CN109891600B - 钝化发射极和后接触太阳能电池 - Google Patents

钝化发射极和后接触太阳能电池 Download PDF

Info

Publication number
CN109891600B
CN109891600B CN201780048727.9A CN201780048727A CN109891600B CN 109891600 B CN109891600 B CN 109891600B CN 201780048727 A CN201780048727 A CN 201780048727A CN 109891600 B CN109891600 B CN 109891600B
Authority
CN
China
Prior art keywords
layer
solar cell
silicon
silicon substrate
contact structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201780048727.9A
Other languages
English (en)
Other versions
CN109891600A (zh
Inventor
约翰·安克
艾弗特·尤金·本德
兰伯特·约翰·吉林斯
马切伊·克日什托夫·斯杜德林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Netherlands Organization For Applied Scientific Research
Original Assignee
Netherlands Organization For Applied Scientific Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Netherlands Organization For Applied Scientific Research filed Critical Netherlands Organization For Applied Scientific Research
Publication of CN109891600A publication Critical patent/CN109891600A/zh
Application granted granted Critical
Publication of CN109891600B publication Critical patent/CN109891600B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/023Alloys based on aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/16Conductive material dispersed in non-conductive inorganic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • H01L31/02245Electrode arrangements specially adapted for back-contact solar cells for metallisation wrap-through [MWT] type solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0684Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells double emitter cells, e.g. bifacial solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

太阳能电池和制造太阳能电池的方法。该太阳能电池具有硅基板(2)和设置在硅基板(2)的基板侧部(2a)上的层(4)。太阳能电池还具有接触结构(6),该接触结构(6)从太阳能电池(1)的电池侧部(1a)穿过层(4)延伸至硅基板(2)。层(4)由多晶硅层(8)和隧道氧化层(10)组成,其中,隧道氧化层(10)插入在多晶硅层(8)与硅基板(2)之间。

