JP2021168553A - 制御装置および制御方法 - Google Patents

制御装置および制御方法 Download PDF

Info

Publication number
JP2021168553A
JP2021168553A JP2020070777A JP2020070777A JP2021168553A JP 2021168553 A JP2021168553 A JP 2021168553A JP 2020070777 A JP2020070777 A JP 2020070777A JP 2020070777 A JP2020070777 A JP 2020070777A JP 2021168553 A JP2021168553 A JP 2021168553A
Authority
JP
Japan
Prior art keywords
power supply
capacitor
switch
charging
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020070777A
Other languages
English (en)
Inventor
寿光 甲斐
Hisamitsu Kai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Group Corp
Original Assignee
Sony Group Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Group Corp filed Critical Sony Group Corp
Priority to JP2020070777A priority Critical patent/JP2021168553A/ja
Priority to US17/915,853 priority patent/US20230170713A1/en
Priority to CN202180026787.7A priority patent/CN115443591A/zh
Priority to PCT/JP2021/013732 priority patent/WO2021205949A1/ja
Priority to EP21785641.8A priority patent/EP4135141A4/en
Publication of JP2021168553A publication Critical patent/JP2021168553A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/001Emergency protective circuit arrangements for limiting excess current or voltage without disconnection limiting speed of change of electric quantities, e.g. soft switching on or off
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/001Hot plugging or unplugging of load or power modules to or from power distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0025Sequential battery discharge in systems with a plurality of batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/04Arrangements for preventing response to transient abnormal conditions, e.g. to lightning or to short duration over voltage or oscillations; Damping the influence of dc component by short circuits in ac networks
    • H02H1/043Arrangements for preventing response to transient abnormal conditions, e.g. to lightning or to short duration over voltage or oscillations; Damping the influence of dc component by short circuits in ac networks to inrush currents
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/16Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

【課題】電力供給補助をするためのキャパシタの初期充電時の過大電流を良好に防止する。【解決手段】負荷に電源ラインを介して電源を接続し、電源ラインに電力供給補助をするためのキャパシタを第1のスイッチを介して接続し、キャパシタは電源を入力とするスイッチング電源の間欠駆動にて電流制限を掛けながら充電される構成を持つ電源系統を制御する制御部を備える。制御部は、スイッチング電源の出力電圧が電源ラインの電圧と同じくなるように制御し、キャパシタの充電が完了した後に第1のスイッチをオフからオンに制御して、電源ラインにキャパシタを接続する。【選択図】図2

Description

本技術は、制御装置および制御方法に関し、詳しくは、電力供給補助を行うためのキャパシタを電源ラインに接続して用いる電源系統を制御する制御装置等に関する。
例えば、力強い動作を行うロボットにおいては、バッテリの瞬間的な電力供給能力が不足する場合がある。瞬間的な電力供給能力の不足をバッテリ単独で解決する場合、一般的にバッテリの大型化と劣化特性の悪化を引き起こす傾向がある。ここで、劣化特性の悪化は、メンテナンスコストの増加の問題を生む。移動ロボットにおいて、バッテリの大型化は、機体サイズの大型化、機体重量の増加、さらには機体重量の増加に伴う消費電力増加(動作時間の減少)、という問題を生む。
機体サイズの大型化や機体重量の増加を抑えるため瞬間的な電力出力特性の優れた大容量のキャパシタ、例えばEDLC(Electric Double Layer Capacitor:電気二重層キャパシタ)をバッテリと並列に接続した電力供給補助回路を構成することで、バッテリの電力供給を補助する手法が用いられる場合がある。この手法では、負荷がモーターで回生エネルギーが還ってくる場合に、電源ラインとキャパシタが直接接続されているがゆえに、キャパシタで回生エネルギーを回収できるという利点もある。
しかし、そのような電力供給補助回路を構成する場合、キャパシタを電源ラインと直接接続する際のキャパシタ−電源ライン間の電位差に応じた突入電流がしばしば問題となる。具体的には、キャパシタが大容量ゆえに、電源ラインと直接接続すると大きな突入電流(キャパシタ充電電流)が流れ、火花の発生や回路素子の破壊、電源の過電流検出によるシステム全体の瞬断・誤動作などの問題が生じる場合がある。
例えば、特許文献1には、電流制限をする抵抗を用いてキャパシタの初期充電時の過大電流を防止することが開示されている。この場合、抵抗を介して電源ラインとキャパシタを接続するものであり、突入電流を抑制しつつ、電圧レベルも揃えることが可能となる。
特開2008−118828号公報
電流制限をする抵抗を用いてキャパシタの初期充電時の過大電流を防止する技術にあっては、ロボット向けの高電圧・大容量用途では、抵抗で大きな熱損失が発生するため、許容損失定格の大きな抵抗を用いることとなり、抵抗素子が大型化してしまう欠点がある。また、アプリケーションによっては抵抗の冷却機構が必要となり、機体の更なる大型化を招く場合がある。加えて、抵抗を用いた充電は、キャパシタの充電が進むにつれ、充電電流が絞られてくるため、充電時間が長いという欠点もある。
本技術の目的は、電力供給補助をするためのキャパシタの初期充電時の過大電流を良好に防止することにある。
本技術の概念は、
負荷に電源ラインを介して電源が接続され、前記電源ラインに電力供給補助をするためのキャパシタが第1のスイッチを介して接続され、前記キャパシタは前記電源を入力とするスイッチング電源の間欠駆動にて電流制限を掛けながら充電される構成を持つ電源系統を制御する制御部を備え、
前記制御部は、前記スイッチング電源の出力電圧が前記電源ラインの電圧と同じくなるように制御し、前記キャパシタの充電が完了した後に前記第1のスイッチをオフからオンに制御する
制御装置にある。
本技術においては、負荷に電源ラインを介して電源が接続され、電源ラインに電力供給補助をするためのキャパシタが第1のスイッチを介して接続され、キャパシタは電源を入力とするスイッチング電源の間欠駆動にて電流制限を掛けながら充電される構成を持つ電源系統を制御する制御部を備えるものである。例えば、電源はバッテリであってもよい。また、例えば、キャパシタは、EDLC(Electric Double Layer Capacitor)であってもよい。また、例えば、負荷は、ロボットを構成するモーターを含んでもよい。制御部により、スイッチング電源の出力電圧が電源ラインの電圧と同じくなるように制御され、キャパシタの充電が完了した後に第1のスイッチはオフからオンに制御される。
このように本技術においては、電源を入力とするスイッチング電源の間欠駆動にて電流制限を掛けながらキャパシタを充電するものであり、電流制限をする抵抗を用いる手法と異なり、大幅に熱損失を低減でき、それにより、充電回路の冷却機構が不要もしくは小型軽量で済むため、ロボットの小型軽量・動作時間延長が可能となる。また、本技術においては、電流制限をする抵抗を用いる手法と異なり、充電が進んでも電流が絞られることが無いため、充電時間を大幅に短縮できる。
また、本技術においては、スイッチング電源の出力電圧を電源ラインの電圧と同じくなるように制御し、キャパシタの充電が完了した後に第1のスイッチをオフからオンに制御するものであり、充電完了後にキャパシタを電源ラインに接続する際の電位差に応じた突入電流の発生を抑制でき、キャパシタを電源ラインに安全に接続でき、また、負荷で発生する回生エネルギーを良好に回収できる。
なお、本技術において、例えば、電源系統は、スイッチング電源とキャパシタの間に第2のスイッチを有し、制御部は、スイッチング電源によるキャパシタの充電を開始するとき、第2のスイッチをオフからオンに制御し、キャパシタの充電が完了したとき、第2のスイッチをオンからオフに制御してもよい。これにより、スイッチング電源によるキャパシタの充電を開始するとき、スイッチング電源をキャパシタに接続して充電を始めることができ、一方、キャパシタの充電が完了したとき、キャパシタをスイッチング電源から切り離して、キャパシタからスイッチング電源への逆流を防止できる。
この場合、例えば、制御部は、スイッチング電源によるキャパシタの充電を開始するとき、第2のスイッチをオフからオンに制御した後に、スイッチング電源の出力をオフからオンに制御してもよい。これにより、第2のスイッチにストレスが掛かってダメージを与えることを防止できる。また、この場合、例えば、制御部は、キャパシタの充電が完了したとき、第2のスイッチをオンからオフに制御した後に、スイッチング電源の出力をオンからオフに制御してもよい。これにより、キャパシタからスイッチング電源への逆流を確実に防止できる。
また、例えば、電源系統は、電源ラインの電圧を検出する第1の電圧検出部を有し、制御部は、第1の電圧検出部の検出結果に基づいてスイッチング電源の出力電圧が電源ラインの電圧と同じくなるように制御してもよい。この場合、例えば、電源系統は、スイッチング電源のフィードバックラインに電流を入出力する電流コンバータを有し、制御部は、第1の電圧検出部の検出結果に基づいて第1のスイッチング電源のフィードバックラインの電流操作量を計算し、電流コンバータに電流操作量をフィードバックラインに入出力するように指示してもよい。これにより、スイッチング電源の出力電圧を電源ラインの電圧と同じくなるように適切に制御できる。
また、本技術において、例えば、電源系統は、キャパシタの充電電圧を検出する第2の電圧検出部を有し、制御部は、第2の電圧検出部の検出結果に基づいてキャパシタの充電が完了したことを判断してもよい。これにより、キャパシタの充電完了をより精度よく判断できる。
また、本技術において、例えば、電源系統は、電源ラインとスイッチング電源の間に第3のスイッチを有し、制御部は、スイッチング電源によるキャパシタの充電を開始するとき、第3のスイッチをオフからオンに制御し、キャパシタの充電が完了したとき、第3のスイッチをオンからオフに制御してもよい。これにより、スイッチング電源によるキャパシタの充電を開始するとき、スイッチング電源に電源ラインから電源を入力でき、一方、キャパシタの充電が完了したとき、スイッチング電源から電源ラインを切り離すことができる。
また、本技術において、例えば、電源系統は、電源ラインに電源として第1の電源が接続された状態から電源ラインに電源として第2の電源が接続された状態、あるいは前記第1の電源および前記第2の電源が並列的に接続された状態に切り換えるホットスワップを行うホットスワップ回路を有し、制御部は、ホットスワップ回路でホットスワップを行うとき、第1のスイッチをオンからオフに制御した後に、ホットスワップ回路がホットスワップを実際に行うように制御すると共に、キャパシタをスイッチング電源の間欠駆動にて電流制限を掛けながら充電するように制御し、キャパシタの充電が完了した後に、第1のスイッチをオフからオンに制御してもよい。これにより、ホットスワップを行った場合に、電源ラインからキャパシタに電位差に応じた突入電流(キャパシタ充電電流)が流れることを防止できる。
また、本技術において、制御部は、負荷がキャパシタによる電力供給補助を不要とするとき、第1のスイッチをオンからオフに制御し、負荷がキャパシタによる電力供給補助を必要とするとき、キャパシタをスイッチング電源の間欠駆動にて電流制限を掛けながら充電するように制御すると共に、キャパシタの充電が完了した後に、第1のスイッチをオフからオンに制御してもよい。これにより、電力供給補助が不要なタイミングでのキャパシタ充電状態を回避でき、キャパシタのリークによる電力損失の低減と、キャパシタ自体の寿命の延長が可能となる。
また、本技術において、電源系統は、電源を電源ラインに接続する第4のスイッチと、キャパシタの電荷を放電するディスチャージ回路を有し、制御部は、負荷に異常が発生したとき、第4のスイッチをオンからオフに制御し、第1のスイッチをオンからオフに制御し、ディスチャージ回路でキャパシタの電荷を放電するように制御してもよい。これにより、負荷、例えばロボットに何らかの異常が発生した場合の安全性を確保でき、キャパシタの充電状態が意図せず維持されることによるキャパシタの寿命低下を回避できる。
この場合、例えば、制御部には電源ラインを介した電源からの電力とキャパシタからの電力が並列供給されてもよい。これにより、電源が電源ラインから分離されて電源喪失の状態になっても、制御部はキャパシタからの電力によりディスチャージ回路を作動させることができ、キャパシタの電荷を安全に放電させることができる。
電源系統に電力供給補助をするためのキャパシタを有する電源システムの概要を示す図である。 第1の実施の形態としての電源システムの構成例を示すブロック図である。 電源システムの動作の一例を示すフローチャートである。 キャパシタの充電をDC−DCコンバータの間欠駆動にて電流制限を掛けながら行った場合(第1の手法)と電流制限をする抵抗を用いて行った場合(第2の手法)における電力損失、充電電流、充電電圧の推移を比較して示す図である。 第2の実施の形態としての電源システムの構成例を示すブロック図である。 電源システムの動作の一例を示すフローチャートである。 第3の実施の形態としての電源システムの構成例を示すブロック図である。 電源システムの動作の一例を示すフローチャートである。 第4の実施の形態としての電源システムの構成例を示すブロック図である。 MCUの動作電力として電源ラインを介したバッテリからの電力とキャパシタからの電力を並列供給することを示す図である。 電源システムの動作の一例を示すフローチャートである。
以下、発明を実施するための形態(以下、「実施の形態」とする)について説明する。なお、説明を以下の順序で行う。
1.第1の実施の形態
2.第2の実施の形態
3.第3の実施の形態
4.第3の実施の形態
5.変形例
<1.第1の実施の形態>
「電力供給補助をするためのキャパシタを有する電源システムの概要」
図1は、電源系統に電力供給補助をするためのキャパシタを有する電源システムの概要を示している。負荷に、電源ラインを介して、電源としてのバッテリが接続されている。負荷は、例えば、ロボットを構成するモーターを含むものである。電源ラインに、電力供給補助をするためのキャパシタが接続されている。このキャパシタは大容量のもので、ここではEDLC(Electric Double Layer Capacitor)とされている。
この電源システムにおいては、負荷が要求する電力が瞬間的に大きくなる場合、キャパシタから優先的に負荷に電力が供給される。図示の例において、矢印の太さは、負荷が要求する電力が瞬間的に大きくなった場合において、それぞれのラインに流れる電流量を模式的に示している。このように、電源系統に電力供給補助をするためのキャパシタを持つことで、バッテリの大型化を回避して、例えばロボットにおける機体サイズの大型化や機体重量の増加を回避することが可能となる。
「電源システムの構成例」
図2は、第1の実施の形態としての電源システム10Aの構成例を示している。この電源システム10Aは、バッテリ101と、電源ライン102と、キャパシタ(EDLC)103と、負荷104と、充電側FETスイッチ(充電側FET SW3)105と、放電側FETスイッチ(放電側FET SW1)106と、DC−DCコンバータ107と、電圧検出器108と、電流コンバータ109と、制御部を構成するMCU(Micro Controller Unit)110と、電圧検出器111と、スイッチング電源出力側FETスイッチ(SW電源出力側FET SW2)112と、電力供給FETスイッチ(電力供給FET SW4)113を有している。
バッテリ101は、電源ライン102を介して負荷104に接続されており、負荷104に電力を供給する。この実施の形態において、バッテリ101は、ロボットのメイン電源を構成している。移動ロボットの場合は、電源としてバッテリが用いられる場合が多い。バッテリの供給能力には制限があり、供給能力が高いバッテリは大型化する傾向がある。電力供給FETスイッチ113は、バッテリ101を電源ライン102に接続するためのスイッチである。
キャパシタ103は、バッテリ101に並列接続されることで、負荷104への電力供給を補助する蓄電デバイスである。このキャパシタ103は、放電側FETスイッチ106を介して、電源ライン102に接続されている。この実施の形態において、キャパシタ103は、EDLC((Electric Double Layer Capacitor:電気二重層キャパシタ)である。
EDLCは、バッテリ比では容量は小さいが、従来のキャパシタ(アルミ電解コンデンサ等)比では飛躍的に容量が大きなキャパシタである。また、EDLCは、バッテリ比では電力供給能力が高く、ロボットの瞬間的な大電力を補助するのに最適なデバイスである。一般的に、EDLCは、ロボットの電源電圧に応じて複数が直列接続され(モジュールとしての高耐圧化)、また、ロボットの瞬間的な大電力に応じて複数が並列接続されて用いられる(モジュールとしての容量・供給能力向上)。
負荷104は、ここでは、ロボットを動作させるために必要な電力消費を伴うデバイスであり、CPU(Central Processing Unit)やモーターなどである。ロボットでは負荷の中で最も電力消費が大きいデバイスはモーターであることが多い。負荷104がモーターの場合、ロボットが力強い動作を行う際に瞬間的に大電力が必要となる傾向がある。
また、負荷104がモーターの場合、このモーターが回生動作した場合にモーター側(負荷側)から回生エネルギーが電源ライン102に還ってくる(逆流する)場合がある。なお、バッテリ101とキャパシタ103を比較した場合、瞬間的な電力の出し入れの機能はキャパシタ103の方が優れている。そのため、電源ライン102に回生エネルギーが還ってくる場合には、バッテリ101に比べてキャパシタ103の方が吸収し易い。
充電側FETスイッチ105は、キャパシタ103の充電ラインの導通を制御するスイッチである。この充電側FETスイッチ105は、電源ライン102とDC−DCコンバータ107の間に介在されている。
DC−DCコンバータ107によるキャパシタ103の充電を開始するとき、この充電側FETスイッチ105はオフからオンとされ、DC−DCコンバータ107に電源ライン102から電源電圧が入力される。また、キャパシタ103の充電が完了したとき、この充電側FETスイッチ105はオンからオフとされ、電源ライン102はDC−DCコンバータ107から切り離される。
このスイッチは、メカスイッチでも構わないが、一般的にFETを用いた電子スイッチが用いられる。なお、DC−DCコンバータ107のオン/オフで充電ラインの導通を制御できる場合は、この充電側FETスイッチ105を省略できる。
放電側FETスイッチ106は、キャパシタ103の放電ラインの導通を制御するスイッチである。この放電側FETスイッチ106は、キャパシタ103と電源ライン102の間に介在されている。このスイッチは、メカスイッチでもよい場合はあるが、電源ライン102に緩やかに接続すること、いわゆるソフトオンが求められる場合が多く、オフからオンの遷移時間をコントロールしやすいFETスイッチが好ましい。キャパシタ103の充電電圧と電源ライン102の電圧との間に電位差があった場合に、その電位差とつながったときに流れる電流によって電力損失が発生して、放電側FETスイッチ106にストレスを与えることになるが、ソフトオンによりそのストレスを抑制することが可能となる。
また、放電側FETスイッチ106には、キャパシタ103による電力供給補助性能を最大限引き出すため、低インピーダンスであることが求められる。さらに、負荷104がモーターである場合の回生エネルギー回収の観点から、オン時は双方向の電流を流せる必要がある。つまり、ダイオードなどを用いた整流要素で代用することは、回生エネルギー回収が不可となるため望ましくない。この放電側FETスイッチ106が無いと、放電ライン経由でキャパシタ103への充電電流(突入電流)が発生してしまうため、この放電側FETスイッチ106は必要である。
DC−DCコンバータ107は、キャパシタ103を充電するためのスイッチング電源を構成している。このDC−DCコンバータ107は、出力電流に制限をかけることができる。キャパシタ103は、このDC−DCコンバータ107の間欠駆動にて電流制限を掛けながら充電される。
電圧検出器108は、電源ライン102の電圧、つまりバッテリ101の電圧(バッテリ_Vout)を検出し、その検出結果(検出値)をMCU110に送る。電流コンバータ109は、MCU110からの指令値による指示に従い、DC−DCコンバータ107の図示しないフィードバックラインに電流(電流操作量)を入出力する。これにより、DC−DCコンバータ107のフィードバックラインの電流が調整され、DC−DCコンバータ107の出力電圧は、電源ライン102の電圧と同じくなるように調整される。これにより、DC−DCコンバータ107の出力電圧は電源ライン102の電圧と同じくなるように適切に制御される。
この場合、電圧検出器108と、MCU110と、電流コンバータ109により、DC−DCコンバータ107の出力電圧の調整回路群が構成されている。なお、DC−DCコンバータ107自体に、この調整回路群の機能を持たせてもよい。その場合には、電圧検出器108および電流コンバータ109は、不要となる。
MCU110は、電圧検出器108から検出結果(検出値)を受け取り、その検出結果に基づいて、DC−DCコンバータ107の出力電圧を電源ライン102の電圧と同じくなるように調整するために必要な電流操作量を計算する。そして、MCU110は、電流コンバータ109に、その電流操作量をDC−DCコンバータ107のフィードバックラインに入出力するように指示するための指令値を送る。
また、MCU110は、電源システム10Aを構成する各FETスイッチのオン・オフ、DC−DCコンバータ107の起動・停止、キャパシタ103の充電・放電レベル等の監視・管理を行う。
電圧検出器111は、キャパシタ103の充電電圧(EDLC_Vout)を検出し、その検出結果(検出値)をMCU110に送る。MCU110は、例えば、キャパシタ103の充電完了を充電開始からの時間によって判断することも可能であるが、電圧検出器111からの検出結果に基づくことで、キャパシタ103の充電完了をより精度よく判断できる。
スイッチング電源出力側FETスイッチ112は、キャパシタ103からDC−DCコンバータ107へ電流が逆流することを防止するためのスイッチである。このスイッチング電源出力側FETスイッチ112は、DC−DCコンバータ107とキャパシタ103の間に介在されている。
DC−DCコンバータ107によるキャパシタの充電を開始するとき、スイッチング電源出力側FETスイッチ112はオフからオンとされ、DC−DCコンバータ107がキャパシタ103に接続されて充電が始められる。また、キャパシタ103の充電が完了したとき、スイッチング電源出力側FETスイッチ112はオンからオフとされ、キャパシタ103はDC−DCコンバータ107から切り離され、キャパシタ103からDC−DCコンバータ107への逆流が防止される。
この場合、DC−DCコンバータ107によるキャパシタ103の充電を開始するとき、スイッチング電源出力側FETスイッチ112がオフからオンとされた後、DC−DCコンバータ107の出力がオフからオンとされる。これにより、スイッチング電源出力側FETスイッチ112にストレスが掛かってダメージを与えることが防止される。また、この場合、キャパシタ103の充電が完了したとき、スイッチング電源出力側FETスイッチ112がオンからオフとされた後、DC−DCコンバータ107の出力がオンからオフとされる。これにより、キャパシタ103からDC−DCコンバータ107への逆流が確実に防止される。
図3のフローチャートは、図2の電源システム10Aの動作の一例を示している。まず、ステップS1において、各FETスイッチの初期状態はオフとされている。次に、ステップS2において、電力供給FETスイッチ113がオフからオンとされ、バッテリ101からの電力供給が開始される。この場合、バッテリ101の仕様、充電レベルに応じて、電源ライン102の電圧(バッテリ_Vout)は異なる。
次に、ステップS3において、充電側FETスイッチ105は、オフからオンにされる。この場合、DC−DCコンバータ107に、電源ライン102から電源電圧が入力される。次に、ステップS4において、DC−DCコンバータ107が起動される。この時点では、DC−DCコンバータ107は、スイッチングを開始しておらず、出力オフとなっている。
次に、ステップS5において、電圧検出器108で、電源ライン102の電圧が検出される。この検出結果(検出値)はMCU110に送られる。次に、ステップS6において、MCU110で、電源ライン102の電圧の検出結果に基づいて、DC−DCコンバータ107の出力電圧を電源ライン102の電圧と同じくするための、DC−DCコンバータ107のフィードバックラインの電流操作量が計算される。この場合、計算式は、DC−DCコンバータ107のフィードバック仕様によって変わる。
次に、ステップS7において、MCU110から電流コンバータ109に、計算された電流操作量をDC−DCコンバータ107のフィードバックラインに入出力するように指示するための指令値が送られる。次に、ステップS8において、電流コンバータ109では、DC−DCコンバータ109のフィードバックラインに電流(電流操作量)を入出力することが実現される。これにより、DC−DCコンバータ107は、その出力電圧が電源ライン102の電圧と同じくなるように調整される。
次に、ステップS9において、スイッチ電源出力側スイッチ112は、オフからオンとされる。この場合、DC−DCコンバータ107は、キャパシタ103に接続される。次に、ステップS10において、DC−DCコンバータ107は、出力オンとされる。そして、ステップS11において、キャパシタ103では、充電が開始される。このように、キャパシタ103の充電を開始するとき、スイッチング電源出力側FETスイッチ112がオフからオンとなった後、DC−DCコンバータ107が出力オンとなることから、スイッチング電源出力側FETスイッチ112にストレスが掛かってダメージを与えることが防止される。
次に、ステップST12において、MCU110で、キャパシタ103の充電電圧(EDLC_Vout)が監視される。この場合、キャパシタ103の充電電圧(EDLC_Vout)が電圧検出器111で検出され、その検出結果(検出値)がMCU110に送られる。そして、ステップS13において、MCU110では、充電が完了したか否かが判断される。この場合、キャパシタ103の充電電圧(EDLC_Vout)が電源ライン102の電圧(バッテリ_Vout)と略等しくなるとき、例えばキャパシタ103の充電電圧が電源ライン102の電圧の95%に到達したとき、充電が完了したと判断される。
充電が完了していないと判断されるとき、ステップS12に戻って、キャパシタ103の充電が継続される。一方、充電が完了したと判断されるとき、ステップS14に進む。このステップS14において、スイッチング電源出力側FETスイッチ112は、オンからオフとされる。これにより、キャパシタ103はDC−DCコンバータ107から切り離され、キャパシタ103からDC−DCコンバータ107への逆流が防止される。
次に、ステップS15において、DC−DCコンバータ107は、停止状態とされる。ここで、停止状態とは、出力オフの状態、あるいは起動前の状態を意味する。このように、スイッチング電源出力側FETスイッチ112がオンからオフとされた後、DC−DCコンバータ107が停止状態とされることで、キャパシタ103からDC−DCコンバータ107への逆流は確実に防止される。つまり、DC−DCコンバータ107によっては停止状態で出力側から電流を吸い込むものがあり、そのようなDC−DCコンバータ107を使用する場合には、DC−DCコンバータ107を停止状態とする前に、キャパシタ103をDC−DCコンバータ107から切り離すことが必要となる。
次に、ステップS16において、充電側FETスイッチ105は、オンからオフとされる。これにより、DC−DCコンバータ107が電源ライン102から切り離され、充電側回路の切り離しが完了する。次に、ステップS17において、放電側FETスイッチ106は、オフからオンとされる。これにより、キャパシタ103は、電源ライン102に接続される。
次に、ステップS18において、キャパシタ103は放電開始状態(電力供給可能状態)となる。これにより、バッテリ101およびキャパシタ103の両方から負荷104へ電力供給が可能となる。また、負荷104がモーターで、回生エネルギーが還ってきた場合は、キャパシタ103で回生エネルギーを回収可能となる。
上述したように、図2に示す電源システム10Aにおいては、バッテリ101を入力とするDC−DCコンバータ107の間欠駆動にて電流制限を掛けながらキャパシタ103を充電するものである。そのため、電流制限をする抵抗を用いる手法と異なり、大幅に熱損失を低減でき、それにより、充電回路の冷却機構が不要もしくは小型軽量で済むため、ロボットの小型軽量・動作時間延長が可能となる。電流制限をする抵抗を用いる手法と異なり、充電が進んでも電流が絞られることが無いため、充電時間を大幅に短縮できる。
図4(a)には、キャパシタの充電を、本技術のようにDC−DCコンバータ107の間欠駆動にて電流制限を掛けながら行った場合(第1の手法)と電流制限をする抵抗を用いて行った場合(第2の手法)における電力損失の推移例を示している。第2の手法の場合、充電開始直後には大きな充電電流が抵抗を介して流れることから大きな電力損失が発生し、その後はキャパシタの充電電流はキャパシタの充電に伴って小さくなっていくことから、電力損失も小さくなっていく。これに対して、第1の手法の場合、電力損失は充電開始直後から小さいままで推移する。
また、図4(b)には、第1の手法と第2の手法における充電電流と充電電圧の推移例を示している。第2の手法の場合、充電電流は、充電開始直後に大きくなり、その後は充電が進むにつれて絞られていき、充電電圧は、充電開始直後から徐々に上昇していくが、その後は充電が進むにつれて充電電流が絞られていくことから、充電完了までの時間は長くなる。これに対して、第1の手法の場合、充電電流は、充電開始直後に大きくなってその状態が続き、充電電圧は、充電開始から線形的に上昇していき、比較的短時間で充電が完了する。
また、図2に示す電源システム10Aにおいては、DC−DCコンバータ107の出力電圧を電源ライン102の電圧と同じくなるように制御し、キャパシタ103の充電が完了した後に放電側FETスイッチ106をオフからオンに制御するものである。そのため、充電完了後にキャパシタ103を電源ライン102に接続する際の電位差に応じた突入電流の発生を抑制でき、キャパシタ103を電源ライン102に安全に接続でき、また、負荷104で発生する回生エネルギーを良好に回収できる。
また、図2に示す電源システム10Aにおいては、DC−DCコンバータ107とキャパシタ103の間にスイッチング電源出力側FETスイッチ112を有し、DC−DCコンバータ107によるキャパシタ103の充電を開始するとき、スイッチング電源出力側FETスイッチ112をオフからオンに制御し、キャパシタ103の充電が完了したとき、スイッチング電源出力側FETスイッチ112をオンからオフに制御するものである。そのため、DC−DCコンバータ107によるキャパシタ103の充電を開始するとき、DC−DCコンバータ107をキャパシタ103に接続して充電を始めることができ、一方、キャパシタ103の充電が完了したとき、キャパシタ103をDC−DCコンバータ107から切り離して、キャパシタ103からDC−DCコンバータ107への逆流を防止できる。
また、図2に示す電源システム10Aにおいては、DC−DCコンバータ107によるキャパシタ103の充電を開始するとき、スイッチング電源出力側FETスイッチ112をオフからオンに制御した後に、DC−DCコンバータ107の出力をオフからオンに制御するものである。そのため、スイッチング電源出力側FETスイッチ112にストレスが掛かってダメージを与えることを防止できる。
また、図2に示す電源システム10Aにおいては、キャパシタ103の充電が完了したとき、スイッチング電源出力側FETスイッチ112をオンからオフに制御した後に、DC−DCコンバータ107の出力をオンからオフに制御するものである。そのため、キャパシタ103からDC−DCコンバータ107への逆流を確実に防止できる。
また、図2に示す電源システム10Aにおいては、電源ライン102の電圧を検出する電圧検出器108を有し、この電圧検出器108の検出結果に基づいてDC−DCコンバータ107の出力電圧が電源ライン102の電圧と同じくなるように制御するものである。そのため、DC−DCコンバータ107の出力電圧を電源ライン102の電圧と同じくなるように適切に制御できる。
また、図2に示す電源システム10Aにおいては、キャパシタ103の充電電圧を検出する電圧検出器111を有し、この電圧検出器111の検出結果に基づいてキャパシタ103の充電が完了したことを判断するものである。そのため、キャパシタ103の充電完了をより精度よく判断できる。
また、図2に示す電源システム10Aにおいては、電源ライン102とDC−DCコンバータ107の間に充電側FETスイッチ105を有し、DC−DCコンバータ107によるキャパシタ103の充電を開始するとき、充電側FETスイッチ105をオフからオンに制御し、キャパシタ103の充電が完了したとき、充電側FETスイッチ105をオンからオフに制御するものである。そのため、DC−DCコンバータ107によるキャパシタ103の充電を開始するとき、DC−DCコンバータ107に電源ライン102から電源を入力でき、一方、キャパシタ103の充電が完了したとき、DC−DCコンバータ107から電源ライン102を切り離すことができる。
<2.第2の実施の形態>
バッテリで動作するロボットは継続動作時間による運用の制約を受けるため、継続動作時間を延長する手法として、通電状態を維持したままバッテリを交換するホットスワップ(Hot swap)を行う場合がある。なお、ホットスワップは、活線挿抜、あるいは活線挿入とも言われる。
ホットスワップを行う際に、電源ラインの電圧は、残量低下したバッテリの低電圧から、満充電されたバッテリの高電圧へ上昇することになる。バッテリ交換前のキャパシタは残量低下したバッテリと同じ電圧の電源ラインに接続されているため、キャパシタの電圧も低電圧となっている。その状態で満充電されたバッテリが電源ラインに接続された場合、電位差に応じた突入電流が発生する。そのため、ホットスワップを行うことを検出した場合、満充電されたバッテリの電圧レベルに応じて、再度キャパシタ充電を実施する必要がある。
「電源システムの構成例」
図5は、第2の実施の形態としての電源システム10Bの構成例を示している。この図5において、図2と対応する部分には同一符号を付し、適宜、その詳細説明は省略する。電源ライン102には、ホットスワップ回路121を介して、バッテリ101-1と、バッテリ101-2が接続されている。その他の構成は、図2に示す電源システム10Aと同様である。
バッテリ101-1は、残量低下したバッテリであり、取り替えられる側のバッテリである。バッテリ101-2は、満充電されたバッテリであり、取り換える側のバッテリである。
ホットスワップ回路121は、バッテリ101-1とバッテリ101-2の充電レベルを比較し、通電を維持したまま、つまり負荷104への電力供給を維持したまま、接続バッテリを切り替える回路である。ホットスワップ回路121を通じてバッテリ101-1から負荷104への電力供給が維持されている状態でこのホットスワップ回路121にバッテリ101-2が接続されるとき、自動的にあるいはユーザの操作に応じて、ホットスワップ回路121はホットスワップ(接続バッテリの切り替え動作)をする。
この場合、バッテリ101-2のみが接続された状態に切り替えられるか、あるいはバッテリ101-1およびバッテリ101-2が並列的に接続された状態に切り替えられる。いずれの場合も、電源ライン102の電圧(バッテリ_Vout)は、バッテリ101-1のみが接続されていた状態から変化する。
この電源システム10Bにおいては、MCU110は、ホットスワップ回路121を監視し、ホットスワップ回路121がホットスワップを行おうとする場合、放電側FETスイッチ106をオンからオフに制御し、その後に、ホットスワップ回路121が実際にホットスワップを行うように制御すると共に、電源ライン102の変化後の電圧に基づいてキャパシタ103が再充電された後に放電側FETスイッチ106をオフからオンに制御する。
これにより、ホットスワップ回路121でホットスワップが行われるとき電源ライン102の電圧(バッテリ_Vout)は急に変化するが、電源ライン102からキャパシタ103に大きな突入電流(キャパシタ突入電流)が流れることを防止でき、火花の発生や回路素子の破壊、電源の過電流検出によるシステム全体の瞬断・誤動作などの問題が生じることを回避できる。
図6のフローチャートは、図5の電源システム10Bの動作の一例を示している。この図6において、図3のフローチャートと対応するステップには同一符号を付し、適宜、その詳細説明は省略する。
ステップS18でキャパシタ103が放電開始状態(電力供給可能状態)となった後、ステップS19において、MCU110は、ホットスワップ回路121がホットスワップを行うか否かを判断する。ホットスワップを行わないと判断するとき、ステップS18に戻り、キャパシタ103の放電開始状態(電力供給可能状態)が維持される。
一方、ホットスワップを行うと判断するとき、ステップS20において、放電側FETスイッチ106はオンからオフとされ、ホットスワップに伴う電源ライン102の電圧変化に備え、キャパシタ103は電源ライン102から切り離される。その後に、ステップS2の処理に戻る。
このステップS2では、ホットスワップ回路121で実際にホットスワップが行われ、電源ライン102にバッテリ101-1のみが接続された状態から、電源ライン102にバッテリ101-2のみが接続された状態、あるいは電源ライン102にバッテリ101-1およびバッテリ101-2が並列的に接続された状態に切り替えられて、電力供給が開始される。なお、図5に示す電源システム10Bの場合、ステップS1の後のステップS2においては、ホットスワップ回路121でバッテリ101−1が電源ライン102に接続され、バッテリ101からの電力供給が開始される。
このステップS2でホットスワップが行われた後は、図3のフローチャートで説明したと同様の処理が行われる。すなわち、キャパシタ103にホットスワップ後の電源ライン102の電圧に応じた充電が行われ、充電完了後、放電側FETスイッチ106はオフからオンとされてキャパシタ103が電源ライン102に接続され(ステップS17)、キャパシタ103は放電開始状態(電力供給可能状態)となる(ステップS18)。
図5に示す電源システム10Bにおいては、図2に示す電源システム10Aと同様の効果を得ることができる。また、図5に示す電源システム10Bにおいては、ホットスワップを行った場合に、電源ライン102からキャパシタ103に電位差に応じた突入電流(キャパシタ充電電流)が流れることを防止でき、火花の発生や回路素子の破壊、電源の過電流検出によるシステム全体の瞬断・誤動作などの問題が生じることを回避できる。
<3.第3の実施の形態>
キャパシタによる電力供給補助が、ロボットの動作において常時必要であるとは限らない。ロボットの動作を司る上位CPUにてロボットの駆動計画情報から算出した電力供給補助が必要となるタイミングに応じて、キャパシタの充電・放電を行う。これにより、電力供給補助が不要なタイミングでのキャパシタ充電状態を回避でき、キャパシタのリークによる電力損失の低減と、キャパシタ自体の寿命の延長が可能となる。
「電源システムの構成例」
図7は、第3の実施の形態としての電源システム10Cの構成例を示している。この図7において、図2と対応する部分には同一符号を付し、適宜、その詳細説明は省略する。
上位CPU122は、ロボットの制御を行うメインCPUであって、ロボットの各アクチュエータをどのように駆動するかを決定する。上位CPU122は、駆動計画から必要な電力を予測し、電力供給補助が必要となるタイミングや電力供給補助が不要となるタイミングを算出する。そして、上位CPU122は、電力供給補助が必要となるタイミングや電力供給補助が不要となるタイミングであることをMCU110に通知する。MCU110は、そのタイミング通知に応じて、キャパシタ103の充放電制御をする。その他の構成は、図2に示す電源システム10Aと同様である。
図8のフローチャートは、図7の電源システム10Cの動作の一例を示している。この図8において、図3のフローチャートと対応するステップには同一符号を付し、適宜、その詳細説明は省略する。
ステップST2でバッテリ101からの電力供給を開始した後、ステップS21において、MCU110は、上位CPU122から電力供給補助が必要となるタイミングであることの通知があるか否かを判断する。通知がないと判断するとき、ステップS2の処理に戻り、バッテリ101-1単独での電力供給が継続される。
一方、通知があると判断するとき、ステップS3の処理に進み、図3のフローチャートで説明したと同様の処理が行われる。すなわち、キャパシタ103に電源ライン102の電圧に応じた充電が行われ、充電完了後、放電側FETスイッチ106はオフからオンとされてキャパシタ103が電源ライン102に接続され(ステップS17)、キャパシタ103は放電開始状態(電力供給可能状態)となる(ステップS18)。
また、ステップS18でキャパシタ103が放電可能状態(電力供給可能状態)となった後、ステップS22において、MCU110は、上位CPU122から電力供給補助が不要となるタイミングであることの通知があるか否かを判断する。通知がないと判断するとき、ステップS18に戻り、キャパシタ103の電力供給可能状態(放電開始状態)が維持される。
一方、通知があると判断するとき、ステップS23において、放電側FETスイッチ106はオンからオフとされ、キャパシタ103は電源ライン102から切り離される。その後に、ステップS21の処理に戻る。
図7に示す電源システム10Cにおいては、図2に示す電源システム10Aと同様の効果を得ることができる。また、図7に示す電源システム10Cにおいては、電力供給補助が不要なタイミングでのキャパシタ充電状態を回避でき、キャパシタ103のリークによる電力損失の低減と、キャパシタ103自体の寿命の延長が可能となる。
<4.第4の実施の形態>
ロボットに何らかの異常が発生し、バッテリなどの出力が停止してしまった場合、通常であればマイコン等を動作させるための電力源が失われる(電源喪失)。その場合、ロボットは異常動作で停止しているにも関わらず、キャパシタはチャージされた状態で放置されるため、安全性の課題と、充電状態が意図せず維持されることによるキャパシタの寿命低下の課題が発生する。
ロボットに何らかの異常が発生した場合、キャパシタの電荷を放電することで、安全性の課題とキャパシタ寿命低下の課題を解決できる。また、この場合、MCUの動作電力として、メイン電源(バッテリ)からの電力とキャパシタからの電力を並列供給することで、メイン電源が喪失した際も、キャパシタ自らに蓄えられた電力によってMCUを動作させ、ディスチャージ回路等を作動させることが可能となる。
「電源システムの構成例」
図9は、第4の実施の形態としての電源システム10Dの構成例を示している。この図9において、図2と対応する部分には同一符号を付し、適宜、その詳細説明は省略する。
ディスチャージ回路123は、キャパシタ103の電荷を放電するための回路であり、MCU110によって制御される。このディスチャージ回路123は、放電ラインに接続されている。また、MCU110の動作電力として、図10に示すように、電源ライン102を介したバッテリ101からの電力とキャパシタ103からの電力とが並列供給される。その他の構成は、図2に示す電源システム10Aと同様である。
図11のフローチャートは、図9の電源システム10Dの動作の一例を示している。この図11において、図3のフローチャートと対応するステップには同一符号を付し、適宜、その詳細説明は省略する。
ステップS18でキャパシタ103が放電可能状態(電力供給可能状態)となった後、ステップS24において、MCU110は、緊急停止発生か否かを判断する。この場合、MCU110は、ロボットに何等かの異常が発生したかどうかの検出結果に基づいて判断する。通常、ロボットの安全機能設計の一つとして、この監視機能は装備されることが多い。緊急停止発生でないと判断されるとき、ステップS18に戻り、キャパシタ103の電力供給可能状態(放電開始状態)が維持される。
一方、緊急停止発生であると判断されるとき、ステップS25において、バッテリ出力が停止される。つまり、電力供給FETスイッチ113がオンからオフとされ、バッテリ101が電源ライン102、従って負荷104から切り離される。これは、バッテリ101の通電維持が危険であり、安全性の観点から行われる。このようにバッテリ出力が停止しても、MCU110にはキャパシタ103から動作電力が与えられ(図10参照)、MCU110は継続して動作する。
次に、ステップS26において、放電側FETスイッチ106はオンからオフとされ、キャパシタ103は電源ライン102、従って負荷104から切り離される。その後に、ステップS27において、MCU110の制御によってディスチャージ回路123が駆動され、キャパシタ103の電荷が放電され、キャパシタ103の電力が廃棄される。
図9に示す電源システム10Dにおいては、図2に示す電源システム10Aと同様の効果を得ることができる。また、図9に示す電源システム10Dにおいては、負荷104、例えばロボットに何らかの異常が発生した場合、バッテリ101が負荷104から切り離されると共に、ディスチャージ回路123でキャパシタ103の電荷が放電されるものであり、安全性を確保でき、キャパシタの充電状態が意図せず維持されることによるキャパシタの寿命低下を回避できる。
また、図9に示す電源システム10Dにおいては、MCU110の動作電力として電源ライン102を介したバッテリ101からの電力とキャパシタ103からの電力が並列供給されるものであり、バッテリ101が電源ライン102から分離されて電源喪失の状態になっても、MCU110はキャパシタ103からの電力によりディスチャージ回路123等を作動させることができ、キャパシタ103の電荷を安全に放電させることができる。
<5.変形例>
なお、上述実施の形態においては、電源がバッテリである例を示したが、この電源はバッテリに限定されるものではなく、有線電源、例えばコンセントから電源コードを介して与えられる電源であってもよい。
また、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
また、技術は、以下のような構成もとることができる。
(1)負荷に電源ラインを介して電源が接続され、前記電源ラインに電力供給補助をするためのキャパシタが第1のスイッチを介して接続され、前記キャパシタは前記電源を入力とするスイッチング電源の間欠駆動にて電流制限を掛けながら充電される構成を持つ電源系統を制御する制御部を備え、
前記制御部は、前記スイッチング電源の出力電圧が前記電源ラインの電圧と同じくなるように制御し、前記キャパシタの充電が完了した後に前記第1のスイッチをオフからオンに制御する
制御装置。
(2)前記電源系統は、前記スイッチング電源と前記キャパシタの間に第2のスイッチを有し、
前記制御部は、前記スイッチング電源による前記キャパシタの充電を開始するとき、前記第2のスイッチをオフからオンに制御し、前記キャパシタの充電が完了したとき、前記第2のスイッチをオンからオフに制御する
前記(1)に記載の制御装置。
(3)前記制御部は、前記スイッチング電源による前記キャパシタの充電を開始するとき、前記第2のスイッチをオフからオンに制御した後に、前記スイッチング電源の出力をオフからオンに制御する
前記(2)に記載の制御装置。
(4)前記制御部は、前記キャパシタの充電が完了したとき、前記第2のスイッチをオンからオフに制御した後に、前記スイッチング電源の出力をオンからオフに制御する
前記(2)または(3)に記載の制御装置。
(5)前記電源系統は、前記電源ラインの電圧を検出する第1の電圧検出部を有し、
前記制御部は、前記第1の電圧検出部の検出結果に基づいて前記スイッチング電源の出力電圧が前記電源ラインの電圧と同じくなるように制御する
前記(1)から(4)のいずれかに記載の制御装置。
(6)前記電源系統は、前記スイッチング電源のフィードバックラインに電流を入出力する電流コンバータを有し、
前記制御部は、前記第1の電圧検出部の検出結果に基づいて前記第1のスイッチング電源のフィードバックラインの電流操作量を計算し、前記電流コンバータに前記電流操作量を前記フィードバックラインに入出力するように指示する
前記(5)に記載の制御装置。
(7)前記電源系統は、前記キャパシタの充電電圧を検出する第2の電圧検出部を有し、
前記制御部は、前記第2の電圧検出部の検出結果に基づいて前記キャパシタの充電が完了したことを判断する
前記(1)から(6)のいずれかに記載の制御装置。
(8)前記電源系統は、前記電源ラインと前記スイッチング電源との間に第3のスイッチを有し、
前記制御部は、前記スイッチング電源による前記キャパシタの充電を開始するとき、前記第3のスイッチをオフからオンに制御し、前記キャパシタの充電が完了したとき、前記第3のスイッチをオンからオフに制御する
前記(1)から(7)のいずれかに記載の制御装置。
(9)前記電源系統は、前記電源ラインに前記電源として第1の電源が接続された状態から前記電源ラインに前記電源として第2の電源が接続された状態、あるいは前記第1の電源および前記第2の電源が並列的に接続された状態に切り換えるホットスワップを行うホットスワップ回路を有し、
前記制御部は、
前記ホットスワップ回路で前記ホットスワップを行うとき、
前記第1のスイッチをオンからオフに制御した後に、前記ホットスワップ回路が前記ホットスワップを実際に行うように制御すると共に、前記キャパシタを前記スイッチング電源の間欠駆動にて電流制限を掛けながら充電するように制御し、
前記キャパシタの充電が完了した後に、前記第1のスイッチをオフからオンに制御する
前記(1)から(8)のいずれかに記載の制御装置。
(10)前記制御部は、
前記負荷が前記キャパシタによる電力供給補助を不要とするとき、前記第1のスイッチをオンからオフに制御し、
前記負荷が前記キャパシタによる電力供給補助を必要とするとき、前記キャパシタを前記スイッチング電源の間欠駆動にて電流制限を掛けながら充電するように制御すると共に、前記キャパシタの充電が完了した後に、前記第1のスイッチをオフからオンに制御する
前記(1)から(9)のいずれかに記載の制御装置。
(11)前記電源系統は、前記電源を前記電源ラインに接続する第4のスイッチと、前記キャパシタの電荷を放電するディスチャージ回路を有し、
前記制御部は、前記負荷に異常が発生したとき、前記第4のスイッチをオンからオフに制御し、前記第1のスイッチをオンからオフに制御し、前記ディスチャージ回路で前記キャパシタの電荷を放電するように制御する
前記(1)から(10)のいずれかに記載の制御装置。
(12)前記制御部には、前記電源ラインを介した前記電源からの電力と前記キャパシタからの電力が並列供給される
前記(11)に記載の制御装置。
(13)前記電源は、バッテリである
前記(1)から(12)のいずれかに記載の制御装置。
(14)前記キャパシタは、EDLC(Electric double-layer capacitor)である
前記(1)から(13)のいずれかに記載の制御装置。
(15)前記負荷は、ロボットを構成するモーターを含む
前記(1)から(14)のいずれかに記載の制御装置。
(16)負荷に電源ラインを介して電源が接続され、前記電源ラインに電力供給補助をするためのキャパシタが第1のスイッチを介して接続され、前記キャパシタは前記電源を入力とするスイッチング電源の間欠駆動にて電流制限を掛けながら充電される構成を持つ電源系統を制御する制御方法であり、
前記スイッチング電源の出力電圧が前記電源ラインの電圧と同じくなるように制御する手順と、
前記キャパシタの充電が完了した後に前記第1のスイッチをオフからオンに制御する手順を有する
制御方法。
10A,10B,10C,10D・・・電源システム
101,101-1,101-2・・・バッテリ
102・・・電源ライン
103・・・キャパシタ(
104・・・負荷
105・・・充電側FETスイッチ
106・・・放電側FETスイッチ
107・・・DC−DCコンバータ
108・・・電圧検出器
109・・・電流コンバータ
110・・・MCU
111・・・電圧検出器
112・・・スイッチング電源出力側FETスイッチ
113・・・電源側FETスイッチ
121・・・ホットスワップ回路
122・・・上位CPU
123・・・ディスチャージ回路

Claims (16)

  1. 負荷に電源ラインを介して電源が接続され、前記電源ラインに電力供給補助をするためのキャパシタが第1のスイッチを介して接続され、前記キャパシタは前記電源を入力とするスイッチング電源の間欠駆動にて電流制限を掛けながら充電される構成を持つ電源系統を制御する制御部を備え、
    前記制御部は、前記スイッチング電源の出力電圧が前記電源ラインの電圧と同じくなるように制御し、前記キャパシタの充電が完了した後に前記第1のスイッチをオフからオンに制御する
    制御装置。
  2. 前記電源系統は、前記スイッチング電源と前記キャパシタの間に第2のスイッチを有し、
    前記制御部は、前記スイッチング電源による前記キャパシタの充電を開始するとき、前記第2のスイッチをオフからオンに制御し、前記キャパシタの充電が完了したとき、前記第2のスイッチをオンからオフに制御する
    請求項1に記載の制御装置。
  3. 前記制御部は、前記スイッチング電源による前記キャパシタの充電を開始するとき、前記第2のスイッチをオフからオンに制御した後に、前記スイッチング電源の出力をオフからオンに制御する
    請求項2に記載の制御装置。
  4. 前記制御部は、前記キャパシタの充電が完了したとき、前記第2のスイッチをオンからオフに制御した後に、前記スイッチング電源の出力をオンからオフに制御する
    請求項2に記載の制御装置。
  5. 前記電源系統は、前記電源ラインの電圧を検出する第1の電圧検出部を有し、
    前記制御部は、前記第1の電圧検出部の検出結果に基づいて前記スイッチング電源の出力電圧が前記電源ラインの電圧と同じくなるように制御する
    請求項1に記載の制御装置。
  6. 前記電源系統は、前記スイッチング電源のフィードバックラインに電流を入出力する電流コンバータを有し、
    前記制御部は、前記第1の電圧検出部の検出結果に基づいて前記第1のスイッチング電源のフィードバックラインの電流操作量を計算し、前記電流コンバータに前記電流操作量を前記フィードバックラインに入出力するように指示する
    請求項5に記載の制御装置。
  7. 前記電源系統は、前記キャパシタの充電電圧を検出する第2の電圧検出部を有し、
    前記制御部は、前記第2の電圧検出部の検出結果に基づいて前記キャパシタの充電が完了したことを判断する
    請求項1に記載の制御装置。
  8. 前記電源系統は、前記電源ラインと前記スイッチング電源との間に第3のスイッチを有し、
    前記制御部は、前記スイッチング電源による前記キャパシタの充電を開始するとき、前記第3のスイッチをオフからオンに制御し、前記キャパシタの充電が完了したとき、前記第3のスイッチをオンからオフに制御する
    請求項1に記載の制御装置。
  9. 前記電源系統は、前記電源ラインに前記電源として第1の電源が接続された状態から前記電源ラインに前記電源として第2の電源が接続された状態、あるいは前記第1の電源および前記第2の電源が並列的に接続された状態に切り換えるホットスワップを行うホットスワップ回路を有し、
    前記制御部は、
    前記ホットスワップ回路で前記ホットスワップを行うとき、
    前記第1のスイッチをオンからオフに制御した後に、前記ホットスワップ回路が前記ホットスワップを実際に行うように制御すると共に、前記キャパシタを前記スイッチング電源の間欠駆動にて電流制限を掛けながら充電するように制御し、
    前記キャパシタの充電が完了した後に、前記第1のスイッチをオフからオンに制御する
    請求項1に記載の制御装置。
  10. 前記制御部は、
    前記負荷が前記キャパシタによる電力供給補助を不要とするとき、前記第1のスイッチをオンからオフに制御し、
    前記負荷が前記キャパシタによる電力供給補助を必要とするとき、前記キャパシタを前記スイッチング電源の間欠駆動にて電流制限を掛けながら充電するように制御すると共に、前記キャパシタの充電が完了した後に、前記第1のスイッチをオフからオンに制御する
    請求項1に記載の制御装置。
  11. 前記電源系統は、前記電源を前記電源ラインに接続する第4のスイッチと、前記キャパシタの電荷を放電するディスチャージ回路を有し、
    前記制御部は、前記負荷に異常が発生したとき、前記第4のスイッチをオンからオフに制御し、前記第1のスイッチをオンからオフに制御し、前記ディスチャージ回路で前記キャパシタの電荷を放電するように制御する
    請求項1に記載の制御装置。
  12. 前記制御部には、前記電源ラインを介した前記電源からの電力と前記キャパシタからの電力が並列供給される
    請求項11に記載の制御装置。
  13. 前記電源は、バッテリである
    請求項1に記載の制御装置。
  14. 前記キャパシタは、EDLC(Electric double-layer capacitor)である
    請求項1に記載の制御装置。
  15. 前記負荷は、ロボットを構成するモーターを含む
    請求項1に記載の制御装置。
  16. 負荷に電源ラインを介して電源が接続され、前記電源ラインに電力供給補助をするためのキャパシタが第1のスイッチを介して接続され、前記キャパシタは前記電源を入力とするスイッチング電源の間欠駆動にて電流制限を掛けながら充電される構成を持つ電源系統を制御する制御方法であり、
    前記スイッチング電源の出力電圧が前記電源ラインの電圧と同じくなるように制御する手順と、
    前記キャパシタの充電が完了した後に前記第1のスイッチをオフからオンに制御する手順を有する
    制御方法。
JP2020070777A 2020-04-10 2020-04-10 制御装置および制御方法 Pending JP2021168553A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020070777A JP2021168553A (ja) 2020-04-10 2020-04-10 制御装置および制御方法
US17/915,853 US20230170713A1 (en) 2020-04-10 2021-03-30 Control apparatus and control method
CN202180026787.7A CN115443591A (zh) 2020-04-10 2021-03-30 控制装置和控制方法
PCT/JP2021/013732 WO2021205949A1 (ja) 2020-04-10 2021-03-30 制御装置および制御方法
EP21785641.8A EP4135141A4 (en) 2020-04-10 2021-03-30 CONTROL DEVICE AND CONTROL METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020070777A JP2021168553A (ja) 2020-04-10 2020-04-10 制御装置および制御方法

Publications (1)

Publication Number Publication Date
JP2021168553A true JP2021168553A (ja) 2021-10-21

Family

ID=78023152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020070777A Pending JP2021168553A (ja) 2020-04-10 2020-04-10 制御装置および制御方法

Country Status (5)

Country Link
US (1) US20230170713A1 (ja)
EP (1) EP4135141A4 (ja)
JP (1) JP2021168553A (ja)
CN (1) CN115443591A (ja)
WO (1) WO2021205949A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023188820A1 (ja) * 2022-03-31 2023-10-05 ソニーグループ株式会社 情報処理装置、及び情報処理方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7303250B2 (ja) * 2021-07-12 2023-07-04 矢崎総業株式会社 スイッチング電源装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5930130A (en) * 1997-09-29 1999-07-27 Jrs Technology, Inc. Inrush protection circuit
JP4059821B2 (ja) * 2003-08-19 2008-03-12 オリンパス株式会社 電源装置及びカメラ用電源装置
JP2008118828A (ja) * 2006-11-08 2008-05-22 Meidensha Corp 電気二重層キャパシタ充電装置
JP5200986B2 (ja) * 2009-02-17 2013-06-05 新神戸電機株式会社 電源装置
US8717001B2 (en) * 2012-07-03 2014-05-06 Infineon Technologies Austria Ag Inrush current limiting circuit
JP2014135825A (ja) * 2013-01-09 2014-07-24 Toyota Motor Corp 蓄電システム
FR3023019B1 (fr) * 2014-06-27 2016-10-21 Bull Sas Module de compensation de microcoupures d'alimentation electrique d'un serveur
JP6932023B2 (ja) * 2017-04-17 2021-09-08 株式会社今仙電機製作所 電源システム
JP6731960B2 (ja) * 2018-02-08 2020-07-29 矢崎総業株式会社 電源電力伝送システム
US11462916B2 (en) * 2019-11-01 2022-10-04 Hamilton Sundstrand Corporation Capacitor pre-charging circuits

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023188820A1 (ja) * 2022-03-31 2023-10-05 ソニーグループ株式会社 情報処理装置、及び情報処理方法

Also Published As

Publication number Publication date
CN115443591A (zh) 2022-12-06
EP4135141A1 (en) 2023-02-15
WO2021205949A1 (ja) 2021-10-14
EP4135141A4 (en) 2023-09-20
US20230170713A1 (en) 2023-06-01

Similar Documents

Publication Publication Date Title
JP6732837B2 (ja) 電源冗長システム
TWI594540B (zh) 蓄電系統及電源系統
WO2021205949A1 (ja) 制御装置および制御方法
JP6152241B2 (ja) 電力システム、携帯式電子機器および電力の供給方法
WO2018087876A1 (ja) 無停電電源装置
KR101653837B1 (ko) 하이브리드 산업용 차량의 전력변환장치
EP2071689A1 (en) Discharger and discharge control method
JP6649239B2 (ja) 無停電電源システム
US20140132063A1 (en) Vehicle power unit
JP5561071B2 (ja) 無停電電源装置
JP5874350B2 (ja) 電圧変換回路、および電子機器
JP5556258B2 (ja) 無停電電源装置
WO2018066520A1 (ja) 電気機器
WO2012131995A1 (ja) 交流モータ駆動装置
JP5746928B2 (ja) 直流電源装置
KR101761031B1 (ko) 나트륨 이온 배터리를 포함하는 에너지 저장 시스템 및 이의 운영방법
JP2009261161A (ja) 瞬時電圧低下保護装置
JP5350734B2 (ja) 二次電池放電回路、二次電池放電方法及び情報処理装置
JP2008118828A (ja) 電気二重層キャパシタ充電装置
JP2003309937A (ja) 電源装置
JP2009118683A (ja) 充電器とその充電方法および電源システム
JP2008154341A (ja) 電気車用電源装置
JP5792698B2 (ja) 無停電電源システム
US20240195215A1 (en) Power supply system
KR20190043733A (ko) 컨버터 시스템의 과전류 방지 장치 및 방법