WO2016068237A1 - 太陽電池モジュール - Google Patents

太陽電池モジュール Download PDF

Info

Publication number
WO2016068237A1
WO2016068237A1 PCT/JP2015/080559 JP2015080559W WO2016068237A1 WO 2016068237 A1 WO2016068237 A1 WO 2016068237A1 JP 2015080559 W JP2015080559 W JP 2015080559W WO 2016068237 A1 WO2016068237 A1 WO 2016068237A1
Authority
WO
WIPO (PCT)
Prior art keywords
bus bar
solar cell
bar electrode
substrate
electrode
Prior art date
Application number
PCT/JP2015/080559
Other languages
English (en)
French (fr)
Inventor
隆裕 有馬
武道 本間
鍛 平山
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2016556623A priority Critical patent/JPWO2016068237A1/ja
Publication of WO2016068237A1 publication Critical patent/WO2016068237A1/ja
Priority to US15/499,667 priority patent/US20170236964A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0508Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • H01L31/0201Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules comprising specially adapted module bus-bar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell module having a plurality of solar cell elements.
  • connection tabs are soldered to the front bus bar electrode and the back bus bar electrode of the solar cell element (see JP 2008-53681 A, etc.). .
  • the temperature of the solar cell element becomes higher than the melting temperature of the solder.
  • the temperature of the solar cell element returns to room temperature from this state, stress is generated in the solar cell element due to contraction of the connection tab. This stress may cause cracks in the semiconductor substrate.
  • lead-free solder that does not substantially contain lead may be used as the solder.
  • the melting point of lead-free solder is usually higher than that of lead-containing solder, cracks are more likely to occur in the semiconductor substrate.
  • an object of the present invention is to provide a solar cell module in which cracks are unlikely to occur in the semiconductor substrate of the solar cell element.
  • a solar cell module includes a first main surface and a second main surface of a semiconductor substrate having a second side surface opposite to the first side surface, the second side surface to the second side surface.
  • a long front bus bar electrode is disposed in the direction of the side surface, and a long back surface bus bar electrode is disposed on the back main surface of the semiconductor substrate so as to face the front surface bus bar electrode in the direction from the first side surface to the second side surface.
  • a solar cell element a first connection tab disposed on the surface bus bar electrode along the surface bus bar electrode; and having one end disposed on the first side surface of the semiconductor substrate; the surface bus bar electrode; A first solder disposed between the first connection tab and connecting the front busbar electrode and the first connection tab; and disposed on the rear busbar electrode along the rear busbar electrode; Before A second connection tab having one end portion disposed on the second side surface side, a second connection tab disposed between the back surface bus bar electrode and the second connection tab, and connecting the back surface bus bar electrode and the second connection tab.
  • a solder, and a shortest distance between the first side surface and the first bonding surface where the first solder is bonded to the front bus bar electrode, and the first side surface and the second solder are the back surface. The shortest distance between the second side surface and the second adhesive surface is shorter than the shortest distance between the second adhesive surface and the second adhesive surface bonded to the bus bar electrode. Shorter than distance.
  • the stress generated in the solar cell element can be reduced.
  • produce in the semiconductor substrate of a solar cell element can be provided.
  • FIG. 1 is a plan view of a front main surface side of a solar cell element constituting a solar cell module according to an embodiment of the present invention.
  • FIG. 2 is a plan view of the back main surface side of the solar cell element constituting the solar cell module according to the embodiment of the present invention.
  • 3 is a cross-sectional view taken along the line III-III shown in FIG. 4 (a) to 4 (d) are examples of the planar shape of the surface bus bar electrode of the solar cell element constituting the solar cell module according to one embodiment of the present invention, respectively, and one end side of the front bus bar electrode. It is the elements on larger scale showing only.
  • FIG. 5 is a plan view of a solar cell module according to an embodiment of the present invention.
  • FIG. 6 is a partially enlarged sectional view taken along line VII-VII shown in FIG.
  • FIG. 7 is an enlarged cross-sectional view of a portion VII in FIG.
  • FIG. 8 is an enlarged cross-sectional view of a portion VIII in FIG. 9 is an enlarged view of the IX portion in FIG. 6,
  • FIG. 9 (a) is a plan view
  • FIG. 9 (b) is a cross-sectional view taken along line IXb-IXb in FIG. 9 (a).
  • the solar cell element 10 has a first main surface 10a that is a front main surface on which light is mainly incident, and a second main surface 10b that is a back main surface located on the opposite side of the first main surface 10a.
  • the solar cell element 10 includes a substrate 1 made of silicon which is a semiconductor.
  • the substrate 1 also has a first main surface 1a and a second main surface 1b located on the opposite side of the first main surface 1a.
  • the substrate 1 has a first side surface 1c and a second side surface 1d that connect the first main surface 1a and the second main surface 1b.
  • the second side surface 1d is located on the opposite side of the first side surface 1c, and the first side surface 1c and the second side surface 1d are opposed to each other.
  • the substrate 1 includes a first semiconductor layer 2 that is a semiconductor region of one conductivity type (for example, p-type), and a reverse conductivity type provided on the first main surface 1 a side in the first semiconductor layer 2. And a second semiconductor layer 3 which is a semiconductor region (for example, n-type).
  • a material other than silicon may be used.
  • a p-type semiconductor is used for the first semiconductor layer 2
  • a polycrystalline or single crystal p-type silicon substrate can be used for the substrate 1.
  • the substrate 1 can have a thickness of, for example, 250 ⁇ m or less, and a thin substrate of 150 ⁇ m or less can also be used.
  • substrate 1 is not limited, In this embodiment, the planar shape of the board
  • the first semiconductor layer 2 made of a polycrystalline silicon substrate is made to be p-type, the first semiconductor layer 2 contains impurities such as boron and gallium as dopants.
  • the second semiconductor layer 3 is stacked on the first semiconductor layer 2. For this reason, there is a pn junction at the interface between the first semiconductor layer 2 and the second semiconductor layer 3.
  • the second semiconductor layer 3 has a conductivity type opposite to that of the first semiconductor layer 2 (n-type in this embodiment), and is provided on the first main surface 1a side in the first semiconductor layer 2.
  • the second semiconductor layer 3 can be formed by diffusing impurities such as phosphorus on the first main surface 1a side of the substrate 1 as a dopant.
  • the solar cell element 10 includes a third semiconductor layer 4, an antireflection layer 5, a front electrode 6, a back electrode 7, a passivation layer 9 and the like in addition to the substrate 1.
  • a fine uneven structure (texture) for reducing the reflectance of the irradiated light may be provided on the first main surface 1a side of the substrate 1.
  • the height of the convex portion of the texture is about 0.1 to 10 ⁇ m, and the distance between the vertices of adjacent convex portions is about 0.1 to 20 ⁇ m.
  • the concave portion may be a spherical shape, or the convex portion may be a pyramid shape.
  • the above-mentioned “height of the convex portion” means, for example, a straight line passing through the bottom surface of the concave portion in FIG. 3 as a reference line, and a distance from the reference line to the vertex of the convex portion in a direction perpendicular to the reference line That is.
  • the antireflection layer 5 has a function of reducing the reflectance of the light irradiated on the first main surface 10 a of the solar cell element 10.
  • the antireflection layer 5 is made of, for example, a silicon oxide, aluminum oxide, or silicon nitride layer.
  • the antireflective layer 5 can have a refractive index of about 1.8 to 2.5 and a thickness of about 20 to 120 nm.
  • the third semiconductor layer 4 is disposed on the second main surface 1b side of the substrate 1 and may have the same conductivity type as the first semiconductor layer 2 (p-type in the present embodiment).
  • the concentration of the dopant contained in the third semiconductor layer 4 is higher than the concentration of the dopant contained in the first semiconductor layer 2. That is, the third semiconductor layer 4 has a dopant element at a high concentration in order to make the first semiconductor layer 2 have one conductivity type.
  • the third semiconductor layer 4 forms an internal electric field on the second main surface 1 b side of the substrate 1. Thereby, it is possible to make it difficult for the photoelectric conversion efficiency to decrease due to recombination of minority carriers in the vicinity of the surface of the second main surface 1b of the substrate 1.
  • the third semiconductor layer 4 can be formed, for example, by diffusing a dopant element such as boron or aluminum on the second main surface 1b side of the substrate 1.
  • concentrations of the dopant elements contained in the first semiconductor layer 2 and the third semiconductor layer 4 are about 5 ⁇ 10 15 to 1 ⁇ 10 17 atoms / cm 3 and 1 ⁇ 10 18 to 5 ⁇ 10 21 atoms / cm 3 , respectively. can do.
  • the third semiconductor layer 4 is preferably present at the contact portion between the back electrode 7 and the substrate 1 described later.
  • the surface electrode 6 is provided on the first main surface 1 a side of the substrate 1. Moreover, the surface electrode 6 has the surface bus-bar electrode 6a and the some linear surface finger electrode 6b, as shown in FIG.
  • the surface bus bar electrode 6a is an electrode for taking out electricity obtained by power generation to the outside.
  • the front bus bar electrode 6a is provided on the first main surface 1a so as to extend from the first side surface 1c of the substrate 1 toward the second side surface 1d.
  • the length of the surface bus bar electrode 6a in the direction perpendicular to the longitudinal direction (hereinafter referred to as width) is about 1.3 to 2.5 mm. At least a part of the surface bus bar electrode 6a intersects the surface finger electrode 6b and is electrically connected.
  • the surface finger electrode 6 b is an electrode for collecting electricity generated from the substrate 1. Further, the surface finger electrode 6b has a plurality of linear shapes, and the width thereof is, for example, about 50 to 200 ⁇ m. Thus, the width of the surface finger electrode 6b is smaller than the width of the surface bus bar electrode 6a. A plurality of surface finger electrodes 6b are provided with an interval of about 1 to 3 mm from each other. The thickness of the surface electrode 6 is about 10 to 40 ⁇ m.
  • Such a surface electrode 6 can be formed, for example, by applying a first metal paste containing silver as a main component into a desired shape by screen printing or the like and then baking it.
  • the “main component” means that the ratio of the total component is 50% or more.
  • the back electrode 7 is provided on the second main surface 1b side of the substrate 1. Moreover, the back surface electrode 7 has the back surface bus-bar electrode 7a and the back surface finger electrode 7b.
  • the back bus bar electrode 7a is an electrode for taking out the electricity obtained by the power generation by the solar cell element 10 to the outside.
  • the back bus bar electrode 7a is provided on the second main surface 1b so as to extend from the first side surface 1c of the substrate 1 toward the second side surface 1d.
  • the back bus bar electrode 7a has a thickness of about 10 to 30 ⁇ m and a width of about 1.3 to 7 mm.
  • the back bus bar electrode 7a contains silver as a main component.
  • Such a backside bus bar electrode 7a can be formed, for example, by applying a metal paste containing silver as a main component to a desired shape by screen printing or the like and then baking it.
  • the back finger electrode 7b is an electrode for collecting electricity generated from the substrate 1 on the second main surface 1b of the substrate 1, and is provided so as to be electrically connected to the back bus bar electrode 7a. At least a part of the backside bus bar electrode 7a is electrically connected to the backside finger electrode 7b.
  • the thickness of the back finger electrode 7b is about 15 to 50 ⁇ m.
  • the width of the back finger electrode 7b is, for example, about 100 to 500 ⁇ m, and a plurality of back finger electrodes 7b are provided at intervals of about 1 to 3 mm.
  • the back surface finger electrode 7b can be made wider than the front surface finger electrode 6b of the front surface electrode 6, thereby reducing the series resistance of the back surface finger electrode 7b and improving the output characteristics of the solar cell element 10.
  • the back surface finger electrode 7b contains aluminum as a main component.
  • Such a back finger electrode 7b can be formed by, for example, applying a metal paste mainly composed of aluminum in a desired shape and then baking the metal paste.
  • the long surface bus bar electrode 6a is arranged on the first main surface 1a of the substrate 1 in the direction from the first side surface 1c to the second side surface 1d. Further, on the second main surface 1b of the substrate 1, a back bus bar electrode 7a that is long in the direction from the first side surface 1c to the second side surface 1d is disposed so as to face the front surface bus bar electrode 6a.
  • planar shape of the front surface bus bar electrode 6a and the back surface bus bar electrode 7a may be other than the belt shape shown in FIG. 1, may be a ladder shape or a lattice shape having a frame-like portion provided with a space (slit), or is discontinuous.
  • the shape may include a plurality of island-shaped portions.
  • the surface bus bar electrode 6a may have a frame-like portion as shown in FIGS. 4A, 4B, and 4D, for example, or may not be formed as shown in FIG. It may have a plurality of continuous islands. As shown in FIG.
  • the distance L1 between adjacent island-shaped portions may be appropriately determined depending on the number and positions of solder welded portions (hereinafter referred to as solder 25) of the connection tab 21 described later.
  • solder 25 solder welded portions
  • the length W2 of the wide portion may be appropriately determined according to the size of the solder 25 described later.
  • the 1st main surface 10a side of the solar cell element 10 is a side which mainly receives light, it is necessary to reduce the characteristic deterioration of the solar cell element 10 by light shielding as much as possible. For this reason, the area of the front electrode 6 is smaller than the area of the back electrode 7.
  • the width of the front bus bar electrode 6a is preferably smaller than the width of the back bus bar electrode 7a.
  • the passivation layer 9 is formed on the second main surface 1b of the substrate 1 and has a function of reducing minority carrier recombination.
  • the passivation layer 9 is composed of, for example, a layer made of silicon oxide, aluminum oxide, silicon nitride, or the like, or a layer in which these layers are stacked.
  • the thickness of the passivation layer 9 is about 10 to 200 nm.
  • the passivation layer 9 may be disposed on the second principal surface 1b which is at least one principal surface of the substrate 1, but may be disposed on both surfaces. This may improve the passivation performance. Further, if the antireflection layer 5 and the passivation layer 9 are also disposed on the side surface of the substrate 1, the characteristics of the solar cell element 10 can be further improved.
  • the back surface finger electrode 7b was a linear electrode
  • An electrode formed on the entire surface may be used.
  • the passivation layer 9 may not be formed.
  • a PERC Passivated Emitter and Rear Cell
  • the substrate 1 is formed by, for example, an existing Czochralski (CZ) method or a casting method.
  • CZ Czochralski
  • a casting method an example in which a p-type polycrystalline silicon substrate is used as the substrate 1 will be described.
  • a polycrystalline silicon ingot is produced by, for example, a casting method.
  • the ingot is processed into a block having an appropriate shape and size, and the substrate 1 is manufactured by slicing the ingot into a thickness of, for example, 250 ⁇ m or less.
  • the surface of the substrate 1 may be subjected to a very small amount of etching with an aqueous solution such as NaOH, KOH, hydrofluoric acid, or hydrofluoric acid.
  • a texture is formed on the first main surface 1 a of the substrate 1.
  • a texture formation method a wet etching method using an alkaline solution such as NaOH or an acid solution such as hydrofluoric acid, or a dry etching method using a RIE (Reactive Ion Etching) method or the like can be used.
  • a step of forming the second semiconductor layer 3 that is an n-type semiconductor region is performed on the first main surface 1a of the substrate 1 having the texture formed by the above steps. Specifically, the n-type second semiconductor layer 3 is formed on the surface layer of the textured substrate 1 on the first main surface 1a side.
  • Such a second semiconductor layer 3 may be formed by applying a thermal diffusion method in which paste-like phosphorus pentoxide (P 2 O 5 ) is applied to the surface of the substrate 1 and thermally diffused, or gaseous phosphorus oxychloride ( It is formed by a vapor phase thermal diffusion method using POCl 3 ) as a diffusion source.
  • the second semiconductor layer 3 is formed to have a depth of about 0.1 to 2 ⁇ m and a sheet resistance value of about 40 to 200 ⁇ / ⁇ .
  • the vapor phase thermal diffusion method is adopted, the substrate 1 is heat-treated at a temperature of about 600 to 800 ° C. for about 5 to 30 minutes in an atmosphere having a diffusion gas made of POCl 3 or the like.
  • the substrate 1 is heat-treated for about 10 to 40 minutes at a temperature of about 800 to 900 ° C. in an inert gas atmosphere such as argon or nitrogen. Thereby, phosphorus diffuses from the phosphor glass to the substrate 1, and the second semiconductor layer 3 is formed on the first main surface 1 a side of the substrate 1.
  • the second semiconductor layer 3 when the second semiconductor layer 3 is also formed on the second main surface 1b side of the substrate 1, the second semiconductor layer 3 is formed on the second main surface 1b side. Only the semiconductor layer 3 is removed by etching. Thereby, the p-type conductivity type region is exposed on the second main surface 1b side of the substrate 1.
  • the second semiconductor layer 3 formed on the second main surface 1b side is removed by immersing only the second main surface 1b side of the substrate 1 in a hydrofluoric acid solution. Thereafter, when the second semiconductor layer 3 is formed, the phosphor glass adhering to the first main surface 1a side of the substrate 1 is removed by etching.
  • the phosphor glass is left on the first main surface 1a side of the substrate 1, and the second semiconductor layer 3 formed on the second main surface 1b side is removed by etching.
  • the second semiconductor layer 3 on the first main surface 1a side of the substrate 1 can be prevented from being removed, and the second semiconductor layer 3 can be prevented from being damaged.
  • the second semiconductor layer 3 formed on the side surface of the substrate 1 may also be removed.
  • a diffusion mask is formed in advance on the second main surface 1b side, and after the second semiconductor layer 3 is formed by vapor phase thermal diffusion or the like, the diffusion mask is removed. Also good. According to such a process, since the second semiconductor layer 3 is not formed on the second main surface 1b side, the step of removing the second semiconductor layer 3 on the second main surface 1b side becomes unnecessary.
  • a passivation layer 9 made of aluminum oxide is formed on the second main surface 1 b of the first semiconductor layer 2.
  • a method for forming the passivation layer 9 for example, an ALD method or a PECVD (PlasmalasEnhanced Chemical Vapor Deposition) method can be used.
  • the passivation layer 9 may be formed on the entire periphery including the first main surface 1 a in the first semiconductor layer 2 and the side surface of the substrate 1.
  • the substrate 1 on which the second semiconductor layer 3 is formed is placed in the chamber of the film forming apparatus. Then, while the substrate 1 is heated at a temperature of 100 ° C. to 250 ° C., the following steps (1) to (4) are repeated a plurality of times to form a passivation layer 9 made of aluminum oxide.
  • Examples of the aluminum source include trimethylaluminum (TMA), triethylaluminum (TEA) ) Etc. can be used.
  • TMA trimethylaluminum
  • TEA triethylaluminum
  • water, ozone gas, etc. can be used for an oxidizing agent, for example.
  • a film made of silicon nitride, silicon oxide or the like may be further formed on the aluminum oxide formed on the second main surface 1b of the substrate 1 by a PECVD method or the like.
  • the passivation layer 9 having an interface passivation function of aluminum oxide and a function as a protective film of silicon nitride, silicon oxide, or the like can be formed.
  • an antireflection layer 5 made of a silicon nitride film is formed on the second semiconductor layer 3 on the first main surface 1 a side of the substrate 1.
  • the antireflection layer 5 is formed using, for example, a PECVD method or a sputtering method.
  • the substrate 1 is heated in advance at a temperature higher than the temperature during film formation.
  • a mixed gas of silane (SiH 4 ) and ammonia (NH 3 ) is diluted with nitrogen (N 2 ), and the reaction pressure is set to 50 to 200 Pa, and plasma is generated by glow discharge decomposition. Thereby, the antireflection layer 5 is formed on the substrate 1.
  • the film formation temperature at this time is set to about 350 to 650 ° C., and the temperature of the substrate 1 to be heated in advance is set to be about 50 ° C. higher than the film formation temperature. Further, a frequency of 10 to 500 kHz is used as the frequency of the high frequency power source necessary for glow discharge.
  • the gas flow rate is appropriately determined depending on the size of the chamber and the like, but is preferably in the range of 150 to 6000 ml / min (sccm), for example.
  • the flow ratio B / A between the flow rate A of silane and the flow rate B of ammonia may be 0.5-15.
  • the third semiconductor layer 4 in which one conductivity type semiconductor impurity is diffused at a high concentration is formed.
  • a method for forming the third semiconductor layer 4 for example, a thermal diffusion method using boron tribromide (BBr 3 ) as a diffusion source is used and the temperature is set at about 800 to 1100 ° C.
  • the third semiconductor layer 4 is formed by applying an aluminum paste made of aluminum powder and an organic vehicle by a printing method, and then heat-treating (baking) at a temperature of about 600 to 850 ° C. to diffuse aluminum into the substrate 1. Also good.
  • a desired diffusion region can be formed only on the printing surface. Further, in the step of forming the second semiconductor layer 3, the step of removing the n-type reverse conductivity type layer formed on the second main surface 1b side of the silicon 1 can be eliminated. Therefore, as described above, after forming a desired diffusion region, only the outer peripheral portion of the first main surface 1a or the second main surface 1b of the substrate 1 is subjected to a p-type semiconductor by a method such as laser irradiation. The region and the n-type semiconductor region can be electrically separated.
  • the front electrode 6 and the back electrode 7 are formed as follows.
  • the surface electrode 6 is manufactured using, for example, a metal paste containing silver as a main component, an organic vehicle, and a glass frit (hereinafter referred to as a first metal paste).
  • a metal paste containing silver as a main component, an organic vehicle, and a glass frit hereinafter referred to as a first metal paste.
  • this first metal paste is applied to the first main surface 1 a of the substrate 1.
  • the surface electrode 6 is formed by baking at a maximum temperature of 600 to 800 ° C. for several tens of seconds to several tens of minutes.
  • a coating method of the first metal paste a screen printing method or the like can be used.
  • the solvent in the first metal paste may be vaporized at a predetermined temperature to dry the first metal paste.
  • the surface electrode 6 can form the surface bus-bar electrode 6a and the surface finger electrode 6b by one process by using screen printing.
  • the back surface bus bar electrode 7a is manufactured using a metal paste containing metal powder containing silver as a main component, an organic vehicle, glass frit, and the like (hereinafter referred to as a second metal paste).
  • a metal paste containing metal powder containing silver as a main component, an organic vehicle, glass frit, and the like hereinafter referred to as a second metal paste.
  • a screen printing method or the like can be used.
  • the second metal paste may be dried by vaporizing the solvent at a predetermined temperature in the same manner as described above.
  • the substrate 1 coated with the second metal paste is baked for several tens of seconds to several tens of minutes in a baking furnace under the condition of a maximum temperature of 600 to 850 ° C. Thereby, the back surface bus bar electrode 7 a is formed on the second main surface 1 b side of the substrate 1.
  • the back finger electrode 7b is manufactured using a metal paste containing aluminum as a main component, an organic vehicle, and a glass frit (hereinafter referred to as a third metal paste).
  • the third metal paste is applied onto the second main surface 1b of the substrate 1 so as to contact a part of the second metal paste applied in advance. This coating may be performed on almost the entire surface of the second main surface 1b of the substrate 1 except for a part of the portion where the back surface bus bar electrode 7a is formed.
  • this coating method a screen printing method or the like can be used.
  • the third metal paste may be dried by vaporizing the solvent at a predetermined temperature in the same manner as described above.
  • the substrate 1 on which the third metal paste has been applied is baked for several tens of seconds to several tens of minutes in a baking furnace at a maximum temperature of 600 to 850 ° C.
  • the back surface finger electrode 7b is formed on the second main surface 1b side of the substrate 1.
  • a third metal paste is applied directly on the passivation layer 9 in a predetermined region.
  • a fire-through method may be used in which the substrate 1 is heat-treated at a maximum temperature of 600 to 800 ° C. in a firing furnace.
  • the component of the applied third metal paste breaks through the passivation layer 9, so that the third semiconductor layer 4 is formed on the second main surface 1b side of the substrate 1, and the back finger electrode 7b is formed thereon. It is formed.
  • the solar cell element 10 can be manufactured through the above steps.
  • the back surface finger electrode 7b may be formed after the back surface bus bar electrode 7a is formed. Further, the back surface bus bar electrode 7 a does not need to be in direct contact with the substrate 1, and the passivation layer 9 may exist between the back surface bus bar electrode 7 a and the substrate 1.
  • the front electrode 6, the back bus bar electrode 7a, and the back finger electrode 7b may be formed by applying a metal paste to be each electrode and then firing the metal paste at the same time.
  • the back finger electrode 7b may be provided on substantially the entire surface of the second main surface 1b of the substrate 1 excluding a part of the region where the back bus bar electrode 7a is formed.
  • an electrode may be formed after providing an opening in a part of the passivation layer 9 by a method such as laser irradiation or etching.
  • a desired region of the third metal paste applied on the passivation layer 9 may be irradiated with a laser to form an electrode that partially penetrates the passivation layer 9.
  • the substrate 1 may be cleaned before forming the passivation layer 9.
  • this cleaning process for example, hydrofluoric acid treatment, RCA cleaning (cleaning method developed by RCA, USA, high temperature / high concentration sulfuric acid / hydrogen peroxide solution, dilute hydrofluoric acid (room temperature), ammonia water / peroxide Cleaning method using hydrogen water or hydrochloric acid / hydrogen peroxide solution) and hydrofluoric acid treatment after this cleaning, or SPM (Sulfuric® Acid / Hydrogen® Peroxide / Water Mixture) cleaning and cleaning method using hydrofluoric acid treatment after this cleaning, etc. Can be used.
  • RCA cleaning cleaning method developed by RCA, USA, high temperature / high concentration sulfuric acid / hydrogen peroxide solution, dilute hydrofluoric acid (room temperature), ammonia water / peroxide Cleaning method using hydrogen water or hydrochloric acid / hydrogen peroxide solution) and hydrofluoric acid treatment after this cleaning
  • SPM Sulfuric® Acid / Hydrogen® Peroxide
  • annealing treatment using a gas containing hydrogen can further reduce the recombination rate of minority carriers in the substrate 1.
  • the solar cell element 10 for example, a double-sided light-receiving solar cell element in which light can be incident from both the first main surface 10 a and the second main surface 10 b can be applied.
  • a semiconductor substrate mainly including an n-type semiconductor region and a p-type semiconductor region formed on one main surface of the substrate may be used.
  • the solar cell module 20 may include, for example, a plurality of solar cell elements 10 that are electrically connected to each other.
  • a plurality of solar cell elements 10 are connected in series or in parallel, for example, and an electrical output can be taken out from the solar cell module 20.
  • the solar cell module 20 includes, for example, a translucent member 22, a filler (a front-side filler 23a, a back-side filler 23b), a connection tab 21 (a first connection tab 21a, a second connection tab 21b, and a third connection tab 21c).
  • a laminated body including the solder 25 (first solder 25a, second solder 25b), the plurality of solar cell elements 10 and the back surface protection member 24 is provided.
  • the translucent member 23 is a member for protecting the light receiving surface of the solar cell module 20.
  • this translucent member 23 for example, a translucent flat plate member such as a glass substrate can be used.
  • the front-side filler 23a and the back-side filler 23b may be any transparent filler such as ethylene / vinyl acetate copolymer (EVA) or polyolefin resin.
  • EVA ethylene / vinyl acetate copolymer
  • polyolefin resin any transparent filler such as ethylene / vinyl acetate copolymer (EVA) or polyolefin resin.
  • the back surface protection member 24 is a member for protecting the back surface of the solar cell module 20.
  • PET polyethylene terephthalate
  • PVF polyvinyl fluoride resin
  • the back surface protection member 24 may have a single layer structure or a laminated structure, and the whole may be colored white or black.
  • connection tab 21 is a member (connection member) that electrically connects the plurality of solar cell elements 10.
  • the solar cell elements 10 adjacent to each other in one direction include a front surface bus bar electrode 6 a of one solar cell element 10 and a back surface bus bar electrode of the other solar cell element 10.
  • 7 a is electrically connected to the connection tab 21 via the solder 25.
  • the surface bus bar electrode 6a and the first connection tab 21a are connected via the first solder 25a.
  • the back bus bar electrode 7a and the second connection tab 21b are connected via a second solder 25b.
  • first connection tab 21a is located on the first side surface 1c side of the substrate 1, and is disposed on the surface bus bar electrode 6a along the surface bus bar electrode 6a.
  • the first solder 25a is disposed between the surface bus bar electrode 6a and the first connection tab 21a, and connects the surface bus bar electrode 6a and the first connection tab 21a.
  • One end of the second connection tab 21b is located on the second side surface 1d side of the substrate 1, and is disposed on the back surface bus bar electrode 7a along the back surface bus bar electrode 7a.
  • the second solder 25b is disposed between the back surface bus bar electrode 7a and the second connection tab 21b, and connects the back surface bus bar electrode 7a and the second connection tab 21b.
  • the solar cell module 20 includes, for example, a solar cell string S1 in which a plurality of solar cell elements 10 are connected in series, and a solar cell string S2 adjacent thereto.
  • the one end portion of the solar cell string S1 and the one end portion of the solar cell string S2 are electrically connected via the solder 25 using the third connection tab 21c having a shape different from the first connection tab 21a and the second connection tab 21b. Connected.
  • connection tab 21 (the first connection tab 21a, the second connection tab 21b, and the third connection tab 21c), and the surface of which is coated with solder. it can.
  • the thickness of the connection tab 21 may be 0.1 to 0.2 mm, for example.
  • the width of the connection tab 21 may be about 1 to 3 mm, for example.
  • the solar cell module 20 may include a frame body 26 that holds the stacked body from the periphery. As a material of the frame body 26, for example, aluminum having corrosion resistance and strength may be used.
  • the solar cell module 20 includes both ends in the longitudinal direction of the surface bus bar electrode 6a (the first tip 6a1 and the second tip) on the first side face 1c side and the second side face 1d side of the substrate 1. 6a2) is located outside the longitudinal ends of the first solder 25a. Further, both ends (first tip 7a1, second tip 7a2) in the longitudinal direction of the back surface bus bar electrode 7a are located outside the both ends in the longitudinal direction of the second solder 25b. Further, on the first side surface 1c side and the second side surface 1d side of the substrate 1, both ends in the longitudinal direction of the first bonding surface R1 (first tip R1a) where the first solder 25a is bonded (welded) to the surface bus bar electrode 6a.
  • the second tip R1b) is located outside the longitudinal ends of the second bonding surface R2 (the first tip R2a and the second tip R2b) where the second solder 25b is bonded (welded) to the backside bus bar electrode 7a. positioned.
  • the first tip R1a of the first adhesive surface R1 is located outside the first tip R2a of the second adhesive surface R2.
  • the second tip R1b of the first adhesive surface R1 is located outside the second tip R2b of the second adhesive surface R2. That is, as shown in FIG. 7, the shortest distance (D2) between the first side surface 1c of the substrate 1 and the first adhesive surface R1 is larger than the shortest distance (D3) between the first side surface 1c and the second adhesive surface R2.
  • the shortest distance (D5) between the second side surface 1d and the first adhesive surface R1 is shorter than the shortest distance (D6) between the second side surface 1d and the second adhesive surface R2.
  • the shortest distance between the first side surface 1c of the substrate 1 and the surface bus bar electrode 6a is the shortest distance between the first side surface 1c and the first adhesive surface R1
  • the shortest distance (the difference between D5 and D4) between the second side surface 1d and the surface bus bar electrode 6a is shorter than the second side surface 1d and the first adhesive surface R1. It is shorter than the shortest distance (D5).
  • the front bus bar electrode 6a, the back bus bar electrode 7a, and the “both ends (tips) in the longitudinal direction” of the first adhesive surface R1 and the second adhesive surface R2 are the most on the side surface of the silicon 1 when viewed through the plane. It shall mean the part of the near position.
  • connection tab 21 contracts more than the substrate 1 due to a difference in thermal expansion coefficient between the heated metal connection tab 21 and the semiconductor substrate 1, and residual stress is generated on the surface of the substrate 1. . Then, it is considered that cracks are likely to occur in the substrate 1 starting from a location where a certain level of tensile stress is generated. Due to the difference in pattern (width and size) of the front bus bar electrode 6a, the back bus bar electrode 7a, and the solder 25, the tensile stress is particularly large at both ends (first tip R1a and second tip R1b) of the first adhesive surface R1. Become. For this reason, cracks are likely to occur in the substrate 1 starting from the first adhesive surface R1. This is because the arrangement area or width of the front surface bus bar electrode 6a is preferably smaller than that of the back surface bus bar electrode 7a in plan view in order to reduce the influence of light shielding by the front surface electrode 6.
  • both ends (first tip 6a1 and second tip 6a2) of the surface bus bar electrode 6a are outside (substrate 1) than both ends (first tip R1a and second tip R1b) of the first adhesive surface R1. 1st side 1c side and 2nd side 1d side).
  • the surface bus bar electrode 6a may be a pattern having a frame-like portion with a space (slit) in the width direction. And you may make it provide the site
  • the front bus bar electrode 6a has slits at the longitudinal ends (first tip R2a, second tip R2b) of the first adhesive surface R1. It is preferable to provide no area.
  • the solder 25 When the solder 25 is formed in the area where the slits of the front bus bar electrode 6a are present, the residual stress becomes large due to the influence of thermal stress when forming the electrodes and soldering the connection tabs.
  • unnecessary tensile stress is hardly applied to the surface bus bar electrode 6a. For this reason, cracks are unlikely to occur in the substrate 1 at the site of the first adhesive surface R1.
  • the material used for the surface bus bar electrode 6a can be reduced, so that productivity can be increased.
  • the surface bus bar electrode 6a when the surface bus bar electrode 6a is formed by screen printing in particular, the surface bus bar electrode 6a may be formed in a shape having a slit as shown in FIGS. This is because, as shown in FIG. 1 (a), it is easy to maintain an appropriate gap between the screen and the solar cell element as compared with a pattern in which no slit is provided. For this reason, an electrode excellent in electrical and mechanical characteristics can be formed.
  • the solder 25 may be continuously arranged in the longitudinal direction of the connection tab 21. Further, as shown in FIG. 4C, the solder 25 may be divided into a plurality of islands, for example. Thereby, it is easy to set the shape and size of the solder 25 appropriately, and the thermal stress resulting from tab attachment of the entire solar cell module 20 can be reduced. Furthermore, the finger electrodes 6b and 7b and the BSF layer 4 can be arranged between the bus bar electrodes 6a and 6b divided into island shapes. Thereby, the characteristic improvement of the solar cell element 10 can be expected. If the front bus bar electrode 6a and the back bus bar electrode 7a are formed in a plurality of islands, the region of the solder 25 can be easily set, and the material used for the electrodes can be reduced, so that productivity can be increased.
  • both ends of the first adhesive surface R1 and the second adhesive surface R2 are preferably not curved in a plan view but in a curved shape such as an arc or a wavy line.
  • the surface bus bar electrode 6a has a width larger than that of the other regions at both ends. The stress may be reduced.
  • the solder used for tab attachment is lead-free solder in consideration of the environment, the soldering temperature is higher than that of leaded solder, so that cracks are likely to occur. Even in this case, the occurrence of cracks can be reduced by employing the structure of the present embodiment.
  • connection tab 21 is soldered to each of the front surface bus bar electrode 6a and the rear surface bus bar electrode 7b. At this time, by adjusting the position where the connection tab 21 is heated, the position where the surface bus bar electrode 6a and the first connection tab 21a are connected by the first solder 25a can be adjusted. Similarly, the position where the back surface bus bar electrode 6b and the second connection tab 21b are connected by the second solder 25b can also be adjusted.
  • the front-side filler 23a is placed on the translucent member 22, and the plurality of solar cell elements 10 to which the connection tab 21 and the output extraction wiring are connected are placed thereon. Further, the back side filler 23 b and the back surface protection member 24 are sequentially laminated on the plurality of solar cell elements 10. Thereafter, the output extraction wiring is led out to the outside of the back surface protection member 24 from slits (not shown) provided in the respective members on the back surface side to obtain a laminate. And this laminated body is set to a laminator. In the laminator, the laminate is heated at about 80 to 200 ° C., for example, for 15 to 60 minutes while being pressurized under reduced pressure. Thereby, the solar cell module 20 with which the laminated body was integrated can be obtained.
  • the terminal box is attached using an adhesive such as a silicone resin on the back surface protection member 24 from which the output extraction wiring is derived. Then, the output lead-out wires on the plus side and the minus side are fixed to terminals (not shown) of the terminal box by soldering or the like. Then attach the lid to the terminal box.
  • the frame body 26 is attached to complete the solar cell module 20. Specifically, a frame body 26 made of aluminum or the like is attached to the outer periphery of the solar cell module 20. The frame body 26 can be attached, for example, by fixing its corners with screws or the like. In this way, the solar cell module 20 is completed.
  • the conditions 1 to 10 shown in Table 1 are changed.
  • Five solar cell modules were manufactured.
  • the electrode patterns of the front surface bus bar electrode 6a and the back surface bus bar electrode 7a were the strip pattern shown in FIGS. 1 and 2, and the patterns shown in FIGS. 4 (a) to 4 (d).
  • the size of the slit was set to 1 mm ⁇ 0.2 mm.
  • the length of the end portion where there is no slit is 8 mm.
  • the interval between adjacent island portions was 8 mm.
  • a polycrystalline substrate 1 having a square side of about 156 mm and a thickness of about 200 ⁇ m in plan view was prepared. These substrates 1 were etched with an aqueous NaOH solution to remove the damaged layer on the surface, and then washed. The following processing was performed on the substrate 1 thus prepared.
  • a texture was formed on the first main surface 1a side of the substrate 1 by using the RIE method.
  • phosphorus was diffused by the vapor phase thermal diffusion method using POCl 3 as a diffusion source on the substrate 1 to form an n-type second semiconductor region 3 having a sheet resistance of about 90 ⁇ / ⁇ .
  • the second semiconductor layer 3 formed on the side surface of the substrate 1 and the second main surface 1b side was removed with a hydrofluoric acid solution, and then the remaining glass was removed with a hydrofluoric acid solution.
  • an aluminum oxide layer was formed as a passivation layer 9 on the entire surface of the substrate 1 using the ALD method.
  • an antireflection layer 5 made of a silicon nitride film was formed on the passivation layer 9 on the first main surface 1a side of the substrate 1 by plasma CVD.
  • a silver paste was applied to the pattern of the surface electrode 6 on the first main surface 1a side of the substrate 1, and a silver paste was applied to the pattern of the back surface bus bar electrode 7a on the second main surface 1b side.
  • the aluminum paste was apply
  • the 3rd semiconductor layer 4, the surface electrode 6, and the back surface electrode 7 were formed by baking these pastes, and the solar cell element 10 was produced.
  • connection tab 21 was welded to each of the front surface bus bar electrode 6a and the rear surface bus bar electrode 7a using solder.
  • the connection tab 21 was formed by immersing a 200 ⁇ m thick copper foil in a molten solder pool to form a solder layer with a thickness of 20 ⁇ m. And the connection tab 21 was arrange
  • the solar cell element 10 provided with the connection tab 21 was cooled to room temperature. Thereafter, a fluorescent flaw detection liquid was applied to the second main surface 1b side of the substrate 1, and the light of black light was applied from the first main surface 1a side to visually check the occurrence of cracks on the substrate 1. The results are shown in Table 1.
  • D1 in Table 1 is a distance from the tip position E1 of the first solder 25a to the tip position E3 of the surface bus bar electrode 6a on the first side face 1c of the substrate 1, as shown in FIG. D2 in Table 1 is the distance from the tip position E1 of the first solder 25a to the first side surface 1c of the substrate 1.
  • D3 in Table 1 is the distance from the tip position E2 of the second solder to the first side surface 1c of the substrate 1.
  • D4 in Table 1 is the distance from the tip position E4 of the first solder 25a to the tip position E6 of the surface bus bar electrode 6a on the second side surface 1d of the substrate 1.
  • D5 in Table 1 is the distance from the tip position E4 of the first solder 25a to the second side surface 1d of the substrate 1.
  • D6 in Table 1 is the distance from the tip position E5 of the second solder to the second side surface 1d of the substrate 1.
  • W1 in Table 1 is a portion of the surface bus bar electrode 6a other than the end where the first connection tab 21a is bonded via the first solder 25a, as shown in FIGS. 4A to 4D, for example. Width.
  • W2 in Table 1 is the width of the end portion of the front bus bar electrode 6a where the first connection tab 21a adheres via the first solder 25a.
  • W3 in Table 1 is the width of the connection tab 21.
  • conditions 4, 5, 9 and 10 indicate solar cell modules according to examples of the present invention
  • conditions 1 to 3 and 6 to 8 indicate solar cell modules according to comparative examples.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 半導体基板の表主面に表面バスバー電極を配置して、前記半導体基板の裏主面に裏面バスバー電極を配置した太陽電池素子と、前記表面バスバー電極の上に配置され、半導体基板の第1側面側に一端部が配置される第1接続タブと、前記表面バスバー電極と前記第1接続タブとを接続する第1ハンダと、前記裏面バスバー電極の上に配置され、前記半導体基板の前記第2側面側に一端部が配置される第2接続タブと、前記裏面バスバー電極と前記第2接続タブとを接続する第2ハンダと、を備えており、接続タブを太陽電池素子上のバスバー電極にハンダ付けする際に、太陽電池素子に発生する応力を低減することによって、クラックの発生を低減するために、半導体基板の第1側面側および第2側面側において、第1ハンダが表面バスバー電極に接着している第1接着面の長手方向の両端が、第2ハンダが裏面バスバー電極に接着している第2接着面の長手方向の両端よりも外側に位置している太陽電池モジュールとする。

Description

太陽電池モジュール
 本発明は、複数の太陽電池素子を有する太陽電池モジュールに関する。
 太陽電池モジュールには、例えば、太陽電池素子の表面バスバー電極と裏面バスバー電極とのそれぞれに、接続タブがハンダ付けされているものが知られている(特開2008-53681号公報等を参照)。
 接続タブを電極にハンダ付けをする際、太陽電池素子の温度はハンダの溶融温度よりも高くなる。この状態から太陽電池素子の温度が室温に戻ったときには、接続タブの収縮によって、太陽電池素子に応力が発生する。この応力は、半導体基板にクラックを引き起こす場合がある。
 また、ハンダとして鉛が実質的に含まれない非鉛ハンダを使用することがある。この場合には、通常、非鉛ハンダの融点が鉛を含むハンダよりも高いことから、半導体基板にクラックがさらに発生しやすい。
 そこで、太陽電池素子の半導体基板にクラックが発生しにくい太陽電池モジュールを提供することを本発明の目的の一つとする。
 本発明の一態様に係る太陽電池モジュールは、第1側面と、該第1側面とは反対側に位置する第2側面とを有する半導体基板の表主面に、前記第1側面から前記第2側面の方向へ長い表面バスバー電極を配置して、前記半導体基板の裏主面に、前記表面バスバー電極に対向して、前記第1側面から前記第2側面の方向へ長い裏面バスバー電極を配置した太陽電池素子と、前記表面バスバー電極に沿って前記表面バスバー電極の上に配置され、前記半導体基板の前記第1側面側に一端部が配置される第1接続タブと、前記表面バスバー電極と前記第1接続タブとの間に配置され、前記表面バスバー電極と前記第1接続タブとを接続する第1ハンダと、前記裏面バスバー電極に沿って前記裏面バスバー電極の上に配置され、前記半導体基板の前記第2側面側に一端部が配置される第2接続タブと、前記裏面バスバー電極と前記第2接続タブとの間に配置され、前記裏面バスバー電極と前記第2接続タブとを接続する第2ハンダと、を備えているとともに、前記第1側面と前記第1ハンダが前記表面バスバー電極に接着している第1接着面との最短距離が、前記第1側面と前記第2ハンダが前記裏面バスバー電極に接着している第2接着面との最短距離よりも短く、かつ、前記第2側面と前記第1接着面との最短距離が、前記第2側面と前記第2接着面との最短距離よりも短い。
 上記の太陽電池モジュールによれば、太陽電池素子に発生する応力を低減することができる。これにより、太陽電池素子の半導体基板にクラックが発生しにくい太陽電池モジュールを提供することができる。
図1は、本発明の一実施形態に係る太陽電池モジュールを構成する太陽電池素子の表主面側の平面図である。 図2は、本発明の一実施形態に係る太陽電池モジュールを構成する太陽電池素子の裏主面側の平面図である。 図3は、図1に示すIII-III線における断面図である。 図4(a)~(d)は、それぞれ本発明の一実施形態に係る太陽電池モジュールを構成する太陽電池素子の表面バスバー電極の平面形状の例であり、表バスバー電極の一方の端部側のみを表した部分拡大図である。 図5は、本発明の一実施形態に係る太陽電池モジュールの平面図である。 図6は、図5に示すVII-VII線における部分拡大断面図である。 図7は、図6におけるVII部を拡大した断面図である。 図8は、図6におけるVIII部を拡大した断面図である。 図9は、図6におけるIX部を拡大した図であり、図9(a)は平面図、図9(b)は図9(a)のIXb-IXb線における断面図である。
 以下、本発明の実施の形態について図面を参照しながら詳細に説明する。なお、図面は模式的に示したものである。また、図3では構成要素の一部およびハッチングを省略している。
 <太陽電池素子>
 本実施形態の太陽電池モジュールに用いられる太陽電池素子10を、図1~図3に示す。太陽電池素子10は、主に光が入射する表主面である第1主面10aと、この第1主面10aの反対側に位置する裏主面である第2主面10bとを有する。
 太陽電池素子10は、半導体であるシリコンからなる基板1を備えている。基板1も第1主面1aと、この第1主面1aの反対側に位置する第2主面1bとを有する。さらに、基板1は、第1主面1aと第2主面1bとを接続している第1側面1cおよび第2側面1dを有する。ここで、第1側面1cの反対側に第2側面1dが位置しており、第1側面1cと第2側面1dとは対向している。
 図3に示すように、基板1は、一導電型(例えばp型)の半導体領域である第1半導体層2と、第1半導体層2における第1主面1a側に設けられた逆導電型(例えばn型)の半導体領域である第2半導体層3とを有する。なお、基板1は、第1半導体層2および第2半導体層3を有する半導体基板であれば、シリコン以外の他の材料を用いてもよい。
 以下、第1半導体層2にp型半導体を用いる例について説明する。第1半導体層2にp型半導体を用いる場合には、基板1に多結晶または単結晶のp型シリコン基板を用いることができる。また、基板1は、例えば250μm以下の厚みにすることができて、さらに150μm以下の薄い基板を用いることもできる。基板1の平面形状は限定されないが、本実施形態では基板1の平面形状を四角形状とし、太陽電池素子間の隙間を小さくしている。多結晶シリコン基板からなる第1半導体層2をp型にする場合には、第1半導体層2にはドーパントとしてボロン、ガリウム等の不純物を含有させる。
 第2半導体層3は第1半導体層2に積層されている。このため、第1半導体層2と第2半導体層3との界面にはpn接合部がある。第2半導体層3は、第1半導体層2に対して逆の導電型(本実施形態ではn型)であり、第1半導体層2における第1主面1a側に設けられている。第2半導体層3は、基板1の第1主面1a側にドーパントとして例えばリン等の不純物を拡散させることによって形成できる。
 図3に示すように、太陽電池素子10は、基板1の他に、第3半導体層4、反射防止層5、表面電極6、裏面電極7およびパッシベーション層9等を備えている。
 基板1の第1主面1a側には、照射された光の反射率を低減するための微細な凹凸構造(テクスチャ)が設けられていてもよい。テクスチャの凸部の高さは0.1~10μm程度であり、隣り合う凸部の頂点間の距離は0.1~20μm程度である。テクスチャは、例えば、凹部が球面状であってもよいし、凸部がピラミッド形状であってもよい。なお、上記の「凸部の高さ」とは、例えば図3の凹部の底面を通る直線を基準線とし、この基準線に垂直な方向において、この基準線から凸部の頂点までの距離のことである。
 反射防止層5は、太陽電池素子10の第1主面10aに照射された光の反射率を低減する機能を有する。反射防止層5は、例えば、酸化シリコン、酸化アルミニウムまたは窒化シリコン層等からなる。反射防止層5は、基板1に吸収されて発電に寄与し得る波長範囲の入射光に対して、低反射条件を実現できる範囲の屈折率および厚みを有するものを適宜採用すればよい。例えば、反射防止層5の屈折率は1.8~2.5程度とし、厚みは20~120nm程度とすることができる。
 第3半導体層4は、基板1の第2主面1b側に配置されており、第1半導体層2と同一の導電型(本実施形態ではp型)であればよい。第3半導体層4が含有するドーパントの濃度は、第1半導体層2が含有するドーパントの濃度よりも高い。つまり、第3半導体層4は、第1半導体層2において一導電型にするために高い濃度でドーパント元素が存在する。第3半導体層4は、基板1の第2主面1b側において内部電界を形成する。これにより、基板1の第2主面1bの表面近傍で、少数キャリアの再結合による光電変換効率の低下を生じにくくさせることができる。第3半導体層4は、例えば、基板1の第2主面1b側に、ボロンまたはアルミニウムなどのドーパント元素を拡散させることによって形成できる。第1半導体層2および第3半導体層4が含有するドーパント元素の濃度は、それぞれ5×1015~1×1017atoms/cm、1×1018~5×1021atoms/cm程度にすることができる。第3半導体層4は、後述する裏面電極7と基板1との接触部分に存在させるとよい。
 表面電極6は、基板1の第1主面1a側に設けられている。また、表面電極6は、図1に示すように、表面バスバー電極6aと、複数の線状の表面フィンガー電極6bとを有する。表面バスバー電極6aは、発電によって得られた電気を外部に取り出すための電極である。表面バスバー電極6aは、基板1の第1側面1cから第2側面1dの方向へ向かって延びるように、第1主面1aに設けられている。表面バスバー電極6aのその長手方向に直交する方向の長さ(以下、幅という)は、1.3~2.5mm程度である。表面バスバー電極6aの少なくとも一部は、表面フィンガー電極6bと交差して電気的に接続されている。
 表面フィンガー電極6bは、基板1から発電された電気を集めるための電極である。また、表面フィンガー電極6bは複数の線状であって、これらの幅は、それぞれ例えば50~200μm程度である。このように、表面フィンガー電極6bの幅は、表面バスバー電極6aの幅よりも小さい。また、表面フィンガー電極6bは、互いに1~3mm程度の間隔を空けて複数設けられている。表面電極6の厚みは、10~40μm程度である。
 このような表面電極6は、例えば、銀を主成分とする第1金属ペーストをスクリーン印刷等によって所望の形状に塗布した後、焼成することによって形成できる。なお、以下、「主成分」とは全体の成分に対して含有される比率が50%以上であることをいう。
 裏面電極7は、基板1の第2主面1b側に設けられている。また、裏面電極7は、裏面バスバー電極7aと、裏面フィンガー電極7bとを有する。裏面バスバー電極7aは、太陽電池素子10による発電によって得られた電気を外部に取り出すための電極である。裏面バスバー電極7aは、基板1の第1側面1cから第2側面1dの方向へ向かって延びるように、第2主面1bに設けられている。裏面バスバー電極7aの厚みは10~30μm程度であり、その幅は1.3~7mm程度である。裏面バスバー電極7aは主成分として銀を含んでいる。このような裏面バスバー電極7aは、例えば、銀を主成分とする金属ペーストをスクリーン印刷等によって所望の形状に塗布した後、焼成することによって形成できる。
 裏面フィンガー電極7bは、基板1の第2主面1bにおいて、基板1から発電された電気を集めるための電極であり、裏面バスバー電極7aと電気的に接続するように設けられている。裏面バスバー電極7aの少なくとも一部は、裏面フィンガー電極7bに電気的に接続している。裏面フィンガー電極7bの厚みは15~50μm程度である。裏面フィンガー電極7bの幅は、例えば100~500μm程度であり、互いに1~3mm程度の間隔を空けて複数設けられている。裏面フィンガー電極7bは表面電極6の表面フィンガー電極6bよりも幅を広くすることによって、裏面フィンガー電極7bの直列抵抗を下げて、太陽電池素子10の出力特性を向上させ得る。また、裏面フィンガー電極7bは、主成分としてアルミニウムを含んでいる。このような裏面フィンガー電極7bは、例えば、アルミニウムを主成分とする金属ペーストを所望の形状に塗布した後、金属ペーストを焼成することによって形成できる。
 以上のように、本実施形態の太陽電池素子10は、基板1の第1主面1aには、第1側面1cから第2側面1dの方向へ長い表面バスバー電極6aを配置している。また基板1の第2主面1bには、表面バスバー電極6aに対向して、第1側面1cから第2側面1dの方向へ長い裏面バスバー電極7aを配置している。
 また、表面バスバー電極6aおよび裏面バスバー電極7aの平面形状は、図1に示す帯状以外でもよく、空所(スリット)を備えた枠状部を有する梯子状または格子状等でもよいし、不連続部である例えば複数の島状部を有する形状でもよい。つまり、表面バスバー電極6aは、例えば図4(a)、(b)および(d)に示すように、枠状部を有してもよいし、例えば図4(c)に示すように、不連続な複数の島状部を有するものでもよい。なお、図4(c)に示すように、島状に設けられた表面バスバー電極6aの場合には、1列に並んだ複数の島状の電極を1本の長い表面バスバー電極6aとして見做すこととし、裏面バスバー電極7aにおいても同様である。また、互いに隣り合う島状部との間隔L1は後述する接続タブ21のハンダ溶着部(以下、ハンダ25という)の数と位置によって適宜決定するとよい。また、図4(d)に示すように、表面バスバー電極6aの一端部を幅広にする場合には、その幅広部の長さW2は後述するハンダ25の大きさによって適宜決定するとよい。
 また、太陽電池素子10の第1主面10a側は主に受光する側であるため、遮光による太陽電池素子10の特性低下をできるだけ減らす必要がある。このため、表面電極6の面積は、裏面電極7の面積よりも小さい。また、表面バスバー電極6aの幅は、裏面バスバー電極7aの幅よりも小さい方が好ましい。
 パッシベーション層9は、基板1の第2主面1bに形成され、少数キャリアの再結合を低減する機能を有する。パッシベーション層9は、例えば、酸化シリコン、酸化アルミニウムまたは窒化シリコン等からなる層、またはそれらを積層した層などから構成される。パッシベーション層9の好適な材料としては、例えばALD(Atomic Layer Deposition)法で形成した酸化アルミニウムが採用される。また、パッシベーション層9の厚みは10~200nm程度である。パッシベーション層9は、本実施形態では基板1の少なくとも一方主面である第2主面1bに配置されていればよいが、両面に配置されていてもよい。これにより、パッシベーション性能が向上する場合がある。また、基板1の側面にも、反射防止層5およびパッシベーション層9を配置すれば、太陽電池素子10の特性をさらに向上させ得る。
 また、上記実施形態においては、裏面フィンガー電極7bが線状電極である場合を示したが、基板1の第2主面1bのうち裏面バスバー電極7aが形成される領域の一部を除いた略全面に形成された電極であってもよい。その場合には、パッシベーション層9は形成しなくてもよい。また、パッシベーション層9を形成する場合に、PERC(Passivated Emitter and Rear Cell)構造を採用してもよい。
 <太陽電池素子の製造方法>
 次に、太陽電池素子10の製造方法の各工程について、詳細に説明する。
 基板1は、例えば、既存のチョクラルスキー(CZ)法または鋳造法などによって形成される。なお、以下では、基板1としてp型の多結晶シリコン基板を用いた例について説明する。
 まず、例えば鋳造法によって、多結晶シリコンのインゴットを作製する。次いで、そのインゴットを適当な形状・大きさのブロックに加工して、このブロックから例えば250μm以下の厚みにスライスして基板1を作製する。その後、基板1の切断面の機械的ダメージ層および汚染層を清浄にするために、基板1の表面をNaOH、KOH、フッ酸またはフッ硝酸などの水溶液でごく微量エッチングしてもよい。
 次に、基板1の第1主面1aにテクスチャを形成する。テクスチャの形成方法としては、NaOH等のアルカリ溶液もしくはフッ硝酸等の酸溶液を使用したウエットエッチング方法、またはRIE(Reactive Ion Etching)法等を使用したドライエッチング方法を用いることができる。
 次に、上記工程によって形成されたテクスチャを有する基板1の第1主面1aに対して、n型半導体領域である第2半導体層3を形成する工程を行なう。具体的には、テクスチャを有する基板1における第1主面1a側の表層にn型の第2半導体層3を形成する。
 このような第2半導体層3は、ペースト状にした五酸化リン(P)を基板1の表面に塗布して熱拡散させる塗布熱拡散法、または、ガス状にしたオキシ塩化リン(POCl)を拡散源とした気相熱拡散法などによって形成される。この第2半導体層3は0.1~2μm程度の深さ、40~200Ω/□程度のシート抵抗値を有するように形成される。例えば、気相熱拡散法を採用する場合には、POCl等からなる拡散ガスを有する雰囲気中で600~800℃程度の温度において、基板1を5~30分程度熱処理する。これにより、燐ガラスが基板1の表面に形成される。その後、アルゴンまたは窒素等の不活性ガス雰囲気中で800~900℃程度の温度において、基板1を10~40分間程度熱処理する。これにより、燐ガラスから基板1にリンが拡散して、基板1の第1主面1a側に第2半導体層3が形成される。
 次に、上記第2半導体層3の形成工程において、基板1の第2主面1b側にも第2半導体層3が形成された場合には、第2主面1b側に形成された第2半導体層3のみをエッチングして除去する。これにより、基板1の第2主面1b側にp型の導電型領域を露出させる。例えば、フッ硝酸溶液に基板1の第2主面1b側のみを浸して、第2主面1b側に形成された第2半導体層3を除去する。その後、第2半導体層3を形成する際に、基板1の第1主面1a側に付着した燐ガラスをエッチングして除去する。このように、基板1の第1主面1a側に燐ガラスを残存させて、第2主面1b側に形成された第2半導体層3をエッチング除去する。これにより、基板1の第1主面1a側の第2半導体層3が除去されないようにしたり、第2半導体層3がダメージを受けないようすることができる。このとき、基板1の側面に形成された第2半導体層3も除去してもよい。
 また、上記第2半導体層3の形成工程において、予め第2主面1b側に拡散マスクを形成して、気相熱拡散法等によって第2半導体層3を形成した後に拡散マスクを除去してもよい。このようなプロセスによれば、第2主面1b側に第2半導体層3は形成されないため、第2主面1b側の第2半導体層3を除去する工程が不要となる。
 以上により、基板1の第1主面1a側にn型半導体層である第2半導体層3が配置されて、表面にテクスチャが形成された、第1半導体層2を含む基板1を準備することができる。
 次に、第1半導体層2の第2主面1b上に、酸化アルミニウムからなるパッシベーション層9を形成する。パッシベーション層9の形成方法としては、例えば、ALD法、PECVD(Plasma Enhanced Chemical Vapor Deposition)法を用いることができる。このとき、第1半導体層2における第1主面1aと、基板1の側面とを含む全周囲にパッシベーション層9が形成されてもよい。
 ALD法によるパッシベーション層9の形成工程では、まず、成膜装置のチャンバー内に、上記第2半導体層3が形成された基板1が載置される。そして、基板1が100℃~250℃の温度で加熱された状態で、以下に示す(1)~(4)の工程を複数回繰り返して、酸化アルミニウムからなるパッシベーション層9を形成する。
 (1)アルミニウム原料の供給
 (2)アルミニウム原料の排気除去
 (3)酸化剤の供給
 (4)酸化剤の排気除去
 ここで、アルミニウム原料には、例えば、トリメチルアルミニウム(TMA)、トリエチルアルミニウム(TEA)等を用いることができる。また、酸化剤には、例えば、水、オゾンガス等を用いることができる。
 また、基板1の第2主面1bに形成された酸化アルミニウムの上に、さらに窒化シリコン、酸化シリコンなどからなる膜をPECVD法などによって形成してもよい。これにより、酸化アルミニウムが有する界面パッシベーション機能と、窒化シリコン、酸化シリコンなどが有する保護膜としての機能とを有するパッシベーション層9を形成することができる。
 次に、基板1における第1主面1a側に、第2半導体層3の上に窒化シリコン膜からなる反射防止層5を形成する。反射防止層5は、例えば、PECVD法またはスパッタリング法を用いて形成する。PECVD法を用いる場合には、予め基板1を成膜中の温度よりも高い温度で加熱しておく。その後、チャンバー内において、シラン(SiH)とアンモニア(NH)との混合ガスを窒素(N)で希釈し、反応圧力を50~200Paにしてグロー放電分解でプラズマ化させる。これにより、基板1の上に反射防止層5が形成される。このときの成膜温度は350~650℃程度とし、予め加熱する基板1の温度を成膜温度よりも50℃程度高くする。また、グロー放電に必要な高周波電源の周波数としては10~500kHzの周波数を使用する。
 また、上記のガス流量は、チャンバーの大きさ等によって適宜決定されるが、例えば150~6000ml/min(sccm)の範囲とすることが望ましい。また、シランの流量Aとアンモニアの流量Bとの流量比B/Aは0.5~15であればよい。
 次に、基板1の第2主面1b側に、一導電型の半導体不純物が高濃度に拡散された第3半導体層4を形成する。第3半導体層4の形成方法としては、例えば、三臭化ボロン(BBr)を拡散源とした熱拡散法を用いて、温度800~1100℃程度で形成する。第3半導体層4は、アルミニウム粉末および有機ビヒクル等からなるアルミニウムペーストを印刷法で塗布した後、温度600~850℃程度で熱処理(焼成)して、アルミニウムを基板1に拡散して形成してもよい。
 これらの方法を用いれば、印刷面だけに所望の拡散領域を形成できる。さらに、第2半導体層3の形成工程では、シリコン1の第2主面1b側に形成されたn型の逆導電型層を除去する工程を不要にできる。このため、上述のように、所望の拡散領域を形成した後、基板1の第1主面1aまたは第2主面1bの外周部のみに対して、レーザー照射等の方法によって、p型の半導体領域とn型の半導体領域とを電気的に分離できる。
 次に、表面電極6および裏面電極7を以下のようにして形成する。
 表面電極6は、例えば主成分として銀を含む金属粉末、有機ビヒクルおよびガラスフリットを含有する金属ペースト(以下、第1金属ペーストという)を用いて作製する。まず、この第1金属ペーストを基板1の第1主面1aに塗布する。その後、最高温度600~800℃で数十秒~数十分程度焼成することによって表面電極6を形成する。第1金属ペーストの塗布法としては、スクリーン印刷法などを用いることができる。この塗布後、所定の温度で第1金属ペースト中の溶剤を気化させて第1金属ペーストを乾燥させてもよい。なお、表面電極6は、スクリーン印刷を用いることで、表面バスバー電極6aおよび表面フィンガー電極6bを1つの工程で形成できる。
 裏面バスバー電極7aは、主成分として銀を含む金属粉末、有機ビヒクルおよびガラスフリット等を含有する金属ペースト(以下、第2金属ペーストという)を用いて作製される。第2金属ペーストの塗布法としては、例えばスクリーン印刷法などを用いることができる。第2金属ペーストの塗布後、第2金属ペーストは、上記と同様にして所定の温度で溶剤を気化させて乾燥させてもよい。第2金属ペーストが塗布された基板1を、焼成炉内にて最高温度が600~850℃の条件で数十秒~数十分間程度焼成する。これにより、裏面バスバー電極7aが基板1の第2主面1b側に形成される。
 裏面フィンガー電極7bは、主成分としてアルミニウムを含む金属粉末、有機ビヒクルおよびガラスフリットを含有する金属ペースト(以下、第3金属ペーストという)を用いて作製される。この第3金属ペーストを、予め塗布された第2金属ペーストの一部に接触するように基板1の第2主面1b上に塗布する。この塗布は、裏面バスバー電極7aが形成される部位の一部を除いて、基板1の第2主面1bのほぼ全面に行なってもよい。また、この塗布法としては、スクリーン印刷法などを用いることができる。この塗布後、第3金属ペーストは、上記と同様にして所定の温度で溶剤を気化させて乾燥させてもよい。第3金属ペーストが塗布された基板1を、焼成炉内にて最高温度が600~850℃の条件で数十秒~数十分間程度焼成する。これにより、裏面フィンガー電極7bが基板1の第2主面1b側に形成される。また、第3金属ペーストを用いて、第3半導体層4および裏面フィンガー電極7bの形成を同時に行なってもよい。
 基板1の第2主面1b側に形成したパッシベーション層9を残して、裏面フィンガー電極7bを形成するには、まず、第3金属ペーストをパッシベーション層9の上に直接、所定領域に塗布する。そして、基板1に対し、焼成炉内にて最高温度が600~800℃の熱処理を行なうファイヤースルー法を利用すればよい。このファイヤースルー法によって、塗布された第3金属ペーストの成分がパッシベーション層9を突き破るので、基板1の第2主面1b側に第3半導体層4が形成され、その上に裏面フィンガー電極7bが形成される。
 以上の工程によって、太陽電池素子10を作製することができる。
 なお、裏面バスバー電極7aを形成した後に、裏面フィンガー電極7bを形成してもよい。また、裏面バスバー電極7aは基板1に直接接触する必要はなく、裏面バスバー電極7aと基板1との間にパッシベーション層9が存在していても構わない。
 また、表面電極6、裏面バスバー電極7aおよび裏面フィンガー電極7bは、各々の電極となる金属ペーストを塗布した後、金属ペーストを同時に焼成して形成しても構わない。これにより、太陽電池素子10の生産性が向上するとともに、基板1にかかる熱履歴を低減して、太陽電池素子10の出力特性を向上させることができる。
 また、裏面フィンガー電極7bを、基板1の第2主面1bのうち裏面バスバー電極7aが形成される領域の一部を除いた略全面に形成して設けてもよい。この場合には、パッシベーション層9の一部にレーザー照射、エッチングなどの方法で開口部を設けてから電極を形成すればよい。または、パッシベーション層9の上に塗布した第3金属ペーストの所望領域にレーザーを照射して、部分的にパッシベーション層9を貫通した電極を形成すればよい。
 なお、本発明は上記形態に限定されるものではなく、多くの修正および変更を加えることができる。例えば、パッシベーション層9を形成する前に、基板1を洗浄してもよい。この洗浄工程としては、例えば、フッ酸処理、RCA洗浄(米国RCA社が開発した洗浄法であり、高温・高濃度の硫酸・過酸化水素水、希フッ酸(室温)、アンモニア水・過酸化水素水、または、塩酸・過酸化水素水などによる洗浄方法)およびこの洗浄後のフッ酸処理、またはSPM(Sulfuric Acid/Hydrogen Peroxide/Water Mixture)洗浄およびこの洗浄後のフッ酸処理等による洗浄方法を用いることができる。
 また、パッシベーション層9を形成した後に、水素を含んだガスを用いてアニール処理を行なうことで、さらに、基板1における少数キャリアの再結合速度を低下させることが可能である。
 また、太陽電池素子10は、例えば、第1主面10aと第2主面10bとの両面から光が入射可能な両面受光型の太陽電池素子を適用できる。
 また、半導体基板として、n型半導体領域を主体とする基板を用意して、その基板の一主面にp型半導体領域を形成したものを用いてもよい。
 <太陽電池モジュール>
 図5および図6に示すように、太陽電池モジュール20は、例えば、互いに電気的に接続されている複数の太陽電池素子10を備えていればよい。このような太陽電池モジュール20は、複数の太陽電池素子10が例えば直列または並列に接続されていて、太陽電池モジュール20から電気出力を取り出すことができる。
 太陽電池モジュール20は、例えば、透光性部材22、充填材(表側充填材23a,裏側充填材23b)、接続タブ21(第1接続タブ21a,第2接続タブ21b、第3接続タブ21c)、ハンダ25(第1ハンダ25a,第2ハンダ25b)、複数の太陽電池素子10および裏面保護部材24からなる積層体を備えている。
 ここで、透光性部材23は、太陽電池モジュール20の受光面を保護するための部材である。この透光性部材23は、例えばガラス基板等の透光性の平板状部材を用いることができる。
 表側充填材23aおよび裏側充填材23bは、いずれも例えばエチレン・酢酸ビニル共重合体(EVA)またはポリオレフィン系樹脂等の透明な充填材であればよい。
 裏面保護部材24は、太陽電池モジュール20の裏面を保護するための部材である。裏面保護部材24の材料には、例えば、ポリエチレンテレフタレート(PET)またはポリフッ化ビニル樹脂(PVF)等を用いる。なお、裏面保護部材24は単層構造でもよいし、積層構造であってもよく、その全体が白色または黒色等に着色されていてもよい。
 接続タブ21は、複数の太陽電池素子10を電気的に接続する部材(接続部材)である。太陽電池モジュール20を構成する複数の太陽電池素子10において、例えば一方向に隣り合う太陽電池素子10同士は、一方の太陽電池素子10の表面バスバー電極6aと他方の太陽電池素子10の裏面バスバー電極7aとが、ハンダ25を介して接続タブ21によって電気的に接続されている。表面バスバー電極6aと第1接続タブ21aとは第1ハンダ25aを介して接続されている。裏面バスバー電極7aと第2接続タブ21bとは第2ハンダ25bを介して接続されている。第1接続タブ21aは、その一端部が基板1の第1側面1c側に位置していて、表面バスバー電極6aに沿って表面バスバー電極6aの上に配置されている。第1ハンダ25aは、表面バスバー電極6aと第1接続タブ21aとの間に配置されて、表面バスバー電極6aと第1接続タブ21aとを接続している。第2接続タブ21bは、その一端部が基板1の第2側面1d側に位置していて、裏面バスバー電極7aに沿って裏面バスバー電極7aの上に配置されている。第2ハンダ25bは裏面バスバー電極7aと第2接続タブ21bとの間に配置されて、裏面バスバー電極7aと第2接続タブ21bとを接続している。
 図5に示すように、太陽電池モジュール20は、例えば、複数の太陽電池素子10が直列接続されている太陽電池ストリングS1と、これに隣り合う太陽電池ストリングS2とを有している。太陽電池ストリングS1の一端部と太陽電池ストリングS2の一端部とは、第1接続タブ21aおよび第2接続タブ21bとは別の形状の第3接続タブ21cを用いて、ハンダ25を介して電気的に接続されている。
 ここで、接続タブ21(第1接続タブ21a、第2接続タブ21bおよび第3接続タブ21c)には例えば銅箔を用いることができて、その表面にハンダが被覆されたものを用いることができる。接続タブ21の厚さは、例えば0.1~0.2mmでよい。接続タブ21の幅は例えば1~3mm程度でよい。
 なお、電気的に直列に接続されている複数の太陽電池素子10のうち、最初の太陽電池素子10の電極の一端と最後の太陽電池素子10の電極の一端とは、出力取出配線によって、それぞれ出力取出部としての端子ボックスに電気的に接続されている。また、太陽電池モジュール20は、上記積層体を周囲から保持する枠体26を備えていてもよい。この枠体26の材質としては、例えば、耐食性および強度を有するアルミニウム等を用いるとよい。
 図6~図8に示すように、太陽電池モジュール20は、基板1の第1側面1c側および第2側面1d側において、表面バスバー電極6aの長手方向の両端(第1先端6a1,第2先端6a2)が、第1ハンダ25aの長手方向の両端よりも外側に位置している。また、裏面バスバー電極7aの長手方向の両端(第1先端7a1,第2先端7a2)が、第2ハンダ25bの長手方向の両端よりも外側に位置している。さらに、基板1の第1側面1c側および第2側面1d側において、第1ハンダ25aが表面バスバー電極6aに接着(溶着)している第1接着面R1の長手方向の両端(第1先端R1a,第2先端R1b)が、第2ハンダ25bが裏面バスバー電極7aに接着(溶着)している第2接着面R2の長手方向の両端(第1先端R2a,第2先端R2b)よりも外側に位置している。
 図7に示すように、基板1の第1側面1c側では、第1接着面R1の第1先端R1aが、第2接着面R2の第1先端R2aよりも外側に位置している。さらに、図8に示すように、基板1の第2側面1d側では、第1接着面R1の第2先端R1bが、第2接着面R2の第2先端R2bよりも外側に位置している。つまり、図7に示すように、基板1の第1側面1cと第1接着面R1との最短距離(D2)が、第1側面1cと第2接着面R2との最短距離(D3)よりも短く、かつ、図8に示すように、第2側面1dと第1接着面R1との最短距離(D5)が、第2側面1dと第2接着面R2との最短距離(D6)よりも短い。また、図7に示すように、基板1の第1側面1cと表面バスバー電極6aとの最短距離(D2とD1との差)が、第1側面1cと第1接着面R1との最短距離(D2)よりも短く、かつ、図8に示すように、第2側面1dと表面バスバー電極6aとの最短距離(D5とD4との差)が、第2側面1dと第1接着面R1との最短距離(D5)よりも短い。
 なお、表面バスバー電極6aおよび裏面バスバー電極7a、並びに、第1接着面R1および第2接着面R2の「長手方向の両端(先端)」とは、平面透視した際に、シリコン1の側面に最も近い位置の部位をいうものとする。
 ハンダ付けの際に、加熱された金属からなる接続タブ21と半導体からなる基板1との熱膨張係数差によって、接続タブ21が基板1よりも収縮し、基板1の表面に残留応力が発生する。そして、一定以上の引張応力が発生した箇所を起点に、基板1にクラックが生じやすいものと考えられる。表面バスバー電極6a、裏面バスバー電極7aおよびハンダ25の、パターン(幅、大きさ)の違いから、特に、第1接着面R1の両端(第1先端R1aおよび第2先端R1b)では引張応力が大きくなる。このため、第1接着面R1を起点に基板1にクラックが発生しやすい。これは、表面電極6による遮光の影響を小さくするために、平面視した際に、表面バスバー電極6aの配置面積または幅は、裏面バスバー電極7aよりも小さい方が好ましいためである。
 そこで、本実施形態では、表面バスバー電極6aの両端(第1先端6a1および第2先端6a2)を、第1接着面R1の両端(第1先端R1aおよび第2先端R1b)よりも外側(基板1の第1側面1c側および第2側面1d側)に位置させている。これにより、本実施形態の太陽電池モジュールでは、表面バスバー電極6aの両端部には不要な引張応力がかかりにくい。このため、表面バスバー電極6aの両端におけるクラックの発生を低減できる。
 ここで、もしも裏面バスバー電極7a側において、第2接着面R2の一端でも第1接着面R1の一端よりも外側に位置していると、端部側の第1主面10aの引張応力が大きくなるためクラックが発生しやすくなる。また、表面バスバー電極6aの両端は第1ハンダ25aの両端よりも外側に位置しており、裏面バスバー電極7aの両端は第2ハンダ25bの両端よりも外側に位置していることで、クラックの発生しやすい第1主面10aの応力集中が緩和されて、クラックの発生を低減することができる。
 また、図4(b)に示すように、表面バスバー電極6aは、幅方向に空所(スリット)がある枠状部をするパターンとするとよい。そして、表面バスバー電極6aの端部をスリットがない領域にして、スリットがある部位とない部位とを設けるようにしてもよい。この場合には、図9(a)、(b)に示すように、第1接着面R1の長手方向の先端(第1先端R2a,第2先端R2b)部において、表面バスバー電極6aはスリットがない領域を設けることが好ましい。表面バスバー電極6aのスリットがある領域にハンダ25を形成すると、電極形成時および接続タブのハンダ付け時の熱応力の影響で残留応力が大きくなる。しかしながら、第1接着面R1の両端では表面バスバー電極6aにスリットがないので、表面バスバー電極6aに不要な引張応力がかかりにくい。このため、第1接着面R1の部位では基板1にクラックが発生しにくい。また、表面バスバー電極6aの両端部以外をスリットがある領域にすることによって、表面バスバー電極6aに使用される材料を低減できることから、生産性を高めることができる。
 さらに、表面バスバー電極6aを特にスクリーン印刷によって形成する場合には、図4(a)、(b)に示すように、表面バスバー電極6aはスリットを有する形状にするとよい。なぜなら、図1(a)に示すように、スリットを設けないパターンと比べて、スクリーンと太陽電池素子との間に適正なギャップを維持しやすいので、電極厚みを適正に保ちやすいからである。このため、電気的、機械的特性に優れた電極が形成できる。
 また、ハンダ25は接続タブ21の長手方向に連続して配置されてもよい。また、ハンダ25は、図4(c)に示すように、例えば複数の島状に分かれて配置されてもよい。これにより、ハンダ25の形状とサイズとを適切に設定しやすく、太陽電池モジュール20全体のタブ付けに起因する熱応力が低減できる。さらに、島状に分かれたバスバー電極6a、6bの間に、フィンガー電極6b、7bおよびBSF層4を配置することができる。これにより、太陽電池素子10の特性向上が期待できるのでよい。表面バスバー電極6aおよび裏面バスバー電極7aを、複数の島状に分けて形成すると、ハンダ25の領域を設定しやすく、さらに電極に使用される材料を低減できることから、生産性を高めることができる。
 また、図9(a)に示すように、第1接着面R1および第2接着面R2の両端は、平面視で直線状ではなく、円弧状、波線状などの曲線状であるとよい。これにより、直線状であるときと比べて接着面の両端間が長くなって、第1接着面R1および第2接着面R2の両端に発生するタブ付け時の応力が低減されるのでよい。
 また、表面バスバー電極6aは、図4(d)に示すように、両端部において、他の領域よりも幅が大きければ、第1接着面R1または第2接着面R2に発生するタブ付け時の応力が低減されるのでよい。
 タブ付けに用いるハンダが環境を考慮した非鉛ハンダである場合には、ハンダ付け温度が有鉛ハンダと比べてタブ付け時の温度が高いので、クラックの発生が起こりやすい場合がある。この場合でも、本実施形態の構造を採用することによって、クラックの発生を低減できる。
 <太陽電池モジュールの製造方法>
 図5および図6を用いて、具体的な太陽電池モジュール20の製造方法について詳述する。まず、複数の太陽電池素子10を直並列に配置して、接続タブ21によって隣り合った太陽電池素子10同士を電気的に接続する。接続タブ21による太陽電池素子10同士の接続方法としては、ハンダごて、ホットエアー、レーザーまたはパルスヒート等の方法を用いることができる。このような方法を用いて、表面バスバー電極6aおよび裏面バスバー電極7bのそれぞれに接続タブ21がハンダ付けされる。この際、接続タブ21を加熱する位置を調整することによって、表面バスバー電極6aと第1接続タブ21aとが第1ハンダ25aで接続されている位置を調整できる。同様にして、裏面バスバー電極6bと第2接続タブ21bとが第2ハンダ25bで接続されている位置も調整できる。
 次に、透光性部材22上に表側充填材23aを置き、その上に接続タブ21および出力取出配線を接続した複数の太陽電池素子10を置く。さらに、複数の太陽電池素子10の上に裏側充填材23b、裏面保護部材24を順次積層する。その後、出力取出配線を裏面側の各部材に設けられたスリット(不図示)から裏面保護部材24の外部に導出して積層体を得る。そして、この積層体をラミネーターにセットする。ラミネーターにおいて、積層体を減圧下にて加圧しながら、80~200℃程度で、例えば15~60分間加熱する。これにより、積層体が一体化した太陽電池モジュール20を得ることができる。
 次に、端子ボックス(不図示)を取り付ける。具体的には、出力取出配線の導出された裏面保護部材24上に、端子ボックスをシリコーン系樹脂等の接着剤を用いて取り付ける。そして、プラス側およびマイナス側の出力取出配線を端子ボックスのターミナル(不図示)にハンダ付け等で固定する。その後、端子ボックスに蓋を取り付ける。
 最後に、枠体26を取り付けて、太陽電池モジュール20を完成させる。具体的には、太陽電池モジュール20の外周部にアルミニウム等で作製された枠体26を取り付ける。枠体26は、例えば、その角部をビスなどで固定することによって、取り付けることができる。このようにして、太陽電池モジュール20が完成する。
 以下に、実施例について説明する。太陽電池素子を48個接続させた太陽電池モジュールの表面バスバー電極6a、裏面バスバー電極7a、第1接着面R1および第2接着面R2の位置を変更して、表1に示す条件1~10の太陽電池モジュールをそれぞれ5枚製造した。また、表面バスバー電極6aおよび裏面バスバー電極7aの電極パターンは、図1および図2に示す帯状パターン、図4(a)~(d)に示す各パターンとした。なお、図4(a)のパターンの場合には、スリットのサイズを1mm×0.2mmとした。また、図4(b)および図4(d)のパターンではスリットがない端部の長さを8mmとした。また、図4(c)のパターンの場合は、隣接する島状部同士の間隔は8mmとした。
 まず、p型の第1半導体層2を有した半導体基板1として、平面視して正方形の一辺が約156mm、厚さが約200μmの多結晶の基板1を用意した。これらの基板1をNaOH水溶液でエッチングして表面のダメージ層を除去し、その後、洗浄を行なった。このように用意した基板1に対して、以下の処理を行なった。
 基板1の第1主面1a側にRIE法を用いてテクスチャを形成した。
 次に、基板1に、POClを拡散源とした気相熱拡散法によって、リンを拡散させて、シート抵抗が90Ω/□程度となるn型の第2半導体領域3を形成した。なお、基板1の側面および第2主面1b側に形成された第2半導体層3は、フッ硝酸溶液で除去して、その後、残留したガラスをフッ酸溶液で除去した。
 次に、基板1の全面に、ALD法を用いてパッシベーション層9として酸化アルミニウム層を形成した。その後、基板1の第1主面1a側のパッシベーション層9の上に、プラズマCVD法によって窒化シリコン膜からなる反射防止層5を形成した。
 次に、基板1の第1主面1a側には、銀ペーストを表面電極6のパターンに塗布し、第2主面1b側には銀ペーストを裏面バスバー電極7aのパターンに塗布した。その後、基板1の第2主面1b側に、アルミニウムペーストを裏面フィンガー電極7bのパターンに塗布した。そして、これらのペーストを焼成することによって、第3半導体層4、表面電極6および裏面電極7を形成して太陽電池素子10を作製した。
 次に、ハンダを用いて接続タブ21を表面バスバー電極6aと裏面バスバー電極7aとのそれぞれに溶着した。接続タブ21は、厚さ200μmの銅箔を溶融ハンダ溜りに浸して、ハンダ層を20μm厚で形成した。そして、太陽電池素子10の表面バスバー電極6aおよび裏面バスバー電極7aの上へそれぞれ接続タブ21を配置した。
 次に、接続タブ21をバスバー電極6a,7aに押し付けた状態で、400~500℃程度の熱風を1、2秒程度吹き付けた。その後、この熱風の吹き付けを止めて、太陽電池素子10を室温まで冷却させて、接続タブ21をバスバー電極6a,7aに固着させた。このとき、条件1~10に示すように、基板1の第1主面1aおよび第2主面1bにおける第1接着面R1および第2接着面R2の位置を変更した。
 そして、接続タブ21を設けた太陽電池素子10を室温まで冷却した。その後、基板1の第2主面1b側に蛍光探傷液を塗布して、第1主面1a側からブラックライトの光を当てて、基板1のクラックの発生状況を目視で確認した。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 ここで、表1のD1は、図7に示すように、基板1の第1側面1cにおいて、第1ハンダ25aの先端位置E1から表面バスバー電極6aの先端位置E3までの距離である。表1のD2は、第1ハンダ25aの先端位置E1から基板1の第1側面1cまでの距離である。表1のD3は、第2ハンダの先端位置E2から基板1の第1側面1cまでの距離である。表1のD4は、図8に示すように、基板1の第2側面1dにおいて、第1ハンダ25aの先端位置E4から表面バスバー電極6aの先端位置E6までの距離である。表1のD5は、第1ハンダ25aの先端位置E4から基板1の第2側面1dまでの距離である。表1のD6は、第2ハンダの先端位置E5から基板1の第2側面1dまでの距離である。
 また、表1のW1は、例えば図4(a)~(d)に示すように、表面バスバー電極6aにおいて、第1接続タブ21aが第1ハンダ25aを介して接着する端部以外の部位の幅である。表1のW2は、例えば図4(d)に示すように、表面バスバー電極6aにおいて、第1接続タブ21aが第1ハンダ25aを介して接着する端部の幅である。表1のW3は接続タブ21の幅である。
 表1において、条件4、5、9および10が本発明の実施例に係る太陽電池モジュールを示し、条件1~3、6~8が比較例に係る太陽電池モジュールを示す。
 表1の各条件において、太陽電池モジュールを構成する太陽電池素子にクラックの発生が全く認められなかった場合を◎とした。一方、1つでも太陽電池素子のクラックが認められた太陽電池モジュールが5%未満の割合を○とした。また、1つでも太陽電池素子のクラックが認められた太陽電池モジュールが5%以上10%未満の割合を△とした。また、1つでも太陽電池素子のクラックが認められた太陽電池モジュールが10%以上あれば×と判定した。
 表1からわかるように、条件4ではクラックの発生は5%未満であり、条件5、9、10の太陽電池モジュールでは、クラックの発生はなかった。また、条件4において、表面バスバー電極6aの電極パターンが図4(d)、図4(b)、図4(a)の順番でクラックの発生が低減できることがわかった。
 以上のように、条件4、5、9、10では、条件1~3、6~8と比べてクラックが低減したことを確認できた。
1   :基板(半導体基板)
 1a :第1主面(表主面)
 1b :第2主面(裏主面)
 1c :第1側面
 1d :第2側面
2   :第1半導体層(p型半導体層)
3   :第2半導体層(n型半導体層)
4   :第3半導体層(BSF層)
5   :反射防止層
6   :表面電極
 6a :表面バスバー電極
 6b :表面フィンガー電極
7   :裏面電極
 7a :裏面バスバー電極
 7b :裏面フィンガー電極
9   :パッシベーション層
 9a :貫通部
10  :太陽電池素子
 10a:第1主面
 10b:第2主面
20  :太陽電池モジュール
21  :接続タブ
 21a:第1接続タブ
 21b:第2接続タブ
22  :透光性部材
23  :充填材
 23a:表側充填材
 23b:裏側充填材
24  :裏面保護部材
25  :ハンダ
 25a:第1ハンダ
 25b:第2ハンダ
S1  :第1ストリング
S2  :第2ストリング
 

Claims (6)

  1.  第1側面と、該第1側面とは反対側に位置する第2側面とを有する半導体基板の表主面に、前記第1側面から前記第2側面の方向へ長い表面バスバー電極を配置して、前記半導体基板の裏主面に、前記表面バスバー電極に対向して、前記第1側面から前記第2側面の方向へ長い裏面バスバー電極を配置した太陽電池素子と、
    前記表面バスバー電極に沿って前記表面バスバー電極の上に配置され、前記半導体基板の前記第1側面側に一端部が配置される第1接続タブと、
    前記表面バスバー電極と前記第1接続タブとの間に配置され、前記表面バスバー電極と前記第1接続タブとを接続する第1ハンダと、
    前記裏面バスバー電極に沿って前記裏面バスバー電極の上に配置され、前記半導体基板の前記第2側面側に一端部が配置される第2接続タブと、
    前記裏面バスバー電極と前記第2接続タブとの間に配置され、前記裏面バスバー電極と前記第2接続タブとを接続する第2ハンダと、を備えているとともに、
    前記第1側面と前記第1ハンダが前記表面バスバー電極に接着している第1接着面との最短距離が、前記第1側面と前記第2ハンダが前記裏面バスバー電極に接着している第2接着面との最短距離よりも短く、かつ、前記第2側面と前記第1接着面との最短距離が、前記第2側面と前記第2接着面との最短距離よりも短い、太陽電池モジュール。
  2.  前記第1側面と前記表面バスバー電極との最短距離が、前記第1側面と前記第1接着面との最短距離よりも短く、かつ、前記第2側面と前記表面バスバー電極との最短距離が、前記第2側面と前記第1接着面との最短距離よりも短い、請求項1に記載の太陽電池モジュール。
  3.  前記表面バスバー電極は枠状部を有する、請求項1または2に記載の太陽電池モジュール。
  4.  前記表面バスバー電極は、その長手方向の少なくとも一端部の幅が他の部位よりも大きい、請求項1乃至3のいずれかに記載の太陽電池モジュール。
  5.  前記表面バスバー電極は不連続部を有する、請求項1乃至4のいずれかに記載の太陽電池モジュール。
  6.  前記第1ハンダおよび前記第2ハンダは、鉛を実質的に含有していない非鉛系ハンダである、請求項1乃至5のいずれかに記載の太陽電池モジュール。
     
PCT/JP2015/080559 2014-10-29 2015-10-29 太陽電池モジュール WO2016068237A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016556623A JPWO2016068237A1 (ja) 2014-10-29 2015-10-29 太陽電池モジュール
US15/499,667 US20170236964A1 (en) 2014-10-29 2017-04-27 Solar cell module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014220529 2014-10-29
JP2014-220529 2014-10-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/499,667 Continuation US20170236964A1 (en) 2014-10-29 2017-04-27 Solar cell module

Publications (1)

Publication Number Publication Date
WO2016068237A1 true WO2016068237A1 (ja) 2016-05-06

Family

ID=55857572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080559 WO2016068237A1 (ja) 2014-10-29 2015-10-29 太陽電池モジュール

Country Status (3)

Country Link
US (1) US20170236964A1 (ja)
JP (1) JPWO2016068237A1 (ja)
WO (1) WO2016068237A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018079648A1 (ja) * 2016-10-26 2018-05-03 京セラ株式会社 太陽電池素子
CN109891600A (zh) * 2016-08-04 2019-06-14 荷兰应用自然科学研究组织 Tno 钝化发射极和后接触太阳能电池
JP2020509602A (ja) * 2017-03-03 2020-03-26 広東愛旭科技股▲フン▼有限公司 P型perc両面太陽電池、並びにそのモジュール、システムおよび製造方法
JP2020509600A (ja) * 2017-03-03 2020-03-26 広東愛旭科技股▲フン▼有限公司 P型perc両面太陽電池及びそのモジュール、システムと製造方法
JP2020509601A (ja) * 2017-03-03 2020-03-26 広東愛旭科技股▲フン▼有限公司 P型perc両面太陽電池及びそのモジュール、システムと製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105609584B (zh) * 2014-11-19 2023-10-24 苏州易益新能源科技有限公司 一种太阳能电池组件生产方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60239067A (ja) * 1984-05-11 1985-11-27 Hitachi Ltd 太陽電池素子
JP2003224289A (ja) * 2002-01-28 2003-08-08 Sharp Corp 太陽電池、太陽電池の接続方法、及び太陽電池モジュール
JP2006270043A (ja) * 2005-02-22 2006-10-05 Kyocera Corp 太陽電池モジュール
WO2007013625A1 (ja) * 2005-07-28 2007-02-01 Kyocera Corporation 太陽電池モジュール
WO2009019929A1 (ja) * 2007-08-09 2009-02-12 Mitsubishi Electric Corporation 太陽電池パネル
WO2013039158A1 (ja) * 2011-09-13 2013-03-21 京セラ株式会社 太陽電池モジュール
JP2014036069A (ja) * 2012-08-08 2014-02-24 Shin Etsu Chem Co Ltd 太陽電池モジュール及びその製造方法
JP2014060311A (ja) * 2012-09-19 2014-04-03 Sharp Corp 太陽電池

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2012362A1 (en) * 2006-04-14 2009-01-07 Sharp Kabushiki Kaisha Solar cell, solar cell string and solar cell module
JP5147672B2 (ja) * 2008-01-31 2013-02-20 三洋電機株式会社 太陽電池モジュール及び太陽電池モジュールの製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60239067A (ja) * 1984-05-11 1985-11-27 Hitachi Ltd 太陽電池素子
JP2003224289A (ja) * 2002-01-28 2003-08-08 Sharp Corp 太陽電池、太陽電池の接続方法、及び太陽電池モジュール
JP2006270043A (ja) * 2005-02-22 2006-10-05 Kyocera Corp 太陽電池モジュール
WO2007013625A1 (ja) * 2005-07-28 2007-02-01 Kyocera Corporation 太陽電池モジュール
WO2009019929A1 (ja) * 2007-08-09 2009-02-12 Mitsubishi Electric Corporation 太陽電池パネル
WO2013039158A1 (ja) * 2011-09-13 2013-03-21 京セラ株式会社 太陽電池モジュール
JP2014036069A (ja) * 2012-08-08 2014-02-24 Shin Etsu Chem Co Ltd 太陽電池モジュール及びその製造方法
JP2014060311A (ja) * 2012-09-19 2014-04-03 Sharp Corp 太陽電池

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109891600A (zh) * 2016-08-04 2019-06-14 荷兰应用自然科学研究组织 Tno 钝化发射极和后接触太阳能电池
TWI736658B (zh) * 2016-08-04 2021-08-21 荷蘭史迪克汀艾能吉翁德卓克中心 鈍化射極以及背接觸太陽能電池
CN109891600B (zh) * 2016-08-04 2023-03-31 荷兰应用自然科学研究组织 Tno 钝化发射极和后接触太阳能电池
WO2018079648A1 (ja) * 2016-10-26 2018-05-03 京セラ株式会社 太陽電池素子
JP6353624B1 (ja) * 2016-10-26 2018-07-04 京セラ株式会社 太陽電池素子
JP2020509602A (ja) * 2017-03-03 2020-03-26 広東愛旭科技股▲フン▼有限公司 P型perc両面太陽電池、並びにそのモジュール、システムおよび製造方法
JP2020509600A (ja) * 2017-03-03 2020-03-26 広東愛旭科技股▲フン▼有限公司 P型perc両面太陽電池及びそのモジュール、システムと製造方法
JP2020509601A (ja) * 2017-03-03 2020-03-26 広東愛旭科技股▲フン▼有限公司 P型perc両面太陽電池及びそのモジュール、システムと製造方法
JP7023976B2 (ja) 2017-03-03 2022-02-22 広東愛旭科技有限公司 P型perc両面太陽電池の製造方法
JP7023975B2 (ja) 2017-03-03 2022-02-22 広東愛旭科技有限公司 P型perc両面太陽電池及びそのモジュール、システムと製造方法
JP7023974B2 (ja) 2017-03-03 2022-02-22 広東愛旭科技有限公司 P型perc両面太陽電池及びそのモジュール、システムと製造方法

Also Published As

Publication number Publication date
JPWO2016068237A1 (ja) 2017-08-03
US20170236964A1 (en) 2017-08-17

Similar Documents

Publication Publication Date Title
JP5289625B1 (ja) 太陽電池モジュール
JP6285545B2 (ja) 太陽電池素子および太陽電池モジュール
US8569100B2 (en) Solar cell and manufacturing method thereof
WO2016068237A1 (ja) 太陽電池モジュール
JP2008034609A (ja) 太陽電池素子及びこれを用いた太陽電池モジュール、並びに、これらの製造方法
CN104956495A (zh) 太阳能电池单元以及其制造方法
JP6495649B2 (ja) 太陽電池素子および太陽電池モジュール
WO2016047564A1 (ja) 太陽電池素子
US20200176623A1 (en) Solar cell element and solar cell module
JP2016122749A (ja) 太陽電池素子および太陽電池モジュール
WO2011074280A1 (ja) 光起電力装置およびその製造方法
JP2014011246A (ja) 太陽電池素子および太陽電池モジュール
JP2015138959A (ja) 光起電力装置および光起電力装置の製造方法
JP5323827B2 (ja) 光起電力装置およびその製造方法
JP6555984B2 (ja) 太陽電池素子およびその製造方法
JP2016139762A (ja) 太陽電池素子の製造方法
US9362425B2 (en) Solar cell device and method for manufacturing the same
US10651322B2 (en) Solar cell element and solar cell module
WO2018173125A1 (ja) 太陽電池セルおよび太陽電池モジュール
JP6430842B2 (ja) 太陽電池素子の製造方法および太陽電池モジュールの製造方法
JP5452755B2 (ja) 光起電力装置の製造方法
US10700223B2 (en) High photoelectric conversion efficiency solar battery cell and method for manufacturing high photoelectric conversion solar battery cell
JP2015050212A (ja) 太陽電池素子および太陽電池モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15855400

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016556623

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15855400

Country of ref document: EP

Kind code of ref document: A1