Description

钝化发射极和后接触太阳能电池
技术领域
本发明涉及太阳能电池,具体地涉及钝化发射极和后接触太阳能电池(PERC)。在另一方面,本发明涉及制造太阳能电池的方法,具体地涉及制造PERC太阳能电池的方法。
背景技术
国际专利申请WO2012/003038公开了制造太阳能电池的方法,其中,该方法包括在基板的表面上提供氧化层,并且以接近或超过900摄氏度的温度在干燥大气中加热该氧化层,以将该氧化层转换成太阳能电池的隧道电介质层。
中国专利公开CN 105185851A公开了背钝化太阳能电池及其制备方法。该方法包括以下步骤:(1)将P-型硅晶片进行纹理化、扩散和蚀刻;(2)将形成N型发射极的P-型硅晶片氧化,并且分别在P-型硅晶片的前表面和后表面上形成二氧化硅层;(3)通过等离子体增强的化学气相沉积(PECVD)在后表面上的二氧化硅的表面上沉积二氧化硅层,并且然后沉积氮化硅以形成背钝化层;(4)通过PECVD在前表面上的二氧化硅层的表面上沉积氮化硅以形成钝化膜;以及(5)将形成有钝化膜的P-型硅晶片的后表面进行开槽和烧结,以形成局部的铝背表面区域,并且然后印刷该背表面区域、背电极和正电极。
国际专利公开WO 2010/123974公开了具有不同组成的太阳能电池,该太阳能电池包括中央基板、导电层、抗反射层、钝化层和/或电极。多功能层提供钝化、透明度、用于竖直载流子流动的足够的电导率、结点和/或不同程度的抗反射率的组合功能。还公开了包括用于层形成和/或转换的单侧CVD沉积过程和热处理的改进的制造方法。
中国实用新型公开CN 203760486U公开了P型晶体硅电池,其中,P型晶体硅层的背光侧依次设置有隧道钝化层、P+型晶体硅层和背电极。在P型晶体硅层的背光侧处形成PP+型背电场结构。在该背电场结构中,由于隧道钝化层可避免背电极与P型晶体硅层的直接欧姆接触,并且由于该背电场结构可保证P型晶体结晶层的背光侧的表面钝化效果,使得可降低电流载流子的复合速率。
发明内容
本发明旨在提供改进的太阳能电池,具体为表现出改进的钝化和降低的复合速率的PERC太阳能电池。
根据本发明,提供了一种根据前文中限定的类型的太阳能电池,该太阳能电池包括硅基板和设置在硅基板的基板侧部上的层,并且还包括从太阳能电池的电池侧部穿过所述层延伸至硅基板的接触结构,其中,所述层包括多晶硅层和插入在多晶硅层与硅基板之间的隧道氧化层。
本发明的太阳能电池以及具体地设置在其如上所述的硅基板的基板侧部上的所述层表现出改进的钝化并产生降低的复合电流密度,从而增大了太阳能电池的效率。隧道氧化层和多晶硅层是“烧制稳定的”,意味着较高的退火温度可用于制造太阳能电池而不会降低表面钝化。较高的退火温度还将能够增厚铝掺杂层。较厚的铝掺杂层导致接触的较低的复合电流J0
附图说明
下面将参照附图更详细地讨论本发明,在附图中:
图1示出了根据本发明的实施方式的太阳能电池的剖视图;
图2示出了根据本发明的实施方式的全侧接触结构的剖视图;以及;
图3示出根据本发明实施方式的具有边界元件的接触结构的剖视图。
具体实施方式
电流钝化发射极和后接触太阳能电池(PERC)通常包括硅基板,其中,该硅基板具有氧化铝(Al2O3)或二氧化硅(例如,SiOx)的PERC钝化层,该PERC钝化层覆盖有包括例如氮化硅(SiNx)的层。这样的现有技术的PERC太阳能电池通常表现出约10-15fA/cm2的复合前因子“J0”。然而,当这样的PERC钝化层受到进一步的退火或加热步骤时,复合前因子可增加至15-40fA/cm2
为了改进PERC钝化层以及具体地进一步降低太阳能电池的复合速率,需要表现出改进的烧制稳定性的PERC钝化层。
图1示出了根据本发明的实施方式的太阳能电池1的剖视图。在示出的实施方式中,太阳能电池1包括硅基板2和(电介质)层4,其中,(电介质)层4设置在硅基板2的基板侧部2a上。在通常的实施方式中,硅基板包括发射极层3a和基底层3b。在另一实施方式中,硅基板2可以是p-型基板。
太阳能电池1还设置有接触结构6,该接触结构6从太阳能电池1的电池侧部1a穿过(电介质)层4延伸至硅基板2。在不失一般性的情况下,在实施方式中,电池侧部1a可设想为太阳能电池1的后电池侧部1a或背电池侧部1a,并且因此太阳能电池1然后包括前电池侧部1b。
根据本发明,(电介质)层4包括多晶硅层8和隧道氧化层10,该隧道氧化层10插入在多晶硅层8与硅基板2之间。
在本发明的一个具体实施方式中,多晶硅层8是本征层8,该本征层8应解释为不是有意掺杂的层,并且因而认为是“未掺杂的”(尽管可存在微量的掺杂物)。
本发明的(电介质)层4提供改进的烧制稳定性,因为与Al2O3或Al2O3-SiNx相比较其允许更高的制造温度。
在实施方式中,多晶硅层8是本征多晶硅层,其可称为“i-poly”层。本征多晶硅层还具有优良的钝化性能。在另一实施方式中,多晶硅层8具有在5nm-300nm之间的厚度。在试验结果中看到,对于该范围可获得改进的性能。应注意,当该层具有比1017原子/cm3少的净(p-型或n-型)掺杂物时,多晶硅层8可认为是本征的。
特别地,当掺杂很轻(例如比1017原子/cm3少)时,本发明实施方式的有益的特征仍然存在。应注意,根据存在的掺杂物的数量,层4则可严格地不再分类为电介质层4。据发现,如果多晶硅层8是本征的或仅稍微掺杂,则其不用作为导体,既不用于漏电流也不用于横向运输。隧道氧化层10和多晶硅层8的组合同时表现出非常优良的表面钝化。
在更进一步的实施方式中,多晶硅层8是p-掺杂的硅层。如果例如多晶硅层8具有通常超过>5*1018cm-3的平均p+掺杂水平,则多晶硅层8可朝向接触结构6横向地传导载流子。因此,基板2中可旋转较低的掺杂水平。这具有积极的旁作用,因为然后由硼-氧化合物引起的光感应劣化减少。该实施方式的缺点是如果p+掺杂物是原位实现的(在LPCVD中),则沉积时间比用于多晶硅层8的本征变型长,或者在多晶硅层8沉积之后必须实现额外的扩散步骤(BBr3或Br离子注入)。
据发现,在试验期间(参见上文,对于在5nm与300nm之间的厚度的多晶硅层8),在使用热电偶对样品测量的710℃和750℃摄氏度的峰值温度的烧制步骤(退火步骤)之后,根据本发明实施方式的具有例如本征多晶硅层的半成品(即,非金属化的太阳能电池)1的隐含的开路电压Voc分别是730mV和715mV。另一方面,具有仅包括Al2O3的电介质层的现有技术的PERC非金属化的太阳能电池1表现出在655mV至710mV之间的隐含的开路电压Voc。另外,具有仅包括Al2O和SiNy:H的电介质层的现有技术的PERC的太阳能电池表现出分别为710mV和660mV的隐含的开路电压Voc。因此,与其它现有技术的PERC太阳能电池相比,本发明实施方式的非金属化的太阳能电池1示出了在实际的试验中随着温度的增加而显著地更高的隐含的开源电压Voc和较少的劣化。
如前所述,多晶硅层8可以是本征多晶层。这样的层8可从作为前体提供在隧道氧化层10上的非晶硅层开始获得,在其之后实施温度循环(退火)以提供多晶硅层8。可替代地,使用例如LPCVD(低压力化学气相沉积)过程直接获得多晶硅层8。
在实施方式中,隧道氧化层10具有在0.5nm-2.5nm之间的厚度并且可在进一步的实施方式中用作热氧化物或湿化学氧化物。
根据另一实施方式,本发明的层4包括设置在多晶硅层8上的提供氢的覆盖层12,该覆盖层12为例如隧道氧化层10提供优良的钝化。在示例性实施方式中,覆盖层12可包括氧化铝(Al2O3)或氮化硅(SiNy)或其任何组合。在另一实施方式中,覆盖层12具有约4nm-200nm的厚度。
在实施方式中,太阳能电池1的接触结构6可以是基于铝的接触结构6,以对硅基板2提供优良的电气电导率和欧姆接触,但也用于降低成本并且允许在制造期间的方便的处理步骤。在有益的实施方式中,如图1中所示,接触结构6可包括与硅基板2相互作用的铝硅合金层6b和p+掺杂硅层7,从而在(基于铝的)接触结构6与硅基板2之间提供优良的电气接触。在更进一步的实施方式中,基于铝的接触结构6可包括硼和/或硅,使得例如改进的p+掺杂硅层7作为背表面区域(BSF)设置在p-型基板2上或作为n-型基板2上的发射极,以用于降低铝硅合金层6b与硅基板2之间的复合。应注意,通过合金铝浆料和其中的硅获得的基于铝的接触结构6已可提供p+掺杂硅层7。附加的硼和/或硅可改进合金的物理和/或p+掺杂物的钝化质量。
如图1中所示,接触结构6不需要覆盖整个电池侧部1a(例如,太阳能电池1的背电池侧部1a),并且可因此有利地应用在双面太阳能电池应用中。另一方面,图2示出了接触结构6完全地覆盖电池侧部1a(例如,太阳能电池1的背电池侧部1a)的实施方式的剖视图。应注意,为了清楚的目的,图2中未明确地绘制硅基板2的发射极层和基底层。
图3描绘了根据本发明实施方式的具有边界元件9的接触结构6的剖视图。在该实施方式中,也存在如上所述的参照图1和图2实施方式的层4,该层4包括隧道氧化层10,该隧道氧化层10设置在基板侧部2a上并且插入在硅基板2与多晶硅层8(例如,本征多晶硅层)之间。可选地,多晶硅层8可再次覆盖有覆盖层12(例如Al2O3、SiNx)。在图3中示出的实施方式中,太阳能电池1还包括边界元件9,该边界元件9沿着接触结构6的边缘布置。使用这样的边界元件9提供穿过层4的相对小的孔或开口,以用于在硅基板2中生成例如p+掺杂硅层7和铝硅合金层6b。
边界元件9也防止例如基于铝的接触结构6与层4的接触,从而避免所述层4的钝化性能的劣化,并且允许表面复合的进一步减少。这在例如基于铝的浆料用于使用具有蚀刻剂颗粒的“烧穿”浆料来制造基于铝的接触结构6的情况下特别重要。
在实施方式中,边界元件9由非接触的、非烧穿浆料组成。非烧穿性能允许浆料不会溶解下面的层4。浆料也是非接触的,即,不提供与下面的层的电气接触。
在另一实施方式中,边界元件9可表征为相对于层4和接触结构6(例如,基于铝的接触结构6)的惰性材料。因而,边界元件9在例如在577℃与800℃摄氏度之间的退火温度下不与层4或硅基板2反应。
在一组另外的实施方式中,边界元件9包括氧化铝颗粒或涂覆有氧化铝的铝颗粒,或者边界元件9包括基于氧化铝或氮化铝的材料。
在另一方面中,本发明涉及制造太阳能电池1的方法,其中,所获得的太阳能电池1表现出改进的钝化和减小的复合速率。图1至图3可用作参考。
该方法包括步骤a)提供硅基板2,其中,根据需求,硅基板2可以是p-型或n-型基板。该方法然后包括步骤b)在硅基板2的基板侧部2a上沉积隧道氧化层10,随后是该方法的步骤c)在隧道氧化层10上沉积多晶硅层8。在示出的实施方式中,参见例如图1,隧道氧化层10通常沉积在硅基板2的基底/主体层3b上。
