rate even in a region other than the original contact portion during the electrode firing process Is eroded by fire-through, and there is a problem that a sufficient effect of suppressing the recombination rate of carriers cannot be obtained.
  • connection electrode on the cell side is formed by fire-through using a metal paste containing silver. By using fire-through, both electrical connection and physical adhesive strength can be obtained between the silicon substrate and the electrode.
  • the open-circuit voltage (Voc) and the photoelectric conversion efficiency may be reduced by electrically connecting the back surface silver electrode and the silicon crystal of the silicon substrate in the back surface structure of the silicon solar cell.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a photovoltaic device having a low recombination speed and a high back surface reflectance and excellent photoelectric conversion efficiency and a method for manufacturing the photovoltaic device.
  • a photovoltaic device includes a first conductivity type semiconductor substrate having an impurity diffusion layer in which a second conductivity type impurity element is diffused on one side.
  • An aluminum-based electrode connected to the other surface side of the semiconductor substrate, and a material comprising silver, provided on the other surface side of the semiconductor substrate in a region between the openings, and at least a part of the back surface insulating film.
  • the sum of the area of the system electrode and the area of the peripheral region obtained by extending the pattern of the silver-based electrode outward in the plane of the semiconductor substrate by the diffusion length of carriers in the semiconductor substrate is the other surface of the semiconductor substrate. It is characterized by being 10% or less of the area on the side.
  • FIG. 1-1 is a cross-sectional view of relevant parts for explaining the cross-sectional structure of the solar battery cell according to the first embodiment of the present invention.
  • FIG. 1-2 is a top view of the solar battery cell according to the first embodiment of the present invention viewed from the light receiving surface side.
  • FIG. 1-3 is a bottom view of the solar battery cell according to Embodiment 1 of the present invention as viewed from the back surface side.
  • FIG. 2 is a characteristic diagram showing the reflectance on the back surface of the semiconductor substrate in three types of samples having different back surface structures.
  • FIG. 3 is a characteristic diagram showing the relationship between the area ratio of the back electrode and the open circuit voltage (Voc) in the sample manufactured by simulating the solar battery cell according to the first embodiment.
  • FIGS. 5-1 is sectional drawing for demonstrating the manufacturing process of the photovoltaic cell concerning Embodiment 1 of this invention.
  • FIGS. FIGS. 5-2 is sectional drawing for demonstrating the manufacturing process of the photovoltaic cell concerning Embodiment 1 of this invention.
  • FIGS. FIGS. 5-3 is sectional drawing for demonstrating the manufacturing process of the photovoltaic cell concerning Embodiment 1 of this invention.
  • FIGS. FIGS. 5-4 is sectional drawing for demonstrating the manufacturing process of the photovoltaic cell concerning Embodiment 1 of this invention.
  • FIGS. FIGS. 5-5 is sectional drawing for demonstrating the manufacturing process of the photovoltaic cell concerning Embodiment 1 of this invention.
  • FIGS. FIGS. 5-6 is sectional drawing for demonstrating the manufacturing process of the photovoltaic cell concerning Embodiment 1 of this invention.
  • FIGS. FIGS. 5-7 is sectional drawing for demonstrating the manufacturing process of the photovoltaic cell concerning Embodiment 1 of this invention.
  • FIGS. FIGS. 5-8 is sectional drawing for demonstrating the manufacturing process of the photovoltaic cell concerning Embodiment 1 of this invention.
  • FIGS. FIGS. 5-9 is sectional drawing for demonstrating the manufacturing process of the photovoltaic cell concerning Embodiment 1 of this invention.
  • FIGS. FIG. FIG. 5-6 is sectional drawing for demonstrating the manufacturing process of the photovoltaic cell concerning Embodiment 1 of this invention.
  • FIGS. FIGS. 5-7 is sectional drawing for demonstrating the manufacturing process of the photovoltaic cell concerning Embodiment 1
  • FIG. 6-1 is a plan view showing an example of a printed region of the back surface aluminum electrode material paste on the back surface insulating film of the solar battery cell according to the first embodiment of the present invention.
  • FIG. 6-2 is a plan view showing an example of a printing region of the back surface aluminum electrode material paste on the back surface insulating film of the solar battery cell according to the first embodiment of the present invention.
  • FIG. 7 is principal part sectional drawing for demonstrating the cross-section of the photovoltaic cell concerning Embodiment 2 of this invention.
  • FIG. 8-1 is a cross-sectional view of relevant parts for explaining the cross-sectional structure of the solar battery cell according to the third embodiment of the present invention.
  • FIG. 8-2 is a top view of the solar battery cell according to the third embodiment of the present invention viewed from the light receiving surface side.
  • FIG. 8-3 is a bottom view of the solar battery cell according to the third embodiment of the present invention as viewed from the back surface side.
  • FIG. 9 is a characteristic diagram showing open-circuit voltages of the solar battery cells of Sample D to Sample F.
  • FIG. 10 is a diagram showing the electrode area ratio of the back surface silver electrode in the solar cells of Sample D to Sample F.
  • FIG. 11: is a top view which shows typically the influence area
  • FIG. 12 is a characteristic diagram showing an example of the relationship between the ratio of the low open-circuit voltage region on the back surface of the silicon substrate and the open-circuit voltage.
  • FIG. FIGS. 1-1 to 1-3 are diagrams showing a configuration of a solar battery cell that is a photovoltaic device according to the present embodiment, and FIG. 1-1 is for explaining a cross-sectional structure of the solar battery cell.
  • 1-2 is a top view of the solar cell viewed from the light receiving surface side
  • FIG. 1-3 is a bottom view of the solar cell viewed from the side opposite to the light receiving surface (back side). is there.
  • FIG. 1-1 is a cross-sectional view of an essential part taken along line AA in FIG. 1-2.
  • the solar cell according to the present embodiment includes a solar cell substrate having a photoelectric conversion function and having a pn junction, An antireflection film 4 made of a silicon nitride film (SiN film) which is an insulating film formed on the light receiving surface side (surface) and prevents reflection of incident light on the light receiving surface, and a light receiving surface side of the semiconductor substrate 1 On the surface (front surface), the light receiving surface side electrode 5 that is the first electrode formed surrounded by the antireflection film 4 and the silicon nitride film (back surface) opposite to the light receiving surface of the semiconductor substrate 1 (back surface)
  • the semiconductor substrate 1 includes a p-type polycrystalline silicon substrate 2 which is a first conductivity type layer, and an impurity diffusion layer (n-type impurity diffusion) which is a second conductivity type layer formed by phosphorous diffusion on the light receiving surface side of the semiconductor substrate 1.
  • the layer) 3 constitutes a pn junction.
  • the n-type impurity diffusion layer 3 has a surface sheet resistance of 30 to 100 ⁇ / ⁇ .
  • the light-receiving surface side electrode 5 includes a grid electrode 6 and a bus electrode 7 of the solar battery cell, and is electrically connected to the n-type impurity diffusion layer 3.
  • the grid electrode 6 is locally provided on the light receiving surface to collect electricity generated by the semiconductor substrate 1.
  • the bus electrode 7 is provided substantially orthogonal to the grid electrode 6 in order to take out the electricity collected by the grid electrode 6.
  • the back surface aluminum electrode 9 is embedded in the back surface insulating film 8 provided over the entire back surface of the semiconductor substrate 1. That is, the back insulating film 8 is provided with a substantially circular dot-shaped opening 8 a that reaches the back surface of the semiconductor substrate 1.
  • a back surface aluminum electrode 9 made of an electrode material containing aluminum, glass or the like is provided so as to fill the opening 8a and to have an outer shape wider than the diameter of the opening 8a in the in-plane direction of the back surface insulating film 8. Yes.
  • the back insulating film 8 is made of a silicon nitride film (SiN film), and is formed on almost the entire back surface of the semiconductor substrate 1 by a plasma CVD (Chemical Vapor Deposition) method.
  • SiN film silicon nitride film formed by the plasma CVD method
  • the back surface reflecting film 10 is provided on the back surface of the semiconductor substrate 1 so as to cover the back surface aluminum electrode 9 and the back surface insulating film 8.
  • the back surface reflecting film 10 covering the back surface insulating film 8
  • the light transmitted through the semiconductor substrate 1 and the back surface insulating film 8 can be reflected and returned to the semiconductor substrate 1, and a good light confinement effect can be obtained. it can.
  • the back surface reflecting film 10 is comprised by the silver (Ag) film
  • the solar battery cell according to the present embodiment can obtain an excellent light confinement effect by including the back surface reflection film 10 formed of a silver sputtering film.
  • the material of the back surface reflection film 10 for example, it is preferable to use a metal material having a reflectance of 90% or more, preferably 95% or more with respect to light having a wavelength near 1100 nm.
  • a solar cell having high long wavelength sensitivity and excellent light confinement effect for light in the long wavelength region can be realized. That is, although depending on the thickness of the semiconductor substrate 1, light having a long wavelength of 900 nm or more, particularly about 1000 nm to 1100 nm, can be efficiently taken into the semiconductor substrate 1 to realize a high generated current and improve output characteristics.
  • a material for example, aluminum (Al) can be used in addition to silver (Ag).
  • the fine back surface aluminum electrode 9 is formed on the back surface of the semiconductor substrate 1, and the back surface reflection film 10 is formed thereon.
  • the back surface reflecting film 10 shown in FIG. 1C actually has fine unevenness due to the back surface aluminum electrode 9, the description of the fine unevenness is omitted in FIG. ing.
  • an aluminum-silicon (Al—Si) alloy portion 11 is formed in a region on the back surface side of the semiconductor substrate 1 and in the vicinity of the region in contact with the back surface aluminum electrode 9 and its vicinity.
  • a BSF (Back Surface Filed Layer) 12 which is a high-concentration diffusion layer having the same conductivity type as that of the p-type polycrystalline silicon substrate 2 surrounding the aluminum-silicon (Al—Si) alloy portion 11 is provided on the outer periphery thereof. Is formed.
  • the solar cell configured as described above, when sunlight is irradiated onto the semiconductor substrate 1 from the light receiving surface side of the solar cell, holes and electrons are generated.
  • the generated electrons move toward the n-type impurity diffusion layer 3 due to the electric field of the pn junction (the junction surface between the p-type polycrystalline silicon substrate 2 and the n-type impurity diffusion layer 3), and the holes are p-type polycrystalline silicon. It moves toward the substrate 2.
  • the number of electrons in the n-type impurity diffusion layer 3 becomes excessive, and the number of holes in the p-type polycrystalline silicon substrate 2 becomes excessive.
  • a photovoltaic force is generated.
  • This photovoltaic power is generated in the direction of biasing the pn junction in the forward direction, the light receiving surface side electrode 5 connected to the n-type impurity diffusion layer 3 becomes a negative electrode, and the back surface aluminum electrode 9 connected to the p-type polycrystalline silicon substrate 2. Becomes a positive pole, and current flows in an external circuit (not shown).
  • FIG. 2 is a characteristic diagram showing the reflectance on the back surface of the semiconductor substrate in three types of samples having different back surface structures.
  • FIG. 2 shows the relationship between the wavelength of light incident on the sample and the reflectance.
  • Each sample is produced by imitating a solar battery cell, and the basic structure other than the back surface structure is the same as that of the solar battery cell according to this embodiment.
  • the details of the back surface structure of each sample are as follows.
  • Example A An aluminum (Al) paste electrode formed from an electrode paste containing aluminum (Al) is provided over the entire back surface of the semiconductor substrate (corresponding to a conventional general structure).
  • Sample B A back insulating film made of a silicon nitride film (SiN) is formed over the entire back surface of the semiconductor substrate, and an aluminum (Al) paste electrode formed from an electrode paste containing aluminum (Al) is provided over the entire back insulating film (preceding) Technology (equivalent to Patent Document 2)).
  • a back insulating film made of a silicon nitride film (SiN) is formed over the entire back surface of the semiconductor substrate, and an aluminum (Al) paste electrode formed from an electrode paste containing aluminum (Al) is locally provided on the back surface of the semiconductor substrate. Further, a high reflection film made of a silver sputtering film is provided on the entire surface of the back insulating film (corresponding to the solar battery cell according to the present embodiment).
  • the sample B corresponding to the prior art has a slight improvement in reflectance as compared with the sample A corresponding to the conventional general structure, but the effect of improving the reflectance is sufficient. It can not be said.
  • Sample C corresponding to the solar battery cell according to the present embodiment has a higher reflectance than Sample A and Sample B, and a high reflectance between “silicon (semiconductor substrate) and back surface structure” is recognized. Thus, it can be seen that it is suitable for high efficiency based on the light confinement action on the back surface.
  • FIG. 3 shows the area ratio of the back electrode (ratio occupied by the back electrode on the back surface of the semiconductor substrate) and the open-circuit voltage (Voc) in the sample manufactured by simulating the solar battery cell according to the present embodiment in the same manner as the sample C described above.
  • FIG. 4 shows the area ratio of the back electrode (ratio occupied by the back electrode on the back surface of the semiconductor substrate) and the short-circuit current in the sample manufactured by imitating the solar battery cell according to the present embodiment in the same manner as the sample C described above. It is the characteristic view which showed the relationship with a density (Jsc).
  • the open circuit voltage (Voc) increases as the area ratio of the aluminum (Al) paste electrode as the back electrode decreases, that is, as the area ratio of the highly reflective film according to the present embodiment increases.
  • the short-circuit current density (Jsc) are both improved, and it is recognized that a good carrier recombination rate suppressing effect is obtained on the back surface of the semiconductor substrate.
  • the solar cell according to the first embodiment configured as described above by providing a silicon nitride film (SiN film) formed by plasma CVD on the back surface of the semiconductor substrate 1 as the back surface insulating film 8, A good effect of suppressing the recombination rate of carriers on the back surface of the semiconductor substrate 1 can be obtained. Thereby, in the photovoltaic cell concerning this Embodiment, the improvement of an output characteristic is achieved and the high photoelectric conversion efficiency is implement
  • SiN film silicon nitride film
  • the back surface reflection film 10 made of a silver sputtering film is provided so as to cover the back surface insulating film 8, thereby making it more than a silver (Ag) film formed by a conventional printing method.
  • High light reflection can be realized, and more light transmitted through the semiconductor substrate 1 and the back surface insulating film 8 can be reflected back to the semiconductor substrate 1. Therefore, in the solar cell according to the present embodiment, an excellent light confinement effect can be obtained, the output characteristics can be improved, and high photoelectric conversion efficiency is realized.
  • the solar cell according to the first embodiment by having the structure of the back surface having both the low recombination speed and the high back surface reflectance, the long-wavelength sensitivity is excellent and the photoelectric conversion efficiency is improved.
  • the obtained solar battery cell is realized.
  • FIGS. 5-1 to 5-9 are cross-sectional views for explaining the manufacturing process of the solar battery cell according to the present embodiment.
  • a p-type polycrystalline silicon substrate that is most frequently used for consumer solar cells is prepared (hereinafter referred to as a p-type polycrystalline silicon substrate 1a) (FIG. 5-1).
  • a p-type polycrystalline silicon substrate 1a for example, a polycrystalline silicon substrate having an electrical resistance of about 0.5 to 3 ⁇ cm containing a group III element such as boron (B) is used.
  • the p-type polycrystalline silicon substrate 1a is manufactured by slicing an ingot formed by cooling and solidifying molten silicon with a wire saw, damage at the time of slicing remains on the surface. Therefore, the p-type polycrystalline silicon substrate 1a is first removed by immersing the surface of the p-type polycrystalline silicon substrate 1a in an acid or a heated alkaline solution, for example, in an aqueous solution of sodium hydroxide so as to remove the damaged layer. Thus, the damaged region existing near the surface of the p-type polycrystalline silicon substrate 1a is removed.
  • the thickness of the p-type polycrystalline silicon substrate 1a after the damage removal is, for example, 200 ⁇ m, and the dimension is, for example, 150 mm ⁇ 150 mm.
  • fine irregularities may be formed as a texture structure on the surface of the p-type polycrystalline silicon substrate 1a on the light receiving surface side.
  • this invention is invention concerning the back surface structure of a photovoltaic apparatus, it does not restrict
  • an alkaline aqueous solution containing isopropyl alcohol, a method using acid etching mainly composed of a mixed solution of hydrofluoric acid and nitric acid, or a mask material partially provided with an opening is formed on the surface of the p-type polycrystalline silicon substrate 1a.
  • RIE reactive gas etching
  • this p-type polycrystalline silicon substrate 1a is put into a thermal diffusion furnace and heated in an atmosphere of phosphorus (P) which is an n-type impurity.
  • phosphorus (P) is diffused on the surface of the p-type polycrystalline silicon substrate 1a to form an n-type impurity diffusion layer 3 to form a semiconductor pn junction (FIG. 5-2).
  • the n-type impurity diffusion layer 3 is formed by heating the p-type polycrystalline silicon substrate 1a in a phosphorus oxychloride (POCl 3 ) gas atmosphere at a temperature of, for example, 800 ° C. to 850 ° C.
  • the heat treatment is controlled so that the surface sheet resistance of the n-type impurity diffusion layer 3 is, for example, 30 to 80 ⁇ / ⁇ , preferably 40 to 60 ⁇ / ⁇ .
  • a phosphor glass layer mainly composed of phosphorus oxide is formed on the surface immediately after the formation of the n-type impurity diffusion layer 3, it is removed using a hydrofluoric acid solution or the like.
  • a silicon nitride film (SiN film) is formed as the antireflection film 4 on the light receiving surface side of the p-type polycrystalline silicon substrate 1a on which the n-type impurity diffusion layer 3 is formed in order to improve the photoelectric conversion efficiency (FIG. 5-3).
  • a plasma CVD method is used, and a silicon nitride film is formed as the antireflection film 4 using a mixed gas of silane and ammonia.
  • the film thickness and refractive index of the antireflection film 4 are set to values that most suppress light reflection. Note that two or more films having different refractive indexes may be laminated as the antireflection film 4. Further, a different film forming method such as a sputtering method may be used for forming the antireflection film 4. Further, a silicon oxide film may be formed as the antireflection film 4.
  • the n-type impurity diffusion layer 3 formed on the back surface of the p-type polycrystalline silicon substrate 1a is removed by diffusion of phosphorus (P).
  • P phosphorus
  • the semiconductor substrate 1 having a pn junction is obtained (FIG. 5-4).
  • the removal of the n-type impurity diffusion layer 3 formed on the back surface of the p-type polycrystalline silicon substrate 1a is performed using, for example, a single-sided etching apparatus.
  • a method of using the antireflection film 4 as a mask material and immersing the entire p-type polycrystalline silicon substrate 1a in an etching solution may be used.
  • an alkaline aqueous solution such as sodium hydroxide or potassium hydroxide heated to room temperature to 95 ° C., preferably 50 ° C. to 70 ° C. is used.
  • a mixed aqueous solution of nitric acid and hydrofluoric acid may be used as the etching solution.
  • the silicon surface exposed on the back surface of the semiconductor substrate 1 is washed in order to keep the recombination rate low in film formation described later.
  • the cleaning is performed using, for example, RCA cleaning or a 1% to 20% hydrofluoric acid aqueous solution.
  • a back surface insulating film 8 made of a silicon nitride film (SiN film) is formed on the back surface side of the semiconductor substrate 1 (FIG. 5-5).
  • a back insulating film 8 made of a silicon nitride film (SiN film) having a refractive index of 1.9 to 2.2 and a thickness of 60 nm to 300 nm is formed on the silicon surface exposed on the back side of the semiconductor substrate 1 by plasma CVD. Film.
  • plasma CVD plasma CVD, the back surface insulating film 8 made of a silicon nitride film can be reliably formed on the back surface side of the semiconductor substrate 1.
  • the recombination rate of carriers on the back surface of the semiconductor substrate 1 can be suppressed, and silicon (Si) and silicon nitride film (SiN film) on the back surface of the semiconductor substrate 1 can be suppressed. ), A recombination velocity of 100 cm / sec or less is obtained. Thereby, it is possible to realize a sufficient back surface interface for high output.
  • the refractive index of the back surface insulating film 8 deviates from 1.9 to 2.2, it is difficult to stabilize the deposition environment of the silicon nitride film (SiN film), and the film quality of the silicon nitride film (SiN film) deteriorates. As a result, the recombination rate at the interface with silicon (Si) also deteriorates.
  • the thickness of the back insulating film 8 is smaller than 60 nm, the interface with silicon (Si) is not stable, and the carrier recombination rate is deteriorated.
  • the thickness of the back insulating film 8 is larger than 300 nm, there is no functional inconvenience, but it takes time to form a film and increases costs, which is not preferable from the viewpoint of productivity.
  • the back insulating film 8 may have a two-layer structure in which a silicon oxide film (silicon thermal oxide film: SiO 2 film) formed by thermal oxidation and a silicon nitride film (SiN film) are stacked, for example.
  • the silicon oxide film (SiO 2 film) here is not a natural oxide film formed on the back side of the semiconductor substrate 1 during the process, but a silicon oxide film (SiO 2 film) intentionally formed by thermal oxidation, for example. To do.
  • SiO 2 film silicon oxide film
  • the effect of suppressing the recombination rate of carriers on the back surface of the semiconductor substrate 1 can be obtained more stably than the silicon nitride film (SiN film).
  • the thickness of the silicon oxide film (SiO 2 film) intentionally formed by thermal oxidation is preferably about 10 nm to 50 nm.
  • the thickness of the silicon oxide film (SiO 2 film) formed by thermal oxidation is less than 10 nm, the interface with silicon (Si) is not stable, and the recombination rate of carriers deteriorates.
  • the thickness of the silicon oxide film (SiO 2 film) formed by thermal oxidation is larger than 50 nm, there is no functional inconvenience, but the film formation takes time and the cost increases. It is not preferable from the viewpoint.
  • the film formation process is performed at a high temperature in order to shorten the time, the quality of the crystalline silicon itself is lowered, leading to a reduction in lifetime.
  • dot-shaped openings 8a having a predetermined interval are formed on a part or the entire surface of the back insulating film 8 (FIGS. 5-6).
  • the opening 8a is formed by performing direct patterning, for example, by laser irradiation on the back surface insulating film 8.
  • the cross-sectional area of the opening 8 a in the in-plane direction of the back insulating film 8 is increased, and the opening of the opening 8 a in the plane of the back insulating film 8. It is preferable to increase the density.
  • the cross-sectional area of the opening 8a is small and the opening density of the opening 8a is low. Therefore, it is preferable that the shape and density of the opening 8a be kept to a minimum level necessary for realizing a good contact.
  • the shape of the opening 8a has a diameter or width of 20 ⁇ m to 200 ⁇ m, and a substantially circular dot shape or a substantially rectangular shape with an interval between adjacent opening portions 8a of 0.5 mm to 2 mm. Is mentioned.
  • a stripe shape having a width of 20 ⁇ m to 200 ⁇ m and a distance between adjacent openings 8a of 0.5 mm to 3 mm can be cited.
  • dot-shaped openings 8 a are formed by laser irradiation on the back surface insulating film 8.
  • the application shape, application amount, and the like of the back surface aluminum electrode material paste 9a can be changed according to various conditions such as the diffusion concentration of aluminum in the Al—Si alloy part 11 and the BSF 12 in the firing step described later.
  • the light reflectance (back surface reflectance) by the back surface aluminum electrode 9 in the region where the back surface insulating film 8 (silicon nitride film) and the back surface aluminum electrode 9 are laminated on the back surface of the semiconductor substrate 1 is not sufficient.
  • the area where the back surface aluminum electrode material paste 9a is printed is limited to the minimum necessary after balancing the formation conditions of the Al—Si alloy part 11 and the BSF 12 and the light confinement effect in the photovoltaic device. There is a need.
  • FIGS. 6A and 6B are plan views showing examples of the printing region of the back surface aluminum electrode material paste 9a on the back surface insulating film 8.
  • FIGS. FIG. 6A shows an example in which the opening 8a has a substantially circular dot shape
  • FIG. 6B shows an example in which the opening 8a has a substantially rectangular shape.
  • Overlap amount is, 1000 .mu.m 2 from 200 [mu] m 2 in sectional area from the end of the opening 8a, preferably it is desirable to control in the range of 400 [mu] m 2 of 1000 .mu.m 2.
  • the aluminum (Al) -containing back surface aluminum electrode material paste 9a has a paste thickness of 20 ⁇ m. Therefore, in terms of the width of the overlap, 10 ⁇ m to 50 ⁇ m, preferably 20 ⁇ m from the end of the opening 8a. It corresponds to the range of 50 ⁇ m.
  • the overlap width is less than 10 ⁇ m, the effect of preventing the peeling of the back surface insulating film 8 is not exhibited, but the supply of aluminum (Al) does not work well during firing, that is, when the alloy is formed, and the BSF structure is not formed well. Part occurs.
  • the overlap width is larger than 50 ⁇ m, the area ratio occupied by the paste printing portion increases, that is, the area ratio of the high reflection film decreases, and the deviation from the intention of the present invention becomes large.
  • the outer periphery of the opening 8a on the back insulating film 8 includes a ring-shaped overlap region 9b having a width of 20 ⁇ m.
  • the opening 8a has a substantially rectangular shape as shown in FIG. 6B
  • a frame-shaped overlap region 9b having a width of 20 ⁇ m is provided on the outer periphery of the opening 8a on the back surface insulating film 8
  • the back surface aluminum electrode material paste 9a is applied on the back surface insulating film 8 in a limited manner by screen printing.
  • the width w of the opening 8a is 100 ⁇ m
  • a light receiving surface electrode material paste 5 a which is an electrode material of the light receiving surface side electrode 5 and contains silver (Ag), glass or the like is formed into the shape of the light receiving surface side electrode 5.
  • the light-receiving surface electrode material paste 5a is, for example, a pattern of elongated grid electrodes 6 with a width of 80 ⁇ m to 150 ⁇ m and a spacing of 2 mm to 3 mm, and a strip shape with a width of 1 mm to 3 mm and a spacing of 5 mm to 10 mm.
  • the pattern of the bus electrode 7 is printed.
  • the shape of the light receiving surface side electrode 5 is not directly related to the present invention, it may be freely set while balancing between the electrode resistance and the printing light shielding rate.
  • firing is performed at a peak temperature of 760 ° C. to 900 ° C. using, for example, an infrared furnace heater.
  • the light receiving surface side electrode 5 and the back surface aluminum electrode 9 are formed, and the Al—Si alloy part 11 is formed in the region on the back surface side of the semiconductor substrate 1 and in contact with the back surface aluminum electrode 9 and its vicinity. Is done.
  • a BSF layer 12 which is a p + region in which aluminum is diffused in a high concentration from the back surface aluminum electrode 9 is formed on the outer peripheral portion so as to surround the Al—Si alloy portion 11, and the BSF layer 12, the back surface aluminum electrode 9, Are electrically connected (Fig. 5-8).
  • the recombination speed at the interface deteriorates at this connection point, but the BSF layer 12 can negate this effect. Further, the silver in the light receiving surface side electrode 5 penetrates the antireflection film 4, and the n-type impurity diffusion layer 3 and the light receiving surface side electrode 5 are electrically connected.
  • the back surface insulating film 8 made of a silicon nitride film (SiN film). The adherence and fixation of contaminants do not proceed with respect to the back surface, and a good state is maintained without degrading the recombination speed.
  • a highly reflective structure is formed on the back side of the semiconductor substrate 1. That is, a silver (Ag) film (silver sputtering film) is formed as a back surface reflecting film 10 on the entire back surface of the semiconductor substrate 1 by sputtering so as to cover the back surface aluminum electrode 9 and the back surface insulating film 8 (FIGS. 5-9). ).
  • a silver (Ag) film silver sputtering film
  • a dense back surface reflection film 10 can be formed, and the back surface reflection film 10 that realizes higher light reflection than a silver (Ag) film formed by a printing method is formed. can do.
  • the back surface reflection film 10 may be formed so as to cover at least the back surface insulating film 8 on the back surface side of the semiconductor substrate 1. .
  • the solar battery cell according to Embodiment 1 shown in FIGS. 1-1 to 1-3 is manufactured.
  • the order of application of the paste as the electrode material may be switched between the light receiving surface side and the back surface side.
  • the back surface aluminum electrode material paste 9a is applied and fired. Therefore, the region where the back surface aluminum electrode material paste 9a is not applied is protected by the back surface insulating film 8. Thereby, even in the heating by baking, adherence and fixation of the contaminant do not proceed to the back surface of the semiconductor substrate 1, and a good state is maintained without deteriorating the recombination speed, and the photoelectric conversion efficiency is improved.
  • the back surface reflecting film 10 is formed on the back surface of the semiconductor substrate 1 so as to cover at least the back surface insulating film 8.
  • the light transmitted through the semiconductor substrate 1 and the back surface insulating film 8 can be reflected by the back surface reflective film 10 and returned to the semiconductor substrate 1, and a good light confinement effect can be obtained.
  • high photoelectric conversion efficiency can be realized.
  • the back surface reflecting film 10 is formed by a sputtering method.
  • a dense back surface reflecting film 10 can be formed by forming the back surface reflecting film 10 by a sputtering film, not by a printing method using an electrode paste, and realizes higher light reflection than a film formed by the printing method.
  • the back reflective film 10 can be formed, and an excellent light confinement effect can be obtained.
  • the manufacturing method of the solar cell according to the first embodiment it is possible to obtain a back surface structure having both a low recombination speed and a high back surface reflectance, an excellent long wavelength sensitivity, and a photoelectric conversion efficiency.
  • Solar cells with high efficiency can be manufactured.
  • the photoelectric conversion efficiency of the solar battery cell can be increased, the semiconductor substrate 1 can be thinned, the manufacturing cost can be reduced, and the high-quality solar battery cell excellent in battery cell characteristics can be achieved. Can be manufactured at low cost.
  • FIG. Embodiment 2 demonstrates the case where the back surface reflecting film 10 is comprised with metal foil as another form of the back surface reflecting film 10.
  • FIG. 7 is a cross-sectional view of relevant parts for explaining the cross-sectional structure of the solar battery cell according to the present embodiment, and corresponds to FIG. 1-1.
  • the difference between the solar battery cell according to the second embodiment and the solar battery cell according to the first embodiment is that the back surface reflection film is formed of an aluminum foil (aluminum foil) instead of a silver sputtering film. Since the structure of those other than this is the same as that of the photovoltaic cell concerning Embodiment 1, detailed description is abbreviate
  • the back surface reflection film 22 made of aluminum foil is formed by the conductive adhesive 21 disposed on the back surface aluminum electrode 9 on the back surface of the semiconductor substrate 1.
  • the back surface aluminum electrode 9 and the back surface insulating film 8 are covered and attached, and are electrically connected to the back surface aluminum electrode 9 through the conductive adhesive 21. Even in such a configuration, the light transmitted through the semiconductor substrate 1 and the back surface insulating film 8 can be reflected back to the semiconductor substrate 1 as in the case of the first embodiment, and good light confinement can be achieved with an inexpensive configuration. An effect can be obtained.
  • the back surface reflecting film 22 is comprised by the aluminum foil which is metal foil.
  • the back surface reflection film 22 is not a film formed by a printing method using an electrode paste, but is made of a metal foil, so that higher light reflection than a metal film formed by a printing method can be realized. More light transmitted through the semiconductor substrate 1 and the back surface insulating film 8 can be reflected back to the semiconductor substrate 1. Therefore, the solar battery cell according to the present embodiment can obtain an excellent light confinement effect as in the case of the first embodiment by including the back surface reflection film 22 configured by the aluminum foil that is a metal foil. it can.
  • the material of the back surface reflection film 22 a metal material that can be processed into a foil can be used.
  • the reflectance with respect to light having a wavelength near 1100 nm is 90% or more, preferably 95%. It is preferable to use the above metal materials.
  • a solar cell having high long wavelength sensitivity and excellent light confinement effect for light in the long wavelength region can be realized. That is, although depending on the thickness of the semiconductor substrate 1, light having a long wavelength of 900 nm or more, particularly about 1000 nm to 1100 nm, can be efficiently taken into the semiconductor substrate 1 to realize a high generated current and improve output characteristics.
  • a material for example, silver (Ag) can be used in addition to aluminum (Al).
  • the solar battery cell according to the present embodiment configured as described above has a conductive adhesive on the back surface aluminum electrode 9 after the steps described in Embodiment 1 with reference to FIGS. 5-1 to 5-8. 21 is applied, and the back surface reflective film 22 is formed by covering the back surface aluminum electrode 9 and the back surface insulating film 8 with the conductive adhesive 21.
  • the back surface reflection film 22 may be formed so as to cover at least the back surface insulating film 8 on the back surface side of the semiconductor substrate 1.
  • the solar cell according to the second embodiment configured as described above, by providing a silicon nitride film (SiN film) formed by plasma CVD on the back surface of the semiconductor substrate 1 as the back surface insulating film 8, A good effect of suppressing the recombination rate of carriers on the back surface of the semiconductor substrate 1 can be obtained. Thereby, in the photovoltaic cell concerning this Embodiment, the improvement of an output characteristic is achieved and the high photoelectric conversion efficiency is implement
  • SiN film silicon nitride film
  • the back surface reflection film 22 made of aluminum foil that is a metal foil is provided so as to cover the back surface insulating film 8, thereby making it more than a metal film formed by a conventional printing method.
  • High light reflection can be realized, and more light transmitted through the semiconductor substrate 1 and the back surface insulating film 8 can be reflected back to the semiconductor substrate 1. Therefore, in the solar cell according to the present embodiment, an excellent light confinement effect can be obtained, the output characteristics can be improved, and high photoelectric conversion efficiency is realized.
  • the solar cell according to the second embodiment by having the structure of the back surface having both the low recombination speed and the high back surface reflectivity, the long wavelength sensitivity is excellent, and the photoelectric conversion efficiency is improved.
  • the obtained solar battery cell is realized.
  • the back surface insulating film 8 having the opening 8a is formed on the back surface of the semiconductor substrate 1, and then the back surface aluminum electrode material paste 9a is applied and fired.
  • the region where the back surface aluminum electrode material paste 9 a is not applied is protected by the back surface insulating film 8.
  • the back surface reflection film 22 is formed on the back surface of the semiconductor substrate 1 so as to cover at least the back surface insulating film 8.
  • the light transmitted through the semiconductor substrate 1 and the back surface insulating film 8 can be reflected by the back surface reflective film 22 and returned to the semiconductor substrate 1, and a good light confinement effect can be obtained.
  • high photoelectric conversion efficiency can be realized.
  • the back surface reflecting film 22 is formed by attaching an aluminum foil, which is a metal foil, on the back surface aluminum electrode 9.
  • a dense back surface reflection film 22 can be formed by forming the back surface reflection film 22 using an aluminum foil that is a metal foil as the back surface reflection film 22 instead of a printing method using an electrode paste.
  • the back surface reflection film 22 that realizes light reflection higher than that of the formed film can be formed, and an excellent light confinement effect can be obtained.
  • the method for manufacturing a solar battery cell according to the second embodiment it is possible to obtain a back surface structure having both a low recombination speed and a high back surface reflectance, an excellent long wavelength sensitivity, and a photoelectric conversion efficiency. Solar cells with high efficiency can be manufactured. Further, since the photoelectric conversion efficiency of the solar battery cell can be increased, the semiconductor substrate 1 can be thinned, the manufacturing cost can be reduced, and the high-quality solar battery cell excellent in battery cell characteristics can be achieved. Can be manufactured at low cost.
  • the case where a p-type silicon substrate is used as the semiconductor substrate has been described.
  • a reverse conductivity type solar cell in which a p-type diffusion layer is formed using an n-type silicon substrate.
  • a polycrystalline silicon substrate is used as the semiconductor substrate, a single crystal silicon substrate may be used.
  • the substrate thickness of the semiconductor substrate is 200 ⁇ m.
  • a semiconductor substrate that can be self-held, for example, thinned to about 50 ⁇ m, can be used.
  • the size of the semiconductor substrate is 150 mm ⁇ 150 mm, but the size of the semiconductor substrate is not limited to this.
  • Embodiment 3 In Embodiment 3, in the solar cell of Embodiment 1 and Embodiment 2 mentioned above, the connection electrode for connecting the metal tab which connects between cells when modularizing a photovoltaic cell was provided. The back surface structure will be described.
  • the suppression of the recombination rate on the back surface has recently become particularly important.
  • the carrier diffusion length it is not uncommon for the carrier diffusion length to exceed the thickness of the silicon substrate. Accordingly, the surface recombination speed on the back surface of the silicon substrate greatly affects the characteristics of the solar battery cell.
  • a metal paste containing silver is often used as a material for a connection electrode provided on the cell side.
  • Fire-through means that during paste application and baking, silver and glass components contained in the paste interact with silicon and bite into the silicon crystal, resulting in electrical connection and physical bond strength between the silicon substrate and the electrode. Both will be obtained.
  • This phenomenon occurs similarly for silicon compounds such as a silicon nitride film (SiN film).
  • SiN film silicon nitride film
  • the silver and glass components contained in the paste penetrate through the silicon nitride film (SiN film) in a manner that breaks through the silicon nitride film (SiN film).
  • the electrode and the silicon crystal can be connected without doing so. For this reason, fire-through greatly contributes to simplification of the solar cell manufacturing process.
  • the fire-through is also performed in the steps shown in FIGS. 5-7 to 5-8 in the first embodiment.
  • the recombination rate is very high at the interface between the silver electrode and silicon.
  • the formation of electrodes by this fire-through becomes a big problem.
  • the open circuit voltage (Voc) may be significantly reduced even by a slight contact between the back surface silver electrode and the silicon substrate. That is, the open-circuit voltage (Voc) and the photoelectric conversion efficiency may be reduced by electrically connecting the back surface silver electrode and the silicon crystal of the silicon substrate in the back surface structure of the silicon solar cell.
  • the back surface structure of the silicon solar cell it is preferable to avoid the influence of the electrical connection between the back surface silver electrode and the silicon substrate while ensuring the physical adhesive strength between the back surface silver electrode and the back surface side of the silicon substrate.
  • FIGS. 8-1 to 8-3 are diagrams illustrating a configuration of a solar battery cell that is the photovoltaic device according to the third embodiment, and FIG. 8-1 is for explaining a cross-sectional structure of the solar battery cell.
  • 8-2 is a top view of the solar cell viewed from the light receiving surface side
  • FIG. 8-3 is a bottom view of the solar cell viewed from the side opposite to the light receiving surface (back side). is there.
  • FIG. 8A is a cross-sectional view of the main part along the line BB in FIG. 8B.
  • the solar cell according to the third embodiment is different from the solar cell according to the first embodiment in that a back surface silver electrode 31 mainly composed of silver (Ag) is provided on the back surface side of the semiconductor substrate 1. . That is, the solar cell according to the third embodiment includes a back surface aluminum electrode 9 mainly composed of aluminum (Al) and a back surface silver electrode 31 mainly composed of silver (Ag) as the back surface side electrode. On the back side. Since the structure of those other than this is the same as that of the photovoltaic cell concerning Embodiment 1, detailed description is abbreviate
  • the back surface silver electrode 31 is connected with a metal tab for connecting cells when modularizing solar cells.
  • two back surface silver electrodes 31 are provided in a region between adjacent back surface aluminum electrodes 9 on the back surface side of the semiconductor substrate 1 so as to extend in a direction substantially parallel to the extending direction of the bus electrode 7.
  • the back surface silver electrode 31 protrudes from the surface of the back surface reflection film 10 and penetrates the back surface insulating film 8 and is at least partially physically and electrically connected to the back surface of the semiconductor substrate 1.
  • the width of the back surface silver electrode 31 is, for example, the same size as that of the bus electrode 7.
  • Silver paste is usually used as a connection electrode material for silicon solar cells, and for example, lead boron glass is added.
  • This glass is frit-like, and is composed of, for example, lead (Pb), boron (B), silicon (Si), oxygen (O), and further mixed with zinc (Zn), cadmium (Cd), and the like.
  • Pb lead
  • B boron
  • Si silicon
  • O oxygen
  • Zn zinc
  • Cd cadmium
  • the back surface silver electrode 31 is formed by applying and baking such a silver paste and performing fire-through.
  • Such back surface silver electrode 31 is obtained by applying and drying silver paste, which is an electrode material paste, in the shape of back surface silver electrode 31 in the region on back surface insulating film 8 in the process of FIG. However, it can be produced by fire-through by firing in the step of FIG. 5-8. Except for this, the solar battery cell according to the third embodiment can be manufactured by carrying out the steps of FIGS. 5-1 to 5-9 in the same manner as in the first embodiment.
  • silver paste which is an electrode material paste
  • Example D width 100 ⁇ m ⁇ length 148 mm ⁇ 75 (2 mm interval)
  • Sample E width 3.5 mm ⁇ length 148 mm ⁇ 2 pieces (75 mm interval)
  • Sample F width 7.5 mm ⁇ length 10 mm ⁇ 7 locations ⁇ 2 rows (75 mm interval)
  • Sample G No back Ag paste printing (reference: comparison object)
  • FIG. 9 is a characteristic diagram showing the open circuit voltage (Voc) of the solar cells of Sample D to Sample F.
  • FIG. 10 is a diagram showing the electrode area ratio of the back surface silver electrode 31 in the solar cells of Sample D to Sample F.
  • the electrode area ratio is the ratio of the area of the back surface silver electrode 31 to the area of the back surface of the p-type polycrystalline silicon substrate 2.
  • the area of the back surface silver electrode 31 uses the printing area of the silver paste at the time of forming the back surface silver electrode 31. From FIG. 9, it can be seen that among the above four types of samples, the open circuit voltage (Voc) of sample D is greatly inferior compared to the others. On the other hand, it can be seen from FIG.
  • the structure of the solar battery cell according to the third embodiment is for obtaining high efficiency, and the fact that the diffusion length of the single crystal or polycrystalline silicon used is large is cited as a practical precondition.
  • a diffusion length of at least 300 ⁇ m or more, preferably 500 ⁇ m or more is required.
  • the diffusion length is 500 ⁇ m will be described as an example.
  • the influence on the open circuit voltage (Voc) of the back surface silver electrode 31 is due to the recombination speed of the interface.
  • the term “influenced” here means that the generated carriers diffuse to the interface and recombine faster than the bulk recombination of the semiconductor material itself of the solar cell substrate. Therefore, the range of influence is not infinite and is closely related to the distance that the generated carriers can diffuse, that is, the diffusion length.
  • FIG. 11 is a plan view schematically showing an influence area by the back surface silver electrode 31.
  • the back reflection film 10 is seen through.
  • FIG. 11 is a plan view, hatching is added to make the drawing easy to see.
  • the influence region by the back surface silver electrode 31 includes the pattern region of the back surface silver electrode 31 and the peripheral region 32.
  • Peripheral region 32 is a portion of the region where back surface insulating film 8 is formed on the back surface of p-type polycrystalline silicon substrate 2.
  • the area ratio of the affected area by the back surface silver electrode 31 in Sample E and Sample F is slightly over 5%.
  • region by the back surface silver electrode 31 in the sample D exceeds 50%.
  • the open circuit voltage (Voc) decreases when the area ratio of the affected region by the back surface silver electrode 31 to the area of the back surface of the p-type polycrystalline silicon substrate 2 is large.
  • Voc open circuit voltage
  • a region having a high open-circuit voltage (Voc) (high open-circuit voltage region), that is, a highly passivated region on the back surface of the p-type polycrystalline silicon substrate 2, and an open-circuit voltage ( Voc) is a low region (low open circuit voltage region), that is, when a region greatly influenced by the back surface silver electrode 31 is mixed on the back surface of the p-type polycrystalline silicon substrate 2, the entire open circuit voltage (Voc) is based on parallel connection. Can think.
  • FIG. 12 is a characteristic diagram showing an example of the relationship between the ratio of the low open-circuit voltage region on the back surface of the silicon substrate and the open-circuit voltage (Voc).
  • the voltage in the high open-circuit voltage region is temporarily fixed at 655 mV and the voltage in the low open-circuit voltage region is temporarily fixed at 580 mV, and the change in the overall open-circuit voltage (Voc) according to the ratio between the two is calculated.
  • the open circuit voltage (Voc) is required to be at least 635 mV or more, preferably 640 mV or more.
  • the upper limit of the area ratio of the low open-circuit voltage region is calculated to be 10% or less, preferably 8% or less at most, referring to FIG.
  • the back surface silver electrode 31 has an area ratio of about 3% or more in order to ensure its adhesion, because the original main function is to directly connect to the metal tab during tab connection. .
  • the thickness of the back surface insulating film 8 made of a silicon nitride film (SiN film) formed on the back surface of the p-type polycrystalline silicon substrate 2 in order to obtain a sufficient effect of suppressing the surface recombination rate on the back surface side, A film thickness of 60 nm or more is required.
  • the thickness of the back surface insulating film 8 is 160 nm or more, the fire-through in forming the back surface silver electrode 31 is difficult to reach the back surface of the p-type polycrystalline silicon substrate 2.
  • the thickness of the back surface insulating film 8 is 240 nm or more, the fire through does not reach the back surface of the p-type polycrystalline silicon substrate 2 at all.
  • the necessity of the device of the present invention does not occur at a film thickness of 160 nm or more, even if it is 240 nm or more.
  • the thick film thickness hinders productivity, and the upper limit of the thickness of the back surface insulating film 8 according to the present embodiment is set to be less than 160 nm and at most less than 240 nm.
  • the solar cell according to the third embodiment configured as described above, by providing a silicon nitride film (SiN film) formed by plasma CVD on the back surface of the semiconductor substrate 1 as the back surface insulating film 8, A good effect of suppressing the recombination rate of carriers on the back surface of the semiconductor substrate 1 can be obtained. Thereby, in the photovoltaic cell concerning this Embodiment, the improvement of an output characteristic is achieved and the high photoelectric conversion efficiency is implement
  • SiN film silicon nitride film
  • the back surface reflecting film 10 made of a silver sputtering film so as to cover the back surface insulating film 8 it is more than the silver (Ag) film formed by the conventional printing method. High light reflection can be realized, and more light transmitted through the semiconductor substrate 1 and the back surface insulating film 8 can be reflected back to the semiconductor substrate 1. Therefore, in the solar cell according to the present embodiment, an excellent light confinement effect can be obtained, the output characteristics can be improved, and high photoelectric conversion efficiency is realized.
  • the ratio of the area of the influence region by the back surface silver electrode 31 to the area of the back surface of the p-type polycrystalline silicon substrate 2 is 10% or less, preferably 8% or less.
  • the solar cell according to the third embodiment has a back surface structure that has both a low recombination speed and a high back surface reflectance, is excellent in long wavelength sensitivity and open circuit voltage (Voc), and has a photoelectric conversion efficiency. Solar cells with high efficiency have been realized.
  • the photovoltaic device according to the present invention is useful for realizing a highly efficient photovoltaic device with a low recombination speed and a high back surface reflectance.
  • SYMBOLS 1 Semiconductor substrate 1a p-type polycrystalline silicon substrate 2 p-type polycrystalline silicon substrate 3 n-type impurity diffusion layer 4 Antireflection film 5 Light-receiving surface side electrode 5a Light-receiving surface electrode material paste 6 Grid electrode 7 Bus electrode 8 Back surface insulating film 8a Opening Part 9 Back surface aluminum electrode 9a Back surface aluminum electrode material paste 9b Overlapping region 10 Back surface reflection film 11 Aluminum-silicon (Al-Si) alloy part 12 BSF layer 21 Conductive adhesive 22 Back surface reflection film 31 Back surface silver electrode 32 Peripheral region

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 不純物拡散層を有する半導体基板(基板)と、不純物拡散層上に形成された反射防止膜を貫通して不純物拡散層に電気的に接続する第1電極と、基板の他面側に達する複数の開口部を有して形成された裏面絶縁膜と、基板の他面側に形成された第2電極と、気相成長法によって形成される金属膜からなり、または金属箔を含んで構成され、少なくとも裏面絶縁膜上を覆って形成された裏面反射膜と、を備え、第2電極は、基板の他面側において開口部に埋め込まれて基板の他面側に接続するAl系電極と、基板の他面側において開口部間の領域に設けられて少なくとも一部が裏面絶縁膜を貫通して基板の他面側に電気的に接続するAg系電極とからなり、基板の面内におけるAg系電極の面積と、キャリアの拡散長分だけAg系電極のパターンを基板の面内において外側に拡張した周辺領域の面積との和が、基板の他面側の面積の10%以下である。

Description

光起電力装置およびその製造方法
 本発明は、光起電力装置およびその製造方法に関するものである。
 近年の光起電力装置においては、高出力化を目指して、素材や製造プロセスの改善が進んでいる。このため、より一層の高出力化を図るためには、光起電力装置内への光閉じ込めや、表面・裏面におけるキャリアの再結合速度の抑制により、従前は十分な活用ができていなかった波長域の光を発電に寄与させる構造や製法を実現することが重要になっている。したがって、その一翼を担う基板の裏面構造の改善は、非常に重要である。
 そこで、基板の裏面側での反射や基板の裏面での再結合速度の抑制を目指して、例えば裏面電極を局所的に印刷・焼成した後に再結合速度を抑制する膜の成膜を行う技術が提唱されている(例えば、特許文献1参照)。その他にも、例えば基板の裏面に再結合速度を抑制する膜の成膜を行った後に、その一部に開口部を設け、さらに裏面電極ペーストを全面に印刷・焼成する技術が提唱されている(例えば、特許文献2参照)。
特開平6-169096号公報 特開2002-246625号公報
 しかしながら、上記特許文献1の方法では、裏面電極の印刷・焼成した後に、再結合速度を抑制する膜の成膜を行う。この場合は、特に焼成の際に、基板の裏面に対して汚染物質の付着や固定が進むため、基板の裏面でのキャリアの再結合速度を意図するように低く抑えることが極めて難しい、という問題がある。
 また、上記特許文献2の方法では、再結合速度を抑制する膜のほぼ全面を覆う形で電極ペーストが印刷されて光反射機能を兼ねた裏面電極が形成され、該裏面電極と基板の裏面とのコンタクトは部分的になされている。しかし、裏面電極を、例えば代表的な材料であるアルミニウム(Al)を含むペーストから構成した場合には、裏面での光反射率を高くすることができず、十分な光起電力装置内への光閉じ込め効果を得ることができない、という問題がある。また、裏面電極を、例えば代表的な材料である銀(Ag)を含むペーストから構成した場合には、電極の焼成処理の際に、本来のコンタクト部分以外の領域でも再結合速度を抑制する膜がファイヤースルーにより浸食され、十分なキャリアの再結合速度の抑制効果を得ることができない、という問題がある。
 一方、太陽電池セルから、太陽電池モジュールへ加工する際は、複数のセルが金属タブを介して直列または直列・並列併用で接続される。一般にセル側における接続用電極は、銀を含む金属ペーストが用いたファイヤースルーにより形成される。ファイヤースルーを用いることにより、シリコン基板と電極との間で電気的接続および物理的接着強度の双方が得られる。
 しかし、銀電極とシリコンとの界面では、再結合速度が非常に大きい為、シリコン太陽電池の裏面においては、このファイヤースルーによる電極の形成が問題になる。すなわち、シリコン太陽電池の裏面構造において裏面銀電極とシリコン基板のシリコン結晶とが電気接続することにより、開放電圧(Voc)および光電変換効率が低下する場合がある。
 本発明は、上記に鑑みてなされたものであって、低い再結合速度と高い裏面反射率とを備え、光電変換効率に優れた光起電力装置およびその製造方法を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明にかかる光起電力装置は、一面側に第2導電型の不純物元素が拡散された不純物拡散層を有する第1導電型の半導体基板と、前記不純物拡散層上に形成された反射防止膜と、前記反射防止膜を貫通して前記不純物拡散層に電気的に接続する第1電極と、前記半導体基板の他面側に達する複数の開口部を有して前記半導体基板の他面側に形成された裏面絶縁膜と、前記半導体基板の他面側に形成された第2電極と、気相成長法によって形成される金属膜からなり、または金属箔を含んで構成され、少なくとも前記裏面絶縁膜上を覆って形成された裏面反射膜と、を備え、前記第2電極は、アルミニウムを含む材料からなり前記半導体基板の他面側において少なくとも前記開口部に埋め込まれて前記半導体基板の他面側に接続するアルミニウム系電極と、銀を含む材料からなり前記半導体基板の他面側において前記開口部間の領域に設けられて少なくとも一部が前記裏面絶縁膜を貫通して前記半導体基板の他面側に電気的に接続するとともに前記裏面反射膜を介して前記アルミニウム系電極と電気的に接続する銀系電極とからなり、前記半導体基板の面内における前記銀系電極の面積と、前記半導体基板内におけるキャリアの拡散長分だけ前記銀系電極のパターンを前記半導体基板の面内において外側に拡張した周辺領域の面積との和が、上記半導体基板の他面側の面積の10%以下であること、を特徴とする。
 本発明によれば、低い再結合速度と高い裏面反射率の双方を有する裏面の構造を有し、光電変換効率の高効率化が図られた太陽電池セルを得ることができる、という効果を奏する。そして、本発明によれば、裏面銀電極と半導体基板との電気接続に起因した開放電圧(Voc)および光電変換効率の低下を防止することができる、という効果を奏する。
図1-1は、本発明の実施の形態1にかかる太陽電池セルの断面構造を説明するための要部断面図である。 図1-2は、本発明の実施の形態1にかかる太陽電池セルを受光面側から見た上面図である。 図1-3は、本発明の実施の形態1にかかる太陽電池セルを裏面側から見た下面図である。 図2は、異なる裏面構造を有する3種類の試料における半導体基板の裏面での反射率を示す特性図である。 図3は、実施の形態1にかかる太陽電池セルを模して作製した試料における裏面電極の面積率と開放電圧(Voc)との関係を示した特性図である。 図4は、実施の形態1にかかる太陽電池セルを模して作製した試料における裏面電極の面積率と短絡電流密度(Jsc)との関係を示した特性図である。 図5-1は、本発明の実施の形態1にかかる太陽電池セルの製造工程を説明するための断面図である。 図5-2は、本発明の実施の形態1にかかる太陽電池セルの製造工程を説明するための断面図である。 図5-3は、本発明の実施の形態1にかかる太陽電池セルの製造工程を説明するための断面図である。 図5-4は、本発明の実施の形態1にかかる太陽電池セルの製造工程を説明するための断面図である。 図5-5は、本発明の実施の形態1にかかる太陽電池セルの製造工程を説明するための断面図である。 図5-6は、本発明の実施の形態1にかかる太陽電池セルの製造工程を説明するための断面図である。 図5-7は、本発明の実施の形態1にかかる太陽電池セルの製造工程を説明するための断面図である。 図5-8は、本発明の実施の形態1にかかる太陽電池セルの製造工程を説明するための断面図である。 図5-9は、本発明の実施の形態1にかかる太陽電池セルの製造工程を説明するための断面図である。 図6-1は、本発明の実施の形態1にかかる太陽電池セルの裏面絶縁膜上における裏面アルミニウム電極材料ペーストの印刷領域の例を示す平面図である。 図6-2は、本発明の実施の形態1にかかる太陽電池セルの裏面絶縁膜上における裏面アルミニウム電極材料ペーストの印刷領域の例を示す平面図である。 図7は、本発明の実施の形態2にかかる太陽電池セルの断面構造を説明するための要部断面図である。 図8-1は、本発明の実施の形態3にかかる太陽電池セルの断面構造を説明するための要部断面図である。 図8-2は、本発明の実施の形態3にかかる太陽電池セルを受光面側から見た上面図である。 図8-3は、本発明の実施の形態3にかかる太陽電池セルを裏面側から見た下面図である。 図9は、試料D~試料Fの太陽電池セルの開放電圧を示す特性図である。 図10は、試料D~試料Fの太陽電池セルにおける裏面銀電極の電極面積比率を示す図である。 図11は、本発明の実施の形態3にかかる裏面銀電極による影響領域を模式的に示す平面図である。 図12は、シリコン基板の裏面における低開放電圧領域の比率と開放電圧との関係の一例を示す特性図である。
 以下に、本発明にかかる光起電力装置およびその製造方法の実施例を図面に基づいて詳細に説明する。なお、本発明は以下の記述により限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。また、以下に示す図面においては、理解の容易のため、各部材の縮尺が実際とは異なる場合がある。各図面間においても同様である。
実施の形態1.
 図1-1~図1-3は、本実施の形態にかかる光起電力装置である太陽電池セルの構成を示す図であり、図1-1は、太陽電池セルの断面構造を説明するための要部断面図、図1-2は、受光面側から見た太陽電池セルの上面図、図1-3は、受光面と反対側(裏面側)から見た太陽電池セルの下面図である。図1-1は、図1-2の線分A-Aにおける要部断面図である。
 本実施の形態にかかる太陽電池セルは、図1-1~図1-3に示されるように、光電変換機能を有する太陽電池基板であってpn接合を有する半導体基板1と、半導体基板1の受光面側の面(表面)に形成されて受光面での入射光の反射を防止する絶縁膜であるシリコン窒化膜(SiN膜)からなる反射防止膜4と、半導体基板1の受光面側の面(表面)において反射防止膜4に囲まれて形成された第1電極である受光面側電極5と、半導体基板1の受光面と反対側の面(裏面)に形成されたシリコン窒化膜(SiN膜)からなる裏面絶縁膜8と、半導体基板1の裏面において裏面絶縁膜8に囲まれて形成された第2電極である裏面アルミニウム電極9と、半導体基板1の裏面において裏面絶縁膜8と裏面アルミニウム電極9とを覆って設けられた裏面反射膜10と、を備える。
 半導体基板1は、第1導電型層であるp型多結晶シリコン基板2と、半導体基板1の受光面側にリン拡散によって形成された第2導電型層である不純物拡散層(n型不純物拡散層)3と、によりpn接合が構成されている。n型不純物拡散層3は、表面シート抵抗が30~100Ω/□とされている。
 受光面側電極5は、太陽電池セルのグリッド電極6およびバス電極7を含み、n型不純物拡散層3に電気的に接続されている。グリッド電極6は、半導体基板1で発電された電気を集電するために受光面に局所的に設けられている。バス電極7は、グリッド電極6で集電された電気を取り出すためにグリッド電極6にほぼ直交して設けられている。
 一方、裏面アルミニウム電極9は、半導体基板1の裏面に全体にわたって設けられた裏面絶縁膜8に一部が埋設されている。すなわち、裏面絶縁膜8には、半導体基板1の裏面に達する略円形のドット状の開口部8aが設けられている。そして、該開口部8aを埋めるとともに裏面絶縁膜8の面内方向において開口部8aの径よりも広い外形を有するように、アルミニウム、ガラス等を含む電極材料からなる裏面アルミニウム電極9が設けられている。
 裏面絶縁膜8は、シリコン窒化膜(SiN膜)からなり、半導体基板1の裏面のほぼ全面にプラズマCVD(Chemical Vapor Deposition)法により形成されている。裏面絶縁膜8として、プラズマCVD法により形成されたシリコン窒化膜(SiN膜)を用いることにより、半導体基板1の裏面において良好なキャリアの再結合速度の抑制効果を得ることができる。
 裏面反射膜10は、半導体基板1の裏面において裏面アルミニウム電極9および裏面絶縁膜8を覆って設けられている。裏面絶縁膜8を覆う裏面反射膜10を備えることにより、半導体基板1および裏面絶縁膜8を透過してきた光を反射して半導体基板1に戻すことができ、良好な光閉じ込め効果を得ることができる。そして、本実施の形態では、裏面反射膜10は気相成長法によって形成される金属膜であるスパッタリング法により形成された銀(Ag)膜(銀スパッタリング膜)により構成されている。裏面反射膜10は、電極ペーストを用いた印刷法により形成された膜ではなく、スパッタリング膜により構成されているため、印刷法により形成された銀(Ag)膜よりも高い光反射を実現することができ、半導体基板1および裏面絶縁膜8を透過してきた光をより多く反射して半導体基板1に戻すことができる。したがって、本実施の形態にかかる太陽電池セルは、銀スパッタリング膜により構成された裏面反射膜10を備えることにより、優れた光閉じ込め効果を得ることができる。
 裏面反射膜10の材料としては、例えば波長が1100nm近傍の光に対する反射率が90%以上、好ましくは95%以上の金属材料を用いることが好ましい。これにより、高い長波長感度を有し、長波長領域の光に対する光閉じこめ効果に優れた太陽電池セルを実現できる。すなわち、半導体基板1の厚みにもよるが、波長が900nm以上、特に1000nm~1100nm程度の長波長の光を半導体基板1に効率良く取り込み、高い発生電流を実現することができ、出力特性を向上させることができる。このような材料としては、銀(Ag)の他に例えばアルミニウム(Al)を用いることができる。
 なお、本実施の形態にかかる太陽電池セルでは、上述したように半導体基板1の裏面に微細な裏面アルミニウム電極9が形成され、その上に裏面反射膜10が形成されている。このため、図1-3に示した裏面反射膜10には実際には裏面アルミニウム電極9に起因した微細な凹凸が形成されているが、図1-3ではこの微細な凹凸の記載を省略している。
 また、半導体基板1の裏面側の領域であって裏面アルミニウム電極9に接する領域およびその近傍にはアルミニウム-シリコン(Al-Si)合金部11が形成されている。さらにその外周部には、該アルミニウム-シリコン(Al-Si)合金部11を囲って、p型多結晶シリコン基板2と等しい導電型の高濃度拡散層であるBSF(Back Surface Filed層)12が形成されている。
 このように構成された太陽電池セルでは、太陽光が太陽電池セルの受光面側から半導体基板1に照射されると、ホールと電子が生成する。pn接合部(p型多結晶シリコン基板2とn型不純物拡散層3との接合面)の電界によって、生成した電子はn型不純物拡散層3に向かって移動し、ホールはp型多結晶シリコン基板2に向かって移動する。これにより、n型不純物拡散層3に電子が過剰となり、p型多結晶シリコン基板2にホールが過剰となる結果、光起電力が発生する。この光起電力はpn接合を順方向にバイアスする向きに生じ、n型不純物拡散層3に接続した受光面側電極5がマイナス極となり、p型多結晶シリコン基板2に接続した裏面アルミニウム電極9がプラス極となって、図示しない外部回路に電流が流れる。
 図2は、異なる裏面構造を有する3種類の試料における半導体基板の裏面での反射率を示す特性図である。図2では、試料に入射した光の波長と反射率との関係を示している。なお、各試料は太陽電池セルを模して作製し、裏面構造以外の基本的な構造は本実施の形態にかかる太陽電池セルと同様である。各試料の裏面構造の詳細は、以下の通りである。
(試料A)
 半導体基板の裏面全面にわたってアルミニウム(Al)を含む電極ペーストから形成したアルミニウム(Al)ペースト電極を備える(従来の一般的な構造に相当)。
(試料B)
 半導体基板の裏面全面にわたってシリコン窒化膜(SiN)からなる裏面絶縁膜を形成し、該裏面絶縁膜上の全面にアルミニウム(Al)を含む電極ペーストから形成したアルミニウム(Al)ペースト電極を備える(先行技術(特許文献2)に相当)。
(試料C)
 半導体基板の裏面全面にわたってシリコン窒化膜(SiN)からなる裏面絶縁膜を形成し、且つアルミニウム(Al)を含む電極ペーストから形成したアルミニウム(Al)ペースト電極を半導体基板の裏面の局所的に有し、さらに該裏面絶縁膜上の全面に銀スパッタリング膜からなる高反射膜を備える(本実施の形態にかかる太陽電池セルに相当)。
 各試料は裏面構造が異なるだけで、その他の構造は同一であるため、図2から「シリコン(半導体基板)-裏面構造」間の反射率の違いを確認することができる。裏面反射の状態を見るには、シリコンへの吸収がほとんど無い波長1200nm近辺を比較するとよい。1100nm以下の波長ではシリコンへの吸収があり既に発電に寄与しているため、裏面反射の比較には適さないためである。なお、図2において示している反射率は、厳密には裏面での多重反射の結果、再び半導体基板の表面に漏れて来る成分である。
 図2から分かるように、先行技術(特許文献2)に相当する試料Bは、従来の一般的な構造に相当する試料Aに比べて多少の反射率改善があるが、反射率改善効果は十分とは言えない。一方、本実施の形態にかかる太陽電池セルに相当する試料Cは、試料Aおよび試料Bに比べて反射率が大きく、「シリコン(半導体基板)-裏面構造」間の反射率の高さが認められ、裏面における光閉じこめ作用に基づく高効率化に適していることが分かる。
 図3は、上述した試料Cと同様に本実施の形態にかかる太陽電池セルを模して作製した試料における裏面電極の面積率(半導体基板の裏面において裏面電極が占める比率)と開放電圧(Voc)との関係を示した特性図である。また、図4は、上述した試料Cと同様に本実施の形態にかかる太陽電池セルを模して作製した試料における裏面電極の面積率(半導体基板の裏面において裏面電極が占める比率)と短絡電流密度(Jsc)との関係を示した特性図である。
 図3および図4から分かるように、裏面電極であるアルミニウム(Al)ペースト電極の面積率の減少に伴い、すなわち本実施の形態にかかる高反射膜の面積率の増加に伴い、開放電圧(Voc)、短絡電流密度(Jsc)ともに向上しており、半導体基板の裏面において良好なキャリアの再結合速度の抑制効果が得られていることが認められる。これにより、本実施の形態にかかる太陽電池セルの構造により、裏面反射改善と半導体基板の裏面におけるキャリアの再結合速度の抑制とを両立できること、および本実施の形態にかかる高反射膜の面積率を高めるほど、上記の効果をより顕著に得られることが分かる。
 以上のように構成された実施の形態1にかかる太陽電池セルにおいては、裏面絶縁膜8として、半導体基板1の裏面にプラズマCVD法により形成されたシリコン窒化膜(SiN膜)を備えることにより、半導体基板1の裏面において良好なキャリアの再結合速度の抑制効果を得ることができる。これにより、本実施の形態にかかる太陽電池セルにおいては、出力特性の向上が図られ、高い光電変換効率が実現されている。
 また、実施の形態1にかかる太陽電池セルにおいては、裏面絶縁膜8を覆って銀スパッタリング膜からなる裏面反射膜10を備えることにより、従来の印刷法により形成された銀(Ag)膜よりも高い光反射を実現することができ、半導体基板1および裏面絶縁膜8を透過してきた光をより多く反射して半導体基板1に戻すことができる。したがって、本実施の形態にかかる太陽電池セルにおいては、優れた光閉じ込め効果を得ることができ、出力特性の向上が図られ、高い光電変換効率が実現されている。
 したがって、実施の形態1にかかる太陽電池セルにおいては、低い再結合速度と高い裏面反射率の双方を有する裏面の構造を有することにより、長波長感度に優れ、光電変換効率の高効率化が図られた太陽電池セルが実現されている。
 つぎに、このような太陽電池セルの製造方法の一例について図5-1~図5-9を参照して説明する。図5-1~図5-9は、本実施の形態にかかる太陽電池セルの製造工程を説明するための断面図である。
 まず、半導体基板1として、例えば民生用太陽電池向けとして最も多く使用されているp型多結晶シリコン基板を用意する(以下、p型多結晶シリコン基板1aと呼ぶ)(図5-1)。p型多結晶シリコン基板1aとしては、例えばホウ素(B)等のIII族元素を含有した電気抵抗が0.5~3Ωcm程度の多結晶シリコン基板を用いる。
 p型多結晶シリコン基板1aは、溶融したシリコンを冷却固化してできたインゴットをワイヤーソーでスライスして製造するため、表面にスライス時のダメージが残っている。そこで、まずはこのダメージ層の除去も兼ねて、p型多結晶シリコン基板1aを酸または加熱したアルカリ溶液中、例えば水酸化ナトリウム水溶液に浸漬して表面をエッチングすることにより、シリコン基板の切り出し時に発生してp型多結晶シリコン基板1aの表面近くに存在するダメージ領域を取り除く。ダメージ除去後のp型多結晶シリコン基板1aの厚みは、例えば200μm、寸法は例えば150mm×150mmである。
 また、ダメージ除去と同時に、またはダメージ除去に続いて、p型多結晶シリコン基板1aの受光面側の表面にテクスチャー構造として微小凹凸を形成してもよい。このようなテクスチャー構造を半導体基板1の受光面側に形成することで、太陽電池セルの表面で光の多重反射を生じさせ、太陽電池セルに入射する光を効率的にp型多結晶シリコン基板1aの内部に吸収させることができ、実効的に反射率を低減し変換効率を向上させることができる。
 なお、本発明は光起電力装置の裏面構造にかかる発明であるので、テクスチャー構造の形成方法や形状については、特に制限するものではない。例えば、イソプロピルアルコールを含有させたアルカリ水溶液や主にフッ酸、硝酸の混合液からなる酸エッチングを用いる方法、部分的に開口を設けたマスク材をp型多結晶シリコン基板1aの表面に形成して該マスク材を介したエッチングによりp型多結晶シリコン基板1aの表面にハニカム構造や逆ピラミッド構造を得る方法、或いは反応性ガスエッチング(RIE:Reactive
Ion Etching)を用いた手法など、何れの手法を用いても差し支えない。
 つぎに、このp型多結晶シリコン基板1aを熱拡散炉へ投入し、n型の不純物であるリン(P)の雰囲気下で加熱する。この工程によりp型多結晶シリコン基板1aの表面にリン(P)を拡散させて、n型不純物拡散層3を形成して半導体pn接合を形成する(図5-2)。本実施の形態では、p型多結晶シリコン基板1aをオキシ塩化リン(POCl)ガス雰囲気中において、例えば800℃~850℃の温度で加熱することにより、n型不純物拡散層3を形成する。ここで、n型不純物拡散層3の表面シート抵抗が例えば30~80Ω/□、好ましくは40~60Ω/□となるように加熱処理を制御する。
 ここで、n型不純物拡散層3の形成直後の表面にはリンの酸化物を主成分とするリンガラス層が形成されているため、フッ酸溶液等を用いて除去する。
 つぎに、n型不純物拡散層3を形成したp型多結晶シリコン基板1aの受光面側に、光電変換効率改善のために、反射防止膜4としてシリコン窒化膜(SiN膜)を形成する(図5-3)。反射防止膜4の形成には、例えばプラズマCVD法を使用し、シランとアンモニアの混合ガスを用いて反射防止膜4としてシリコン窒化膜を形成する。反射防止膜4の膜厚および屈折率は、光反射を最も抑制する値に設定する。なお、反射防止膜4として、屈折率の異なる2層以上の膜を積層してもよい。また、反射防止膜4の形成には、スパッタリング法などの異なる成膜方法を用いてもよい。また、反射防止膜4としてシリコン酸化膜を形成してもよい。
 つぎに、リン(P)の拡散によりp型多結晶シリコン基板1aの裏面に形成されたn型不純物拡散層3を除去する。これにより、第1導電型層であるp型多結晶シリコン基板2と、半導体基板1の受光面側に形成された第2導電型層である不純物拡散層(n型不純物拡散層)3と、によりpn接合が構成された半導体基板1が得られる(図5-4)。
 p型多結晶シリコン基板1aの裏面に形成されたn型不純物拡散層3の除去は、例えば片面エッチング装置を用いて行う。または、反射防止膜4をマスク材として活用し、エッチング液にp型多結晶シリコン基板1aの全体を浸漬させる方法を用いてもよい。エッチング液は、水酸化ナトリウム、水酸化カリウムなどのアルカリ水溶液を、室温~95℃、好ましくは50℃~70℃に加熱したものを用いる。また、エッチング液として、硝酸とフッ酸との混合水溶液を用いてもよい。
 n型不純物拡散層3の除去のエッチングの後、後述する成膜で再結合速度を低く保つために、半導体基板1の裏面に露出したシリコン面を洗浄する。洗浄は、例えばRCA洗浄、または1%~20%程度のフッ酸水溶液を用いて行う。
 ついで、半導体基板1の裏面側に、シリコン窒化膜(SiN膜)からなる裏面絶縁膜8を形成する(図5-5)。半導体基板1の裏面側に露出させたシリコン面に対して、プラズマCVDにより屈折率1.9~2.2、厚さ60nm~300nmのシリコン窒化膜(SiN膜)からなる裏面絶縁膜8を成膜する。プラズマCVDを用いることにより、半導体基板1の裏面側に、シリコン窒化膜からなる裏面絶縁膜8を確実に形成することができる。そして、このような裏面絶縁膜8を形成することにより、半導体基板1の裏面におけるキャリアの再結合速度を抑制することができ、半導体基板1の裏面のシリコン(Si)とシリコン窒化膜(SiN膜)との界面では、100cm/秒以下の再結合速度が得られる。これにより、高出力化の為に十分な裏面界面を実現することができる。
 裏面絶縁膜8の屈折率が1.9~2.2を外れると、シリコン窒化膜(SiN膜)の成膜環境の安定が難しく、またシリコン窒化膜(SiN膜)の膜質が悪化し、その結果、シリコン(Si)との界面の再結合速度も悪化する。また、裏面絶縁膜8の厚さが60nmより小である場合は、シリコン(Si)との界面が安定せず、キャリアの再結合速度が悪化する。裏面絶縁膜8の厚さが300nmより大である場合は、機能的な不都合はないが成膜に時間を要し、コストが増加するため生産性の観点から好ましくない。
 また、裏面絶縁膜8は、例えば熱酸化により形成されたシリコン酸化膜(シリコン熱酸化膜:SiO膜)とシリコン窒化膜(SiN膜)とが積層された2層の積層構造としてもよい。ここでのシリコン酸化膜(SiO膜)は、工程中において半導体基板1の裏面側に形成された自然酸化膜ではなく、例えば熱酸化により意図的に形成したシリコン酸化膜(SiO膜)とする。このようなシリコン酸化膜(SiO膜)を用いることにより、シリコン窒化膜(SiN膜)よりも安定して半導体基板1の裏面におけるキャリアの再結合速度の抑制効果を得ることができる。
 また、熱酸化により意図的に形成したシリコン酸化膜(SiO膜)の厚さは10nm~50nm程度とすることが好ましい。熱酸化により形成されたシリコン酸化膜(SiO膜)の厚さが10nmより小である場合は、シリコン(Si)との界面が安定せず、キャリアの再結合速度が悪化する。熱酸化により形成されたシリコン酸化膜(SiO膜)の厚さが50nmより大である場合は、機能的な不都合はないが成膜に時間を要し、コストが増加するため、生産性の観点から好ましくない。また、時間短縮のために高温で成膜処理を行うと、結晶シリコン自体の品質が低下し、ライフタイム低下に繋がる。
 その後、半導体基板1の裏面側とのコンタクトを取るために、裏面絶縁膜8の一部または全面に、所定の間隔を有するドット状の開口部8aを形成する(図5-6)。開口部8aは、例えば裏面絶縁膜8に対するレーザ照射により直接パターニングを行って形成する。
 半導体基板1の裏面側との良好なコンタクトを形成するためには、裏面絶縁膜8の面内方向における開口部8aの断面積を大きくし、裏面絶縁膜8の面内における開口部8aの開口密度を高くすることが好ましい。しかし、半導体基板1の裏面側において高い光反射率(裏面反射率)を得るためには、逆に開口部8aの断面積が小さく、開口部8aの開口密度が低いことが好ましい。したがって、開口部8aの形状および密度は、良好なコンタクトを実現するための必要最小限のレベルにとどめることが好ましい。
 具体的には、開口部8aの形状としては、径または幅が20μm~200μmの大きさであり、隣接する開口部8a間の間隔が0.5mm~2mmの略円形のドット状または略矩形形状が挙げられる。また、その他の開口部8aの形状としては、幅が20μm~200μm、隣接する開口部8a間の間隔が0.5mm~3mmのストライプ状の形状が挙げられる。本実施の形態では、裏面絶縁膜8に対するレーザ照射によりドット状の開口部8aを形成する。
 つぎに、裏面アルミニウム電極9の電極材料であってアルミニウム、ガラス等を含む裏面アルミニウム電極材料ペースト9aを、開口部8aを埋めるとともに裏面絶縁膜8の面内方向において開口部8aの径よりも多少広い領域を覆い、且つ隣接する開口部8aを埋めるfと接触しないように、スクリーン印刷法により限定的に塗布し、乾燥させる(図5-7)。裏面アルミニウム電極材料ペースト9aの塗布形状・塗布量等は、後述の焼成工程でAl-Si合金部11とBSF12とにおけるアルミニウムの拡散濃度等の諸条件により変更可能である。
 開口部8aにおいては十分なペースト量を確保し、焼成工程においてAl-Si合金部11とBSF層12を確実に形成する必要がある。一方、半導体基板1の裏面上に裏面絶縁膜8(シリコン窒化膜)と裏面アルミニウム電極9とが積層された領域における裏面アルミニウム電極9による光反射率(裏面反射率)は十分とは言えない。このため、裏面絶縁膜8上における裏面アルミニウム電極9の形成領域が広くなると、光起電力装置内への光閉じ込め効果が低下する。したがって、裏面アルミニウム電極材料ペースト9aを印刷する領域は、Al-Si合金部11およびBSF12の形成条件と光起電力装置内への光閉じ込め効果とのバランスを取った上で、必要最小限に絞る必要がある。
 本実施の形態では、アルミニウム(Al)含有の裏面アルミニウム電極材料ペースト9aを、開口部8aの端から各々20μmの幅だけ裏面絶縁膜8上にオーバーラップさせる形で厚さ20μmで印刷を行う。この場合、裏面絶縁膜8上にオーバーラップさせることにより、形成される裏面電極9が裏面絶縁膜8の開口部8a部での剥離を防ぐ効果がある。図6-1および図6-2は、裏面絶縁膜8上における裏面アルミニウム電極材料ペースト9aの印刷領域の例を示す平面図である。図6-1は、開口部8aを略円形のドット状とした例を示しており、図6-2は、開口部8aを略矩形形状とした例を示している。
 オーバーラップ量は、開口部8aの端から断面積で200μmから1000μm、好ましくは400μmから1000μmの範囲で制御することが望ましい。本実施の形態では、アルミニウム(Al)含有の裏面アルミニウム電極材料ペースト9aのペースト厚が20μmなので、オーバーラップの幅という表現で言えば、開口部8aの端から各々10μmから50μm、好ましくは20μmから50μmの範囲に相当する。オーバーラップの幅が10μm未満では、裏面絶縁膜8の剥離を防ぐ効果を発揮しないだけでなく、焼成時すなわち合金形成時に、アルミニウム(Al)の供給がうまくいかず、BSF構造が良好に形成されない部分が発生する。一方、オーバーラップの幅が50μmより大きいと、ペースト印刷の部分が占める面積比率が増加、すなわち高反射膜の面積率が減少し、本発明の意図からの逸脱が大きくなってしまう。
 図6-1に示すように開口部8aが略円形のドット状である場合は、裏面絶縁膜8上における開口部8aの外周部に幅が20μmのリング状のオーバーラップ領域9bを含んだ略円形状に裏面アルミニウム電極材料ペースト9aをスクリーン印刷法により裏面絶縁膜8上に限定的に塗布する。例えば開口部8aの直径dが200μmである場合は、裏面アルミニウム電極材料ペースト9aは、「200μm+20μm+20μm=240μm」の直径を有する略円形状に印刷される。
 また、図6-2に示すように開口部8aが略矩形形状である場合は、裏面絶縁膜8上における開口部8aの外周部に幅が20μmの枠状のオーバーラップ領域9bを設けて、裏面アルミニウム電極材料ペースト9aをスクリーン印刷法により裏面絶縁膜8上に限定的に塗布する。例えば開口部8aの幅wが100μmである場合は、裏面アルミニウム電極材料ペースト9aは、「100μm+20μm+20μm=140μm」の幅を有する略矩形形状に印刷される。
 つぎに、半導体基板1の反射防止膜4上に、受光面側電極5の電極材料であって銀(Ag)、ガラス等を含む受光面電極材料ペースト5aを、受光面側電極5の形状に選択的にスクリーン印刷法により塗布し、乾燥する(図5-7)。受光面電極材料ペースト5aは、例えば、80μm~150μm幅、2mm~3mm間隔の長尺状のグリッド電極6のパターンと、このパターンに略直交する方向に1mm~3mm幅、5mm~10mm間隔の帯状のバス電極7のパターンと、を印刷する。ただし、受光面側電極5の形状については、本発明と直接の関係はないので、電極抵抗と印刷遮光率の間でバランスを取りながら、自由に設定してよい。
 その後、例えば赤外炉ヒータを用いてピーク温度760℃~900℃で焼成を行う。これにより、受光面側電極5および裏面アルミニウム電極9が形成されるとともに、半導体基板1の裏面側の領域であって裏面アルミニウム電極9に接する領域およびその近傍にはAl-Si合金部11が形成される。さらにその外周部には、該Al-Si合金部11を囲って、裏面アルミニウム電極9からアルミニウムが高濃度に拡散したp+領域であるBSF層12が形成され該BSF層12と裏面アルミニウム電極9とが電気的に接続する(図5-8)。なお、この接続個所では界面の再結合速度が悪化するが、BSF層12がこの影響を無効化できる。また、受光面側電極5中の銀が反射防止膜4を貫通して、n型不純物拡散層3と受光面側電極5とが電気的に接続する。
 この際、半導体基板1の裏面において裏面アルミニウム電極材料ペースト9aが塗布されていない領域はシリコン窒化膜(SiN膜)からなる裏面絶縁膜8により保護されているため、焼成による加熱においても半導体基板1の裏面に対して汚染物質の付着や固定が進まず、再結合速度を劣化させることなく、良好な状態が維持される。
 つぎに、半導体基板1の裏面側に高反射構造を形成する。すなわち、裏面アルミニウム電極9および裏面絶縁膜8を覆うように、裏面反射膜10として銀(Ag)膜(銀スパッタリング膜)を半導体基板1の裏面の全面にスパッタリング法により形成する(図5-9)。裏面反射膜10をスパッタリング法により形成することにより緻密な裏面反射膜10を形成することができ、印刷法により形成された銀(Ag)膜よりも高い光反射を実現する裏面反射膜10を形成することができる。なお、裏面反射膜10は、蒸着法により形成してもよい。また、ここでは、半導体基板1の裏面の全面に裏面反射膜10を形成しているが、裏面反射膜10は少なくとも半導体基板1の裏面側における裏面絶縁膜8を覆うように形成されればよい。
 以上により、図1-1~図1-3に示す実施の形態1にかかる太陽電池セルが作製される。なお、電極材料であるペーストの塗布の順番を、受光面側と裏面側とで入れ替えてもよい。
 上述したように、実施の形態1にかかる太陽電池セルの製造方法においては、開口部8aを有する裏面絶縁膜8を半導体基板1の裏面に形成した後に裏面アルミニウム電極材料ペースト9aを塗布し、焼成を行うため、裏面アルミニウム電極材料ペースト9aが塗布されていない領域は裏面絶縁膜8により保護される。これにより、焼成による加熱においても半導体基板1の裏面に対して汚染物質の付着や固定が進まず、再結合速度を劣化させることなく、良好な状態が維持され、光電変換効率が向上する。
 また、実施の形態1にかかる太陽電池セルの製造方法においては、少なくとも裏面絶縁膜8を覆うように裏面反射膜10を半導体基板1の裏面に形成する。これにより、半導体基板1および裏面絶縁膜8を透過してきた光を裏面反射膜10において反射して半導体基板1に戻すことができ、良好な光閉じ込め効果を得ることができるため、出力特性の向上を図って、高い光電変換効率を実現することができる。
 また、実施の形態1にかかる太陽電池セルの製造方法においては、裏面反射膜10をスパッタリング法により形成する。電極ペーストを用いた印刷法ではなく、スパッタリング膜により裏面反射膜10を形成することにより緻密な裏面反射膜10を形成することができ、印刷法により形成された膜よりも高い光反射を実現する裏面反射膜10を形成することができ、優れた光閉じ込め効果を得ることができる。
 したがって、実施の形態1にかかる太陽電池セルの製造方法によれば、低い再結合速度と高い裏面反射率の双方を有する裏面の構造を得ることができ、長波長感度に優れ、光電変換効率の高効率化が図られた太陽電池セルを作製することができる。さらに、太陽電池セルの光電変換効率の高効率化が図れるため、半導体基板1の薄板化が可能であり、製造コストの低下を図ることができ、電池セル特性に優れた高品質な太陽電池セルを安価に作製することができる。
実施の形態2.
 実施の形態2では、裏面反射膜10の他の形態として、裏面反射膜10を金属箔により構成する場合について説明する。図7は、本実施の形態にかかる太陽電池セルの断面構造を説明するための要部断面図であり、図1-1に対応する図である。実施の形態2にかかる太陽電池セルが実施の形態1にかかる太陽電池セルと異なる点は、裏面反射膜が銀スパッタリング膜ではなく、アルミニウム箔(アルミニウムホイル)により構成されている点である。これ以外の構成は、実施の形態1にかかる太陽電池セルと同様であるため、詳細な説明は省略する。
 図7に示すように、本実施の形態にかかる太陽電池セルにおいては、アルミホイルからなる裏面反射膜22が、半導体基板1の裏面において裏面アルミニウム電極9上に配置された導電性接着剤21により裏面アルミニウム電極9および裏面絶縁膜8を覆って着設されるとともに、該導電性接着剤21を介して裏面アルミニウム電極9に電気的に接続されている。このような構成においても、実施の形態1の場合と同様に半導体基板1および裏面絶縁膜8を透過してきた光を反射して半導体基板1に戻すことができ、安価な構成で良好な光閉じ込め効果を得ることができる。
 そして、本実施の形態では、裏面反射膜22は金属箔であるアルミホイルにより構成されている。裏面反射膜22は、電極ペーストを用いた印刷法により形成された膜ではなく、金属箔により構成されているため、印刷法により形成された金属膜よりも高い光反射を実現することができ、半導体基板1および裏面絶縁膜8を透過してきた光をより多く反射して半導体基板1に戻すことができる。したがって、本実施の形態にかかる太陽電池セルは、金属箔であるアルミホイルにより構成された裏面反射膜22を備えることにより、実施の形態1の場合と同様に優れた光閉じ込め効果を得ることができる。
 裏面反射膜22の材料としては、箔に加工できる金属材料を用いることができ、裏面反射膜10の場合と同様に、例えば波長が1100nm近傍の光に対する反射率が90%以上、好ましくは95%以上の金属材料を用いることが好ましい。これにより、高い長波長感度を有し、長波長領域の光に対する光閉じこめ効果に優れた太陽電池セルを実現できる。すなわち、半導体基板1の厚みにもよるが、波長が900nm以上、特に1000nm~1100nm程度の長波長の光を半導体基板1に効率良く取り込み、高い発生電流を実現することができ、出力特性を向上させることができる。このような材料としては、アルミニウム(Al)の他に例えば銀(Ag)を用いることができる。
 このように構成された本実施の形態にかかる太陽電池セルは、実施の形態1において図5-1~図5-8を用いて説明した工程の後、裏面アルミニウム電極9上に導電性接着剤21を塗布し、該導電性接着剤21により裏面アルミニウム電極9および裏面絶縁膜8を覆って裏面反射膜22を着設することにより作製することができる。なお、この場合も、裏面反射膜22は少なくとも半導体基板1の裏面側における裏面絶縁膜8を覆うように形成されればよい。
 以上のように構成された実施の形態2にかかる太陽電池セルにおいては、裏面絶縁膜8として、半導体基板1の裏面にプラズマCVD法により形成されたシリコン窒化膜(SiN膜)を備えることにより、半導体基板1の裏面において良好なキャリアの再結合速度の抑制効果を得ることができる。これにより、本実施の形態にかかる太陽電池セルにおいては、出力特性の向上が図られ、高い光電変換効率が実現されている。
 また、実施の形態2にかかる太陽電池セルにおいては、裏面絶縁膜8を覆って金属箔であるアルミホイルからなる裏面反射膜22を備えることにより、従来の印刷法により形成された金属膜よりも高い光反射を実現することができ、半導体基板1および裏面絶縁膜8を透過してきた光をより多く反射して半導体基板1に戻すことができる。したがって、本実施の形態にかかる太陽電池セルにおいては、優れた光閉じ込め効果を得ることができ、出力特性の向上が図られ、高い光電変換効率が実現されている。
 したがって、実施の形態2にかかる太陽電池セルにおいては、低い再結合速度と高い裏面反射率の双方を有する裏面の構造を有することにより、長波長感度に優れ、光電変換効率の高効率化が図られた太陽電池セルが実現されている。
 また、実施の形態2にかかる太陽電池セルの製造方法においては、開口部8aを有する裏面絶縁膜8を半導体基板1の裏面に形成した後に裏面アルミニウム電極材料ペースト9aを塗布し、焼成を行うため、裏面アルミニウム電極材料ペースト9aが塗布されていない領域は裏面絶縁膜8により保護される。これにより、焼成による加熱においても半導体基板1の裏面に対して汚染物質の付着や固定が進まず、再結合速度を劣化させることなく、良好な状態が維持され、光電変換効率が向上する。
 また、実施の形態2にかかる太陽電池セルの製造方法においては、少なくとも裏面絶縁膜8を覆うように裏面反射膜22を半導体基板1の裏面に形成する。これにより、半導体基板1および裏面絶縁膜8を透過してきた光を裏面反射膜22において反射して半導体基板1に戻すことができ、良好な光閉じ込め効果を得ることができるため、出力特性の向上を図って、高い光電変換効率を実現することができる。
 また、実施の形態2にかかる太陽電池セルの製造方法においては、金属箔であるアルミホイルを裏面アルミニウム電極9上に着設することにより裏面反射膜22を形成する。電極ペーストを用いた印刷法ではなく、裏面反射膜22として金属箔であるアルミホイルを用いて裏面反射膜22を形成することにより緻密な裏面反射膜22を形成することができ、印刷法により形成された膜よりも高い光反射を実現する裏面反射膜22を形成することができ、優れた光閉じ込め効果を得ることができる。
 したがって、実施の形態2にかかる太陽電池セルの製造方法によれば、低い再結合速度と高い裏面反射率の双方を有する裏面の構造を得ることができ、長波長感度に優れ、光電変換効率の高効率化が図られた太陽電池セルを作製することができる。さらに、太陽電池セルの光電変換効率の高効率化が図れるため、半導体基板1の薄板化が可能であり、製造コストの低下を図ることができ、電池セル特性に優れた高品質な太陽電池セルを安価に作製することができる。
 なお、上記の実施の形態においては、半導体基板としてp型のシリコン基板を使用する場合について説明したが、n型のシリコン基板を用いてp型拡散層を形成する逆導電型の太陽電池セルとしてもよい。また、半導体基板として多結晶シリコン基板を用いたが、単結晶シリコン基板を用いてもよい。また、上記においては半導体基板の基板厚を200μmとしたが、自己保持が可能な程度の基板厚、例えば50μm程度まで薄型化した半導体基板を用いることもできる。さらに、上記においては半導体基板の寸法を150mm×150mmとしたが、半導体基板の寸法はこれに限定されるものではない。
実施の形態3.
 実施の形態3では、上述した実施の形態1および実施の形態2の太陽電池セルにおいて、太陽電池セルをモジュール化する際にセル間を接続する金属タブを接続するための接続用電極を備えた裏面構造について説明する。
 結晶系シリコン太陽電池の高効率化において、裏面の再結合速度の抑制は、近年、特に重要性を増している。単結晶シリコン太陽電池および多結晶シリコン太陽電池の双方とも、キャリア拡散長がシリコン基板の厚さを上回る事例は決して珍しくない。したがって、シリコン基板の裏面の表面再結合速度の大小が、太陽電池セルの特性に大きく影響する。
 一方、デバイス単位である太陽電池セルから実際の製品である太陽電池モジュールへ加工する際には、複数の太陽電池セルが金属タブを介して直列または直列・並列併用で接続される。このように太陽電池セルを太陽電池モジュール化する具体的手法においては、セル側に設けられる接続用電極の素材に、銀を含む金属ペーストが用いられることが多い。
 これは、コスト的な側面もさることながら、ファイヤースルーの特徴に依る所が大きい。ファイヤースルーとは、ペーストの塗布・焼成を通じて、ペーストに含まれる銀やガラス成分等がシリコンと相互反応してシリコン結晶内に食い込み、シリコン基板と電極との間で電気的接続および物理的接着強度の双方が得られる様になるものである。
 この現象は、シリコン窒化膜(SiN膜)等のシリコン化合物に対しても同様に生じる。シリコン窒化膜(SiN膜)の上に金属ペーストを直接、塗布・焼成することで、ペーストに含まれる銀やガラス成分等がシリコン窒化膜(SiN膜)を食い破る様な格好で貫通し、パターニングすることなく電極とシリコン結晶との接続が可能である。このため、ファイヤースルーは太陽電池製造プロセスの簡略化に大きく貢献している。ファイヤースルーは、実施の形態1において図5-7~図5-8に示される工程でも実施されている。
 しかし、銀電極とシリコンとの界面では、再結合速度が非常に大きい。この為、シリコン太陽電池の裏面においては、このファイヤースルーによる電極の形成が大きな問題になる。特に、開放電圧(Voc)は、裏面銀電極とシリコン基板との少しの接触でも著しく低下する場合がある。すなわち、シリコン太陽電池の裏面構造において裏面銀電極とシリコン基板のシリコン結晶とが電気接続することにより、開放電圧(Voc)および光電変換効率が低下する場合がある。この為、シリコン太陽電池の裏面構造において、裏面銀電極とシリコン基板の裏面側との物理的接着強度を確保しながら、裏面銀電極とシリコン基板との電気接続による影響を回避することが好ましい。
 以下では、このような問題の解決方法として、ファイヤースルーによる裏面銀電極の食い込みがシリコン基板の裏面のシリコン(Si)結晶まで到達しても、裏面銀電極とシリコン結晶との電気接続による影響を抑制し、実用上支障が無い構造について説明する。具体的な実施の形態としては、裏面銀電極の面積比率と形状に制限を設けることが挙げられる。
 図8-1~図8-3は、実施の形態3にかかる光起電力装置である太陽電池セルの構成を示す図であり、図8-1は、太陽電池セルの断面構造を説明するための要部断面図、図8-2は、受光面側から見た太陽電池セルの上面図、図8-3は、受光面と反対側(裏面側)から見た太陽電池セルの下面図である。図8-1は、図8-2の線分B-Bにおける要部断面図である。
 実施の形態3にかかる太陽電池セルが実施の形態1にかかる太陽電池セルと異なる点は、半導体基板1の裏面側に、銀(Ag)を主成分とする裏面銀電極31を備えることである。すなわち、実施の形態3にかかる太陽電池セルは、裏面側電極としてアルミニウム(Al)を主成分とする裏面アルミニウム電極9と銀(Ag)を主成分とする裏面銀電極31とを半導体基板1の裏面側に有する。これ以外の構成は、実施の形態1にかかる太陽電池セルと同様であるため、詳細な説明は省略する。
 裏面銀電極31には、太陽電池セルをモジュール化する際にセル間を接続する金属タブが接続される。裏面銀電極31は、半導体基板1の裏面側における隣接する裏面アルミニウム電極9間の領域に、バス電極7の延在方向と略平行な方向に延在して例えば2本設けられる。また、裏面銀電極31は、裏面反射膜10の表面から突出するとともに、裏面絶縁膜8を貫通して少なくとも一部が半導体基板1の裏面に物理的および電気的に接続している。裏面銀電極31の幅は、例えばバス電極7と同程度の寸法とされる。
 シリコン太陽電池セルの接続電極材料には、通常、銀ペーストが用いられ、例えば、鉛ボロンガラスが添加されている。このガラスはフリット状のもので、例えば、鉛(Pb)、ボロン(B)、シリコン(Si)、酸素(O)の組成から成り、さらに、亜鉛(Zn)やカドミウム(Cd)なども混合される場合もある。裏面銀電極31は、このような銀ペーストを塗布・焼成して、ファイヤースルーにより形成されている。
 このような裏面銀電極31は、実施の形態1において図5-7の工程で裏面絶縁膜8上の領域に裏面銀電極31の形状に電極材料ペーストである銀ペーストをスクリーン印刷により塗布・乾燥し、図5-8の工程で焼成することで、ファイヤースルーにより作製することができる。そして、これ以外は、実施の形態1の場合と同様にして図5-1~図5-9の工程を実施することにより、実施の形態3にかかる太陽電池セルを作製できる。
 次に、裏面銀電極31の形状によるシリコン太陽電池セルの開放電圧(Voc)の違いについて説明する。まず、15cm角サイズのp型多結晶シリコン基板2を用いて、図8-1~図8-3に示される構造を有する試料D~試料Fの太陽電池セルを作製した。また、裏面銀電極31を形成しないこと以外は、試料D~試料Fと同様にして、比較対照として試料Gの太陽電池セルを作製した。各試料の裏面銀電極のパターン(銀ペーストの印刷パターン)は以下の条件で作製した。
 (試料D):幅100μm×長さ148mm×75本(2mm間隔)
 (試料E):幅3.5mm×長さ148mm×2本(75mm間隔)
 (試料F):幅7.5mm×長さ10mm×7個所×2列(75mm間隔)
 (試料G):裏Agペースト印刷なし(参考:比較対象)
 図9は、試料D~試料Fの太陽電池セルの開放電圧(Voc)を示す特性図である。図10は、試料D~試料Fの太陽電池セルにおける裏面銀電極31の電極面積比率を示す図である。電極面積比率は、p型多結晶シリコン基板2の裏面の面積に対する裏面銀電極31の面積の比率である。また、裏面銀電極31の面積は、裏面銀電極31を形成する際の銀ペーストの印刷面積を用いている。図9より、上記の4種類の試料の中では、他者に比べて試料Dの開放電圧(Voc)が大きく劣っていることが分かる。一方、図10より、試料D~試料Fの太陽電池セルの電極面積比率は、何れも4.6%~4.7%とほぼ等しいことが分かる。したがって、単なる裏面銀電極31の面積比率の違いでは、図9における開放電圧(Voc)の違いは説明できない。そこで、以下に述べるように、裏面銀電極31の形状と拡散長との関係性が重要となる。
 実施の形態3にかかる太陽電池セルの構造は、高効率を得る為のものであり、用いられる単結晶または多結晶シリコンの拡散長が大きいことが、事実上の前提条件として挙げられる。高効率を得る効果を有意義に得るためには、少なくとも300μm以上、望ましくは500μm以上の拡散長が求められる。以下、例えば拡散長が500μmの事例を例に説明する。
 前述の説明にあるように、裏面銀電極31の開放電圧(Voc)への影響は、その界面の再結合速度の大きさに起因する。ここで言う「影響が及ぶ」とは、発生したキャリアが、太陽電池基板の半導体材料自体のバルク再結合より早く界面に拡散し再結合する事を意味する。したがって、影響が及ぶ範囲も無限大ではなく、発生キャリアが拡散できる距離、すなわち拡散長と密接な関連性がある。
 p型多結晶シリコン基板2の裏面の面内において、拡散長:500μm分だけ裏面銀電極31のパターンをその外側に拡張した周辺領域を含む「裏面銀電極31による影響領域」について、各試料における面積比率を算出した結果を図10に併せて示す。面積比率は、p型多結晶シリコン基板2の裏面の面積に対する裏面銀電極31による影響領域の面積の比率である。図11は、裏面銀電極31による影響領域を模式的に示す平面図である。図11では、裏面反射膜10を透過して見ている。なお、図11は平面図であるが、図面を見易くするためにハッチングを付してある。図11に示されるように、裏面銀電極31による影響領域は、裏面銀電極31のパターン領域と周辺領域32とを含む。周辺領域32は、p型多結晶シリコン基板2の裏面において裏面絶縁膜8が形成された領域の一部の領域である。
 図10から分かるように、試料Eと試料Fとにおける裏面銀電極31による影響領域の面積比率は5%強である。一方、試料Dにおける裏面銀電極31による影響領域の面積比率は、50%を超えている。この結果と図9の結果とから、p型多結晶シリコン基板2の裏面の面積に対する裏面銀電極31による影響領域の面積比率が大きい場合に、開放電圧(Voc)が低下すると言える。このことから分かる通り、開放電圧(Voc)を高く維持する為には、裏面銀電極31のパターン自体だけでなく、その影響が及ぶ範囲の面積比率を抑制することが重要である。
 p型多結晶シリコン基板2の裏面において、開放電圧(Voc)の高い領域(高開放電圧領域)、即ちp型多結晶シリコン基板2の裏面において高度にパッシベーションが成された領域と、開放電圧(Voc)の低い領域(低開放電圧領域)、即ちp型多結晶シリコン基板2の裏面において裏面銀電極31による影響を大きく受ける領域が混在する場合、全体の開放電圧(Voc)は並列接続に基づいて考えることができる。
 図12は、シリコン基板の裏面における低開放電圧領域の比率と開放電圧(Voc)との関係の一例を示す特性図である。図12では、例えば高開放電圧領域の電圧を655mVに、低開放電圧領域の電圧を580mVに仮に固定し、両者の比率による全体開放電圧(Voc)の変化を算出した。上述の様に全体の開放電圧(Voc)は並列接続に基づく為、またダイオードにおける電流-電圧の関係は指数関数に基づく為、低開放電圧領域の比率が小さくても、全体開放電圧(Voc)の影響は決して小さくない。
 本実施の形態にかかる太陽電池セルの高効率化の為には、開放電圧(Voc)は少なくとも635mV以上、望ましくは640mV以上が求められる。このことから、低開放電圧領域の面積比率の上限は、図12を参照して大きくても10%以下、望ましくは8%以下と求められる。
 一方、裏面銀電極31は、タブ接続の際に金属タブと直接接続することが本来の主たる機能であるため、その接着性を確保する為に、3%程度以上の面積比率を有することが好ましい。また隣接する他のセルとの相互接続をおこなう関係上、連続的または断続的な線状・帯状または矩形状の形状の部分が半分以上を占めていることが望ましい。
 また、p型多結晶シリコン基板2の裏面に形成されたシリコン窒化膜(SiN膜)からなる裏面絶縁膜8の厚みについては、裏面側の表面再結合速度の抑制効果を十分得るためには、60nm以上の膜厚を要する。一方、裏面絶縁膜8の厚みが160nm以上の場合は、裏面銀電極31を形成する際のファイヤースルーがp型多結晶シリコン基板2の裏面まで到達しづらくなる。そして、裏面絶縁膜8の厚みが240nm以上の場合は、ファイヤースルーはp型多結晶シリコン基板2の裏面に全く到達しなくなる。したがって、160nm以上、厚くても240nm以上の膜厚では、本発明の工夫自体の必要性が発生しない。厚い膜厚は当然ながら生産性を阻害するものであり、本実施の形態にかかる裏面絶縁膜8の厚さの上限は、160nm未満、厚くとも240nm未満と設定される。
 以上のように構成された実施の形態3にかかる太陽電池セルにおいては、裏面絶縁膜8として、半導体基板1の裏面にプラズマCVD法により形成されたシリコン窒化膜(SiN膜)を備えることにより、半導体基板1の裏面において良好なキャリアの再結合速度の抑制効果を得ることができる。これにより、本実施の形態にかかる太陽電池セルにおいては、出力特性の向上が図られ、高い光電変換効率が実現されている。
 また、実施の形態3にかかる太陽電池セルにおいては、裏面絶縁膜8を覆って銀スパッタリング膜からなる裏面反射膜10を備えることにより、従来の印刷法により形成された銀(Ag)膜よりも高い光反射を実現することができ、半導体基板1および裏面絶縁膜8を透過してきた光をより多く反射して半導体基板1に戻すことができる。したがって、本実施の形態にかかる太陽電池セルにおいては、優れた光閉じ込め効果を得ることができ、出力特性の向上が図られ、高い光電変換効率が実現されている。
 また、実施の形態3にかかる太陽電池セルにおいては、裏面銀電極31による影響領域の面積の、p型多結晶シリコン基板2の裏面の面積に対する比率が10%以下、望ましくは8%以下とされる。これにより、ファイヤースルーによる裏面銀電極31の食い込みがp型多結晶シリコン基板2の裏面のシリコン(Si)結晶まで到達しても、裏面銀電極31とシリコン結晶との電気接続による影響を抑制し、開放電圧(Voc)および光電変換効率の低下が防止される。すなわち、p型多結晶シリコン基板2の裏面と裏面銀電極31との物理的接着強度を確保しながら、裏面銀電極31とp型多結晶シリコン基板2の裏面のシリコン結晶との電気接続による開放電圧(Voc)および光電変換効率の低下を回避することができる。
 したがって、実施の形態3にかかる太陽電池セルにおいては、低い再結合速度と高い裏面反射率の双方を有する裏面の構造を有し、長波長感度および開放電圧(Voc)に優れ、光電変換効率の高効率化が図られた太陽電池セルが実現されている。
 なお、本実施の形態は、実施の形態2の構造に適用してもよく、この場合においても上記と同様の効果が得られる。
 以上のように、本発明にかかる光起電力装置は、低い再結合速度と高い裏面反射率とにより高効率の光起電力装置を実現する場合に有用である。
 1 半導体基板
 1a p型多結晶シリコン基板
 2 p型多結晶シリコン基板
 3 n型不純物拡散層
 4 反射防止膜
 5 受光面側電極
 5a 受光面電極材料ペースト
 6 グリッド電極
 7 バス電極
 8 裏面絶縁膜
 8a 開口部
 9 裏面アルミニウム電極
 9a 裏面アルミニウム電極材料ペースト
 9b オーバーラップ領域
 10 裏面反射膜
 11 アルミニウム-シリコン(Al-Si)合金部
 12 BSF層
 21 導電性接着剤
 22 裏面反射膜
 31 裏面銀電極
 32 周辺領域

Claims (22)

  1.  一面側に第2導電型の不純物元素が拡散された不純物拡散層を有する第1導電型の半導体基板と、
     前記不純物拡散層上に形成された反射防止膜と、
     前記反射防止膜を貫通して前記不純物拡散層に電気的に接続する第1電極と、
     前記半導体基板の他面側に達する複数の開口部を有して前記半導体基板の他面側に形成された裏面絶縁膜と、
     前記半導体基板の他面側に形成された第2電極と、
     気相成長法によって形成される金属膜からなり、または金属箔を含んで構成され、少なくとも前記裏面絶縁膜上を覆って形成された裏面反射膜と、
     を備え、
     前記第2電極は、アルミニウムを含む材料からなり前記半導体基板の他面側において少なくとも前記開口部に埋め込まれて前記半導体基板の他面側に接続するアルミニウム系電極と、銀を含む材料からなり前記半導体基板の他面側において前記開口部間の領域に設けられて少なくとも一部が前記裏面絶縁膜を貫通して前記半導体基板の他面側に電気的に接続するとともに前記裏面反射膜を介して前記アルミニウム系電極と電気的に接続する銀系電極とからなり、
     前記半導体基板の面内における前記銀系電極の面積と、前記半導体基板内におけるキャリアの拡散長分だけ前記銀系電極のパターンを前記半導体基板の面内において外側に拡張した周辺領域の面積との和が、上記半導体基板の他面側の面積の10%以下であること、
     を特徴とする光起電力装置。
  2.  前記銀系電極の面積と前記周辺領域との和が、上記半導体基板の他面側の面積の8%以下であること、
     を特徴とする、請求項1に記載の光起電力装置。
  3.  前記半導体基板がシリコン基板であり、前記拡散長が500μm以上であること、
     を特徴とする請求項1または2に記載の光起電力装置。
  4.  前記半導体基板がシリコン基板であり、前記拡散長が300μm以上であること、
     を特徴とする請求項1または2に記載の光起電力装置。
  5.  前記裏面絶縁膜が、プラズマCVD法により形成されたシリコン窒化膜であること、
     を特徴とする請求項1~4のいずれか1項に記載の光起電力装置。
  6.  前記裏面絶縁膜が、熱酸化により形成されたシリコン酸化膜とプラズマCVD法により形成されたシリコン窒化膜とが前記半導体基板の他面側から積層された積層膜であること、
     を特徴とする請求項1~4のいずれか1項に記載の光起電力装置。
  7.  前記シリコン酸化膜は、厚さが10nm以上50nm以下であること、
     を特徴とする請求項6に記載の光起電力装置。
  8.  前記シリコン窒化膜は、屈折率が1.9以上2.2以下であり、厚さが60nm以上240nm未満であること、
     を特徴とする請求項5または6に記載の光起電力装置。
  9.  前記シリコン窒化膜は、屈折率が1.9以上2.2以下であり、厚さが60nm以上160nm未満であること、
     を特徴とする請求項5または6に記載の光起電力装置。
  10.  前記開口部は、径または幅が20μm~200μmの大きさであり、隣接する前記開口部間の間隔が0.5mm~2mmの略円形のドット状または略矩形形状であること、
     を特徴とする請求項1~4のいずれか1項に記載の光起電力装置。
  11.  前記開口部は、幅が20μm~200μmであり、隣接する前記開口部間の間隔が0.5mm~3mmのストライプ状であること、
     を特徴とする請求項1~4のいずれか1項に記載の光起電力装置。
  12.  前記アルミニウム系電極は、前記開口部に埋め込まれるとともに前記裏面絶縁膜上にオーバーラップして形成されていることを特徴とする請求項10または11に記載の光起電力装置。
  13.  前記アルミニウム系電極は、前記開口部の端部から10μm~50μmの幅で前記裏面絶縁膜上にオーバーラップして形成されていること、
     を特徴とする請求項12に記載の光起電力装置。
  14.  前記金属箔は、アルミニウム箔であること、
     を特徴とする請求項1~4のいずれか1項に記載の光起電力装置。
  15.  前記金属箔は、導電性接着剤により前記アルミニウム系電極に着設されるとともに前記導電性接着剤を介して前記アルミニウム系電極に電気的に接続されていること、
     を特徴とする請求項1~4のいずれか1項に記載の光起電力装置。
  16.  前記気相成長法によって形成される金属膜は、金属のスパッタリング膜もしくは蒸着膜であること、
     を特徴とする請求項1~4のいずれか1項に記載の光起電力装置。
  17.  第1導電型の半導体基板の一面側に、第2導電型の不純物元素が拡散された不純物拡散層を形成する第1工程と、
     前記不純物拡散層上に反射防止膜を形成する第2工程と、
     前記半導体基板の他面側に裏面絶縁膜を形成する第3工程と、
     前記裏面絶縁膜の少なくとも一部に前記半導体基板の他面側に達する複数の開口部を形成する第4工程と、
     前記反射防止膜上に第1電極材料を塗布する第5工程と、
     少なくとも前記複数の開口部を埋めるようにアルミニウムを含む第1の第2電極材料を前記半導体基板の他面側に塗布する第6工程と、
     銀を含む第2の第2電極材料を前記裏面絶縁膜上に塗布する第7工程と、
     前記第1電極材料、前記第1の第2電極材料および前記第2の第2電極材料を焼成して、前記反射防止膜を貫通して前記不純物拡散層に電気的に接続する第1電極と、アルミニウムを含み前記半導体基板の他面側において少なくとも前記開口部に埋め込まれて前記半導体基板の他面側に電気的に接続するアルミニウム系電極および銀を含み前記半導体基板の他面側において前記開口部間の領域に設けられて少なくとも一部が前記裏面絶縁膜を貫通して前記半導体基板の他面側に電気的に接続する銀系電極により構成される第2電極と、を形成する第8工程と、
     気相成長法によって形成される金属膜からなり、または金属箔を含んで構成された裏面反射膜を、前記アルミニウム系電極と前記銀系電極とを電気的に接続するように少なくとも前記裏面絶縁膜上を覆って形成する第9工程と、
     を含み、
     前記半導体基板の面内における前記第2の第2電極材料の塗布面積と、前記半導体基板内におけるキャリアの拡散長分だけ前記第2の第2電極材料の塗布パターンを前記半導体基板の面内において外側に拡張した周辺領域の面積との和を、上記半導体基板の他面側の面積の10%以下とすること、
     を特徴とする光起電力装置の製造方法。
  18.  前記第3工程では、前記裏面絶縁膜としてプラズマCVD法によりシリコン窒化膜を形成すること、
     を特徴とする請求項17に記載の光起電力装置の製造方法。
  19.  前記第3工程では、前記裏面絶縁膜として前記半導体基板の他面側に熱酸化によりシリコン酸化膜を形成し、さらに前記シリコン酸化膜上にプラズマCVD法によりシリコン窒化膜を形成すること、
     を特徴とする請求項17に記載の光起電力装置の製造方法。
  20.  前記第6工程では、前記開口部を埋めるとともに前記開口部の端部から10μm~50μmの幅で前記裏面絶縁膜上にオーバーラップさせて前記第2電極材料を塗布すること、
     を特徴とする請求項17に記載の光起電力装置の製造方法。
  21.  前記金属箔は、アルミニウム箔であること、
     を特徴とする請求項17に記載の光起電力装置の製造方法。
  22.  前記気相成長法によって形成される金属膜は、金属のスパッタリング膜もしくは蒸着膜であること、
     を特徴とする請求項17に記載の光起電力装置の製造方法。
PCT/JP2010/067482 2010-10-05 2010-10-05 光起電力装置およびその製造方法 WO2012046306A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE112010005921T DE112010005921T5 (de) 2010-10-05 2010-10-05 Photovoltaische Vorrichtung und Herstellungsverfahren derselben
CN201080069176.2A CN103180964B (zh) 2010-10-05 2010-10-05 光电动势装置及其制造方法
US13/813,865 US20130133741A1 (en) 2010-10-05 2010-10-05 Photovoltaic device and manufacturing method thereof
JP2012537513A JP5496354B2 (ja) 2010-10-05 2010-10-05 光起電力装置およびその製造方法
PCT/JP2010/067482 WO2012046306A1 (ja) 2010-10-05 2010-10-05 光起電力装置およびその製造方法
TW099143445A TWI415280B (zh) 2010-10-05 2010-12-13 Light power device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/067482 WO2012046306A1 (ja) 2010-10-05 2010-10-05 光起電力装置およびその製造方法

Publications (2)

Publication Number Publication Date
WO2012046306A1 true WO2012046306A1 (ja) 2012-04-12
WO2012046306A9 WO2012046306A9 (ja) 2012-12-13

Family

ID=45927324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067482 WO2012046306A1 (ja) 2010-10-05 2010-10-05 光起電力装置およびその製造方法

Country Status (6)

Country Link
US (1) US20130133741A1 (ja)
JP (1) JP5496354B2 (ja)
CN (1) CN103180964B (ja)
DE (1) DE112010005921T5 (ja)
TW (1) TWI415280B (ja)
WO (1) WO2012046306A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014118923A1 (ja) * 2013-01-30 2014-08-07 三菱電機株式会社 光起電力装置およびその製造方法、光起電力モジュール
JP2015211094A (ja) * 2014-04-25 2015-11-24 京セラ株式会社 太陽電池素子の製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2015844B1 (en) * 2015-11-23 2017-06-07 Stichting Energieonderzoek Centrum Nederland Enhanced metallization of silicon solar cells.
JPWO2017163506A1 (ja) * 2016-03-25 2018-12-27 パナソニックIpマネジメント株式会社 太陽電池セル

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0595127A (ja) * 1991-10-02 1993-04-16 Sharp Corp 光電変換素子の製造方法
JPH05110122A (ja) * 1991-10-17 1993-04-30 Sharp Corp 光電変換装置及びその製造方法
JP2000138386A (ja) * 1998-11-04 2000-05-16 Shin Etsu Chem Co Ltd 太陽電池の製造方法およびこの方法で製造された太陽電池
WO2010125728A1 (ja) * 2009-04-29 2010-11-04 三菱電機株式会社 太陽電池セルおよびその製造方法
WO2010150358A1 (ja) * 2009-06-23 2010-12-29 三菱電機株式会社 光起電力装置およびその製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4395583A (en) * 1980-04-30 1983-07-26 Communications Satellite Corporation Optimized back contact for solar cells
JPS5752176A (en) * 1980-09-16 1982-03-27 Semiconductor Energy Lab Co Ltd Semiconductor device
US4393348A (en) * 1981-01-26 1983-07-12 Rca Corporation Method and apparatus for determining minority carrier diffusion length in semiconductors
US4726851A (en) * 1984-11-27 1988-02-23 Toa Nenryo Kogyo K.K. Amorphous silicon semiconductor film and production process thereof
JP3203076B2 (ja) 1992-11-30 2001-08-27 シャープ株式会社 宇宙用シリコン太陽電池
JP2002246625A (ja) 2001-02-21 2002-08-30 Sharp Corp 太陽電池の製造方法
TWI262603B (en) * 2004-02-05 2006-09-21 Advent Solar Inc Contact fabrication of emitter wrap-through back contact silicon solar cells
TWM255461U (en) * 2004-03-16 2005-01-11 Sondyo Comp Co Ltd Improvement of telescopic mouse structure
US20060130891A1 (en) * 2004-10-29 2006-06-22 Carlson David E Back-contact photovoltaic cells
FR2883663B1 (fr) * 2005-03-22 2007-05-11 Commissariat Energie Atomique Procede de fabrication d'une cellule photovoltaique a base de silicium en couche mince.
JP2008204967A (ja) * 2005-05-31 2008-09-04 Naoetsu Electronics Co Ltd 太陽電池素子及びその製造方法
GB2442254A (en) * 2006-09-29 2008-04-02 Renewable Energy Corp Asa Back contacted solar cell
ES2354400T3 (es) * 2007-05-07 2011-03-14 Georgia Tech Research Corporation Formación de un contacto posterior de alta calidad con un campo en la superficie posterior local serigrafiada.
EP2068369A1 (en) * 2007-12-03 2009-06-10 Interuniversitair Microelektronica Centrum (IMEC) Photovoltaic cells having metal wrap through and improved passivation
CN101404296B (zh) * 2008-11-13 2011-09-07 中山大学 一种改进型太阳电池前电极及其制作方法
CN101540350B (zh) * 2009-04-30 2010-07-28 中山大学 一种背面点接触晶体硅太阳电池的制备工艺
US8404970B2 (en) * 2009-05-01 2013-03-26 Silicor Materials Inc. Bifacial solar cells with back surface doping
WO2010147260A1 (en) * 2009-06-18 2010-12-23 Lg Electronics Inc. Solar cell and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0595127A (ja) * 1991-10-02 1993-04-16 Sharp Corp 光電変換素子の製造方法
JPH05110122A (ja) * 1991-10-17 1993-04-30 Sharp Corp 光電変換装置及びその製造方法
JP2000138386A (ja) * 1998-11-04 2000-05-16 Shin Etsu Chem Co Ltd 太陽電池の製造方法およびこの方法で製造された太陽電池
WO2010125728A1 (ja) * 2009-04-29 2010-11-04 三菱電機株式会社 太陽電池セルおよびその製造方法
WO2010150358A1 (ja) * 2009-06-23 2010-12-29 三菱電機株式会社 光起電力装置およびその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014118923A1 (ja) * 2013-01-30 2014-08-07 三菱電機株式会社 光起電力装置およびその製造方法、光起電力モジュール
JP5868528B2 (ja) * 2013-01-30 2016-02-24 三菱電機株式会社 光起電力装置およびその製造方法、光起電力モジュール
JP2015211094A (ja) * 2014-04-25 2015-11-24 京セラ株式会社 太陽電池素子の製造方法

Also Published As

Publication number Publication date
TWI415280B (zh) 2013-11-11
CN103180964B (zh) 2015-12-16
JP5496354B2 (ja) 2014-05-21
US20130133741A1 (en) 2013-05-30
DE112010005921T5 (de) 2013-09-26
JPWO2012046306A1 (ja) 2014-02-24
TW201216484A (en) 2012-04-16
WO2012046306A9 (ja) 2012-12-13
CN103180964A (zh) 2013-06-26

Similar Documents

Publication Publication Date Title
JP5289625B1 (ja) 太陽電池モジュール
US9608140B2 (en) Solar cell and solar cell module
JP5152407B2 (ja) 太陽電池セルおよびその製造方法
JP5174817B2 (ja) 太陽電池モジュール
JP2013526053A (ja) 太陽電池及びその製造方法
US20150349156A1 (en) Solar battery cell and method of manufacturing the same
JP2006270043A (ja) 太陽電池モジュール
KR101738000B1 (ko) 태양 전지 및 그 제조 방법
JP5430773B2 (ja) 光起電力装置およびその製造方法
WO2011074280A1 (ja) 光起電力装置およびその製造方法
JP2016122749A (ja) 太陽電池素子および太陽電池モジュール
JP5323827B2 (ja) 光起電力装置およびその製造方法
JP5496354B2 (ja) 光起電力装置およびその製造方法
KR20120032238A (ko) 양면 수광형 태양전지 모듈
JP2015138959A (ja) 光起電力装置および光起電力装置の製造方法
WO2010150358A1 (ja) 光起電力装置およびその製造方法
JP2010080578A (ja) 光電変換素子およびその製造方法
JP2006041309A (ja) 太陽電池素子の接続構造及びこれを含む太陽電池モジュール
JP5501549B2 (ja) 光電変換素子、およびそれから構成される光電変換モジュール
JP5452755B2 (ja) 光起電力装置の製造方法
WO2012090650A1 (ja) 太陽電池
JP2016178280A (ja) 太陽電池素子およびこれを用いた太陽電池モジュール
JP6113196B2 (ja) 太陽電池セルおよびその製造方法
WO2018173125A1 (ja) 太陽電池セルおよび太陽電池モジュール
JP2013149815A (ja) 太陽電池及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10858114

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012537513

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13813865

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112010005921

Country of ref document: DE

Ref document number: 1120100059217

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10858114

Country of ref document: EP

Kind code of ref document: A1