JP5154529B2 - 環境の変化に応答して体積が膨潤するヒドロゲルならびにそれらの製造法および利用法 - Google Patents

環境の変化に応答して体積が膨潤するヒドロゲルならびにそれらの製造法および利用法 Download PDF

Info

Publication number
JP5154529B2
JP5154529B2 JP2009229839A JP2009229839A JP5154529B2 JP 5154529 B2 JP5154529 B2 JP 5154529B2 JP 2009229839 A JP2009229839 A JP 2009229839A JP 2009229839 A JP2009229839 A JP 2009229839A JP 5154529 B2 JP5154529 B2 JP 5154529B2
Authority
JP
Japan
Prior art keywords
hydrogel
implantation site
composition
composition according
delivered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2009229839A
Other languages
English (en)
Other versions
JP2010022847A (ja
Inventor
エム. クルーズ、グレゴリー
ジェイ. コンスタント、マイケル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MicroVention Inc
Original Assignee
MicroVention Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MicroVention Inc filed Critical MicroVention Inc
Publication of JP2010022847A publication Critical patent/JP2010022847A/ja
Application granted granted Critical
Publication of JP5154529B2 publication Critical patent/JP5154529B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F22/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides or nitriles thereof
    • C08F22/36Amides or imides
    • C08F22/38Amides
    • C08F22/385Monomers containing two or more (meth)acrylamide groups, e.g. N,N'-methylenebisacrylamide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • A61K9/0024Solid, semi-solid or solidifying implants, which are implanted or injected in body tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/04X-ray contrast preparations
    • A61K49/0433X-ray contrast preparations containing an organic halogenated X-ray contrast-enhancing agent
    • A61K49/0447Physical forms of mixtures of two different X-ray contrast-enhancing agents, containing at least one X-ray contrast-enhancing agent which is a halogenated organic compound
    • A61K49/0457Semi-solid forms, ointments, gels, hydrogels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/145Hydrogels or hydrocolloids

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Dermatology (AREA)
  • Neurosurgery (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Vascular Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials For Medical Uses (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Medicinal Preparation (AREA)

Description

本発明は、概して、特定のヒドロゲル組成物、そのようなヒドロゲル組成物の製造法およびそのようなヒドロゲル組成物の利用法に関する。より具体的に言えば、本発明は、環境の変化に応答して制御された膨張速度を示すヒドロゲル、そのようなヒドロゲルの製造法およびそのようなヒドロゲルの生物医学的用途(例えば、動脈瘤、フィステル、動静脈奇形の治療、および血管または他の内腔解剖学的構造の塞栓形成または閉鎖用)における利用法に関する。
通常、用語「ヒドロゲル」とは、概して、水中で膨潤し得る高分子材料を指す。水中でのヒドロゲルの膨潤は、ガラス状ポリマー中に水が拡散し、それによってポリマー鎖がほどけて、ポリマー網目構造が膨潤することから生じる。先行技術のヒドロゲルは、典型的には、モノマーおよび/もしくはポリマーを放射線、熱、酸化還元または求核攻撃により架橋結合させて調製されている。エチレン性不飽和モノマーを架橋結合させるものの例としては、2−ヒドロキシエチルメタクリレートからのコンタクトレンズの作製およびアクリル酸からの吸収剤製品の製造がある。ポリマーを架橋結合させるものの例としては、イオン化放射線を用いた親水性ポリマー水溶液の架橋結合による創傷包帯およびエチレン性不飽和成分で修飾した親水性ポリマー水溶液の架橋結合による手術用シーラント材が挙げられる。
1968年頃、クラウフ(Krauch)およびザンナー(Sanner)は、結晶マトリックスの周囲にモノマーを重合させた後、結晶マトリックスを除去して相互連絡多孔質ポリマー網目構造を形成する方法を記載した。そのとき以来、多孔質ヒドロゲルは、造孔剤(porosigen)として塩、スクロースおよび氷結晶を用いて調製されている。これらの先行技術の多孔質ヒドロゲルは、アフィニティークロマトグラフィー用の膜として、また組織を多孔質ヒドロゲル網目構造内に内方成長させる組織再生用基材として用いられている。これらの多孔質ヒドロゲルの例は、「Method And Device For Reconstruction of Articular Cartilage」と題される米国特許第6,005,161号(ブレック(Brekke)ら)、「Implantable Polymer Hydrogel For Therapeutic Use」と題される米国特許第5,863,551号(ワォアリー(Woerly))、および「Super Absorbent Hydrogel Foams」と題される米国特許第5,750,585号(パーク(Park)ら)に見出される。
先行技術には、溶媒組成物、pH、電場、イオン強度および温度の変化などの外部刺激に応答して体積が変化する特定のヒドロゲルも含まれている。種々の刺激に対するヒドロゲルの応答性はモノマー単位の慎重な選択に帰因する。例えば、感温性が求められる場合には、N−イソプロピルアクリルアミドが頻繁に用いられる。pH感受性が求められる場合には、アミン基またはカルボン酸を有するモノマーがしばしば用いられる。刺激応答性ヒドロゲルは、主として、放出制御薬剤送達担体として用いられている。これらの刺激応答性ヒドロゲルの例は、「pH−Sensitive Polymer Containing Sulfonamide And Its Synthesis Method」と題される米国特許第6,103,865号(ベー(Bae)ら)、「Pulsatile Drug Delivery Device Using Stimuli Sensitive Hydrogel」と題される米国特許第5,226,902号(ベーら)、および「Colonic−Targeted Oral Drug−Dosage

Forms Based On Crosslinked Hydrogels Containing Azobonds And Exhibiting pH−Dependent Swelling」と題される米国特許第5,415,864号(コペックら(Kopeck)ら)に見出される。
上述のようにヒドロゲル材料の能力が向上したにも拘わらず、非水性溶媒またはコーティングを必要とすることなく細胞の内方成長を可能にし、かつマイクロカテーテルまたはカテーテルを介して送出するのに最適化された制御膨張速度を有するヒドロゲル材料は未だ開発されていない。したがって、当業においては、ヒドロゲルが、動脈瘤、フィステル、動静脈奇形、および血管閉鎖時に、またはそれらに関連して用いられる医療用移植材料用途を含むがそれには限定されない種々の用途に使用できるようなヒドロゲルの開発が求められている。
本発明は、環境の変化、例えば、pHまたは温度の変化に応答して制御された体積膨脹を遂げる(すなわち、「刺激膨張性」である)ヒドロゲルを提供する。1つの実施形態において、本発明のヒドロゲルは、細胞を内方成長させ得るほど多孔質である。本発明のヒドロゲルは、(a)少なくとも一部が環境の変化(例えば、pHまたは温度の変化)に感受性であるモノマーおよび/またはポリマーと、(b)架橋剤と、(c)重合開始剤とを含有する液体反応混合物を生成することにより製造される。所望により、前記液体反応混合物に、造孔剤(例えば、塩化ナトリウム、氷結晶およびスクロース)を加えてもよい。多孔性は、その後で、得られた固体ヒドロゲルから(例えば、繰返し洗浄して)造孔剤を除去することにより形成される。典型的には、固体モノマーおよび/またはポリマーを溶解させるのに溶媒も用いられるであろう。しかし、液体モノマーのみを用いる場合、溶媒を使う必要がないこともある。一般に、本発明の制御された膨張速度は、イオン性官能基(例えば、アミン、カルボン酸)を有するエチレン性不飽和モノマーを組み込むことによって得られる。例えば、架橋網目構造にアクリル酸が組み込まれている場合、ヒドロゲルを低pH溶液中でインキュベートしてカルボン酸をプロトン化する。そのヒドロゲルは、過剰な低pH溶液をすすぎ落され、乾燥された後、生理的pHの生理食塩水または血液を充填したマイクロカテーテルを介して導入され得る。ヒドロゲルはカルボン酸基が脱プロトン化するまで膨張し得ない。反対に、架橋網目構造にアミン含有モノマーが組み込まれている場合、ヒドロゲルを高pH溶液中でインキュベートしてアミンを脱プロトン化する。ヒドロゲルは、過剰な高pH溶液をすすぎ落され、乾燥された後、生理的pHの生理食塩水または血液を充填したマイクロカテーテルを介して導入され得る。ヒドロゲルはアミン基がプロトン化するまで膨張し得ない。
場合により、本発明の刺激膨張性ヒドロゲル材料は、X線撮像下で視覚化するために放射線不透過性にされ得る。液体反応混合物に放射線不透過性粒子(例えば、タンタル、金、白金など)を組み込むと、ヒドロゲル全体が放射線不透過性になるであろう。あるいは、液体反応混合物に放射線不透過性モノマーを組み込んでヒドロゲル全体を放射線不透過性にしてもよい。
本発明により、ヒト患者または患畜の種々の疾患、症状、奇形または障害を治療する方法が提供され、この方法は、患者の体内の移植部位で第1体積を占め、移植部位条件(例えば、pH、温度)によって第1体積より大きい第2体積に膨張する本発明の刺激膨張性ヒドロゲル材料を移植すること(例えば、注入、点滴注入、外科的移植、あるいは、カニューレ、カテーテル、マイクロカテーテル、針もしくは他の導入装置を介して導入または
配置すること)によって治療する。具体的に言えば、本発明のヒドロゲルは、創傷内、腫瘍もしくは腫瘍に血液を供給する血管内、臓器内、異常な血管もしくは脈管構造内、組織もしくは解剖学的構造間に位置する腔内、または外科的に形成されたポケットもしくは空間内に皮下移植され得る。このようにして、本発明の制御可能な膨張速度を有するヒドロゲルは、動脈瘤、フィステル、動静脈奇形の治療、血管閉鎖、および他の医学的用途に使用可能である。
本発明のさらなる態様は、以下に記載されている典型的な実施形態の詳細な説明を読めば当業者には明らかなるであろう。
本発明の環境感受性膨潤性ヒドロゲルを製造する一般的な方法を示す流れ図。 本発明のpH応答性膨潤性ヒドロゲルペレットを製造する特定の方法を示す流れ図。
以下の詳細な説明および実施例は、本発明のすべての実施可能な実施形態を包括的に説明するためではなく、本発明の典型的な実施形態を例示するという限定された目的で提供されている。
A.モノマー溶液からpH応答性膨潤性ヒドロゲルを製造するための好ましい方法
本発明のpH応答性膨潤性ヒドロゲルの1つの製造法を以下に説明する。
モノマーの選択および添加
この実施形態において、モノマー溶液は、エチレン性不飽和モノマー、エチレン性不飽和架橋剤、造孔剤、および溶媒からなる。選択されたモノマーの少なくとも一部、好ましくは10〜15%、より好ましくは10〜30%は、pH感受性でなければならない。好ましいpH感受性モノマーはアクリル酸である。メタクリル酸や、メタクリル酸およびアクリル酸の誘導体もpH感受性を提供するであろう。これらの酸のみで製造されたヒドロゲルの機械的特性は不十分なものであるので、さらなる機械的特性を提供するモノマーを選択しなければならない。機械的特性を提供するのに好ましいモノマーはアクリルアミドである。アクリルアミドは、さらなる圧縮強さまたは他の機械的特性を提供するために1種以上の上記pH感受性モノマーと組合わせて用いられ得る。溶媒中のモノマーの好ましい濃度は20〜30w/w%の範囲である。
架橋剤の選択および添加
架橋剤は任意の多官能エチレン性不飽和化合物であってよい。N,N−メチレンビスアクリルアミドが好ましい架橋剤である。ヒドロゲル材料の生分解性が求められる場合には、生分解性架橋剤を選択する必要がある。溶媒中の架橋剤の好ましい濃度は、1w/w%未満、より好ましくは0.1w/w%未満の範囲である。
造孔剤の選択および添加
ヒドロゲル材料の多孔性は、モノマー溶液中に造孔剤を過飽和懸濁することによって得られる。モノマー溶液には不溶であるが洗浄溶液には可溶である造孔剤を用いてもよい。塩化ナトリウムが好ましい造孔剤であるが、塩化カリウム、氷、スクロースおよび重炭酸ナトリウムを用いてもよい。造孔剤の粒径は、好ましくは25ミクロン未満、より好ましくは10ミクロン未満に制御される。粒径が小さいと溶媒中の造孔剤の懸濁が促進される。造孔剤の好ましい濃度は、モノマー溶液中5〜50w/w%、より好ましくは10〜20w/w%の範囲である。これに代わって、造孔剤を省いてもよく、そうすると、非孔質
ヒドロゲルを製造することができる。
溶媒(必要な場合)の選択および添加
溶媒が必要な場合、溶媒は、モノマー、架橋剤、および造孔剤の溶解度に基づいて選択される。液体モノマー(例えば、2−ヒドロキシエチルメタクリレート)を用いる場合、溶媒は不要である。好ましい溶媒は水であるが、エチルアルコールを用いてもよい。溶媒の好ましい濃度は20〜80w/w%、より好ましくは50〜80w/w%の範囲である。
架橋結合密度はこれらのヒドロゲル材料の機械的特性に実質的に影響を与える。架橋結合密度(および、それによる機械的特性)は、モノマー濃度、架橋剤濃度、および溶媒濃度を変えることによって操作するのが最も適切である。
モノマー溶液を架橋結合させる開始剤の選択および添加
モノマーの架橋結合は、酸化還元、放射線、および熱によって行なわれ得る。モノマー溶液の放射線架橋結合は、紫外光および可視光と共に適当な開始剤を用いるか、または開始剤を用いずにイオン化放射線(例えば、電子ビームもしくはガンマ線)を用いて行なうことができる。好ましいタイプの架橋開始剤は、酸化還元を介して作用するものである。本発明のこの実施形態に用い得るそのような酸化還元開始剤の特定の例は、過硫酸アンモニウムおよびN,N,N′,N′−テトラメチルエチレンジアミンである。
造孔剤および過剰なモノマーを除去するための洗浄
重合完了後、ヒドロゲルを、水、アルコールまたは他の適当な洗浄溶液で洗浄して、造孔剤、未反応の残留モノマーおよび取り込まれていないオリゴマーを除去する。これは、先ずヒドロゲルを蒸留水で洗浄して行なうことが好ましい。
ヒドロゲルの膨張速度を制御するためのヒドロゲルの処理
上述のように、ヒドロゲルの膨張速度の制御は、ヒドロゲル網目構造上に存在するイオン性多官能基をプロトン化/脱プロトン化することによって達成される。ヒドロゲルを調製し、過剰なモノマーおよび造孔剤を洗い流したら、膨張速度を制御するステップを実施し得る。
ヒドロゲル網目構造にカルボン酸基を有するpH感受性モノマーが組み込まれている実施形態においては、ヒドロゲルを低pH溶液中でインキュベートする。この溶液中の遊離プロトンがヒドロゲル網目構造上のカルボン酸基をプロトン化する。インキュベーションの持続時間および温度と溶液のpHは膨張速度の制御量に影響を与える。一般に、インキュベーションの持続時間と温度は膨張制御量に正比例し、溶液のpHは反比例する。本出願人は、処理溶液の含水量も膨張制御に影響を与えると判断した。これに関して、本発明のヒドロゲルはこの処理溶液中でより膨張可能であり、したがって、より多数のカルボン酸基がプロトン化に利用可能であると推定される。膨張速度を最大限に制御するには、含水量およびpHを最適化することが必要である。インキュベーション完了後、ヒドロゲル材料から過剰な処理溶液を洗い流し、乾燥させる。低pH溶液で処理したヒドロゲルは、乾燥させると、非処理ヒドロゲルより寸法が小さくなることが観察された。これは望ましい結果である。というのは、これらのヒドロゲル材料はマイクロカテーテルを介して送出するのが望ましいからである。
ヒドロゲル網目構造にアミン基を有するpH感受性モノマーが組み込まれている場合には、ヒドロゲルを高pH溶液中でインキュベートする。高pH下では、ヒドロゲル網目構造のアミン基上で脱プロトン化が生じる。インキュベーションの持続時間および温度と溶液のpHは膨張速度の制御量に影響を与える。一般に、インキュベーションの持続時間お
よび温度と溶液のpHは膨張制御量に正比例する。インキュベーション完了後、ヒドロゲル材料から過剰な処理溶液を洗い流し、乾燥させる。
実施例1
(pH応答性膨潤性ヒドロゲルのペレットを製造する方法)
本発明のヒドロゲル材料は、例えば、シート、小塊、ボール、ペレット、フィラメントなどの種々の形態および形状で製造され、かつ使用され得る。図2は、本発明のpH応答性膨潤性ヒドロゲルを固体ペレットの形態に製造するのに用い得る好ましい手順の特定の実施例を示している。この手順では、エチレン性不飽和モノマー、エチレン性不飽和架橋剤、造孔剤および任意の溶媒を含有する初期反応混合物を適当な容器中で混合する。次いで、この混合物に開始剤を加え、まだ液状の反応混合物をさらに混ぜ合せ、注射器または他の適当な注入装置に吸引する。注射器または注入装置に、チューブ(例えば、約0.0381〜0.254センチメートル(0.015〜0.100インチ)、好ましくは約0.0635センチメートル(0.025インチ)の内径を有するポリエチレンチューブ(すなわち)脳または他の血管用に使用できる小ペレットを形成するためのチューブ)を取り付け、そのチューブに反応混合物を注入してチューブ内で重合させる。ヒドロゲルがチューブ内で完全に重合されたら、内部にヒドロゲルを含有した状態のチューブを所望の長さ(例えば、約5.08センチメートル(2インチ)断片)の個別断片に切断する。次いで、チューブの各断片の管腔からヒドロゲル断片を取り出し、一連の洗浄浴に入れて、造孔剤および残留モノマーを洗い流す。これらの洗浄浴は以下の通りであり得る。
Figure 0005154529
ヒドロゲル断片は、これらの浴中で水に暴露されている間に膨潤し得る。これらのヒドロゲルペレットの膨潤を停止させるために、ヒドロゲルペレットを、ヒドロゲルから水分の少なくとも一部を排出させる膨潤停止溶液に入れる。この膨潤停止溶液は、アルコール、膨潤を制御するのに十分なアルコールを含有するアルコール/水溶液、アセトン、または他の適当な非水性脱水剤であってよい。図2に示されている特定の実施例では、既にすすいだヒドロゲル断片を以下のような膨潤停止浴に入れる。
Figure 0005154529
膨潤停止溶液から取り出した後、ヒドロゲルの円筒断片をさらに小さい断片〔例えば、約0.254センチメートル(0.100インチ)の長さの断片〕に切断し得る。次いで、これらの個別断片を円筒ヒドロゲル断片のリング軸線に沿ってプラチナコイルおよび/またはプラチナワイヤに串刺しにし得る。串刺し後、これらの断片を真空下に55℃で少なくとも2時間乾燥させる。次いで、ヒドロゲル断片を、好ましくは、50%塩酸:50%水などの酸性化溶液に37℃で約70時間浸漬して酸性化処理する。次いで、過剰な酸性化溶液を洗い流す。これは、ヒドロゲル断片を以下のような一連の浴に入れることによって達成し得る。
Figure 0005154529
酸性化処理完了後(例えば、酸性化処理浴4から取り出した後)、ヒドロゲル断片(すなわち、「ペレット」)を真空オーブン中約60℃で約1〜2時間乾燥させる。これで、ペレットの製造が完了する。これらのペレットは、生理的pH(すなわち、約7.4のpH)の液体(例えば、血液)に接触すると実質的に膨張するであろう。
以下の実施例2〜4は、本明細書に記載されているような制御膨張速度を有する多孔質ヒドロゲルの多くの生物医学的用途の一部に関する。これらの実施例は、ヒドロゲルがヒト患者または患畜の体内に移植されるいくつかの生物医学的用途に限定されているが、本発明のヒドロゲル材料は、以下に記載する特定の実施例に加えて、他の多くの医学的および非医学的用途に使用され得ることが理解されよう。
実施例2
(動脈瘤の塞栓形成)
動脈瘤の塞栓形成のために、1.52g(0.021モル)のアクリルアミド、0.87g(0.009モル)のアクリル酸ナトリウム、0.005g(0.00003モル)のN,N−メチレンビスアクリルアミド、7.95gの水、および4.5gの塩化ナトリウム(<10ミクロンの粒径)をアンバージャー(amber jar)に加える。開始剤として、53マイクロリットルのN,N,N′,N′−テトラメチルエチレンジアミンと65マイクロリットルの水中20w/w%過硫酸アンモニウムとを加え、溶液を3ccの注射器に吸引する。次いで、溶液を内径約0.0635センチメートル(0.025インチ)のチューブに注入し、2時間重合させる。チューブを約5.08センチメートル(2インチ)の断片に切断し、真空オーブン中で乾燥させる。マンドレルを用いてチューブから乾燥ヒドロゲルを取り出す。重合ヒドロゲルを蒸留水中で、それぞれ10〜12時間、少なくとも2時間、少なくとも2時間の3回洗浄して、造孔剤、未反応のモノマー、および組み込まれなかったモノマーを除去する。ヒドロゲルを長さ約0.254センチメートル(約0.100インチ)の断片(「ペレット」)に切断し、プラチナコイル/ワイヤ
アセンブリーで串刺しする。次いで、これらのペレットをアルコールで脱水し、真空下に約55℃で約2時間乾燥させる。
次いで、乾燥ペレットを50%塩酸/50%水中に入れ、37℃で約70時間インキュベートする。インキュベーション後、ペレットを連続的に、(a)70%イソプロピルアルコール:30%水で約5分、(b)100%イソプロピルアルコールで約15分、(c)100%イソプロピルで約15分、(d)100%イソプロピルアルコールで約15分洗浄して、過剰な塩酸溶液を洗い流す。次いで、ヒドロゲルを真空下に55℃で少なくとも2時間乾燥させる。
この手順を用いて製造した処理済み乾燥ヒドロゲルペレットは、生理食塩水または血液を充填した内径約0.03556センチメートル(0.014インチ)または約0.04572センチメートル(0.018インチ)のマイクロカテーテルを介して送出するのに適した直径を有する。このヒドロゲル材料は、分離可能な搬送システム(ヒドロゲルに取り付けられているワイヤもしくはロープであって、カテーテルの管腔を通って所望の移植部位に進めることができ、所望移植部位で、手術者が分離させるまで、または移植部位におけるなんらかの環境条件がワイヤ/ロープとヒドロゲルとの間の結合を分解、破壊もしくは分断させるまで、典型的にはヒドロゲルが結合したままであろうワイヤもしくはロープ)を用いるか、そのような搬送システムに結合した状態で、(例えば、ヒドロゲルペレットまたは粒子と液体担体とを混合し、液体担体/ヒドロゲル混合物をカニューレまたはカテーテルを介して移植部位に注射または注入することにより)マイクロカテーテルを介して流動により注入することができる。分離可能な搬送システムを利用する場合、ヒドロゲルペレットは、典型的には、ワイヤもしくはロープが結合したままでいる間、したがって、ヒドロゲルの実質的な膨潤が生じる前の少なくとも15分間、マイクロカテーテルから前進させたり、マイクロカテーテル内に後退させたり(必要ならそれを繰返したり)することができる。ヒドロゲルペレットは、生理的pH(約7.4)下で約1時間後に、完全膨潤状態(約0.0889センチメートル(約0.035インチ)の直径)になる。
実施例3
(動静脈奇形の塞栓形成)
材料を動静脈奇形の塞栓形成に適合させるために、アンバージャーに、1.52g(0.021モル)のアクリルアミド、0.87g(0.009モル)のアクリル酸ナトリウム、0.005g(0.00003モル)のN,N−メチレンビスアクリルアミド、7.95gの水、および4.5gの塩化ナトリウム(<10ミクロン粒径)を加える。開始剤として、53マイクロリットルのN,N,N′,N′−テトラメチルエチレンジアミンと、65マイクロリットルの水中20w/w%過硫酸アンモニウムとを加え、溶液を3ccの注射器に吸引する。注射器内で2時間、溶液を重合させる。剃刀の刃を用いて注射器を取り外し、ヒドロゲルを真空オーブン中で乾燥させる。
乾燥ヒドロゲルを蒸留水中で3回、それぞれ、10〜12時間、2時間、2時間洗浄して、造孔剤、未反応のモノマー、および組み込まれなかったオリゴマーを除去する。次いで、ヒドロゲルをエタノール中で脱水し、真空下に約55℃で約2時間乾燥させる。乾燥ヒドロゲルを、所望サイズ、典型的には直径100〜900ミクロンの粒子にばらす。次いで、乾燥粒子を、50%塩酸:50%水の酸性化溶液中約37℃で約22時間インキュベートする。インキュベーション後、(a)70%イソプロピルアルコール:30%水で約5分、(b)100%イソプロピルアルコールで約15分、(c)100%イソプロピルで約15分、および(d)100%イソプロピルアルコールで約15分連続洗浄して、ペレットから過剰な塩酸溶液を洗い流す。次いで処理済みヒドロゲル粒子を真空下に約55℃で約2時間乾燥させる。この手順で製造された処理済み乾燥ヒドロゲル粒子は、動静脈奇形の塞栓形成に適した直径を有し、標準的なマイクロカテーテルを介して流動により
注入することができる。これらのヒドロゲル粒子は、約7.4の生理的pH下で約15分後に完全膨張状態になる。
実施例4
(血管または他の内腔解剖学的構造の閉鎖)
血管閉鎖栓を作製するために、アンバージャーに、1.52g(0.021モル)のアクリルアミド、0.87g(0.009モル)のアクリル酸ナトリウム、0.005g(0.00003モル)のN,N−メチレンビスアクリルアミド、7.95gの水、および4.5gの塩化ナトリウム(<10ミクロンの粒径)を加える。開始剤として、53マイクロリットルのN,N,N′,N′−テトラメチルエチレンジアミンと、65マイクロリットルの水中20w/w%過硫酸アンモニウムとを加え、溶液を3ccの注射器に吸引する。次いで、溶液を種々のサイズのチューブに注入して2時間重合させる。種々のサイズの血管閉鎖栓を作製するためには種々のサイズのチューブが必要である。例えば、内径約0.0635センチメートル(0.025インチ)のチューブ中で重合させると、直径約0.0889センチメートル(約0.035インチ)の血管栓ができる。内径約0.04826センチメートル(約0.019インチ)のチューブ中で重合させると、直径約0.06604センチメートル(約0.026インチ)の血管栓ができる。チューブを約5.08センチメートル(2インチ)断片に切断し、真空オーブン中で乾燥させる。マンドレルを用いてチューブから乾燥ヒドロゲルを取り出す。重合ヒドロゲルを蒸留水中で3回、それぞれ、10〜12時間、少なくとも2時間、少なくとも2時間洗浄して、造孔剤、未反応のモノマー、および組み込まれなかったオリゴマーを除去する。次いで、ヒドロゲルを長さ約1.27センチメートル(約0.500インチ)の断片すなわちペレットに切断し、プラチナコイル/ワイヤアセンブリーで串刺しする。次いで、串刺しされたこれらのヒドロゲルペレットをエタノール中で脱水し、真空下に約55℃で約2時間乾燥させる。次いで、串刺しされた乾燥ペレットを50%塩酸/50%水の酸性化溶液中で約22時間、37℃でインキュベートする。インキュベーション後、(a)70%イソプロピルアルコール:30%水で約5分、(b)100%イソプロピルアルコールで約15分、(c)100%イソプロピルで約15分、および(d)100%イソプロピルアルコールで約15分連続洗浄して、ペレットから過剰な塩酸溶液を洗い流す。これらのアルコール洗浄完了後、処理済みヒドロゲルペレットを真空下に約55℃で約2時間乾燥させる。
この手順を用いて製造した処理済み乾燥ヒドロゲルペレットは、生理食塩水または血液を充填した内径約0.03556センチメートル(0.014インチ)または約0.04572センチメートル(0.018インチ)のマイクロカテーテルを介して送出するのに適した直径を有する。この材料は、マイクロカテーテルを介して流動により注入するか、または分離可能な搬送システムに結合されたマイクロカテーテルを介して送出することができる。分離可能なシステムを利用する場合、ヒドロゲル材料は、有意な膨潤が生じる前の約5分間にわたって、マイクロカテーテル内外に再配置することができる。この材料は約15分後に完全に膨潤する。
本発明のいずれの実施形態においても、ヒドロゲルに、薬剤(例えば、薬物、生物製剤、遺伝子、遺伝子療法製剤、診断薬、撮像可能物質、成長因子、他の生物因子、ペプチドまたは他の生物活性物質、治療物質または診断物質)をさらに含めるかまたは取り込んで、移植部位またはその近くに、所望の薬剤作用(治療、診断、薬理学的または他の生理学的作用)を及ぼし得る。本発明のヒドロゲルに組み込み得るタイプの薬剤の一部の例が、米国特許第5,891,192号(ムラヤマら)、同第5,958,428号(バトナーガル(Bhatnagar))および同第6,187,024号(ブロック(Block)ら)、ならびにPCT国際公開WO01/03607号(スレイクSlaikeu)ら)に記載されており、上記各文書はその全文が本明細書に文献援用される。
本明細書において、本発明は特定の実施例および実施形態のみに関連して記載されており、本発明のすべての実施可能な実施例および実施形態を包括的に記載しようとはされていない。当業者には、特許請求の範囲に列挙されている本発明の意図する精神および範囲から逸脱することなく、上述の実施例および実施形態に、種々の付加、削除、改変および他の変更を加え得ることは当然理解されるであろう。そのような付加、削除、改変および他の変更はすべて以下のクレームの範囲内に包含されるものとする。

Claims (13)

  1. ヒト患者または患畜の疾患、奇形または障害を、イオン性官能基を有するエチレン性不飽和モノマーにより生成されるヒドロゲルポリマーを患者体内の移植部位に移植することにより治療するためのヒドロゲル組成物であって、
    (i)移植部位において移植前には第1体積を占め、(ii)移植部位に存在するpH感受性の脱プロトン化に応答して前記第1体積より大きい第2体積に膨張する、ある量のプロトン化された多孔質ヒドロゲルポリマーを含んでなる組成物。
  2. ヒト患者または患畜の疾患、奇形または障害を、イオン性官能基を有するエチレン性不飽和モノマーにより生成されるヒドロゲルポリマーを患者体内の移植部位に移植することにより治療するためのヒドロゲル組成物であって、
    (i)移植部位において移植前には第1体積を占め、(ii)移植部位に存在するpH感受性のプロトン化に応答して前記第1体積より大きい第2体積に膨張する、ある量の脱プロトン化された多孔質ヒドロゲルポリマーを含んでなる組成物。
  3. ヒドロゲルが非孔質である、請求項1または2に記載の組成物。
  4. 放射線不透過性粒子を組み込むことにより、ヒドロゲルが放射線不透過性となっている、請求項1または2に記載の組成物。
  5. 放射線不透過性モノマーを組み込むことによりヒドロゲルが放射線不透過性となっている、請求項1または2に記載の組成物。
  6. 移植部位に送出されるとき、ヒドロゲルがペレットの形態である、請求項1または2に記載の組成物。
  7. 移植部位に送出されるとき、ヒドロゲルが長尺状のフィラメントまたはチューブの形態である、請求項1または2に記載の組成物。
  8. 移植部位に送出されるとき、ヒドロゲルが粒子の形態である、請求項1または2に記載の
    組成物。
  9. カテーテルを介してヒドロゲルを移植部位に送出する、請求項1または2に記載の組成物。
  10. カテーテルがマイクロカテーテルである、請求項に記載の組成物。
  11. マイクロカテーテルが0.0127〜0.127センチメートルの管腔を有し、この管腔を介してヒドロゲルが送出される、請求項10に記載の組成物。
  12. ヒドロゲルを液体担体と混合し、次いで、液体担体/ヒドロゲル混合物をカテーテルの管腔を介して注入する、請求項に記載の組成物。
  13. ヒドロゲルを分離可能な搬送部材に結合させ、ヒドロゲルが結合している搬送部材を共に経管的に移植部位に進め、その後、搬送部材を後退させて抜出した後でヒドロゲルが移植部位に移植されたまま残るようにヒドロゲルを搬送部材から分離する、請求項に記載の組成物。
JP2009229839A 2001-03-13 2009-10-01 環境の変化に応答して体積が膨潤するヒドロゲルならびにそれらの製造法および利用法 Expired - Lifetime JP5154529B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/804,935 2001-03-13
US09/804,935 US6878384B2 (en) 2001-03-13 2001-03-13 Hydrogels that undergo volumetric expansion in response to changes in their environment and their methods of manufacture and use

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002570954A Division JP4416151B2 (ja) 2001-03-13 2002-02-28 環境の変化に応答して体積が膨潤するヒドロゲルならびにそれらの製造法および利用法

Publications (2)

Publication Number Publication Date
JP2010022847A JP2010022847A (ja) 2010-02-04
JP5154529B2 true JP5154529B2 (ja) 2013-02-27

Family

ID=25190260

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2002570954A Expired - Lifetime JP4416151B2 (ja) 2001-03-13 2002-02-28 環境の変化に応答して体積が膨潤するヒドロゲルならびにそれらの製造法および利用法
JP2009229839A Expired - Lifetime JP5154529B2 (ja) 2001-03-13 2009-10-01 環境の変化に応答して体積が膨潤するヒドロゲルならびにそれらの製造法および利用法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2002570954A Expired - Lifetime JP4416151B2 (ja) 2001-03-13 2002-02-28 環境の変化に応答して体積が膨潤するヒドロゲルならびにそれらの製造法および利用法

Country Status (9)

Country Link
US (5) US6878384B2 (ja)
EP (3) EP1372553B1 (ja)
JP (2) JP4416151B2 (ja)
CN (2) CN1306916C (ja)
AU (3) AU2002306605B2 (ja)
BR (1) BRPI0208034B8 (ja)
CA (1) CA2439925C (ja)
ES (3) ES2408014T3 (ja)
WO (1) WO2002071994A1 (ja)

Families Citing this family (133)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6878384B2 (en) 2001-03-13 2005-04-12 Microvention, Inc. Hydrogels that undergo volumetric expansion in response to changes in their environment and their methods of manufacture and use
AU2014200734B2 (en) * 2001-03-13 2015-11-05 Microvention, Inc. Hydrogels that undergo volumetric expansion in response to changes in their environment and their methods of manufacture and use
AU2002305401A1 (en) * 2001-05-04 2002-11-18 Concentric Medical Hydrogel filament vaso-occlusive device
JP2004535233A (ja) * 2001-06-20 2004-11-25 マイクロ ベンション インコーポレイテッド 全体又は部分的にポリマーコーティングを有する医療装置及びその製造方法
US7572288B2 (en) 2001-07-20 2009-08-11 Microvention, Inc. Aneurysm treatment device and method of use
US8252040B2 (en) * 2001-07-20 2012-08-28 Microvention, Inc. Aneurysm treatment device and method of use
RU2004123621A (ru) * 2002-02-01 2005-04-10 Пфайзер Продактс Инк. (Us) Лекарственные формы с немедленным высвобождением, содержащие твердые дисперсии лекарств
US8425549B2 (en) 2002-07-23 2013-04-23 Reverse Medical Corporation Systems and methods for removing obstructive matter from body lumens and treating vascular defects
US7551749B2 (en) * 2002-08-23 2009-06-23 Bose Corporation Baffle vibration reducing
DE10330269A1 (de) * 2003-07-04 2005-01-27 Instraction Gmbh System umfassend Effektoren und volumenveränderbare Rezeptoren-modifizierte Elastomere, Verfahren zu ihrer Herstellung und ihrer Verwendung
US7651682B2 (en) * 2003-10-29 2010-01-26 Gentis, Inc. Polymerizable emulsions for tissue engineering
AU2005212339B2 (en) 2004-02-06 2010-11-25 Georgia Tech Research Corporation Load bearing biocompatible device
CA2558623C (en) * 2004-02-06 2013-04-16 Georgia Tech Research Corporation Surface directed cellular attachment
ES2607402T3 (es) 2004-05-25 2017-03-31 Covidien Lp Dispositivo de oclusión vascular flexible
KR101300437B1 (ko) 2004-05-25 2013-08-26 코비디엔 엘피 동맥류용 혈관 스텐트
US9675476B2 (en) 2004-05-25 2017-06-13 Covidien Lp Vascular stenting for aneurysms
EP1786486B1 (en) * 2004-09-10 2011-05-18 Stichting Dutch Polymer Institute Radiopaque prosthetic intervertebral disc nucleus
US7201918B2 (en) * 2004-11-16 2007-04-10 Microvention, Inc. Compositions, systems and methods for treatment of defects in blood vessels
US7419486B2 (en) * 2005-06-15 2008-09-02 St. Jude Medical, Atrial Fibrillation Division, Inc. Treatment and diagnostic catheters with hydrogel electrodes
GB0523999D0 (en) * 2005-11-25 2006-01-04 Univ Manchester Microgel particle
US7959676B2 (en) * 2006-02-13 2011-06-14 Lanx, Inc. Method and apparatus for intervertebral disc support and repair
US8152833B2 (en) 2006-02-22 2012-04-10 Tyco Healthcare Group Lp Embolic protection systems having radiopaque filter mesh
CN101500623B (zh) * 2006-06-15 2016-08-24 微温森公司 一种由可膨胀聚合物构成的栓塞器械
US8741316B2 (en) * 2007-03-12 2014-06-03 Board Of Regents, The University Of Texas System Highly porous, recognitive polymer systems
US8821899B2 (en) 2007-03-12 2014-09-02 Board Of Regents, The University Of Texas System Method and process for the production of multi-coated recognitive and releasing systems
US8771713B2 (en) 2007-03-12 2014-07-08 Board Of Regents, The University Of Texas System Method and process for the production of multi-coated recognitive and releasing systems
US9155703B2 (en) 2007-03-12 2015-10-13 Board Of Regents, The University Of Texas System Method and process for the production of multi-coated recognitive and releasing systems
WO2008151204A1 (en) * 2007-06-04 2008-12-11 Sequent Medical Inc. Methods and devices for treatment of vascular defects
CN105943208B (zh) 2007-06-25 2019-02-15 微仙美国有限公司 自扩展假体
CA2709379C (en) 2007-12-21 2016-08-16 Microvention, Inc. Hydrogel filaments for biomedical uses
WO2009108760A2 (en) * 2008-02-26 2009-09-03 Board Of Regents, The University Of Texas System Dendritic macroporous hydrogels prepared by crystal templating
AU2009239424B9 (en) 2008-04-21 2014-10-09 Covidien Lp Braid-ball embolic devices and delivery systems
US9597087B2 (en) 2008-05-02 2017-03-21 Sequent Medical, Inc. Filamentary devices for treatment of vascular defects
WO2009140437A1 (en) 2008-05-13 2009-11-19 Nfocus Neuromedical, Inc. Braid implant delivery systems
US8180076B2 (en) * 2008-07-31 2012-05-15 Bose Corporation System and method for reducing baffle vibration
EP2172236A1 (en) * 2008-10-03 2010-04-07 Koninklijke Philips Electronics N.V. Breast pump system
JP2010162063A (ja) * 2009-01-13 2010-07-29 Japan Health Science Foundation 塞栓材
JP2012100680A (ja) * 2009-03-04 2012-05-31 Terumo Corp 血管内用処置材
JP2010227172A (ja) * 2009-03-26 2010-10-14 Terumo Corp 軟組織増大材料
MY161258A (en) * 2009-04-30 2017-04-14 Technip France Spar mooring line sharing method and system
US8409269B2 (en) 2009-12-21 2013-04-02 Covidien Lp Procedures for vascular occlusion
US9114200B2 (en) 2009-09-24 2015-08-25 Microvention, Inc. Injectable hydrogel filaments for biomedical uses
JP5401254B2 (ja) * 2009-10-13 2014-01-29 昌典 石原 多孔質合成樹脂製造方法および同多孔質合成樹脂製造方法により製造された多孔質合成樹脂材
CA2777171C (en) 2009-10-26 2017-09-19 Microvention, Inc. Embolization device constructed from expansile polymer
CN102639181A (zh) * 2009-11-05 2012-08-15 斯昆特医疗公司 多层长丝装置或血管缺损的治疗
US8337448B2 (en) 2010-01-29 2012-12-25 Baxter International Inc. Apparatus for monitoring and controlling peritoneal dialysis
US8998947B2 (en) 2010-09-10 2015-04-07 Medina Medical, Inc. Devices and methods for the treatment of vascular defects
EP2613735B1 (en) 2010-09-10 2018-05-09 Covidien LP Devices for the treatment of vascular defects
US9351859B2 (en) 2010-12-06 2016-05-31 Covidien Lp Vascular remodeling device
US9089332B2 (en) 2011-03-25 2015-07-28 Covidien Lp Vascular remodeling device
WO2012145431A2 (en) 2011-04-18 2012-10-26 Microvention, Inc. Embolic devices
CN103547222B (zh) 2011-05-11 2016-02-10 柯惠有限合伙公司 脉管重塑装置
CA2835427A1 (en) 2011-05-11 2012-11-15 Microvention, Inc. Device for occluding a lumen
WO2012162552A1 (en) 2011-05-26 2012-11-29 Cartiva, Inc. Tapered joint implant and related tools
US9060886B2 (en) 2011-09-29 2015-06-23 Covidien Lp Vascular remodeling device
US9072620B2 (en) 2011-11-04 2015-07-07 Covidien Lp Protuberant aneurysm bridging device deployment method
US9011480B2 (en) 2012-01-20 2015-04-21 Covidien Lp Aneurysm treatment coils
US9011884B2 (en) 2012-04-18 2015-04-21 Microvention, Inc. Embolic devices
US9452070B2 (en) 2012-10-31 2016-09-27 Covidien Lp Methods and systems for increasing a density of a region of a vascular device
US20140135810A1 (en) 2012-11-13 2014-05-15 Covidien Lp Occlusive devices
EP2967772A4 (en) 2013-03-11 2016-11-16 Microvention Inc IMPLANTABLE DEVICE WITH ADHESIVE PROPERTIES
CN110169802B (zh) 2013-03-15 2022-07-08 柯惠有限合伙公司 血管植入物的输送与分离机构
US10736758B2 (en) 2013-03-15 2020-08-11 Covidien Occlusive device
US9078658B2 (en) 2013-08-16 2015-07-14 Sequent Medical, Inc. Filamentary devices for treatment of vascular defects
US9955976B2 (en) 2013-08-16 2018-05-01 Sequent Medical, Inc. Filamentary devices for treatment of vascular defects
US9963556B2 (en) 2013-09-18 2018-05-08 Senseonics, Incorporated Critical point drying of hydrogels in analyte sensors
BR112016005768B1 (pt) * 2013-09-19 2021-09-21 Microvention, Inc Películas de polímero
US9546236B2 (en) * 2013-09-19 2017-01-17 Terumo Corporation Polymer particles
CA2929235C (en) * 2013-11-08 2018-07-17 Terumo Corporation Polymer particles
WO2015073704A1 (en) 2013-11-13 2015-05-21 Covidien Lp Galvanically assisted attachment of medical devices to thrombus
WO2015127183A2 (en) * 2014-02-21 2015-08-27 Massachusetts Institute Of Technology Expansion microscopy
EP3113722A4 (en) * 2014-03-07 2017-12-06 Endologix, Inc. Forming hydrogels and materials therefor
WO2015153996A1 (en) 2014-04-03 2015-10-08 Micro Vention, Inc. Embolic devices
US9629635B2 (en) 2014-04-14 2017-04-25 Sequent Medical, Inc. Devices for therapeutic vascular procedures
US9713475B2 (en) 2014-04-18 2017-07-25 Covidien Lp Embolic medical devices
US10092663B2 (en) 2014-04-29 2018-10-09 Terumo Corporation Polymers
US10226533B2 (en) 2014-04-29 2019-03-12 Microvention, Inc. Polymer filaments including pharmaceutical agents and delivering same
EP3142600A4 (en) * 2014-05-12 2018-01-03 Jeffrey E. Thomas Photon-activatable gel coated intracranial stent and embolic coil
AU2015289474B2 (en) 2014-07-17 2019-12-05 The Regents Of The University Of California Controllable self-annealing microgel particles for biomedical applications
US9814466B2 (en) 2014-08-08 2017-11-14 Covidien Lp Electrolytic and mechanical detachment for implant delivery systems
TW201625754A (zh) * 2014-11-21 2016-07-16 艾倫塔斯有限公司 單一成份、儲存穩定、可硬化之聚矽氧組成物
WO2016154592A1 (en) * 2015-03-26 2016-09-29 Microvention, Inc. Embiolic particles
WO2016161025A1 (en) 2015-03-31 2016-10-06 Cartiva, Inc. Hydrogel implants with porous materials and methods
WO2016161026A1 (en) 2015-03-31 2016-10-06 Cartiva, Inc. Carpometacarpal (cmc) implants and methods
US10059990B2 (en) 2015-04-14 2018-08-28 Massachusetts Institute Of Technology In situ nucleic acid sequencing of expanded biological samples
AU2016248062B2 (en) 2015-04-14 2020-01-23 Cartiva, Inc. Tooling for creating tapered opening in tissue and related methods
US10526649B2 (en) 2015-04-14 2020-01-07 Massachusetts Institute Of Technology Augmenting in situ nucleic acid sequencing of expanded biological samples with in vitro sequence information
US11408890B2 (en) 2015-04-14 2022-08-09 Massachusetts Institute Of Technology Iterative expansion microscopy
WO2016201250A1 (en) 2015-06-11 2016-12-15 Microvention, Inc. Expansile device for implantation
WO2017023903A1 (en) * 2015-08-03 2017-02-09 President And Fellows Of Harvard College Phase-transforming and switchable metamaterials
US10364457B2 (en) 2015-08-07 2019-07-30 Massachusetts Institute Of Technology Nanoscale imaging of proteins and nucleic acids via expansion microscopy
EP3332258B1 (en) 2015-08-07 2020-01-01 Massachusetts Institute of Technology Protein retention expansion microscopy
US10478194B2 (en) 2015-09-23 2019-11-19 Covidien Lp Occlusive devices
US10314593B2 (en) 2015-09-23 2019-06-11 Covidien Lp Occlusive devices
AU2016353345B2 (en) 2015-11-12 2021-12-23 University Of Virginia Patent Foundation Compositions and methods for vas-occlusive contraception and reversal thereof
WO2017142879A1 (en) 2016-02-16 2017-08-24 The Regents Of The University Of California Methods for immune system modulation with microporous annealed particle gels
WO2017165833A1 (en) 2016-03-24 2017-09-28 Covidien Lp Thin wall constructions for vascular flow diversion
US10828039B2 (en) 2016-06-27 2020-11-10 Covidien Lp Electrolytic detachment for implantable devices
US10828037B2 (en) 2016-06-27 2020-11-10 Covidien Lp Electrolytic detachment with fluid electrical connection
US11051822B2 (en) 2016-06-28 2021-07-06 Covidien Lp Implant detachment with thermal activation
US20180028715A1 (en) 2016-07-27 2018-02-01 Contraline, Inc. Carbon-based compositions useful for occlusive medical devices and methods of making and using them
US10478195B2 (en) 2016-08-04 2019-11-19 Covidien Lp Devices, systems, and methods for the treatment of vascular defects
JP6653047B2 (ja) 2016-09-28 2020-02-26 テルモ株式会社 ポリマー粒子
US20180206851A1 (en) * 2016-10-19 2018-07-26 Daniel E. Walzman Hydrogel intrasaccular occlusion device
US10576099B2 (en) 2016-10-21 2020-03-03 Covidien Lp Injectable scaffold for treatment of intracranial aneurysms and related technology
CN117582559A (zh) 2016-12-29 2024-02-23 泰普治疗公司 用于治疗医疗植入物部位的方法和系统
US11931928B2 (en) 2016-12-29 2024-03-19 Evonik Superabsorber Llc Continuous strand superabsorbent polymerization
US10995361B2 (en) 2017-01-23 2021-05-04 Massachusetts Institute Of Technology Multiplexed signal amplified FISH via splinted ligation amplification and sequencing
US11385481B1 (en) 2017-02-01 2022-07-12 Ram Pattikonda Advanced dynamic focus eyewear
WO2018157048A1 (en) 2017-02-24 2018-08-30 Massachusetts Institute Of Technology Methods for examining podocyte foot processes in human renal samples using conventional optical microscopy
CN110709110B (zh) * 2017-04-05 2023-05-16 赛特博恩医疗有限公司 性质改变的植入物
CN107158560A (zh) * 2017-04-27 2017-09-15 清华大学 基于水凝胶溶胀特性的可控自变形神经微电极
US11180804B2 (en) 2017-07-25 2021-11-23 Massachusetts Institute Of Technology In situ ATAC sequencing
US10675036B2 (en) 2017-08-22 2020-06-09 Covidien Lp Devices, systems, and methods for the treatment of vascular defects
CN111278477A (zh) * 2017-10-25 2020-06-12 精密医疗国际公司 生物降解性和生物代谢性的肿瘤封闭剂
WO2019156957A1 (en) 2018-02-06 2019-08-15 Massachusetts Institute Of Technology Swellable and structurally homogenous hydrogels and methods of use thereof
US11065009B2 (en) 2018-02-08 2021-07-20 Covidien Lp Vascular expandable devices
US11065136B2 (en) 2018-02-08 2021-07-20 Covidien Lp Vascular expandable devices
US10905432B2 (en) 2018-08-22 2021-02-02 Covidien Lp Aneurysm treatment coils and associated systems and methods of use
US10912569B2 (en) 2018-08-22 2021-02-09 Covidien Lp Aneurysm treatment coils and associated systems and methods of use
US11678887B2 (en) 2018-12-17 2023-06-20 Covidien Lp Devices, systems, and methods for the treatment of vascular defects
CN111393563B (zh) * 2019-01-02 2023-04-07 湖南工业大学 一种温敏性水凝胶的制备方法及监测模具
CN111686310B (zh) * 2019-03-11 2022-03-29 国家纳米科学中心 一种抗菌导尿管及其制备方法和应用
US11317921B2 (en) 2019-03-15 2022-05-03 Sequent Medical, Inc. Filamentary devices for treatment of vascular defects
WO2020190620A1 (en) 2019-03-15 2020-09-24 Sequent Medical, Inc. Filamentary devices for treatment of vascular defects
EP3908208A4 (en) 2019-03-15 2022-10-19 Sequent Medical, Inc. FILAMENTARY DEVICES WITH A FLEXIBLE JOINT FOR THE TREATMENT OF VASCULAR ABNORMALITIES
WO2021092618A1 (en) 2019-11-04 2021-05-14 Covidien Lp Devices, systems, and methods for treatment of intracranial aneurysms
WO2021113505A1 (en) 2019-12-05 2021-06-10 Massachusetts Institute Of Technology Method for preparing a specimen for expansion microscopy
CN111333866B (zh) * 2020-03-20 2023-03-24 浙江理工大学 一种单层水凝胶、制备方法及用作柔性抓手的应用
US11931041B2 (en) 2020-05-12 2024-03-19 Covidien Lp Devices, systems, and methods for the treatment of vascular defects
CN112300413B (zh) * 2020-12-29 2021-04-09 北京泰杰伟业科技有限公司 一种超细均匀的丙烯酰胺类聚合物水凝胶丝的制备方法及应用
CN114561237B (zh) * 2022-04-19 2022-10-28 中国科学院兰州化学物理研究所 一种剪切响应性水基凝胶润滑剂的制备方法
CN115746360B (zh) * 2022-11-24 2023-12-12 无锡学院 一种间隙可调的柔性表面增强拉曼散射基底及其制备方法和应用

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6005161A (en) 1986-01-28 1999-12-21 Thm Biomedical, Inc. Method and device for reconstruction of articular cartilage
US4990138A (en) * 1989-07-18 1991-02-05 Baxter International Inc. Catheter apparatus, and compositions useful for producing same
US5635482A (en) 1989-08-14 1997-06-03 The Regents Of The University Of California Synthetic compounds and compositions with enhanced cell binding
DK0494996T3 (da) * 1989-10-03 1996-03-18 Advanced Polymer Systems Inc Eroderbare makroporøse hydrogelpartikler og fremstilling heraf
WO1991016057A1 (en) 1990-04-18 1991-10-31 University Of Utah COLONIC-TARGETED ORAL DRUG-DOSAGE FORMS BASED ON CROSSLINKED HYDROGELS CONTAINING AZOBONDS AND EXHIBITING pH-DEPENDENT SWELLING
US5226902A (en) 1991-07-30 1993-07-13 University Of Utah Pulsatile drug delivery device using stimuli sensitive hydrogel
US5514379A (en) 1992-08-07 1996-05-07 The General Hospital Corporation Hydrogel compositions and methods of use
US5447727A (en) * 1992-10-14 1995-09-05 The Dow Chemical Company Water-absorbent polymer having improved properties
US5554147A (en) 1994-02-01 1996-09-10 Caphco, Inc. Compositions and devices for controlled release of active ingredients
US5651979A (en) 1995-03-30 1997-07-29 Gel Sciences, Inc. Apparatus and method for delivering a biologically active compound into a biological environment
US5750585A (en) 1995-04-04 1998-05-12 Purdue Research Foundation Super absorbent hydrogel foams
JP4104656B2 (ja) 1995-12-19 2008-06-18 ブラッコ・リサーチ・ソシエテ・アノニム トリヨードベンゼンポリマーからなる胃腸管の画像形成用組成物
US5863551A (en) * 1996-10-16 1999-01-26 Organogel Canada Ltee Implantable polymer hydrogel for therapeutic uses
WO1998043615A1 (en) 1997-04-02 1998-10-08 Purdue Research Foundation Method for oral delivery of proteins
US6224893B1 (en) * 1997-04-11 2001-05-01 Massachusetts Institute Of Technology Semi-interpenetrating or interpenetrating polymer networks for drug delivery and tissue engineering
US6271278B1 (en) * 1997-05-13 2001-08-07 Purdue Research Foundation Hydrogel composites and superporous hydrogel composites having fast swelling, high mechanical strength, and superabsorbent properties
US5891192A (en) 1997-05-22 1999-04-06 The Regents Of The University Of California Ion-implanted protein-coated intralumenal implants
US6077880A (en) * 1997-08-08 2000-06-20 Cordis Corporation Highly radiopaque polyolefins and method for making the same
CN1714783A (zh) * 1998-03-06 2006-01-04 生物领域医疗公司 用于组织膨胀和治疗的可植入颗粒
US6165193A (en) * 1998-07-06 2000-12-26 Microvention, Inc. Vascular embolization with an expansible implant
KR20000012970A (ko) 1998-08-03 2000-03-06 김효근 썰폰아마이드기를 포함하는 ph 민감성 고분자 및 그의 제조방법
WO2000009612A1 (fr) * 1998-08-13 2000-02-24 Nippon Shokubai Co., Ltd. Composition polymere reticulee gonflant dans l'eau et son procede de production
US5952232A (en) 1998-09-17 1999-09-14 Rothman; James Edward Expandible microparticle intracellular delivery system
US6187024B1 (en) 1998-11-10 2001-02-13 Target Therapeutics, Inc. Bioactive coating for vaso-occlusive devices
US6245740B1 (en) 1998-12-23 2001-06-12 Amgen Inc. Polyol:oil suspensions for the sustained release of proteins
US6371904B1 (en) * 1998-12-24 2002-04-16 Vivant Medical, Inc. Subcutaneous cavity marking device and method
EP1031354A3 (en) 1999-01-19 2003-02-05 Rohm And Haas Company Polymeric MRI Contrast agents
US6663607B2 (en) 1999-07-12 2003-12-16 Scimed Life Systems, Inc. Bioactive aneurysm closure device assembly and kit
US7291673B2 (en) 2000-06-02 2007-11-06 Eidgenossiche Technische Hochschule Zurich Conjugate addition reactions for the controlled delivery of pharmaceutically active compounds
US6506408B1 (en) * 2000-07-13 2003-01-14 Scimed Life Systems, Inc. Implantable or insertable therapeutic agent delivery device
US6878384B2 (en) 2001-03-13 2005-04-12 Microvention, Inc. Hydrogels that undergo volumetric expansion in response to changes in their environment and their methods of manufacture and use
ES2441341T3 (es) 2001-05-29 2014-02-04 Microvention, Inc. Dispositivo de embolización vascular y procedimiento de fabricación del mismo
US20030014075A1 (en) * 2001-07-16 2003-01-16 Microvention, Inc. Methods, materials and apparatus for deterring or preventing endoleaks following endovascular graft implanation
EP1460982A4 (en) 2001-11-16 2010-04-14 Biocure Inc METHODS FOR INITIATING IN SITU FORMATION OF HYDROGELS
WO2003089506A1 (en) 2002-04-22 2003-10-30 Purdue Research Foundation Hydrogels having enhanced elasticity and mechanical strength properties
WO2004010878A1 (en) 2002-07-31 2004-02-05 Microvention, Inc. Three element coaxial vaso-occlusive device
US20050119687A1 (en) 2003-09-08 2005-06-02 Dacey Ralph G.Jr. Methods of, and materials for, treating vascular defects with magnetically controllable hydrogels
CN101500623B (zh) 2006-06-15 2016-08-24 微温森公司 一种由可膨胀聚合物构成的栓塞器械

Also Published As

Publication number Publication date
ES2390605T3 (es) 2012-11-14
US20140256837A1 (en) 2014-09-11
EP1372553A4 (en) 2006-04-12
EP2363104A1 (en) 2011-09-07
US20120302654A1 (en) 2012-11-29
EP1372553A1 (en) 2004-01-02
CA2439925A1 (en) 2002-09-19
BR0208034A (pt) 2004-02-25
AU2009213041A1 (en) 2009-10-08
CN1306916C (zh) 2007-03-28
EP2308431B1 (en) 2012-07-04
AU2007216682B2 (en) 2009-10-01
US20020176880A1 (en) 2002-11-28
US20130274362A1 (en) 2013-10-17
ES2408014T3 (es) 2013-06-17
WO2002071994A1 (en) 2002-09-19
JP2004528880A (ja) 2004-09-24
US8465779B2 (en) 2013-06-18
BRPI0208034B1 (pt) 2018-02-06
ES2478992T3 (es) 2014-07-23
JP4416151B2 (ja) 2010-02-17
JP2010022847A (ja) 2010-02-04
AU2007216682A1 (en) 2007-09-27
CN101024729A (zh) 2007-08-29
EP2308431A1 (en) 2011-04-13
BRPI0208034B8 (pt) 2021-07-27
EP2363104B1 (en) 2013-04-24
US20050196426A1 (en) 2005-09-08
EP1372553B1 (en) 2014-06-25
AU2002306605B2 (en) 2007-06-14
US6878384B2 (en) 2005-04-12
CA2439925C (en) 2014-01-14
US8231890B2 (en) 2012-07-31
US8734834B2 (en) 2014-05-27
CN1617694A (zh) 2005-05-18

Similar Documents

Publication Publication Date Title
JP5154529B2 (ja) 環境の変化に応答して体積が膨潤するヒドロゲルならびにそれらの製造法および利用法
AU2002306605A1 (en) Hydrogels that undergo volumetric expansion in response to changes in their environment and their methods of manufacture and use
US11179492B2 (en) Polymers
US10232089B2 (en) Embolic devices
EP2231215B1 (en) Hydrogel filaments for biomedical uses
BRPI0711784B1 (pt) Dispositivo de embolização construído de polímero expansível e seu método de preparação
AU2014200734B2 (en) Hydrogels that undergo volumetric expansion in response to changes in their environment and their methods of manufacture and use
WO2021199883A1 (ja) 塞栓剤
WO2021199884A1 (ja) 塞栓剤キット
CS234156B1 (cs) Způsob přípravy houbovitých syntetických hydrogelů

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20120424

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120724

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5154529

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term