该方法还包括d)提供从硅基板2的电池侧部1a穿过多晶硅层8和隧道氧化层10延伸至硅基板2的接触结构6。
根据本发明,通过如以上概述的方法获得的太阳能电池1表现出改进的钝化和减小的复合速率。此外,试验已示出与现有技术PERC太阳能电池示出的在655mV与715mV之间的开路电压Voc相比,可期望较高的例如在715mV和730mV之间的隐含的开路电压Voc
在实施方式中,步骤b)沉积隧道氧化层10可包括沉积热氧化物或湿化学氧化层。
此外,在另一实施方式中,步骤c)沉积多晶硅层8还可包括沉积本征多晶层或本征多晶硅层。沉积步骤c)可通过诸如化学汽相沉积(CVD)、LP-CVD(低压力CVD)或PE-CVD(等离子体增强CVD)的已知的方法执行。
在实施方式中,本发明的方法包括加热硅基板2、隧道氧化层10和多晶硅层8的步骤。在710℃和750℃的峰值温度已获得优良的结果(参见上述试验)。该步骤可执行为例如用于完成接触结构6的烧制步骤或退火步骤。应注意,完成接触结构6可能需要加热至高于660℃(即,铝的熔化温度)的温度。例如,基于铝的浆料可用于该方法的步骤d)提供接触结构6。通过对可选地包括硼和可选地包括硅的基于铝的浆料进行退火,可形成铝硅合金层6b以及背表面区域层7。应注意,如果浆料包括铝和硅,则完成接触结构6可能需要加热至高于577℃(即,铝硅合金的共熔温度)的温度。有利地,因为(电介质)层4包括更烧制稳定的隧道氧化层10和多晶硅层8,所以允许使用较高的加热温度,该较高的加热温度又允许导致较低复合电流密度的较厚的p+掺杂层7。
在该方法的另一详细实施方式中,在实施方式中,方法步骤a)提供硅基板2还可包括:利用例如POCl3使生成n+掺杂层的硅基板2纹理化,随后通过选择性地蚀刻太阳能电池1的前电池侧部1b,以及然后沉积防反射涂层(例如,SiNx)。
在另一实施方式中,方法步骤b)沉积隧道氧化层10可包括硅基板2的基板侧部2a的硝酸氧化(NAOS)。
在又一实施方式中,方法步骤c)在隧道氧化层10上沉积多晶硅层8可包括在多晶硅层8上沉积诸如SiNx层或Al2O3层的覆盖层12的后续步骤。
在另一实施方式中,该方法包括通过激光或通过化学蚀刻浆料打开覆盖层12。
然而,在隧道氧化层10上沉积多晶硅层8沉积还可产生本征层,该本征层同时沉积在相对的电池侧部1b(诸如太阳能电池1的前电池侧部1b)上。因此,可能需要去除这样的前电池侧部本征层。为此,本发明的方法还可包括从太阳能电池1的前电池侧部1b碱性蚀刻(例如,氢氧化钾蚀刻(KOH))本征层的步骤。应注意,不是严格地需要从太阳能电池1的前电池侧部1b去除这样的本征层,并且跳过该方法步骤减少了处理步骤的数量和相关的成本。
作为生产太阳能电池1的附加步骤,可在相对的电池侧面1b上沉积诸如银(Ag)的前接触结构的另外的接触结构。该另外的接触结构不需要完全地在该步骤中完成,但可提供为初始的堤或脊。该步骤可在提供接触结构6的方法步骤之前执行。一旦已通过基于烧穿铝的浆料提供接触结构6,则该方法可然后通过完成前接触结构来继续。可替代地,使用共同烧制步骤提供前侧部结构和背侧部结构。
应注意,对于上述实施方式,在接触结构6(包括p+掺杂硅层7)的形成中,涉及多晶硅层8和来自基板2的硅材料。
烧制过程例如从烧掉来自浆料的有机溶剂开始。浆料中的颗粒的氧化铝壳由于高温和含氧的大气而增厚。因此在烧制过程期间,颗粒矩阵是稳定的并且不毁坏。在660℃时,铝熔化并且从表面(即,首先从多晶层8以及然后从硅基板2)溶解硅,以形成液态Al-Si-相,该Al-Si-相根据相位图的液相曲线L(T)具有硅的温度依赖百分比。硅经由小的互连扩散至颗粒中,并且Al扩散至晶片表面,在晶片表面构建一定体积的液态Al-Si-相。晶片表面上的液相中和颗粒中的硅含量在较高温度下增加。在峰值温度下,达到液相中的硅的最大浓度以及因此溶解的硅的最大量。因此,溶解的硅的重量mSi,dis以及相应的厚度dSi,dis可根据下式使用沉积的铝的重量mAl来计算:
Figure BDA0001966917800000081
其中,A是(均质)印刷区域,ρSi是硅的密度以及L(Tpeak)是在峰值温度Tpeak下液态Al-Si-相中的Si的百分比。在冷却时,Si从液相中排出并且在液相/硅界面处结晶。根据在相关温度范围中随着温度下降而降低的固体溶解性,Al原子并入至Si晶格中。这意味着峰值掺杂浓度位于前液相/硅界面处,其中,掺杂浓度在p+层最终表面的方向上降低。当达到Teut=577℃的共熔温度时,剩余的液相在短时间内凝固。该混合物的硅百分比仍然相关(具有12.6%重量的硅的理论的共晶成分)。因此,在p+层的表面与浆料矩阵之间仍然存在所谓的“共晶层”,其中,在共晶合金的通常片晶结构中具有几乎是纯铝和约12.6%重量的硅的致密结构。在外表面处的浆料颗粒的多孔层(浆料残余)也包括固体Al-Si混合物。
对于本发明实施方式,示例性过程流将顺序地提供隧道氧化层10、多晶硅层8和覆盖层12。然后,在覆盖层12中需要接触结构6的地方提供开口,以及印刷铝浆料并且然后如前述段落中描述的进行烧制。通过仅在需要处打开覆盖层12,需要较少蚀刻玻璃料,这有利于因而形成的p+掺杂硅层7的复合速率。
已参照如附图中示出的多个示例性实施方式描述了本发明。一些部件或元件的修改和替代实施例是可能的,并且它们包括在如所附权利要求限定的保护范围中。

Claims (14)

1.太阳能电池,包括硅基板(2)和设置在所述硅基板(2)的基板侧部(2a)上的层(4),以及还包括接触结构(6),所述接触结构(6)从所述太阳能电池(1)的电池侧部(1a)穿过所述层(4)延伸至所述硅基板(2),
其中,所述层(4)包括多晶硅层(8)和隧道氧化层(10),所述隧道氧化层(10)插入在所述多晶硅层(8)与所述硅基板(2)之间。
2.根据权利要求1所述的太阳能电池,其中,所述多晶硅层(8)是本征多晶硅层。
3.根据权利要求1所述的太阳能电池,其中,所述多晶硅层是掺杂有p型掺杂物的硅层。
4.根据权利要求1所述的太阳能电池,其中,所述多晶硅层(8)具有在5nm-300nm之间的厚度。
5.根据权利要求1所述的太阳能电池,其中,所述隧道氧化层(10)包括热氧化物或湿化学氧化物。
6.根据权利要求1所述的太阳能电池,其中,所述隧道氧化层(10)具有在0.5nm-2.5nm之间的厚度。
7.根据权利要求1所述的太阳能电池,其中,所述层(4)还包括提供氢的覆盖层(12),所述覆盖层(12)设置在所述多晶硅层(8)上。
8.根据权利要求7所述的太阳能电池,其中,所述覆盖层(12)包括氧化铝或氮化硅。
9.根据权利要求7或8所述的太阳能电池,其中,所述覆盖层(12)具有4nm-200nm的厚度。
10.根据权利要求1所述的太阳能电池,其中,所述接触结构(6)是基于铝的接触结构。
11.根据权利要求10所述的太阳能电池,其中,所述基于铝的接触结构(6)包括硼和/或硅。
12.根据权利要求1所述的太阳能电池,其中,所述接触结构(6)包括与所述硅基板(2)相互作用的铝硅合金层(6b)和p+掺杂硅层(7)。
13.制造太阳能电池的方法,包括以下步骤:
a)提供硅基板(2);
b)在所述硅基板(2)的基板侧部(2a)上沉积隧道氧化层(10);
c)在所述隧道氧化层(10)上沉积多晶硅层(8);以及
d)提供从所述硅基板(2)的电池侧部(1a)穿过所述多晶硅层(8)和所述隧道氧化层(10)延伸至所述硅基板(2)的接触结构(6)。
14.根据权利要求13所述的方法,其中,所述方法还包括对所述硅基板(2)、所述隧道氧化层(10)和所述多晶硅层(8)进行退火的步骤。
CN201780048727.9A 2016-08-04 2017-08-03 钝化发射极和后接触太阳能电池 Active CN109891600B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
NL2017290A NL2017290B1 (en) 2016-08-04 2016-08-04 Passivated Emitter and Rear Contact Solar Cell
NL2017290 2016-08-04
PCT/NL2017/050518 WO2018026277A1 (en) 2016-08-04 2017-08-03 Passivated emitter and rear contact solar cell

Publications (2)

Publication Number Publication Date
CN109891600A CN109891600A (zh) 2019-06-14
CN109891600B true CN109891600B (zh) 2023-03-31

Family

ID=57042958

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780048727.9A Active CN109891600B (zh) 2016-08-04 2017-08-03 钝化发射极和后接触太阳能电池

Country Status (8)

Country Link
US (1) US11316054B2 (zh)
EP (1) EP3494600B1 (zh)
CN (1) CN109891600B (zh)
AU (1) AU2017306526B2 (zh)
MX (1) MX2019001417A (zh)
NL (1) NL2017290B1 (zh)
TW (1) TWI736658B (zh)
WO (1) WO2018026277A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4092757A1 (en) 2013-04-03 2022-11-23 Lg Electronics Inc. Method for fabricating a solar cell
KR102219804B1 (ko) 2014-11-04 2021-02-24 엘지전자 주식회사 태양 전지 및 그의 제조 방법
EP3026713B1 (en) 2014-11-28 2019-03-27 LG Electronics Inc. Solar cell and method for manufacturing the same
KR102272433B1 (ko) 2015-06-30 2021-07-05 엘지전자 주식회사 태양 전지 및 이의 제조 방법
CN110148636A (zh) * 2018-11-27 2019-08-20 晶澳(扬州)太阳能科技有限公司 一种太阳能电池及其制备方法、光伏组件
CN111403534B (zh) * 2020-03-27 2022-04-15 晶澳(扬州)太阳能科技有限公司 一种太阳能电池及其制备方法
WO2022180250A1 (en) 2021-02-26 2022-09-01 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Perc -tandem solar cell with sacrificial layer
CN114242803B (zh) * 2022-02-25 2022-08-12 浙江晶科能源有限公司 太阳能电池及其制备方法、光伏组件

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7468485B1 (en) * 2005-08-11 2008-12-23 Sunpower Corporation Back side contact solar cell with doped polysilicon regions
CN101615640A (zh) * 2008-06-27 2009-12-30 上海电机学院 氧化锌基太阳能电池及其制备方法
WO2016068237A1 (ja) * 2014-10-29 2016-05-06 京セラ株式会社 太陽電池モジュール

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7375378B2 (en) * 2005-05-12 2008-05-20 General Electric Company Surface passivated photovoltaic devices
WO2008137174A1 (en) * 2007-05-07 2008-11-13 Georgia Tech Research Corporation Formation of high quality back contact with screen-printed local back surface field
CN101447528A (zh) * 2008-12-22 2009-06-03 上海晶澳太阳能光伏科技有限公司 一种双面钝化和激光打点制备背点接触晶体硅太阳电池的方法
EP2422373B1 (en) * 2009-04-21 2024-06-05 Tetrasun, Inc. Method for manufacturing high efficiency solar cell structures
KR101146736B1 (ko) * 2009-09-14 2012-05-17 엘지전자 주식회사 태양 전지
US8334161B2 (en) * 2010-07-02 2012-12-18 Sunpower Corporation Method of fabricating a solar cell with a tunnel dielectric layer
WO2013148047A1 (en) * 2012-03-30 2013-10-03 Applied Materials, Inc. Doped ai paste for local alloyed junction formation with low contact resistance
CN203760486U (zh) * 2014-04-18 2014-08-06 新奥光伏能源有限公司 一种p型晶体硅电池
TWI590473B (zh) * 2014-10-24 2017-07-01 昱晶能源科技股份有限公司 太陽能電池及其製造方法
US20160380126A1 (en) * 2015-06-25 2016-12-29 David Aaron Randolph Barkhouse Multi-layer barrier for metallization
CN105185851A (zh) * 2015-09-06 2015-12-23 浙江晶科能源有限公司 一种背面钝化太阳能电池及其制备方法
CN204927300U (zh) * 2015-09-08 2015-12-30 苏州阿特斯阳光电力科技有限公司 一种perc太阳能电池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7468485B1 (en) * 2005-08-11 2008-12-23 Sunpower Corporation Back side contact solar cell with doped polysilicon regions
CN101615640A (zh) * 2008-06-27 2009-12-30 上海电机学院 氧化锌基太阳能电池及其制备方法
WO2016068237A1 (ja) * 2014-10-29 2016-05-06 京セラ株式会社 太陽電池モジュール

Also Published As

Publication number Publication date
TW201824571A (zh) 2018-07-01
TWI736658B (zh) 2021-08-21
CN109891600A (zh) 2019-06-14
EP3494600A1 (en) 2019-06-12
MX2019001417A (es) 2019-08-29
WO2018026277A1 (en) 2018-02-08
EP3494600B1 (en) 2020-06-03
AU2017306526A1 (en) 2019-02-14
AU2017306526B2 (en) 2022-02-03
WO2018026277A8 (en) 2019-03-14
US11316054B2 (en) 2022-04-26
NL2017290B1 (en) 2018-02-14
US20190172957A1 (en) 2019-06-06

Similar Documents

Publication Publication Date Title
CN109891600B (zh) 钝化发射极和后接触太阳能电池
US20210384366A1 (en) Metallization of solar cells
JP6257847B1 (ja) 太陽電池の製造方法
KR102247785B1 (ko) 태양전지, 그 제조방법 및 태양전지 모듈
TWI665807B (zh) 具有穿隧介電質的太陽能電池
JP6185845B2 (ja) 酸化アルミニウムベースの金属配線バリア
US9156740B2 (en) Ceramic boron-containing doping paste and methods therefor
CN103155163A (zh) 太阳能电池的制造方法和制膜装置
US20150214391A1 (en) Passivation film, coating material, photovoltaic cell element and semiconductor substrate having passivation film
JP6050376B2 (ja) 太陽電池及びその製造方法
US20160190364A1 (en) Seed layer for solar cell conductive contact
CN110808293A (zh) 太阳能电池光接收表面的钝化
Ebong Pathway to low-cost metallization of silicon solar cell through understanding of the silicon metal interface and plating chemistry
JP2017188537A (ja) 太陽電池素子及びその製造方法並びに太陽電池
US20150053256A1 (en) Solar cells and methods of making thereof
Cui et al. Anodic aluminium oxide rear passivated laser-doped selective-emitter solar cells
JP5316491B2 (ja) 太陽電池の製造方法
US20130119319A1 (en) Ceramic boron-containing doping paste and methods thereof
Yan et al. Improving the Stability of Polycrystalline Silicon Passivated Contacts Using Titanium Dioxide
CN116799075A (zh) 光伏电池及其制备方法
TW201929241A (zh) 太陽能電池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant