JP5200986B2 - 電源装置 - Google Patents

電源装置 Download PDF

Info

Publication number
JP5200986B2
JP5200986B2 JP2009034019A JP2009034019A JP5200986B2 JP 5200986 B2 JP5200986 B2 JP 5200986B2 JP 2009034019 A JP2009034019 A JP 2009034019A JP 2009034019 A JP2009034019 A JP 2009034019A JP 5200986 B2 JP5200986 B2 JP 5200986B2
Authority
JP
Japan
Prior art keywords
mosfet
capacitor
precharge
current
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009034019A
Other languages
English (en)
Other versions
JP2010193588A (ja
Inventor
泰明 乗松
伸治 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Kobe Electric Machinery Co Ltd
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2009034019A priority Critical patent/JP5200986B2/ja
Priority to KR1020117018996A priority patent/KR101273820B1/ko
Priority to EP10743767A priority patent/EP2400649A1/en
Priority to CN201080008214.3A priority patent/CN102318176B/zh
Priority to PCT/JP2010/052338 priority patent/WO2010095641A1/ja
Priority to US13/145,432 priority patent/US8803486B2/en
Publication of JP2010193588A publication Critical patent/JP2010193588A/ja
Application granted granted Critical
Publication of JP5200986B2 publication Critical patent/JP5200986B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/1216Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for AC-AC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/16Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for capacitors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/001Emergency protective circuit arrangements for limiting excess current or voltage without disconnection limiting speed of change of electric quantities, e.g. soft switching on or off
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5375Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with special starting equipment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)

Description

本発明は、キャパシタと電池とを備えるハイブリッド構成の電源装置に関する。
近年の電池技術の進歩によって、ハイブリッド車の普及が急速に進んでいる。このようなハイブリッド車は電池によってモータ等を駆動したり、減速時のエネルギーを電池に回生したりする電源システムを採用している。このような電源システムにおいては、新型電池の出現,小型軽量化および高出力密度化によってシール鉛バッテリーからNi水素電池、さらにはLiイオン電池へと発展してきた。いずれの電池においてもエネルギー密度を高めるため、電池活物質の開発や、高容量かつ高出力の電池構造の開発が行われ、出力密度が高く、より使用時間の長い電源を実現する努力が払われている。
しかしながら、自動車分野において、より一層の燃費改善への努力がなされているが、今後も二酸化炭素などの排出物削減のために既存の自動車にも新しい燃費改善機能を追加する傾向が予想される。そのため、より低損失の電源、すなわち、内部抵抗の小さい電源を必要とする方向に向かうことになる。
前記のような低抵抗の電源を二次電池において実現する場合は、その最大出力電流の小ささが問題になる。そのため、出力電流の制限を必要としない大容量電気化学キャパシタの必要性が高まっていて、その一例として、電気二重層キャパシタ(EDLC)が一般的に知られている。電気二重層キャパシタは、平滑用などに使用されるようなコンデンサと電池との中間的な特性を示す。また、電気二重層キャパシタと電池の中間的な特性を示すより高エネルギー密度のキャパシタとして、リチウムイオンをドープしたハイブリッドキャパシタ(HC)があげられる。
これらキャパシタに関しては、エネルギー密度は小さいが出力密度が電池よりも高いことから、瞬間的な出力が要求されるアイドリングストップシステムに適用した例が知られる。ただし、一般的にキャパシタは自己放電が大きいため、鉛蓄電池等の電池とのハイブリッド構成で使用される。鉛蓄電池とキャパシタとを接続するスイッチには、機械式のリレーやMOSFET(metal oxide field-effect transistor)等の半導体スイッチング素子が使用される。
ところで、キャパシタは自己放電が大きいため、例えば長期保管後の再スタート時には、鉛蓄電池とキャパシタとの間に大きな電位差が生じやすい。このように電位差がある状態で鉛蓄電池とキャパシタとの間のスイッチをオンにすると、キャパシタの内部抵抗が小さいため、鉛蓄電池から過大な電流が流れることになり、鉛蓄電池の寿命劣化につながる。
このような過大な電流が流れるのを防止する方法として、スイッチと並列に制限抵抗とスイッチとを設けて、制限抵抗を介してキャパシタへ電流を流すことにより充電電流を制限する方法(プリチャージ)が知られている(例えば、特許文献1参照)。
また、制限抵抗の代わりに半導体スイッチング素子をスイッチと並列に設けて、その半導体スイッチング素子を用いてプリチャージ機能を実現する構成も知られている(例えば、特許文献2参照)。
特開2005−312156号公報 特開2007−143221号公報
しかしながら、数百〜数千Fの大容量キャパシタを、制限抵抗を介してプリチャージすると、CRの時定数によって充電時間が長くなり過ぎるという問題が生じる。なお、この充電時間を短くするためには制限抵抗の抵抗値を小さくする必要があるが、制限抵抗値を小さくしてより大きな電流を流す場合には、電流値に合わせて制限抵抗の定格電力値を大きくせざるを得ない。そのため、制限抵抗の大型化および高コスト化を招き、さらには、制限抵抗の発熱を処理する冷却構造も追加する必要が生じる。
一方、制限抵抗の代わりに半導体スイッチング素子のみでプリチャージを行う構成の場合には、半導体スイッチング素子の定格容量を超えないように、半導体スイッチング素子の制御電圧を制御する必要があった。そのため、数十から数百Aの大電流を流すことは難しく、プリチャージ時間が長くなってしまう。また、半導体スイッチング素子の温度を監視するなどの冷却関係を、検討する必要が生じる。
請求項1の発明による電源装置は、電池と並列に接続されるリチウムイオンをドープさせたハイブリッドキャパシタと、ハイブリッドキャパシタと直列に接続された2つのスイッチング回路と、2つのスイッチング回路の一方に並列に接続されたプリチャージスイッチング回路と、ハイブリッドキャパシタの電圧が電池の電圧よりも低いときに、プリチャージスイッチング回路と2つのスイッチング回路の少なくとも1つとを制御してハイブリッドキャパシタのプリチャージ電流制限を行う制御部と、を備え、2つのスイッチング回路および前記プリチャージスイッチング回路は、1つの半導体スイッチング素子または並列接続された複数の半導体スイッチング素子を備え、プリチャージ電流制限時に、ハイブリッドキャパシタの内部抵抗に擬似的増加が生じるように、プリチャージスイッチング回路の各半導体スイッチング素子をステップ的にオン制御することを特徴とする。
本発明によれば、電池の劣化抑制や電源装置の小型化を図りつつ、キャパシタを短時間で使用可能な状態に充電することが可能となる。
本発明の第1の実施の形態による電源装置を、回転電機の駆動に用いた場合の概略ブロック図である。 プリチャージ時の充電電流経路を示す図である。 制御手順を示すフローチャートである。 充電遮断用MOSFET31および放電遮断用MOSFET32を、それぞれ、並列接続された複数のMOSFETで構成した場合の図である。 本発明の第2の実施の形態による電源装置を説明する図である。 本発明の第3の実施の形態による電源装置を説明する図である。
以下、図を参照して本発明を実施するための形態について説明する。
―第1の実施の形態―
図1は、本発明の第1の実施の形態による電源装置を、回転電機の駆動に用いた場合の概略ブロック図である。図1において、電源装置2は、リレー5a,5bを介してインバータ装置4に接続される。回転電機3は、インバータ装置4により回転駆動される。回転電機3は、車両のアイドリングストップシステムにおけるエンジン起動用のスタータモータやモータジェネレータを構成している。
電源装置2は、鉛蓄電池などの二次電池1と並列接続されるキャパシタ10、充電遮断用MOSFET31、放電遮断用MOSFET32、プリチャージ用MOSFET33、ゲートドライバ12、制御部14、電圧検出部16、温度検出部18、電流検出部20を備えている。
本実施の形態では、キャパシタ10として電気二重層キャパシタを用いているが、電気二重層キャパシタと同様の保護制御が必要とされる大容量キャパシタであれば、本発明は適用可能である。キャパシタ10は、複数のセルから成る。本実施の形態では、各MOSFET31〜33にNチャネルMOSFETを使用することでより低抵抗な構成としているが、もちろん各MOSFETの全てもしくはいずれか1つにPチャネルMOSFETを使用しても構わないし、同様の機能を実現できるものであれば適用可能である。
また、放電遮断用MOSFET32,充電遮断用MOSFET31およびプリチャージ用MOSFET33にNチャネルMOSFETを使用する場合、MOSFETのゲートを駆動するゲートドライバ12には、昇圧型ゲートドライバが用いられる。昇圧型ゲートドライバは、チャージポンプ型等NチャネルMOSFETのゲート駆動が可能なものであればどのようなものでも構わない。
制御部14は電源装置全体の制御を行うものであり、専用のICや汎用マイコンが用いられるが、同様の機能が実現できるものであればこれらに限らない。制御部14は、ゲートドライバ12を制御する制御機能の他に、各部電圧の監視機能、キャパシタ10の各セル電圧を調整するバランススイッチ機能、上位への通信機能等を備える。
制御部14が監視する各部電圧としては、二次電池1の総電圧、電圧検出部16によって検出されるキャパシタ10の各セル電圧や総電圧、電流検出部20の出力,温度検出部18の出力などがある。各部からの出力は、制御部14に設けられたA/DコンバータによりA/D変換され取り込まれる。また、上位への通信機能としては、CAN(Controller Area Network)、I2C(Inter-Integrated Circuit)、SPI(System Packet Interface)など、必要なものであればどのようなものでも構わない。本実施の形態では、回転電機3を起動する際の起動信号(IGN信号)が、通信機能を介して上位から入力される。
本実施の形態では、電流検出部20として、ホール素子により電流検出を行うものが用いられるが、放電遮断用MOSFET32から充電遮断用MOSFET31までの両端電圧の差動アンプ検出や、シャント抵抗の電圧測定や、カレントトランスの電圧測定などによって電流検出するものでも良い。また、検出した電流値は、制御部14に内蔵されたA/Dコンバータにより取得することを想定しているが、同様の機能が実現できるものであればどのようなものでも構わない。
温度検出部18は、NTCサーミスタもしくはPTCサーミスタと抵抗を直列とした分圧による検出や、温度ICによる検出などが考えられるが、これも同様の機能が実現できるものであれば構わない。温度検出の対象としては、キャパシタセル、MOSFETが実装されている基板、筐体などが考えられるが、必要に応じて追加しても構わない。なお、図1の温度検出部18は、MOSFETが実装されている基板の温度を検出するものである。温度検出値は、制御部14に内蔵されたA/Dコンバータにより取得することを想定しているが、同様の機能が実現できるものであればどのようなものでも構わない。
電力経路においては、キャパシタ10から二次電池1への+側の供給経路において、キャパシタ10と直列に放電遮断用MOSFET32と充電遮断用MOSFET31が設けられている。充電遮断用MOSFET31には、プリチャージ用MOSFET33が並列に接続されている。なお、必要に応じて、放電遮断用MOSFET32と充電遮断用MOSFET31およびプリチャージ用MOSFET33との、どちらかをグランド側に移動させても良いし、+側やグランド側にMOSFETを追加で加えても良い。
放電遮断用MOSFET32は、ボディダイオード321の順方向がキャパシタ10の放電電流方向と逆向きとなるように構成されている。充電遮断用MOSFET31とプリチャージ用MOSFET33は、ボディダイオード311,331の順方向とキャパシタ10への充電電流方向とが逆向きとなるように構成されている。
充電遮断用MOSFET31は逆向きに接続されたボディダイオード311を有しているため、充電遮断用MOSFET31をオフしても、キャパシタ10からの放電電流はボディダイオード311を順方向に流れることができ、放電電流は遮断されない。放電電流を遮断するスイッチとしては、放電遮断用MOSFET32が直列に設けられている。放電遮断用MOSFET32をオフすると、放電電流が遮断されることになる。ただし、ボディダイオード321の順方向は充電電流方向と同方向であるため、放電遮断用MOSFET32をオフしても充電電流はボディダイオード321を流れることができる。このように、2つのMOSFET31,32を逆向きに直列接続することで、充電電流および放電電流の両方に対して遮断・非遮断動作を行なうことができる。
なお、図1に示す例では、充電遮断用MOSFET31を電源ライン側(+側)に配置し、放電遮断用MOSFET32をキャパシタ1側に配置したが、逆に配置しても構わない。
通常状態、すなわち二次電池1とキャパシタ10との間に電位差がなくプリチャージが行なわれない状態においては、充電遮断用MOSFET31、放電遮断用MOSFET32およびプリチャージ用MOSFET33は、全てオン状態とされている。IGN起動時には回転電機3に大電流が流れるため、充電遮断用MOSFET31および放電遮断用MOSFET32には大電流に対応したMOSFETが用いられる。
次に、本実施形態における制御方法について述べる。図2はプリチャージ時の充電電流経路を示す図である。図2では、制御方法の説明に必要なキャパシタ10、二次電池1およびMOSFET31〜33を示した。図3は制御手順を示すフローチャートであり、制御プログラムは制御部14において実行される。
制御部14に上位から起動信号IGNが入力されると、ステップS100に進む。ステップS100では、制御部14は二次電池1の総電圧とキャパシタ10の総電圧とを比較し、それらの電位差が予め設定された電位差閾値以上か否かを判定する。すなわち、キャパシタ10の電圧が二次電池1の電圧よりも低く、プリチャージが必要か否かを判定する。電位差閾値としては、放電遮断用MOSFET32のボディダイオード321の順方向電圧(例えば、0.5V)が考えられるが、必ずしもこれに限らない。
ステップS100で二次電池1とキャパシタ10との電位差が電位差閾値よりも小さいと判定されると、ステップS120へ進み、各MOSFET31〜33をオン状態、すなわち、キャパシタ1の充放電を自由に行なうことができる通常状態に設定する。その後、ステップS130へ進んで、電源装置としての通常の動作がスタートする。
一方、ステップS100で電位差閾値以上と判定されると、ステップS115へ進んでプリチャージ動作のための処理が実行される。ステップS115では、プリチャージ動作を行なうために、制御部14はゲートドライバ12に指令して、充電遮断用MOSFET31と放電遮断用MOSFET32をオフし、プリチャージ用MOSFET33についてはオン状態のままとする。このとき、充電電流は破線で示すような経路でキャパシタ10に流れ込む。
オフ状態の放電遮断用MOSFET32においては、充電電流はボディダイオード321のみを通過する。一方、オフ状態の充電遮断用MOSFET31については、充電電流は通過することができず、オン状態のプリチャージ用MOSFET33を経由してキャパシタ10に流れ込む。このようにして、キャパシタ10の充電が行なわれる。なお、プリチャージ用MOSFET33は、通常必要なゲート電圧でオン状態を保持するように制御されるが、ゲート電圧を調整してプリチャージ用MOSFET33のオン抵抗を調整することにより、充電電流値をより最適な値に調整するようにしても良い。
例えば、プリチャージ時の素子温度が高くなり過ぎる場合には、ゲート電圧を下げて充電電流値を下げるようにする。また、プリチャージ用MOSFET33のゲートにPWM(Pulse Width Modulation)パルスを印加して、PWM制御により充電電流量を調整しても良い。
従来は、プリチャージ時の電流制限のために、制限抵抗またはプリチャージ用の半導体スイッチング素子(プリチャージ用MOSFET33に相当する)のみで損失を負担しなければならなかった。また、制限抵抗やプリチャージ用半導体スイッチング素子の許容損失が小さいことから、数十から数百Aの大電流を流すことは難しかった。
しかし、本実施の形態では、プリチャージ時の電流制限における損失を、放電遮断用MOSFET32のボディダイオード321による損失と、プリチャージ用MOSFET33のオン抵抗による損失とで分担することになり、放熱が2つのMOSFET31,32に分散され放熱性能の向上を図ることができる。さらに、キャパシタ10には内部抵抗があるため、この内部抵抗による損失によっても分担されることになる。
図2に示した構成では、プリチャージで大電流を流した場合の各MOSFET32,33およびキャパシタ10の損失W(32)、W(33)、W(20)の大きさは、W(32)>W(33) ≧W(20)の順となり、もともと大電流通電用として放熱性に優れた設計となっている放電遮断用MOSFET32に損失を分散していることに特長がある。
なお、上述した実施の形態では、キャパシタ10に電気二重層キャパシタを適用した場合を例に説明したが、キャパシタ10にリチウムイオンを負極にドープしたハイブリッドキャパシタを適用した場合には、プリチャージ時にプリチャージ用MOSFET33のゲートへの電圧印加をステップ的に急激に行うようにする。ハイブリッドキャパシタの場合、充電開始の際の電流をステップ的に急激に立ち上げると、端子電圧が開放電圧に対して大きく低下する現象が見られる。すなわち、電流をステップ的に立ち上げることで、内部抵抗を擬似的に増加させることができる。
この擬似的な内部抵抗の増加は、プリチャージ動作時間程度であれば継続されることが分かっている。そこで、キャパシタ10にハイブリッドキャパシタを用いる場合には、プリチャージ用MOSFET33のゲートへの電圧印加をステップ的に急激に行って内部抵抗を擬似的に増加させ、キャパシタ10の負担する損失を大きくすることができる。その結果、損失に関する放電遮断用MOSFET32とプリチャージ用MOSFET33の負担分が小さくなり、二次電池1とキャパシタ10との間の電位差がより大きくなってプリチャージ電流がより大きい場合にも、容易に対応することが可能となる。
図1,2に示す例では、充電遮断用MOSFET31、放電遮断用MOSFET32、プリチャージ用MOSFET33に1個のMOSFETを用いた。しかし、図4に示すように、通常使用時に大電流を流すことを想定している充電遮断用MOSFET31および放電遮断用MOSFET32を、それぞれ、並列接続された複数のMOSFETで構成するようにしても良い。もちろん、プリチャージ用MOSFET33についても、並列接続された複数のMOSFETで構成するようにしても良い。また、並列接続となっている充電遮断用MOSFET31とプリチャージ用MOSFET33を一体化し、その一体化したものとして、ゲートを別々に駆動できるワンチップ品を使用しても構わない。
上述したように、本実施の形態では、二次電池1と並列に接続されるキャパシタ10を備える電源装置において、キャパシタ10と直列に接続された充電遮断用MOSFET31および放電遮断用MOSFET32と、充電遮断用MOSFET31に並列接続されるプリチャージ用MOSFET33とを備え、キャパシタ10の電圧が二次電池1の電圧よりも低いときに、プリチャージ用MOSFET33と放電遮断用MOSFET32とで電流制限時の損失を分担するようにした。
このように、個々のMOSFETの負担を減少させることができるため、放熱性が向上するとともに、プリチャージ時に大電流を継続して流すことが可能となる。その結果、プリチャージ電流値を二次電池1にとって負担とならない値に制限して二次電池1の温度上昇の抑制や劣化抑制を図りつつ、キャパシタ10を短時間で使用可能な状態に充電することが可能となる。
なお、MOSFET31,32はキャパシタ10の電力経路の開閉を行うスイッチング回路の機能を有するものであり、そのMOSFET32のボディダイオード321にのみにプリチャージ時の電流を流すことで、MOSFET32は損失を分担する素子としても機能している。
また、スイッチング回路としてのMOSFET31,32のそれぞれを、並列接続された複数のMOSFETで構成することで、大電流に容易に対応することができ、かつ、MOSFET32における損失をより多数の素子に分散させることができる。なお、プリチャージ用MOSFET33についても並列接続された複数のMOSFETで構成することにより、損失をより分散させることができ、定格容量の小さなMOSFETを利用することができる。また、プリチャージ用MOSFET33を単にオン制御するかわりに、ゲート電圧を調整したり、PWM制御したりしてプリチャージ電流値を所望の値に調整することも可能となる。
―第2の実施の形態―
図5は、本発明の第2の実施の形態による電源装置を説明する図であり、第1の実施の形態における図2に対応するものである。なお、その他の構成は第1の実施の形態と同様であり、説明を省略する。第2の実施の形態では、図5に示すようにキャパシタ10から二次電池1への+側の供給経路において、キャパシタ10と直列に放電遮断用MOSFET32と充電遮断用MOSFET31が設けられている。なお、第1の実施の形態の場合と同様に、必要に応じてMOSFET31,32のどちらかをグランド側に移動させても良いし、+側やグランド側にMOSFETを追加で加えても良い。
通常時は、MOSFET31,32の両方をオン状態とする。プリチャージ時には、図5に示すように放電遮断用MOSFET32をオフするとともに、充電遮断用MOSFET31のゲートをPWM制御する。その結果、充電電流は、破線で示すように、放電遮断用MOSFET32のボディダイオード321および充電遮断用MOSFET31を通って、キャパシタ10に流れ込む。充電遮断用MOSFET31におけるPWM制御は、二次電池1とキャパシタ10との電位差に応じて調整される。
第2の実施の形態では、大電流に対応したMOSFET31,32およびキャパシタ10の内部抵抗で損失を分担することになり、放熱性能の向上が実現できる。また、プリチャージで大電流を流した場合の各MOSFET31,32およびキャパシタ10の損失W(31)、W(32)、W(20)の大きさは、W(32)≧W(31) >W(20)の順となり、もともと大電流対応で放熱性に優れた設計となっている放電遮断用MOSFET32および充電遮断用MOSFET31に、損失を分散するようにしていることも特長である。
上述したように、第2の実施の形態では、二次電池1と並列に接続されるキャパシタ10を備える電源装置において、キャパシタ10と直列に接続された充電遮断用MOSFET31および放電遮断用MOSFET32をスイッチング回路として備え、キャパシタ10の電圧が二次電池1の電圧よりも低いときに、充電遮断用MOSFET31および放電遮断用MOSFET32で電流制限時の損失を分担するようにした。
このように、個々のMOSFETの負担を減少させることができるため、放熱性が向上するとともに、プリチャージ時に大電流を継続して流すことが可能となる。その結果、プリチャージ電流値を二次電池1にとって負担とならない値に制限して二次電池1の温度上昇の抑制や劣化抑制を図りつつ、キャパシタ10を短時間で使用可能な状態に充電することが可能となる。さらに、第1の実施の形態と比較した場合、プリチャージ用MOSFET33が省略されるため、低コスト化および小型化をより図ることができる。
なお、充電遮断用MOSFET31にプリチャージ用MOSFET33を並列接続させて、3つのMOSFETで損失を分担するようにしても良い。その場合、プリチャージ用MOSFET33を単にオン制御するだけでなく、ゲート電圧を調整するような制御を行っても良いし、PWM制御を行っても良い。また、第1の実施の形態で記載したように、MOSFET31〜33を、並列接続された複数のMOSFETで構成しても良い。
―第3の実施の形態―
図6は、本発明の第3の実施の形態による電源装置を説明する図であり、第1の実施の形態における図2に対応するものである。上述した第1の実施の形態では、半導体スイッチング素子としてMOSFETを使用したが、本実施の形態では、キャパシタ10として高電圧のキャパシタモジュールを使用し、MOSFETに代えてIGBT(insulated gate bipolar transistor)モジュールを使用するようにした。
図6に示すように、キャパシタ10から二次電池1への+側の供給経路において、キャパシタ10と直列に放電遮断用IGBT42および充電遮断用IGBT41が設けられる。充電遮断用IGBT41には、プリチャージ用IGBT43が並列に接続されている。すなわち、図2示すMOSFET31〜33を、IGBT41〜43に置き換えたものである。
なお、必要に応じて、放電遮断用IGBT42と充電遮断用IGBT41およびプリチャージ用IGBT43との、どちらかをグランド側に移動させても良いし、+側やグランド側にIGBTを追加で加えても良い。また、高電圧のキャパシタ10には、ハイブリッドキャパシタが適用される。電気二重層キャパシタよりも最大セル電圧の高いハイブリッドキャパシタを適用することで、直列セル数を低下させることが可能となる。
放電遮断用IGBT42は、ボディダイオードがキャパシタ10の放電電流方向と逆向きに接続される構成となっている。一方、充電遮断用IGBT41およびプリチャージ用IGBT33は、ボディダイオードがキャパシタ10への充電電流方向と逆向きに接続される構成となっている。なお、本実施の形態においては高電圧であるため、プリチャージ用IGBT31の代わりにプリチャージ用リレーを用いても構わない。
次に、第3の実施の形態における制御方法について説明する。通常状態においては、充電遮断用IGBT41,放電遮断用IGBT42およびプリチャージ用IGBT43の3つともオン状態となっている。外部からの起動信号INGが入力された後、キャパシタ10の総電圧と二次電池1の電圧を比較し、キャパシタ10の電圧が二次電池1の電圧よりも低い場合にはプリチャージ動作を行う。この際の判定基準である電位差閾値は、放電遮断用IGBT42のボディダイオードの順方向電圧(例えば、0.5V)以上と設定するが、必要に応じて変更しても構わない。
プリチャージ時のキャパシタ10への充電電流経路は図6の破線で示す通りであり、充電電流は放電遮断用IGBT42のボディダイオードを通過した後、プリチャージ用IGBT43を通過してキャパシタ10に流れ込む。前述したように、ハイブリッドキャパシタは、ステップ的に電流を制御することで内部抵抗を擬似的に増加させることができる。したがって、プリチャージ用IGBT43をステップ的に駆動させることで、内部抵抗の擬似的な増加によりキャパシタ10の負担する損失分を大きくすることができる。その結果、二次電池1とキャパシタ10との間の電位差が大きい場合でも、十分対応することが可能となる。
上述した例では、プリチャージ用IGBT43には通常必要なゲート電圧をステップ的に印加されるが、ゲート電圧を調整することでプリチャージ用IGBT43のオン抵抗を調整したり、プリチャージ用IGBT43のゲートにPWMパルスを印加したりすることで、プリチャージ電流をPWM制御により調整するようにしても良い。
従来は、プリチャージ時の電流制限のために、制限抵抗か、半導体スイッチング素子(MOSFET)のみで損失を負担しなければならなかった。さらに、制限抵抗やスイッチング素子の許容損失が小さいことから、数十から数百Aの大電流を流すことは難しいという欠点があった。しかし、本実施の形態では、大電流放電に対応した放電遮断用IGBT42とプリチャージ用IGBT43とキャパシタ10の内部抵抗とで損失を分担することになり、放熱性能の向上が実現できる。
本実施の形態では、プリチャージで大電流を流した場合のキャパシタ10(ハイブリッドキャパシタ)、IGBT42,43の損失W(20)、W(42)、W(43)は、W(20)>W(42)>W(43)の順の大きさとなり、もともと大電流放電のために放熱性に優れた設計となっている放電遮断用IGBT42に損失を分散していることに特長がある。また、プリチャージ時に大電流を流すことが可能であるため、キャパシタ10を短時間で使用可能な状態にすることが実現できる。さらに、従来用いていたリレーや制限抵抗の代わりに半導体スイッチング素子を用いているので、小型化、低コスト化を図ることができる。
なお、プリチャージ用IGBT31の代わりにプリチャージ用リレーを用いた場合、プリチャージ時にリレーを閉じる。損失は、放電遮断用IGBT42とキャパシタ10の内部抵抗とにより分担される。
上述した実施の形態では、車両のアイドリングストップシステムに適用した場合を例に説明したが、これに限らず、種々の負荷への電力を供給するハイブリッド構成の電源装置に適用することができる。なお、以上の説明はあくまでも一例であり、本発明の特徴を損なわない限り、本発明は上記実施の形態に何ら限定されるものではない。また、実施の形態と変形例の一つ、もしくは複数を組み合わせることも可能である。
1:二次電池、2:電源装置、3:回転電機、4:インバータ装置、10:キャパシタ、12:ゲートドライバ、14:制御部、31:充電遮断用MOSFET、32:放電遮断用MOSFET、33:プリチャージ用MOSFET、41:充電遮断用IGBT、42:放電遮断用IGBT,43:プリチャージ用IGBT、311,321,331:ボディダイオード

Claims (1)

  1. 電池と並列に接続されるリチウムイオンをドープさせたハイブリッドキャパシタと、
    前記ハイブリッドキャパシタと直列に接続された2つのスイッチング回路と、
    前記2つのスイッチング回路の一方に並列に接続されたプリチャージスイッチング回路と、
    前記ハイブリッドキャパシタの電圧が前記電池の電圧よりも低いときに、前記プリチャージスイッチング回路と前記2つのスイッチング回路の少なくとも1つとを制御して前記ハイブリッドキャパシタのプリチャージ電流制限を行う制御部と、を備え、
    前記2つのスイッチング回路および前記プリチャージスイッチング回路は、1つの半導体スイッチング素子または並列接続された複数の半導体スイッチング素子を備え、
    プリチャージ電流制限時に、前記ハイブリッドキャパシタの内部抵抗に擬似的増加が生じるように、前記プリチャージスイッチング回路の各半導体スイッチング素子をステップ的にオン制御することを特徴とする電源装置。
JP2009034019A 2009-02-17 2009-02-17 電源装置 Expired - Fee Related JP5200986B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2009034019A JP5200986B2 (ja) 2009-02-17 2009-02-17 電源装置
KR1020117018996A KR101273820B1 (ko) 2009-02-17 2010-02-17 전원 장치
EP10743767A EP2400649A1 (en) 2009-02-17 2010-02-17 Power supply device
CN201080008214.3A CN102318176B (zh) 2009-02-17 2010-02-17 电源装置
PCT/JP2010/052338 WO2010095641A1 (ja) 2009-02-17 2010-02-17 電源装置
US13/145,432 US8803486B2 (en) 2009-02-17 2010-02-17 Power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009034019A JP5200986B2 (ja) 2009-02-17 2009-02-17 電源装置

Publications (2)

Publication Number Publication Date
JP2010193588A JP2010193588A (ja) 2010-09-02
JP5200986B2 true JP5200986B2 (ja) 2013-06-05

Family

ID=42633921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009034019A Expired - Fee Related JP5200986B2 (ja) 2009-02-17 2009-02-17 電源装置

Country Status (6)

Country Link
US (1) US8803486B2 (ja)
EP (1) EP2400649A1 (ja)
JP (1) JP5200986B2 (ja)
KR (1) KR101273820B1 (ja)
CN (1) CN102318176B (ja)
WO (1) WO2010095641A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004005576B4 (de) * 2003-02-25 2021-03-11 Heidelberger Druckmaschinen Ag Verfahren zum Betrieb einer Lackier- oder Druckmaschine

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009058316A1 (de) * 2009-12-15 2011-06-16 Giesecke & Devrient Gmbh Vorrichtung zum Erzeugen einer gestützten Gleichspannung
DE102010039875A1 (de) * 2010-08-27 2012-03-01 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines Starters eines Fahrzeugs
JP5605436B2 (ja) * 2010-12-20 2014-10-15 トヨタ自動車株式会社 電動車両およびその制御方法
US9073438B2 (en) 2011-10-28 2015-07-07 General Electric Company System for selectively coupling an energy source to a load and method of making same
US8674757B2 (en) * 2011-11-01 2014-03-18 Neoenergy Microelectronic, Inc. Switching system and method for control thereof
FR2984623B1 (fr) * 2011-12-19 2015-03-20 Valeo Equip Electr Moteur Dispositif de connexion/deconnexion de charge pour unite de stockage d'energie dans un vehicule automobile
EP2639949B1 (de) * 2012-03-13 2020-04-29 Siemens Aktiengesellschaft Stromversorgung mit Zwischenkreis
JP2014079078A (ja) * 2012-10-10 2014-05-01 Fuji Electric Co Ltd 電動機駆動システム
FR2998108B1 (fr) 2012-11-12 2014-12-19 Accumulateurs Fixes Systeme de pre-charge d'une capacite par une batterie
FR3000626B1 (fr) * 2013-01-02 2015-02-27 Renault Sa Systeme comprenant une batterie formee de modules de batterie, et procede de connexion ou de deconnexion d'un module de batterie correspondant
WO2015000017A1 (en) * 2013-06-28 2015-01-08 Cap-Xx Limited A current limit circuit for a supercapacitive device
US9931947B2 (en) * 2013-08-30 2018-04-03 Infineon Technologies Ag Charging a capacitor
US9925878B2 (en) 2013-09-26 2018-03-27 Ford Global Technologies, Llc Bus pre-charge control using a buck converter
US9214888B2 (en) * 2013-12-20 2015-12-15 Lg Chem, Ltd. Pre-charging system for a capacitor in a voltage inverter for an electric motor
KR101551035B1 (ko) * 2013-12-30 2015-09-08 현대자동차주식회사 프리 차지 중 고장 진단 방법
US9630503B2 (en) * 2014-02-06 2017-04-25 Ford Global Technologies, Llc Energizing an automotive vehicle high voltage bus using a single main contactor
US9573474B2 (en) * 2014-03-06 2017-02-21 Ford Global Technologies, Llc Capacitor precharging and capacitance/resistance measurement in electric vehicle drive system
CN106463955B (zh) * 2014-04-29 2020-01-21 三菱电机株式会社 电源开关装置及使用该电源开关装置的系统
JP6123764B2 (ja) * 2014-09-11 2017-05-10 トヨタ自動車株式会社 電源システム
JP6322123B2 (ja) * 2014-11-04 2018-05-09 矢崎総業株式会社 電流制限回路
US10074620B2 (en) 2015-03-25 2018-09-11 Infineon Technologies Americas Corp. Semiconductor package with integrated output inductor using conductive clips
KR102442187B1 (ko) * 2015-04-10 2022-09-07 삼성에스디아이 주식회사 배터리 보호 회로
US10199843B2 (en) 2015-05-26 2019-02-05 Infineon Technologies Americas Corp. Connect/disconnect module for use with a battery pack
JP2017022872A (ja) * 2015-07-10 2017-01-26 トヨタ自動車株式会社 電源システム
KR102406818B1 (ko) 2015-09-02 2022-06-10 삼성전자주식회사 전력 회로
US9923470B2 (en) 2015-09-18 2018-03-20 Lear Corporation High voltage pre-charge system
US20170229872A1 (en) * 2016-02-10 2017-08-10 Eguana Technologies Inverter pre-charge circuit
US11139654B2 (en) 2016-02-10 2021-10-05 Eguana Technologies Output control and compensation for AC coupled systems
US10305321B2 (en) 2016-02-10 2019-05-28 Eguana Technologies Automatic recovery control
DE102016219098A1 (de) * 2016-09-30 2018-04-05 Volkswagen Aktiengesellschaft Batterie-Trenneinrichtung
DE102016220118B4 (de) * 2016-10-14 2022-01-05 Volkswagen Aktiengesellschaft Batterie-Trenneinrichtung und Verfahren zur Durchführung eines Vorladezyklus
JP6867780B2 (ja) * 2016-10-28 2021-05-12 矢崎総業株式会社 半導体スイッチ制御装置
DE102016013251A1 (de) * 2016-11-09 2017-11-02 Daniel Amrein Kombiniertes Stromspeicher-System und Management-System hierfür
EP3425766B1 (en) 2017-07-03 2022-08-24 Ningbo Geely Automobile Research & Development Co., Ltd. A capacitor module
JP6545230B2 (ja) * 2017-08-31 2019-07-17 本田技研工業株式会社 車両の電源システム
KR102056876B1 (ko) 2017-09-25 2019-12-17 주식회사 엘지화학 배터리 관리 장치와 이를 포함하는 배터리 팩 및 자동차
KR102204983B1 (ko) 2017-09-25 2021-01-18 주식회사 엘지화학 배터리 관리 장치와 이를 포함하는 배터리 팩 및 자동차
JP6885302B2 (ja) * 2017-11-08 2021-06-09 トヨタ自動車株式会社 車両用電源システム
JP6879170B2 (ja) * 2017-11-08 2021-06-02 トヨタ自動車株式会社 車両用電源システム
CN107959324B (zh) * 2017-11-21 2020-11-24 上海空间电源研究所 航天器电源系统储能电池放电开关电路
JP6732831B2 (ja) * 2018-04-10 2020-07-29 矢崎総業株式会社 電源供給装置
EP3633811A1 (en) * 2018-10-02 2020-04-08 Siemens Aktiengesellschaft Protection circuit
US11196133B2 (en) * 2018-10-30 2021-12-07 Cps Technology Holdings Llc Solid-state relay dedicated recirculation path systems and methods
EP3654507B1 (de) * 2018-11-16 2022-05-11 Siemens Aktiengesellschaft Überwachbares elektrisches bauelement mit mindestens einer funktionalen ausrichtung als kondensator
CN110962630B (zh) * 2018-12-04 2021-06-25 宁德时代新能源科技股份有限公司 预充电流的调控方法和电路
CN110239372B (zh) * 2019-06-10 2021-10-22 上海师范大学 一种bms预充电路及其控制方法
CN110277814B (zh) * 2019-06-18 2023-06-13 Oppo广东移动通信有限公司 待充电设备及充电方法
CN110176857B (zh) * 2019-06-20 2024-04-09 中国重型机械研究院股份公司 一种整流单元预充电回路增容电路及其搭建方法
KR20210047142A (ko) * 2019-10-21 2021-04-29 주식회사 엘지화학 프리차지 회로 및 이를 포함하는 배터리 시스템
JP2021168553A (ja) * 2020-04-10 2021-10-21 ソニーグループ株式会社 制御装置および制御方法
US11726130B2 (en) * 2020-08-26 2023-08-15 Eaton Intelligent Power Limited Hybrid switch for substation and other applications and methods of operating same
CN114079419B (zh) * 2021-11-10 2023-09-19 大庆正方软件科技股份有限公司 基于群电容控制泵升电压的系统
GB2618525A (en) * 2022-05-03 2023-11-15 Siemens Energy AS Energy storage system
US11955974B2 (en) * 2022-06-30 2024-04-09 Infineon Technologies Ag Dual gate MOSFET devices and pre-charging techniques for DC link capacitors

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07115728A (ja) * 1992-08-28 1995-05-02 Tai-Her Yang 複数の独立直流電源による多段階複電圧出力回路
JP3330050B2 (ja) * 1997-03-11 2002-09-30 本田技研工業株式会社 電気自動車の制御装置
JP3799398B2 (ja) * 1999-10-28 2006-07-19 富士電機デバイステクノロジー株式会社 半導体電力変換システム
US6798175B2 (en) * 2000-04-11 2004-09-28 Pentax Corporation Power supply circuit
JP2005269873A (ja) * 2004-03-22 2005-09-29 Toyota Industries Corp 高周波電流用配線部材とその製造方法および電力変換装置
JP2005312156A (ja) 2004-04-20 2005-11-04 Toyota Motor Corp 電源制御装置およびそれを備えたモータ駆動装置
WO2005112522A2 (en) * 2004-05-06 2005-11-24 Continuum Electro-Optics, Inc. Methods and apparatus for an improved amplifier for driving a non-linear load
JP4162645B2 (ja) * 2004-10-05 2008-10-08 三洋電機株式会社 車両用の電源装置
JP4547231B2 (ja) * 2004-10-22 2010-09-22 日立オートモティブシステムズ株式会社 電力変換装置
US7573238B2 (en) * 2005-08-09 2009-08-11 Panasonic Ev Energy Co., Ltd. Voltage detection device and electric vehicle including voltage detection device
JPWO2007026492A1 (ja) 2005-08-30 2009-03-05 富士重工業株式会社 リチウムイオンキャパシタ
JP4542483B2 (ja) * 2005-08-31 2010-09-15 日立コンピュータ機器株式会社 スイッチング電源装置及びディスクアレイシステム
JP4910369B2 (ja) * 2005-11-15 2012-04-04 トヨタ自動車株式会社 電源制御装置
JP2007191088A (ja) * 2006-01-20 2007-08-02 Nissan Diesel Motor Co Ltd ハイブリッド車両
JP2007244124A (ja) * 2006-03-09 2007-09-20 Toyota Motor Corp 車両駆動用電源システム
KR100839740B1 (ko) * 2006-11-06 2008-06-19 삼성에스디아이 주식회사 하이브리드 배터리 및 그것의 충전 방법
JP4810417B2 (ja) * 2006-12-20 2011-11-09 富士重工業株式会社 蓄電デバイスの残存容量演算装置
KR101089833B1 (ko) * 2007-01-11 2011-12-05 주식회사 엘지화학 전지 보호용 소프트 스타트 회로 및 이를 구비하는 전지팩
CN101340147B (zh) * 2007-07-05 2011-03-23 立锜科技股份有限公司 在预充电模式抑制电压转换器输入电流突增的装置及方法
JP4758959B2 (ja) 2007-07-31 2011-08-31 キユーピー株式会社 半割り茹卵様卵加工品及びその製造方法
US7656061B2 (en) * 2007-10-29 2010-02-02 Bose Corporation Automatic power source configuration

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004005576B4 (de) * 2003-02-25 2021-03-11 Heidelberger Druckmaschinen Ag Verfahren zum Betrieb einer Lackier- oder Druckmaschine

Also Published As

Publication number Publication date
CN102318176B (zh) 2015-05-13
KR20110105001A (ko) 2011-09-23
WO2010095641A1 (ja) 2010-08-26
US8803486B2 (en) 2014-08-12
EP2400649A1 (en) 2011-12-28
JP2010193588A (ja) 2010-09-02
CN102318176A (zh) 2012-01-11
KR101273820B1 (ko) 2013-06-11
US20110316489A1 (en) 2011-12-29

Similar Documents

Publication Publication Date Title
JP5200986B2 (ja) 電源装置
JP5440400B2 (ja) 電源装置
US9793722B2 (en) Power source apparatus for vehicle
US20150034406A1 (en) Electric vehicle
JP6868037B2 (ja) バッテリーバランシング装置及び方法
US9520613B2 (en) Battery control with block selection
JP6174876B2 (ja) 2電源負荷駆動システム及び燃料電池自動車
JP5277711B2 (ja) 電源装置及び車両用電源装置
JP2018078701A (ja) 電源制御装置、及び電池ユニット
JP5104648B2 (ja) 車両の電源装置およびその制御方法
JP2014018018A (ja) バッテリシステム制御装置
JP6878782B2 (ja) 電源制御装置、及び電源システム
JP7203091B2 (ja) 電池パック及びその充電制御方法
JP2004023803A (ja) 組電池の電圧制御装置
JP6290092B2 (ja) ショベル
JP2005269828A (ja) ハイブリッドシステム
JP3454954B2 (ja) ハイブリッド電源制御装置
JP2008253083A (ja) 移動車両用電源装置
JP6665719B2 (ja) 電源制御装置、及び電源システム
JP6430100B2 (ja) ショベル
CN116923118A (zh) 电驱动系统和车辆

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110221

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130128

R150 Certificate of patent or registration of utility model

Ref document number: 5200986

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees