CN101024729A - 响应周围环境变化发生体积膨胀的水凝胶及其生产方法和应用 - Google Patents

响应周围环境变化发生体积膨胀的水凝胶及其生产方法和应用 Download PDF

Info

Publication number
CN101024729A
CN101024729A CNA2007100077925A CN200710007792A CN101024729A CN 101024729 A CN101024729 A CN 101024729A CN A2007100077925 A CNA2007100077925 A CN A2007100077925A CN 200710007792 A CN200710007792 A CN 200710007792A CN 101024729 A CN101024729 A CN 101024729A
Authority
CN
China
Prior art keywords
hydrogel
functional group
implant site
monomer
hydrogels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2007100077925A
Other languages
English (en)
Inventor
格雷戈里·M·克鲁斯
迈克尔·J·康斯坦特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MicroVention Inc
Original Assignee
MicroVention Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MicroVention Inc filed Critical MicroVention Inc
Publication of CN101024729A publication Critical patent/CN101024729A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F22/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides or nitriles thereof
    • C08F22/36Amides or imides
    • C08F22/38Amides
    • C08F22/385Monomers containing two or more (meth)acrylamide groups, e.g. N,N'-methylenebisacrylamide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • A61K9/0024Solid, semi-solid or solidifying implants, which are implanted or injected in body tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/04X-ray contrast preparations
    • A61K49/0433X-ray contrast preparations containing an organic halogenated X-ray contrast-enhancing agent
    • A61K49/0447Physical forms of mixtures of two different X-ray contrast-enhancing agents, containing at least one X-ray contrast-enhancing agent which is a halogenated organic compound
    • A61K49/0457Semi-solid forms, ointments, gels, hydrogels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/145Hydrogels or hydrocolloids

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Neurosurgery (AREA)
  • Dermatology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Vascular Medicine (AREA)
  • Surgery (AREA)
  • Materials For Medical Uses (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Medicinal Preparation (AREA)

Abstract

响应周围环境变化(如pH或者温度的变化)发生体积膨胀的水凝胶及其生产方法和应用。通常,通过形成液体反应混合物制备水凝胶,所述液体反应混合物含有a)单体和/或聚合物,至少部分单体和/或聚合物对环境变化(如pH或者温度的变化)敏感,b)交联剂和c)聚合引发剂。如果需要,可以将成孔剂(porosigen)引入到液体反应混合物中以生成孔。水凝胶形成之后,将成孔剂除去以在水凝胶内形成孔。还可以对水凝胶进行处理以使其呈现非膨胀体积,其中水凝胶保持非膨胀体积直到其周围环境变化使其膨胀。这些水凝胶可以被制备成多种形状如小球、细丝和颗粒状。这些水凝胶的生物医学应用包括将水凝胶植入到患者体内并且植入部位的环境条件引起水凝胶在原位膨胀的应用。

Description

响应周围环境变化发生体积膨胀的水凝胶及其生产方法和应用
本申请是申请日2002年2月28日、申请号02806384.8的专利申请的分案申请。
发明领域
本发明总的来说涉及特定的水凝胶组合物、生产这样的水凝胶组合物的方法和应用这样的水凝胶组合物的方法。更具体地说,本发明涉及响应周围环境变化表现出受控的膨胀速率的水凝胶、制备这样的水凝胶的方法和这样的水凝胶在生物医学应用(如治疗动脉瘤、瘘、动静脉畸形,和用于血管或其它管腔解剖结构的栓塞或闭塞)中的应用方法。
发明背景
通常,术语“水凝胶”一般是指可在水中溶胀的聚合物材料。水凝胶在水中的溶胀的原因是水扩散通过玻璃状聚合物引起聚合物链解开及随后的聚合物网络的溶胀。通常,通过由辐射、热、还原氧化或者亲核进攻使单体和/或聚合物交联制备现有技术中的水凝胶。烯键式不饱和单体的交联实例包括从甲基丙烯酸-2-羟基乙酯制备隐形眼镜和从丙烯酸制备吸收制品。聚合物的交联实例包括通过使用电离辐射将亲水聚合物水溶液交联得到伤口敷料和通过交联用烯键式不饱和部分改性的亲水聚合物的水溶液获得外科密封剂。
在或大约在1968年,Krauch和Sanner描述了在结晶母体周围聚合单体并随后除去结晶母体以生成互联多孔聚合物网络的方法。从那时起,已经使用盐、蔗糖和冰晶作为成孔剂(porosigen)制备多孔水凝胶。现有技术中的这些多孔水凝胶已经被用作为亲合色谱法中的膜和组织工程基质,在该基质中组织将向内生长进入多孔水凝胶网络。这些多孔水凝胶的实例参见题为用于关节软骨改造的方法和装置(MethodAnd Device For Reconstruction of Articular Cartilage)的美国专利US6,005,161(Brekke等人)、题为治疗用可植入聚合物水凝胶(ImplantablePolymer Hydrogel For Therapeutic Uses)的美国专利US5,863,551(Woerly)及题为超吸收水凝胶泡沫体(Super AbsorbentHydrogel Foams)的美国专利US5,750,585(Park等人)。
现有技术中已经包括了某些响应外界刺激如溶剂组成、pH、电场、离子强度和温度的变化而发生体积变化的水凝胶。水凝胶响应各种刺激归因于单体单元的审慎选择。例如,如果需要温度敏感性,通常使用N-异丙基丙烯酰胺;如果需要pH敏感性,通常使用带有胺基或者羧酸的单体。刺激响应性水凝胶主要被用作受控药物输送装置。这些刺激响应性水凝胶的实例参见题为含有磺酰胺的pH敏感性聚合物及其合成方法(pH-Sensitive Polymer Containing Sulfoamide And ItsSynthesis Methos)的美国专利US6,103,865(Bae等人)、题为使用刺激敏感性水凝胶的脉动药物运输装置(Pulsatile Drug Delivery DeviceUsing Stimuli Sensitive Hydrogel)的美国专利US5,226,902(Bae等人)及题为以含有偶氮键并表现pH依赖性溶胀的交联水凝胶为基础的结肠靶向口服药物剂型(Colonic-Targeted Oral Drug-Dosage Forms BasedOn Crosslinked Hydrogels Containing Azobonds And ExhibitingpH-Dependent Swelling)的美国专利US5,415,864(Kopeck等人)。
尽管水凝胶材料的性能取得了这些进展,但尚未开发出可允许细胞生长、并且无需非水溶剂或涂层就具有最适宜通过微导管或导管输送的受控膨胀速率的的水凝胶材料。因此,在现有技术中仍需要开发这样一种水凝胶,其可用于多种用途,包括但不限于医学植入应用,其中水凝胶与动脉瘤、瘘、动静脉畸形和血管闭塞会合结合使用。
发明概述
本发明提供了可响应环境变化如pH或者温度变化而发生受控体积膨胀的水凝胶(即,它们是“刺激-可膨胀的”)。在实施方案中,水凝胶具有足够的多孔性以允许细胞向内生长。通过形成液体反应混合物来制备本发明的水凝胶,所述液体反应混合物包含a)单体和/或聚合物并且至少部分的单体和/或聚合物对环境变化(如pH或者温度的变化)敏感,b)交联剂和c)聚合引发剂。如果需要,可将成孔剂(如氯化钠、冰晶和蔗糖)加入到液体反应混合物中。随后从获得的固体水凝胶中除去成孔剂(如通过反复洗涤)产生多孔性。通常,还将使用溶剂以溶解固体单体和/或聚合物。然而,在仅仅使用液体单体的情况下,可不必引入溶剂。通常,通过引入带有可离子化官能团(如胺、羧酸)的烯键式不饱和单体而赋予本发明的可控膨胀速率。例如,如果将丙烯酸引入交联网络中,在低pH溶液中培养水凝胶以使羧酸质子化。在已漂洗除去过量的低pH溶液并且干燥水凝胶之后,可将水凝胶通过充满生理pH盐水或者血液的微导管导入。直到羧酸基团去质子化水凝胶才可发生膨胀。相反地,如果将含胺的单体引入交联网络中,在高pH溶液中培养水凝胶以使胺去质子化。在已漂洗除去过量的高pH溶液并干燥水凝胶之后,可将水凝胶通过充满生理pH盐水或者血液的微导管导入。直到胺基质子化水凝胶才可以发生膨胀。
可选择地,本发明的刺激-可膨胀的水凝胶材料可为辐射透不过的,以利射线照相成像时显像。在液体反应混合物中引入辐射透不过的颗粒(如钽、金、铂等)可使整个水凝胶具有辐射不透性。另外可在液体反应混合物中引入辐射透不过的单体以使整个水凝胶具有辐射不透性。
根据本发明,提供了通过植入(如通过套管、导管、微导管、针或者其它导入装置注射、滴注、手术植入或者其它植入或者放置)本发明的刺激-可膨胀的水凝胶材料用于治疗人或者动物患者的各种疾病、疾病状况、畸形或者障碍的方法,该刺激-可膨胀的水凝胶材料在体内植入部位内占据第一体积,通过植入部位条件(如pH,温度)引起水凝胶膨胀到比第一体积大的第二体积。特别地,可将本发明的水凝胶皮下植入到伤口内、肿瘤内或向肿瘤供应血液的血管内、器官内、畸变血管或者血管结构内、组织或者解剖结构之间的腔内、或者外科手段产生的囊或者腔内。具有本发明的受控膨胀速率的水凝胶以这种方式可用于治疗动脉瘤、瘘、动静脉畸形、血管闭塞和其它医学应用中。
对于本领域的那些技术人员来说,通过阅读下面的示例实施方案的详细说明,本发明另外的方面将是显而易见的。
附图说明
图1是表示一般方法的流程图,通过该方制备本发明的环境响应的可膨胀水凝胶。
图2是表示具体方法的流程图,通过该方法可以制备本发明的pH响应性的可膨胀水凝胶小球。
发明详述
提供下面的详细说明和实施例仅是为了对本发明的示例实施方案进行有限的说明,而不是为了彻底描述本发明的所有可能的实施方案。
A.从单体溶液制备pH响应的可膨胀水凝胶的优选方法
下面是用于制备本发明的pH响应的可膨胀水凝胶的方法说明。
单体的选择和加入
在本实施方案中,单体溶液由烯键式不饱和单体、烯键式不饱和交联剂、成孔剂和溶剂组成。选择的单体中至少部分单体,优选10-50%的单体,更优选10-30%的单体必须是pH敏感的。优选的pH敏感的单体为丙烯酸。甲基丙烯酸和这两种酸的衍生物也将赋予pH敏感性。因为仅仅用这些酸制成的水凝胶的机械性能差,应当选择单体以提供附加机械性能。用于赋予机械性能的优选单体为丙烯酰胺,其可与一种或者更多种上述pH敏感的单体结合使用以赋予附加压缩强度或者其它机械性能。单体在溶液中的优选浓度范围为20-30%w/w。
交联剂的选择和加入
交联剂可以是任何多官能烯键式不饱和化合物。N,N’-亚甲基双丙烯酰胺为优选交联剂。如果需要水凝胶材料为生物降解的,应当选择可生物降解的交联剂。交联剂在溶液中的优选浓度为小于1%w/w,更优选小于0.1%w/w。
成孔剂的选择和加入
成孔剂在单体溶液中的过饱和悬浮赋予了水凝胶材料的多孔性。也可以使用不溶于单体溶液但溶于洗涤液的成孔剂。氯化钠是优选的成孔剂,但也可以使用氯化钾、冰、蔗糖和碳酸氢钠。优选控制成孔剂的颗粒大小为小于25微米,更优选小于10微米。小的颗粒大小有助于成孔剂在溶剂中的悬浮。优选成孔剂在单体溶液中的浓度范围为5-50%w/w,更优选10-20%w/w。另外可以不使用成孔剂而制造非多孔水凝胶。
溶剂的选择和加入(如果需要)
如果必要,以单体、交联剂和成孔剂的溶解性为基础选择溶剂。如果使用液体单体(如甲基丙烯酸-2-羟基乙酯),不必使用溶剂。优选溶剂为水,然而也可以使用乙醇。溶剂的优选浓度范围为20-80%w/w,更优选为50-80%w/w。
交联密度充分地影响这些水凝胶材料的机械性能。通过改变单体浓度、交联剂浓度和溶剂浓度可最好地控制交联密度(及因此控制机械性能)。
引起单体溶液交联的引发剂的选择和加入
可通过还原氧化、辐射和热完成单体的交联。使用紫外线和可见光与合适的引发剂一起、或者通过电离辐射(如电子束或者γ射线)不用引发剂,可完成单体溶液的辐射交联。优选类型的交联引发剂为通过还原氧化起作用的引发剂。可用于本发明实施方案的这样的还原/氧化引发剂的具体实例是过硫酸铵和N,N,N’,N’-四甲基乙二胺。
洗涤除去成孔剂和任何过量单体
在聚合完成之后,用水、乙醇或者其它合适洗涤液洗涤水凝胶以除去成孔剂、任何未反应的残余单体和任何未包含在内的低聚物。优选首先在蒸馏水中洗涤水凝胶而完成洗涤。
处理水凝胶以控制水凝胶的膨胀速率
如上讨论,通过存在于水凝胶网络上的可离子化官能团的质子化/去质子化完成水凝胶膨胀速率的控制。一旦水凝胶制备好并且过量单体和成孔剂已经被洗涤除去,就可以进行膨胀速率的控制步骤。
在带有羧酸基团的pH敏感单体被引入水凝胶网络的实施方案中,在低pH溶液中培养水凝胶。溶液中的自由质子将水凝胶网络上的羧酸基团质子化。培养时间和温度及溶液的pH影响膨胀速率的控制量。通常,培养时间和温度与膨胀控制量成正比,而溶液pH与膨胀控制量成反比。本发明者已经确定处理溶液中水含量也影响膨胀控制。在这方面,水凝胶在处理溶液中能够膨胀更多并且认为有更多数量的羧酸基团可发生质子化。需要水含量和pH的最佳化以对膨胀速率实现最大控制。培养结束后,洗涤除去过量的处理溶液并干燥水凝胶材料。我们已经发现用低pH溶液处理的水凝胶干燥后比未处理水凝胶干燥后的尺寸小。这是理想的效果因为需要通过微导管运输这些水凝胶材料。
如果带有胺基的pH敏感单体被引入到水凝胶网络中,在高pH溶液中培养水凝胶。在高pH下去质子化发生在水凝胶网络的胺基上。培养时间和温度及溶液的pH影响膨胀速率的控制量。通常,培养的时间、温度和溶液pH与膨胀控制量成正比。在培养结束之后,洗涤除去过量的处理溶液并干燥水凝胶。
实施例1
(制备pH响应的可膨胀水凝胶小球的方法)
可以各种形状和构造如板、填块、球、小球、细丝等形状制备并使用本发明的水凝胶材料。图2表示本发明优选方法的具体例,该方法可被用于生产本发明的固体小球形状的pH响应的可膨胀水凝胶。在这一方法中,含有烯键式不饱和单体、烯键式不饱和交联剂、成孔剂和任何溶剂的初始反应混合物在合适的容器中混合。然后在混合物中加入引发剂,此时仍为液体形式的反应混合物被进一步混合,并被吸入注射器或者其它合适的注射装置中。将管(如内径为0.038-0.254厘米(0.01 5-0.100英寸)并优选0.064厘米(0.025英寸)的的聚乙烯管,用于形成适用于脑或者其它血管应用的小球)与注射器或者注射装置连接并将反应混合物注射到管内,在管内混合物聚合。水凝胶在管内充分聚合之后,然后将其中包含水凝胶的管切割成所需长度(如5.08厘米(2英寸)片段)的单个段。然后将这些水凝胶段从每个管片段的腔中取出并放置于一系列漂洗浴中以洗涤除去成孔剂和任何残留单体。这些漂洗浴如下所示:
    漂洗浴1...蒸馏水55℃10-12小时漂洗浴2...蒸馏水55℃至少2小时漂洗浴3...蒸馏水55℃至少2小时
在暴露于这些漂洗浴中水的过程中,水凝胶片段可能溶胀。为抑制这些水凝胶小球的溶胀,将其放置在可从水凝胶中置换至少一些水的溶胀抑制液中。这种溶胀抑制液可以是醇、含有足够醇以控制溶胀的醇/水溶液、丙酮或者其它合适的非水脱水剂。在图2所表示的具体例中,将前述漂洗的水凝胶片段放置于溶胀抑制浴中,如下所示:
    溶胀抑制浴...70%水和30%乙醇55℃至少2小时
水凝胶片段从溶胀抑制液中被取出之后,可将水凝胶的圆柱片段切割成更小段(如0.254厘米(0.100英寸)长的段)。然后可将这些单个段沿着圆柱水凝胶部分的长轴串在铂线圈和/或铂丝上。串完之后,将这些段在55℃真空干燥至少2小时。然后将水凝胶部分进行酸化处理,优选将其浸渍到37℃的酸化溶液如50%盐酸:50%水中约70小时。然后洗涤除去过量酸化溶液。这可通过将水凝胶部分放置于一系列浴中完成,如下所示:
    酸化处理浴1...70%异丙醇和30%水约5分钟酸化处理浴2...纯异丙醇约15分钟酸化处理浴3...纯异丙醇约15分钟酸化处理浴4...纯异丙醇约15分钟
完成酸化处理之后(如从酸化处理浴4中被取出之后)将水凝胶片段(即“小球”)在真空烘箱中在约60℃干燥约1-2小时。这样完成了小球的制备。当这些小球与生理pH(即,pH约为7.4)的液体(如血液)接触时将充分膨胀。
正如下文所述,下面的实施例2-4是用于说明具有受控膨胀速率的多孔水凝胶的许多生物医学应用中的一些应用。尽管这些实施例局限于水凝胶被植入人体或者动物患者体内的一些生物医学应用,可以理解本发明的水凝胶材料可用于除了下文所述的具体实施例以外的许多其它医学和非医学应用中。
实施例2
(动脉瘤栓塞)
对于动脉瘤栓塞,将1.52g(0.021moles)丙烯酰胺,0.87g(0.009moles)丙烯酸钠,0.005g(0.00003moles)N,N’-亚甲基双丙烯酰胺,7.95g水和4.5g氯化钠(<10微米的粒径)加入到琥珀色广口瓶中。加入53微升N,N,N’,N’-四甲基乙二胺和65微升的20%w/w过硫酸铵水溶液作为引发剂,并将溶液吸入到3cc注射器中。然后将溶液注射到0.025”ID管中并使其聚合2小时。将管切割成5.08厘米(2英寸)的段并在真空烘箱中干燥。使用心轴将干燥水凝胶从管中取出。聚合的水凝胶在蒸馏水中洗涤3次,时间分别为10-12小时、至少2小时和至少2小时,以除去成孔剂、任何未反应单体和任何未引入的单体。将水凝胶切割成约0.254厘米(0.100英寸)长度的段(“小球”)并用铂线圈/丝装置串起来。然后这些小球在乙醇中脱水并在约55℃干燥真空约2小时。
然后将干燥的小球放置于50%盐酸/50%水中并在37℃培养约70小时。经培养之后,连续漂洗除去小球上的过量盐酸溶液,连续漂洗为a)70%异丙醇:30%水约5分钟,b)100%异丙醇约15分钟,c)100%异丙醇约15分钟和d)100%异丙醇约15分钟。水凝胶小球在55℃真空干燥至少2小时。
使用这种方法制备的经处理的干燥水凝胶小球具有的直径适合通过充满盐水或者血液的0.036厘米(0.014英寸)或者0.046厘米(0.018英寸)(ID)的微导管传输。材料可以流动方式(如,将水凝胶小球或者颗粒与液体载体混合并通过套管或者导管将液体载体/水凝胶混合物注射或者灌注到植入部位)注射通过带有或者连接有可分离传输系统的微导管(水凝胶附着在线或者系绳上,这样的线或者系绳可向前穿过导管腔进入希望的植入部位,在植入部位水凝胶将通常与线或者系绳保持附着直到操作者使其分离或者直到植入部位的某些环境条件引起线/系绳和水凝胶之间的连接退化、断裂或者切断)。如果使用可分离传输系统,只要在水凝胶发生充分溶胀之前线或者绳保持连接至少15分钟,水凝胶小球通常可从微导管中推出或者拉回到微导管中(如果必要可反复进行)。在生理pH(约7.4)下约1小时之后水凝胶小球充分溶胀(直径达约0.089厘米(0.035英寸))。
实施例3
(动静脉畸形栓塞)
为制备适用于动静脉畸形栓塞的材料,将1.52g(0.021moles)丙烯酰胺,0.87g(0.009moles)丙烯酸钠,0.005g(0.00003moles)N,N’-亚甲基双丙烯酰胺,7.95g水和4.5g氯化钠(<10微米的粒径)加入到琥珀色广口瓶中。加入53微升N,N,N’,N’-四甲基乙二胺和65微升的20%w/w过硫酸铵水溶液作为引发剂,并将溶液吸入到3cc注射器中。使溶液在注射器内聚合2小时。使用剃刀片除去注射器,将水凝胶在真空烘箱中干燥。
干燥的水凝胶在蒸馏水中洗涤干燥3次,分别为10-12小时、2小时和2小时,以除去成孔剂和任何未反应单体和任何未包含在内的低聚物。然后将水凝胶在乙醇中脱水在约55℃真空干燥约2小时。将干燥的水凝胶切割成所需大小的颗粒,通常直径为100-900微米。然后在约37℃将干燥的水凝胶在50%盐酸:50%水的酸化溶液中培养约22小时,培养之后,连续漂洗除去小球上的过量盐酸溶液,连续漂洗为a)70%异丙醇:30%水约5分钟,b)100%异丙醇约15分钟,c)100%异丙醇约15分钟和d)100%异丙醇约15分钟。处理过的水凝胶颗粒在约55℃真空干燥约2小时。使用这种方法制备的经处理的干燥水凝胶颗粒具有的直径适用于动静脉畸形栓塞,并且可以以流动方式注射通过标准微导管。这些水凝胶颗粒在生理pH约7.4下约15分钟后充分溶胀。
实施例4
(血管或者其它腔解剖结构闭塞)
为制造血管闭塞插栓,将1.52g(0.021mole)丙烯酰胺,0.87g(0.009moles)丙烯酸钠,0.005g(0.00003moles)N,N-亚甲基双丙烯酰胺,7.95g水和4.5g氯化钠(<10微米的粒径)加入到琥珀色广口瓶中。加入53微升N,N,N’,N’-四甲基乙二胺和65微升的20%w/w过硫酸铵水溶液作为引发剂,并将溶液吸入到3cc注射器中。然后将溶液注射到不同大小的管中并使其聚合2小时。需要各种大小的管以制造不同大小的血管闭塞插栓。如在0.025”ID管中聚合可得到直径为约0.035”的血管插栓。在0.019”ID管中聚合可得到直径为约0.026”的血管插栓。将管切割成5.08厘米(2英寸)长的段并在真空烘箱中干燥。用心轴将干燥水凝胶从管中取出。聚合的水凝胶在蒸馏水中洗涤3次,分别为约10-12小时、约2小时和约2小时,以除去成孔剂、任何未反应的单体和任何未包合在内的低聚物。然后将水凝胶切割成长度约1.27厘米(0.500英寸)的段或者小球并用铂线圈/丝装置串起。然后将这些被串着的水凝胶小球在乙醇中脱水并在约55℃真空干燥约2小时。然后将串着的、干燥的小球放置在50%盐酸:50%水的酸化溶液中约22小时并在约37℃培养。培养之后,连续漂洗除去小球上的过量盐酸溶液,连续漂洗为a)70%异丙醇:30%水约5分钟,b)100%异丙醇约15分钟,c)100%异丙醇约15分钟和d)100%异丙醇约15分钟。完成乙醇漂洗之后,将这些经处理的水凝胶小球在约55℃真空干燥约2小时。
使用这种方法制备的经处理的干燥水凝胶小球具有的直径适用于传输通过充满盐水或者血液的0.036厘米(0.014英寸)或者0.046厘米(0.018英寸)(ID)微导管。这种材料可以流动方式注射通过微导管或者通过连接有可分离运输系统的微导管传输。如果使用可分离系统,水凝胶材料在发生充分溶胀之前的约5分钟可以在微导管内外回到原位。在约15分钟之内材料充分溶胀。
可以理解在本发明的任一实施方案中,水凝胶可以进一步包含或者合并药剂(如药物、生物制剂、基因药物、基因治疗制剂、诊断剂、成像对比材料、生长因子、其它生物因子、肽或者其它生物活性的治疗或者诊断物质),以在植入部位或者附近产生希望的医药效果(治疗、诊断、药理或者其它生理效果)。可被引入到本发明水凝胶中的某些类型医药的实例描述参见美国专利US5,891,192(Murayama等人)、US5,958,428(Bhatnagar等人)和US6,187,024(Block等人)及PCT国际公报WO O1/03607(Slaikeu等人),这些文献特意通过参考引入本发明。
本文仅参考某些实施例和实施方案说明本发明。没有试图彻底描述本发明的所有可能的实施例和实施方案。实际上,本领域的那些技术人员将理解在不脱离如下面的权利要求书所述的本发明的精神和范围的情况下可对上述的实施例和实施方案作各种增加、删除、修改和其它改变。所有这些增加、删除、修改和其它改变都被包括在下面的权利要求书的范围内。

Claims (12)

1.一种制备环境敏感的水凝胶聚合物的方法,所述的方法包括步骤:
(A)形成水凝胶,该水凝胶含有一种或多种烯键式不饱和单体或预聚物,所述烯键式不饱和单体或预聚物的至少一些具有可离子化官能团;和
(B)在预定温度下使水凝胶与具有预定pH的处理溶液接触预定长的时间,使水凝胶的质子化状态以预定方式发生改变,从而当处于特定pH时,该质子化状态将再次发生变化并且水凝胶将以预定速率膨胀。
2.根据权利要求1的方法,其进一步包含步骤:
(C)将水凝胶干燥。
3.根据权利要求1的方法,其中步骤B包括将水凝胶与处理溶液接触,使水凝胶的官能团质子化。
4.根据权利要求3的方法,其中水凝胶用于随后植入到患者体内已知pH的植入部位,且其中步骤B包括将水凝胶与处理溶液接触使水凝胶的官能团质子化,从而所述质子化的官能团随后在暴露于植入部位的已知pH时将会去质子化。
5.根据权利要求1的方法,其中步骤B包括将水凝胶与处理溶液接触,使水凝胶的官能团去质子化。
6.根据权利要求5的方法,其中水凝胶用于随后植入到患者体内已知pH的植入部位,且其中步骤B包括将水凝胶与处理溶液接触使水凝胶的官能团去质子化,从而所述去质子化的官能团随后在暴露于植入部位的已知pH时将会质子化。
7.根据权利要求1的方法,其中步骤A包括将一种或多种单体或预聚物与交联剂和聚合引发剂相结合。
8.根据权利要求4或6的方法,其中在将水凝胶在植入部位植入时,水凝胶膨胀的预定速率使得其在首次被输送到植入部位之后至少约5分钟仍保持足够小从而能被收回到导管中。
9.根据权利要求1的方法,其进一步包括通过添加成孔剂对水凝胶赋予多孔性的步骤。
10.根据权利要求9的方法,其中赋予多孔性的步骤以使得制造出充分多孔的水凝胶从而允许细胞向内生长至水凝胶中的方式进行。
11.根据权利要求1的方法,其进一步包括向水凝胶中添加辐射不透性材料的步骤。
12.根据权利要求4、6或8的方法,其中植入部位的已知pH为大约7.4。
CNA2007100077925A 2001-03-13 2002-02-28 响应周围环境变化发生体积膨胀的水凝胶及其生产方法和应用 Pending CN101024729A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/804,935 US6878384B2 (en) 2001-03-13 2001-03-13 Hydrogels that undergo volumetric expansion in response to changes in their environment and their methods of manufacture and use
US09/804,935 2001-03-13

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNB028063848A Division CN1306916C (zh) 2001-03-13 2002-02-28 响应周围环境变化发生体积膨胀的水凝胶及其生产方法和应用

Publications (1)

Publication Number Publication Date
CN101024729A true CN101024729A (zh) 2007-08-29

Family

ID=25190260

Family Applications (2)

Application Number Title Priority Date Filing Date
CNA2007100077925A Pending CN101024729A (zh) 2001-03-13 2002-02-28 响应周围环境变化发生体积膨胀的水凝胶及其生产方法和应用
CNB028063848A Expired - Lifetime CN1306916C (zh) 2001-03-13 2002-02-28 响应周围环境变化发生体积膨胀的水凝胶及其生产方法和应用

Family Applications After (1)

Application Number Title Priority Date Filing Date
CNB028063848A Expired - Lifetime CN1306916C (zh) 2001-03-13 2002-02-28 响应周围环境变化发生体积膨胀的水凝胶及其生产方法和应用

Country Status (9)

Country Link
US (5) US6878384B2 (zh)
EP (3) EP2308431B1 (zh)
JP (2) JP4416151B2 (zh)
CN (2) CN101024729A (zh)
AU (3) AU2002306605B2 (zh)
BR (1) BRPI0208034B8 (zh)
CA (1) CA2439925C (zh)
ES (3) ES2478992T3 (zh)
WO (1) WO2002071994A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105555847A (zh) * 2013-09-19 2016-05-04 微温森公司 聚合物膜
CN106456836A (zh) * 2014-04-29 2017-02-22 微温森公司 包含活性剂的聚合物
CN107158560A (zh) * 2017-04-27 2017-09-15 清华大学 基于水凝胶溶胀特性的可控自变形神经微电极
CN111333866A (zh) * 2020-03-20 2020-06-26 浙江理工大学 一种单层水凝胶、制备方法及用作柔性抓手的应用

Families Citing this family (128)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6878384B2 (en) * 2001-03-13 2005-04-12 Microvention, Inc. Hydrogels that undergo volumetric expansion in response to changes in their environment and their methods of manufacture and use
AU2014200734B2 (en) * 2001-03-13 2015-11-05 Microvention, Inc. Hydrogels that undergo volumetric expansion in response to changes in their environment and their methods of manufacture and use
WO2002089676A2 (en) * 2001-05-04 2002-11-14 Concentric Medical Hydrogel filament vaso-occlusive device
EP1406536A4 (en) * 2001-06-20 2005-09-21 Microvention Inc MEDICAL DEVICES WITH INTEGRAL OR PARTIAL POLYMER SLEEVES AND METHODS OF MAKING
US8252040B2 (en) * 2001-07-20 2012-08-28 Microvention, Inc. Aneurysm treatment device and method of use
US7572288B2 (en) 2001-07-20 2009-08-11 Microvention, Inc. Aneurysm treatment device and method of use
JP2005517690A (ja) * 2002-02-01 2005-06-16 ファイザー・プロダクツ・インク 固体薬物分散物を含有する即時放出剤形
US8425549B2 (en) 2002-07-23 2013-04-23 Reverse Medical Corporation Systems and methods for removing obstructive matter from body lumens and treating vascular defects
US7551749B2 (en) 2002-08-23 2009-06-23 Bose Corporation Baffle vibration reducing
DE10330269A1 (de) * 2003-07-04 2005-01-27 Instraction Gmbh System umfassend Effektoren und volumenveränderbare Rezeptoren-modifizierte Elastomere, Verfahren zu ihrer Herstellung und ihrer Verwendung
EP1682161A4 (en) * 2003-10-29 2011-12-07 Gentis Inc POLYMERIZABLE EMULSIONS FOR TISSUE GENIUS
WO2005077304A1 (en) 2004-02-06 2005-08-25 Georgia Tech Research Corporation Load bearing biocompatible device
WO2005077013A2 (en) 2004-02-06 2005-08-25 Georgia Tech Research Corporation Surface directed cellular attachment
ES2607402T3 (es) 2004-05-25 2017-03-31 Covidien Lp Dispositivo de oclusión vascular flexible
US9675476B2 (en) 2004-05-25 2017-06-13 Covidien Lp Vascular stenting for aneurysms
KR101300437B1 (ko) 2004-05-25 2013-08-26 코비디엔 엘피 동맥류용 혈관 스텐트
CA2577033A1 (en) * 2004-09-10 2006-03-16 Stichting Dutch Polymer Institute Radiopaque prosthetic intervertebral disc nucleus
US7201918B2 (en) * 2004-11-16 2007-04-10 Microvention, Inc. Compositions, systems and methods for treatment of defects in blood vessels
US7419486B2 (en) * 2005-06-15 2008-09-02 St. Jude Medical, Atrial Fibrillation Division, Inc. Treatment and diagnostic catheters with hydrogel electrodes
GB0523999D0 (en) * 2005-11-25 2006-01-04 Univ Manchester Microgel particle
US7959676B2 (en) * 2006-02-13 2011-06-14 Lanx, Inc. Method and apparatus for intervertebral disc support and repair
US8152833B2 (en) 2006-02-22 2012-04-10 Tyco Healthcare Group Lp Embolic protection systems having radiopaque filter mesh
KR101443926B1 (ko) 2006-06-15 2014-10-02 마이크로벤션, 인코포레이티드 팽창성 중합체로 제조된 색전술용 장치
US8741316B2 (en) * 2007-03-12 2014-06-03 Board Of Regents, The University Of Texas System Highly porous, recognitive polymer systems
US8821899B2 (en) 2007-03-12 2014-09-02 Board Of Regents, The University Of Texas System Method and process for the production of multi-coated recognitive and releasing systems
WO2008112826A1 (en) 2007-03-12 2008-09-18 Board Of Regents, The University Of Texas System Method and process for the production of multi-coated recognitive and releasing systems
US8771713B2 (en) 2007-03-12 2014-07-08 Board Of Regents, The University Of Texas System Method and process for the production of multi-coated recognitive and releasing systems
US20110022149A1 (en) 2007-06-04 2011-01-27 Cox Brian J Methods and devices for treatment of vascular defects
EP2162101B1 (en) 2007-06-25 2019-02-20 MicroVention, Inc. Self-expanding prosthesis
WO2009086208A2 (en) * 2007-12-21 2009-07-09 Microvention, Inc. Hydrogel filaments for biomedical uses
US8668863B2 (en) * 2008-02-26 2014-03-11 Board Of Regents, The University Of Texas System Dendritic macroporous hydrogels prepared by crystal templating
AU2009239424B9 (en) 2008-04-21 2014-10-09 Covidien Lp Braid-ball embolic devices and delivery systems
BRPI0911923B8 (pt) 2008-05-02 2021-06-22 Sequent Medical Inc dispositivo para tratamento de um aneurisma cerebral
US9675482B2 (en) 2008-05-13 2017-06-13 Covidien Lp Braid implant delivery systems
US8180076B2 (en) * 2008-07-31 2012-05-15 Bose Corporation System and method for reducing baffle vibration
EP2172236A1 (en) * 2008-10-03 2010-04-07 Koninklijke Philips Electronics N.V. Breast pump system
JP2010162063A (ja) * 2009-01-13 2010-07-29 Japan Health Science Foundation 塞栓材
JP2012100680A (ja) * 2009-03-04 2012-05-31 Terumo Corp 血管内用処置材
JP2010227172A (ja) * 2009-03-26 2010-10-14 Terumo Corp 軟組織増大材料
US10639396B2 (en) * 2015-06-11 2020-05-05 Microvention, Inc. Polymers
US8409269B2 (en) 2009-12-21 2013-04-02 Covidien Lp Procedures for vascular occlusion
EP2480166B1 (en) * 2009-09-24 2017-11-29 Microvention, Inc. Injectable hydrogel filaments for biomedical uses
JP5401254B2 (ja) * 2009-10-13 2014-01-29 昌典 石原 多孔質合成樹脂製造方法および同多孔質合成樹脂製造方法により製造された多孔質合成樹脂材
BR112012009287A2 (pt) 2009-10-26 2017-06-06 Microvention Inc dispositivo de embolização feito de polímero expansível
CA2778639A1 (en) * 2009-11-05 2011-05-12 Sequent Medical Inc. Multiple layer filamentary devices or treatment of vascular defects
US8337448B2 (en) 2010-01-29 2012-12-25 Baxter International Inc. Apparatus for monitoring and controlling peritoneal dialysis
JP6087281B2 (ja) 2010-09-10 2017-03-01 メディナ メディカル,インコーポレイテッド 血管異常を治療するデバイス及び方法
US8998947B2 (en) 2010-09-10 2015-04-07 Medina Medical, Inc. Devices and methods for the treatment of vascular defects
US8915950B2 (en) 2010-12-06 2014-12-23 Covidien Lp Vascular remodeling device
US20120245674A1 (en) 2011-03-25 2012-09-27 Tyco Healthcare Group Lp Vascular remodeling device
WO2012145431A2 (en) 2011-04-18 2012-10-26 Microvention, Inc. Embolic devices
JP2014522263A (ja) 2011-05-11 2014-09-04 マイクロベンション インコーポレイテッド 内腔を閉塞するためのデバイス
EP2706926B1 (en) 2011-05-11 2016-11-30 Covidien LP Vascular remodeling device
CA3048443C (en) 2011-05-26 2021-01-05 Cartiva, Inc. Tapered joint implant and related tools
WO2013049448A1 (en) 2011-09-29 2013-04-04 Covidien Lp Vascular remodeling device
US9072620B2 (en) 2011-11-04 2015-07-07 Covidien Lp Protuberant aneurysm bridging device deployment method
US9011480B2 (en) 2012-01-20 2015-04-21 Covidien Lp Aneurysm treatment coils
WO2013158781A1 (en) * 2012-04-18 2013-10-24 Microvention, Inc. Embolic devices
US9452070B2 (en) 2012-10-31 2016-09-27 Covidien Lp Methods and systems for increasing a density of a region of a vascular device
KR102309795B1 (ko) 2012-11-13 2021-10-08 코비디엔 엘피 폐색 장치
US10350094B2 (en) 2013-03-11 2019-07-16 Microvention, Inc. Implantable device with adhesive properties
US10076336B2 (en) 2013-03-15 2018-09-18 Covidien Lp Delivery and detachment mechanisms for vascular implants
CN105142545B (zh) 2013-03-15 2018-04-06 柯惠有限合伙公司 闭塞装置
US9078658B2 (en) 2013-08-16 2015-07-14 Sequent Medical, Inc. Filamentary devices for treatment of vascular defects
US9955976B2 (en) 2013-08-16 2018-05-01 Sequent Medical, Inc. Filamentary devices for treatment of vascular defects
US9963556B2 (en) 2013-09-18 2018-05-08 Senseonics, Incorporated Critical point drying of hydrogels in analyte sensors
EP3046952B1 (en) 2013-09-19 2021-05-12 Terumo Corporation Polymer particles
KR102287781B1 (ko) * 2013-11-08 2021-08-06 테루모 가부시키가이샤 중합체 입자
EP3068337B1 (en) 2013-11-13 2022-10-05 Covidien LP Galvanically assisted attachment of medical devices to thrombus
EP3108218A4 (en) * 2014-02-21 2017-11-15 Massachusetts Institute Of Technology Expansion microscopy
CN106456315B (zh) * 2014-03-07 2021-06-25 恩朵罗杰克斯有限责任公司 形成水凝胶和用于形成水凝胶的材料
US10124090B2 (en) 2014-04-03 2018-11-13 Terumo Corporation Embolic devices
US9629635B2 (en) 2014-04-14 2017-04-25 Sequent Medical, Inc. Devices for therapeutic vascular procedures
US9713475B2 (en) 2014-04-18 2017-07-25 Covidien Lp Embolic medical devices
US10092663B2 (en) 2014-04-29 2018-10-09 Terumo Corporation Polymers
EP3142600A4 (en) * 2014-05-12 2018-01-03 Jeffrey E. Thomas Photon-activatable gel coated intracranial stent and embolic coil
CA2955357A1 (en) 2014-07-17 2016-01-21 The Regents Of The University Of California Self-annealing microgel particles for biomedical applications
US9814466B2 (en) 2014-08-08 2017-11-14 Covidien Lp Electrolytic and mechanical detachment for implant delivery systems
TW201625754A (zh) * 2014-11-21 2016-07-16 艾倫塔斯有限公司 單一成份、儲存穩定、可硬化之聚矽氧組成物
US9907880B2 (en) 2015-03-26 2018-03-06 Microvention, Inc. Particles
EP3753531A1 (en) 2015-03-31 2020-12-23 Cartiva, Inc. Hydrogel implants with porous materials
CA2981064C (en) 2015-03-31 2024-01-02 Cartiva, Inc. Carpometacarpal (cmc) implants and methods
US11408890B2 (en) 2015-04-14 2022-08-09 Massachusetts Institute Of Technology Iterative expansion microscopy
WO2016168363A1 (en) 2015-04-14 2016-10-20 Cartiva, Inc. Tooling for creating tapered opening in tissue and related methods
US10059990B2 (en) 2015-04-14 2018-08-28 Massachusetts Institute Of Technology In situ nucleic acid sequencing of expanded biological samples
US10526649B2 (en) 2015-04-14 2020-01-07 Massachusetts Institute Of Technology Augmenting in situ nucleic acid sequencing of expanded biological samples with in vitro sequence information
WO2017023903A1 (en) * 2015-08-03 2017-02-09 President And Fellows Of Harvard College Phase-transforming and switchable metamaterials
EP3332029B1 (en) 2015-08-07 2021-10-06 Massachusetts Institute of Technology Nanoscale imaging of proteins and nucleic acids via expansion microscopy
WO2017027368A1 (en) 2015-08-07 2017-02-16 Massachusetts Institute Of Technology Protein retention expansion microscopy
US10478194B2 (en) 2015-09-23 2019-11-19 Covidien Lp Occlusive devices
US10314593B2 (en) 2015-09-23 2019-06-11 Covidien Lp Occlusive devices
AU2016353345B2 (en) 2015-11-12 2021-12-23 University Of Virginia Patent Foundation Compositions and methods for vas-occlusive contraception and reversal thereof
US11931480B2 (en) 2016-02-16 2024-03-19 The Regents Of The University Of California Microporous annealed particle gels and methods of use
US10893869B2 (en) 2016-03-24 2021-01-19 Covidien Lp Thin wall constructions for vascular flow diversion
US10828039B2 (en) 2016-06-27 2020-11-10 Covidien Lp Electrolytic detachment for implantable devices
US10828037B2 (en) 2016-06-27 2020-11-10 Covidien Lp Electrolytic detachment with fluid electrical connection
US11051822B2 (en) 2016-06-28 2021-07-06 Covidien Lp Implant detachment with thermal activation
US20180028715A1 (en) 2016-07-27 2018-02-01 Contraline, Inc. Carbon-based compositions useful for occlusive medical devices and methods of making and using them
US10478195B2 (en) 2016-08-04 2019-11-19 Covidien Lp Devices, systems, and methods for the treatment of vascular defects
KR102310696B1 (ko) 2016-09-28 2021-10-12 테루모 가부시키가이샤 색전 조성물
US20180206851A1 (en) * 2016-10-19 2018-07-26 Daniel E. Walzman Hydrogel intrasaccular occlusion device
US10576099B2 (en) 2016-10-21 2020-03-03 Covidien Lp Injectable scaffold for treatment of intracranial aneurysms and related technology
CA3051055A1 (en) 2016-12-29 2018-07-26 Tempo Therapeutics, Inc. Methods and systems for treating a site of a medical implant
US11931928B2 (en) 2016-12-29 2024-03-19 Evonik Superabsorber Llc Continuous strand superabsorbent polymerization
WO2018136856A1 (en) 2017-01-23 2018-07-26 Massachusetts Institute Of Technology Multiplexed signal amplified fish via splinted ligation amplification and sequencing
US11385481B1 (en) 2017-02-01 2022-07-12 Ram Pattikonda Advanced dynamic focus eyewear
WO2018157048A1 (en) 2017-02-24 2018-08-30 Massachusetts Institute Of Technology Methods for examining podocyte foot processes in human renal samples using conventional optical microscopy
US11426487B2 (en) * 2017-04-05 2022-08-30 Setbone Medical Ltd. Property changing implant
WO2019023214A1 (en) 2017-07-25 2019-01-31 Massachusetts Institute Of Technology ATAC IN SITU SEQUENCING
US10675036B2 (en) 2017-08-22 2020-06-09 Covidien Lp Devices, systems, and methods for the treatment of vascular defects
US20200281960A1 (en) * 2017-10-25 2020-09-10 Medigear International Corporation Biodegradable and biometabolic tumor sealant
WO2019156957A1 (en) 2018-02-06 2019-08-15 Massachusetts Institute Of Technology Swellable and structurally homogenous hydrogels and methods of use thereof
US11065136B2 (en) 2018-02-08 2021-07-20 Covidien Lp Vascular expandable devices
US11065009B2 (en) 2018-02-08 2021-07-20 Covidien Lp Vascular expandable devices
US10905432B2 (en) 2018-08-22 2021-02-02 Covidien Lp Aneurysm treatment coils and associated systems and methods of use
US10912569B2 (en) 2018-08-22 2021-02-09 Covidien Lp Aneurysm treatment coils and associated systems and methods of use
US11129621B2 (en) 2018-12-17 2021-09-28 Covidien Lp Devices, systems, and methods for the treatment of vascular defects
CN111393563B (zh) * 2019-01-02 2023-04-07 湖南工业大学 一种温敏性水凝胶的制备方法及监测模具
CN111686310B (zh) * 2019-03-11 2022-03-29 国家纳米科学中心 一种抗菌导尿管及其制备方法和应用
CN113573650A (zh) 2019-03-15 2021-10-29 后续医疗股份有限公司 用于治疗血管缺陷的具有柔性连接部的丝装置
EP3908209A4 (en) 2019-03-15 2022-10-19 Sequent Medical, Inc. FIBROUS DEVICES FOR TREATMENT OF VASCULAR DEFECTS
WO2020190639A1 (en) 2019-03-15 2020-09-24 Sequent Medical, Inc. Filamentary devices for treatment of vascular defects
CN114630627A (zh) 2019-11-04 2022-06-14 柯惠有限合伙公司 用于治疗颅内动脉瘤的装置、系统和方法
US11802822B2 (en) 2019-12-05 2023-10-31 Massachusetts Institute Of Technology Multiplexed expansion (MultiExM) pathology
US11931041B2 (en) 2020-05-12 2024-03-19 Covidien Lp Devices, systems, and methods for the treatment of vascular defects
CN112300413B (zh) * 2020-12-29 2021-04-09 北京泰杰伟业科技有限公司 一种超细均匀的丙烯酰胺类聚合物水凝胶丝的制备方法及应用
CN114561237B (zh) * 2022-04-19 2022-10-28 中国科学院兰州化学物理研究所 一种剪切响应性水基凝胶润滑剂的制备方法
CN115746360B (zh) * 2022-11-24 2023-12-12 无锡学院 一种间隙可调的柔性表面增强拉曼散射基底及其制备方法和应用

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6005161A (en) 1986-01-28 1999-12-21 Thm Biomedical, Inc. Method and device for reconstruction of articular cartilage
US4990138A (en) * 1989-07-18 1991-02-05 Baxter International Inc. Catheter apparatus, and compositions useful for producing same
US5635482A (en) 1989-08-14 1997-06-03 The Regents Of The University Of California Synthetic compounds and compositions with enhanced cell binding
CA2066594A1 (en) * 1989-10-03 1991-04-04 Robert P. Eury Erodible macroporous hydrogel particles and preparation thereof
CA2080224A1 (en) * 1990-04-18 1991-10-19 Jindrich Kopecek Colonic-targeted oral drug-dosage forms based on crosslinked hydrogels containing azobonds and exhibiting ph-dependent swelling
US5226902A (en) 1991-07-30 1993-07-13 University Of Utah Pulsatile drug delivery device using stimuli sensitive hydrogel
US5514379A (en) 1992-08-07 1996-05-07 The General Hospital Corporation Hydrogel compositions and methods of use
US5447727A (en) * 1992-10-14 1995-09-05 The Dow Chemical Company Water-absorbent polymer having improved properties
US5554147A (en) 1994-02-01 1996-09-10 Caphco, Inc. Compositions and devices for controlled release of active ingredients
US5651979A (en) 1995-03-30 1997-07-29 Gel Sciences, Inc. Apparatus and method for delivering a biologically active compound into a biological environment
US5750585A (en) 1995-04-04 1998-05-12 Purdue Research Foundation Super absorbent hydrogel foams
US5866100A (en) 1995-12-19 1999-02-02 Bracco Research S.A. Compositions for imaging of the gastrointestinal tract
US5863551A (en) * 1996-10-16 1999-01-26 Organogel Canada Ltee Implantable polymer hydrogel for therapeutic uses
EP0975328A1 (en) 1997-04-02 2000-02-02 Purdue Research Foundation Method for oral delivery of proteins
US6224893B1 (en) * 1997-04-11 2001-05-01 Massachusetts Institute Of Technology Semi-interpenetrating or interpenetrating polymer networks for drug delivery and tissue engineering
US6271278B1 (en) * 1997-05-13 2001-08-07 Purdue Research Foundation Hydrogel composites and superporous hydrogel composites having fast swelling, high mechanical strength, and superabsorbent properties
US5891192A (en) 1997-05-22 1999-04-06 The Regents Of The University Of California Ion-implanted protein-coated intralumenal implants
US6077880A (en) * 1997-08-08 2000-06-20 Cordis Corporation Highly radiopaque polyolefins and method for making the same
WO1999044643A1 (en) * 1998-03-06 1999-09-10 Biosepra Medical Inc. Implantable particles for tissue bulking and the treatment of gastroesophageal reflux disease, urinary incontinence, and skin wrinkles
US6165193A (en) * 1998-07-06 2000-12-26 Microvention, Inc. Vascular embolization with an expansible implant
KR20000012970A (ko) 1998-08-03 2000-03-06 김효근 썰폰아마이드기를 포함하는 ph 민감성 고분자 및 그의 제조방법
WO2000009612A1 (fr) * 1998-08-13 2000-02-24 Nippon Shokubai Co., Ltd. Composition polymere reticulee gonflant dans l'eau et son procede de production
US5952232A (en) 1998-09-17 1999-09-14 Rothman; James Edward Expandible microparticle intracellular delivery system
US6187024B1 (en) 1998-11-10 2001-02-13 Target Therapeutics, Inc. Bioactive coating for vaso-occlusive devices
US6245740B1 (en) 1998-12-23 2001-06-12 Amgen Inc. Polyol:oil suspensions for the sustained release of proteins
US6371904B1 (en) * 1998-12-24 2002-04-16 Vivant Medical, Inc. Subcutaneous cavity marking device and method
EP1031354A3 (en) 1999-01-19 2003-02-05 Rohm And Haas Company Polymeric MRI Contrast agents
US6663607B2 (en) 1999-07-12 2003-12-16 Scimed Life Systems, Inc. Bioactive aneurysm closure device assembly and kit
US7291673B2 (en) 2000-06-02 2007-11-06 Eidgenossiche Technische Hochschule Zurich Conjugate addition reactions for the controlled delivery of pharmaceutically active compounds
US6506408B1 (en) * 2000-07-13 2003-01-14 Scimed Life Systems, Inc. Implantable or insertable therapeutic agent delivery device
US6878384B2 (en) * 2001-03-13 2005-04-12 Microvention, Inc. Hydrogels that undergo volumetric expansion in response to changes in their environment and their methods of manufacture and use
ATE516759T1 (de) 2001-05-29 2011-08-15 Microvention Inc Verfahren zur herstellung von expandierbaren filamentösen embolisierungsvorrichtungen
US20030014075A1 (en) * 2001-07-16 2003-01-16 Microvention, Inc. Methods, materials and apparatus for deterring or preventing endoleaks following endovascular graft implanation
AU2002359410A1 (en) 2001-11-16 2003-06-10 Biocure, Inc. Methods for initiating in situ formation of hydrogels
AU2003234159A1 (en) 2002-04-22 2003-11-03 Purdue Research Foundation Hydrogels having enhanced elasticity and mechanical strength properties
US8273100B2 (en) 2002-07-31 2012-09-25 Microvention, Inc. Three element coaxial vaso-occlusive device
US20050119687A1 (en) 2003-09-08 2005-06-02 Dacey Ralph G.Jr. Methods of, and materials for, treating vascular defects with magnetically controllable hydrogels
KR101443926B1 (ko) 2006-06-15 2014-10-02 마이크로벤션, 인코포레이티드 팽창성 중합체로 제조된 색전술용 장치

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105555847A (zh) * 2013-09-19 2016-05-04 微温森公司 聚合物膜
CN105555847B (zh) * 2013-09-19 2018-08-10 微仙美国有限公司 聚合物膜
CN106456836A (zh) * 2014-04-29 2017-02-22 微温森公司 包含活性剂的聚合物
CN106456836B (zh) * 2014-04-29 2019-12-06 微仙美国有限公司 包含活性剂的聚合物
CN107158560A (zh) * 2017-04-27 2017-09-15 清华大学 基于水凝胶溶胀特性的可控自变形神经微电极
CN111333866A (zh) * 2020-03-20 2020-06-26 浙江理工大学 一种单层水凝胶、制备方法及用作柔性抓手的应用

Also Published As

Publication number Publication date
BR0208034A (pt) 2004-02-25
BRPI0208034B1 (pt) 2018-02-06
ES2478992T3 (es) 2014-07-23
US8231890B2 (en) 2012-07-31
EP1372553A4 (en) 2006-04-12
AU2007216682A1 (en) 2007-09-27
JP5154529B2 (ja) 2013-02-27
AU2002306605B2 (en) 2007-06-14
AU2007216682B2 (en) 2009-10-01
JP2004528880A (ja) 2004-09-24
CA2439925A1 (en) 2002-09-19
EP2363104B1 (en) 2013-04-24
US8465779B2 (en) 2013-06-18
JP4416151B2 (ja) 2010-02-17
CN1617694A (zh) 2005-05-18
US20020176880A1 (en) 2002-11-28
EP1372553A1 (en) 2004-01-02
US6878384B2 (en) 2005-04-12
EP1372553B1 (en) 2014-06-25
CA2439925C (en) 2014-01-14
WO2002071994A1 (en) 2002-09-19
US20050196426A1 (en) 2005-09-08
EP2363104A1 (en) 2011-09-07
US20140256837A1 (en) 2014-09-11
US8734834B2 (en) 2014-05-27
BRPI0208034B8 (pt) 2021-07-27
ES2390605T3 (es) 2012-11-14
ES2408014T3 (es) 2013-06-17
AU2009213041A1 (en) 2009-10-08
EP2308431A1 (en) 2011-04-13
US20130274362A1 (en) 2013-10-17
EP2308431B1 (en) 2012-07-04
JP2010022847A (ja) 2010-02-04
CN1306916C (zh) 2007-03-28
US20120302654A1 (en) 2012-11-29

Similar Documents

Publication Publication Date Title
CN1306916C (zh) 响应周围环境变化发生体积膨胀的水凝胶及其生产方法和应用
US11179492B2 (en) Polymers
AU2002306605A1 (en) Hydrogels that undergo volumetric expansion in response to changes in their environment and their methods of manufacture and use
CN101500623B (zh) 一种由可膨胀聚合物构成的栓塞器械
JP4989965B2 (ja) 治療薬デリバリー用ドラッグ放出生分解性繊維
CN100457188C (zh) 用于组织膨胀和治疗的可植入颗粒
JP2004512389A (ja) 多重刺激可逆性ハイドロゲル
JPH11505734A (ja) 注入可能なヒドロゲル組成物
CN102665606A (zh) 用于生物医学用途的可注射水凝胶线丝
AU2014200734B2 (en) Hydrogels that undergo volumetric expansion in response to changes in their environment and their methods of manufacture and use
KR20080068708A (ko) 가교 젤라틴 물질에 기반한 중공 프로파일을 제조하는 방법및 중공 프로파일 형태의 이식물
JPH10127754A (ja) コラーゲンからなる塞栓材
Sharma et al. A Review on Hydrogels

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20070829