JP5090671B2 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP5090671B2
JP5090671B2 JP2006159567A JP2006159567A JP5090671B2 JP 5090671 B2 JP5090671 B2 JP 5090671B2 JP 2006159567 A JP2006159567 A JP 2006159567A JP 2006159567 A JP2006159567 A JP 2006159567A JP 5090671 B2 JP5090671 B2 JP 5090671B2
Authority
JP
Japan
Prior art keywords
gate electrode
source
region
insulating film
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006159567A
Other languages
English (en)
Other versions
JP2007067371A (ja
Inventor
孝二郎 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Priority to JP2006159567A priority Critical patent/JP5090671B2/ja
Priority to US11/490,081 priority patent/US7633126B2/en
Publication of JP2007067371A publication Critical patent/JP2007067371A/ja
Application granted granted Critical
Publication of JP5090671B2 publication Critical patent/JP5090671B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76895Local interconnects; Local pads, as exemplified by patent document EP0896365
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76897Formation of self-aligned vias or contact plugs, i.e. involving a lithographically uncritical step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6653Unipolar field-effect transistors with an insulated gate, i.e. MISFET using the removal of at least part of spacer, e.g. disposable spacer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B10/00Static random access memory [SRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B10/00Static random access memory [SRAM] devices
    • H10B10/12Static random access memory [SRAM] devices comprising a MOSFET load element

Description

本発明は、ゲート電極と不純物拡散領域とを接続する共通コンタクトを含む半導体装置およびその製造方法に関する。
インバータ回路等では、MOS(Metal-Oxide-Semiconductor)型電界効果トランジスタ(以下、MOSトランジスタという)のゲート電極と、ソース・ドレイン領域等の不純物拡散領域とを電気的に接続する配線構造が用いられる。
特許文献1には、フィールド酸化膜上に形成されたゲート電極とソース・ドレイン領域とを接続した局所配線構造が開示されている。また、特許文献2および特許文献3には、フィールド領域に形成した電極配線を有する半導体装置において、電極配線とソース・ドレインとにまたがるコンタクト窓を開口する際に、コンタクト窓内のフィールド領域の端部を電極配線側面に形成された側壁で覆い、ソース・ドレインおよび電極配線上の層間絶縁膜がエッチングされてもフィールド絶縁膜がエッチングされてシリコン基板が露出しないようにした構成が開示されている。
一方、非特許文献1(Fig.2およびFig.7参照)には、共通コンタクトで接続される拡散層とゲート電極において、ゲート電極の下の領域がSTI(shallow Trench Isolation)で構成される構造が開示されている。
図9は、SRAMを含む半導体装置70の構造を示す上面図である。
ここでは、SRAM(Static Random Access Memory)の単位セル1の構成を示す。単位セル1は、Nウェルに形成された半導体領域4および半導体領域6、Pウェルに形成された半導体領域30および半導体領域40、ならびにこれらを分離する素子分離絶縁膜2を含む。半導体領域30には、ゲート電極32を含むn型MOSトランジスタおよびゲート電極8を含むn型MOSトランジスタが形成されている。半導体領域40には、ゲート電極42を含むn型MOSトランジスタおよびゲート電極16を含むn型MOSトランジスタが形成されている。半導体領域4には、ゲート電極8を含むp型トランジスタ、およびそのトランジスタのソース・ドレイン領域24aとゲート電極16とを電気的に接続する共通コンタクト22が形成されている。半導体領域6には、ゲート電極16を含むp型トランジスタ、およびそのトランジスタのソース・ドレイン領域14bとゲート電極8とを電気的に接続する共通コンタクト12が形成されている。ここで、ゲート電極8、ゲート電極16、ゲート電極32、およびゲート電極42の周囲には、それぞれ、サイドウォール10、サイドウォール18、サイドウォール34、およびサイドウォール44が形成されている。
また、半導体領域30において、ゲート電極32とゲート電極8との間のソース・ドレイン領域にはコンタクト50が形成されており、コンタクト50および共通コンタクト22の上には、これらを電気的に接続する配線56(図中二点破線で示す)が形成されている。半導体領域40において、ゲート電極42とゲート電極16との間のソース・ドレイン領域には、これらを電気的に接続するコンタクト52が形成されており、コンタクト52および共通コンタクト12の上には、これらを電気的に接続する配線54(図中二点破線で示す)が形成されている。なお、図9において、理解を容易にするため、ゲート電極およびサイドウォール下に形成された半導体領域を破線で示す。
このような半導体装置70の製造手順を図10を参照して説明する。図10は、図9のC−C’断面図に該当する。
まず、半導体基板60に素子分離絶縁膜2を形成する。つづいて、ウェル注入によりNウェル62を形成し、次いでチャネル注入を行う。その後、Nウェル62表面にゲート絶縁膜72を形成し、半導体基板60上全面にポリシリコン層を形成する。つづいて、ポリシリコン層をゲート形状にエッチングしてゲート電極16およびゲート電極8を形成する。次いで、ゲート電極16およびゲート電極8をマスクとして、イオン注入を行い、ソース・ドレインエクステンション領域15a、15b、69a、および69bを形成する。
その後、半導体基板60上全面にサイドウォールとなる絶縁膜を形成し、エッチバックしてサイドウォール18a、18b、10aおよび10bを形成する。つづいて、これらのサイドウォール18a、18b、10aおよび10bをマスクとして、イオン注入を行い、ソース・ドレイン領域14aおよびソース・ドレイン領域14bを形成する。ソース・ドレイン領域14aおよびソース・ドレイン領域14bは、ソース・ドレインエクステンション領域15a、15b、69a、および69bよりも不純物濃度が高く形成される。
次いで、半導体基板60上全面にシリサイド膜を形成し、ソース・ドレイン領域14a、ソース・ドレイン領域14b、ゲート電極16、およびゲート電極8表面に選択的にシリサイド層63a、63b、16a、および8aをそれぞれ形成する。その後、半導体基板60上全面に層間絶縁膜66を形成する。これにより、図10(a)に示した構造体が得られる。
つづいて、層間絶縁膜66を選択的にエッチング除去し、ソース・ドレイン領域14a上のシリサイド層63aに通じるコンタクトホール82、およびゲート電極8上のシリサイド層8aからソース・ドレイン領域14b上のシリサイド層63bに通じるコンタクトホール80を形成する。
ここで、以下の理由により、コンタクトホール80形成時にサイドウォール10aもエッチングされやすいという問題があった。まず、サイドウォール10aが層間絶縁膜66と同系統の材質で形成された場合、層間絶縁膜66とともにサイドウォール10aもエッチングされやすくなる。また、サイドウォール10aが絶縁膜のエッチバックにより形成されるので、サイドウォール10aの外側面が半導体基板60表面に対して垂直ではなく幾分傾斜した形状を有する。そのため、サイドウォール10aを層間絶縁膜66とは異なる材料により構成し、層間絶縁膜66のみを選択的に除去する条件でエッチングを行っても、充分なエッチング選択比が取れず、サイドウォール10aがエッチングされてしまうことがある。この結果、半導体装置70に数万ビットの単位セル1を形成した場合、図10(b)に示したように、サイドウォール10aがエッチング除去されたものも生じてしまう。
この後、コンタクトホール82およびコンタクトホール80内を導電性材料で埋め込むことによりコンタクト20および共通コンタクト12が形成される(図10(c))。
特開平7−115198号公報 特開昭61−168265号公報 特開2002−270101号公報 F. Arnaud et al., "Low Cost 65nm CMOS Platform for Low Power & General Purpose Applications", 2004 Symposium on VLSI Technology Digest of Technical Papers, p10-11, (2004)
しかし、コンタクトホール80形成時にサイドウォール10aがエッチング除去された場合、共通コンタクト12がソース・ドレインエクステンション領域69aと接する領域が生じる。ソース・ドレインエクステンション領域69aは、ソース・ドレイン領域14bよりも不純物濃度が低く、また表面にシリサイド層が形成されていない。そのため、共通コンタクト12がソース・ドレインエクステンション領域69aと接する領域で電流リークが発生するという問題があった。とくに、ソース・ドレインエクステンション領域が浅く形成されている場合、このような電流リークが発生しやすい。
一方、半導体装置の微細化のため、たとえばSRAMの単位セルあたりのサイズをできるだけ小さくすることが要請される。しかし、従来の半導体装置においては、微細化するとともにゲート電極と不純物拡散領域とを接続するコンタクトにおける電流リークを抑制することができていなかった。
これに対して、非特許文献1記載の技術では、ゲート電極のサイドウォールの下にSTIが形成されているため、共通コンタクトがソース・ドレインエクステンション領域と接する領域で電流リークが発生するという問題は生じない。しかし、非特許文献のFig.7に示されているように、共通コンタクト形成領域のSTIが大きく削れ、別の電流リークが発生するという問題点があった。この問題を分りやすく示すため、図11に共通コンタクト部分の概略図を示す。表面にシリサイド層8aが形成されたゲート電極8と、表面にシリサイド層63bが形成されたソース・ドレイン領域14bとが共通コンタクト12により接続されている。ここで、素子分離絶縁膜(STI)2が大きく削れていると、ウェル(半導体領域)62と共通コンタクト12との間で電流リークが生じてしまう。
本発明によれば、
半導体基板上に形成されたゲート電極と、前記ゲート電極の一側方の前記半導体基板表面に形成された不純物拡散領域と、前記ゲート電極と前記不純物拡散領域とを電気的に接続する共通コンタクトと、を含む半導体装置であって、
前記ゲート電極のゲート長方向の第1の断面において、前記ゲート電極の前記一側方の側壁に形成されたサイドウォールと、前記半導体基板表面に前記ゲート電極に自己整合的に形成されたソース・ドレインエクステンション領域、および前記サイドウォールに自己整合的に形成されるとともに前記ソース・ドレインエクステンション領域よりも不純物濃度が高いソース・ドレイン領域とが形成され、
前記ゲート電極のゲート長方向の第2の断面において、前記ゲート電極と前記不純物拡散領域とが離間して設けられるとともに当該ゲート電極と当該不純物拡散領域との間の前記半導体基板表面全面に素子分離絶縁膜が形成され、当該ゲート電極と当該不純物拡散領域との間の距離が、前記第1の断面における前記サイドウォールの幅と実質的に等しい半導体装置が提供される。
ここで、実質的に等しいとは、半導体装置の製造プロセスにおいて生じる多少のマージンを含む構成とすることができる。
また、本発明によれば、
半導体基板上に、一方向に延在して形成されたゲート電極と、
前記半導体基板上の前記ゲート電極の一側方において、当該ゲート電極の側壁に形成され、所定幅を有するサイドウォールと、
前記半導体基板上の前記ゲート電極の前記一側方において、前記ゲート電極に隣接して位置する前記所定幅のソース・ドレインエクステンション形成予定領域と、
を有する半導体装置の製造方法であって、
前記半導体基板に、第1の半導体領域および第2の半導体領域を、前記第1の半導体領域がソース・ドレインエクステンション形成予定領域上に形成されるとともに前記当該第2の半導体領域が前記ソース・ドレインエクステンション形成予定領域上に形成されないように区画する素子分離絶縁膜を形成する工程と、
前記半導体基板上に、前記ゲート電極を、前記第1の半導体領域から前記第2の半導体領域の方向に、前記ソース・ドレインエクステンション形成予定領域に隣接して形成する工程と、
前記ゲート電極をマスクとして前記半導体基板表面に不純物を注入し、前記第1の半導体領域にソース・ドレインエクステンション領域を形成する第1の不純物注入工程と、
前記半導体基板上において、前記ゲート電極の前記一側方の側壁に、前記サイドウォールを形成する工程と、
前記サイドウォールをマスクとして前記半導体基板表面に不純物を注入し、前記第2の半導体領域表面に前記ゲート電極から前記所定幅を隔てて不純物拡散領域を形成する第2の不純物注入工程と、
前記ゲート電極と前記不純物拡散領域との上に、これらを電気的に接続するコンタクトを形成する工程と、
を含む半導体装置の製造方法が提供される。
本発明によれば、一部の領域において、ゲート電極側方にサイドウォールおよびその下に自己整合的に形成されたソース・ドレインエクステンション領域(またはLDD:Lightly Doped Drain)が設けられた構成であっても、共通コンタクトが形成された領域においては、ゲート電極側方にソース・ドレインエクステンション領域が設けられない構成とすることができる。これにより、共通コンタクトでゲート電極と不純物拡散領域とを電気的に接続するためのコンタクトホール形成時に、コンタクトホール内でサイドウォールが除去されてしまっても、共通コンタクトが半導体基板表面の不純物濃度が低い領域と接することがないようにすることができる。以上から、ゲート電極と不純物拡散領域とを接続する共通コンタクトにおける電流リークを抑制することができる。
一般的に、MOSトランジスタのソース・ドレインエクステンション領域等の不純物拡散領域は、半導体基板全面にイオン注入を行うことにより形成される。そのため、ソース・ドレインエクステンション領域を含むMOSトランジスタのゲート電極側方の半導体領域には所定幅のソース・ドレインエクステンション領域が形成されることになる。ゲート電極と不純物拡散領域とを接続する共通コンタクト構造において、ゲートと不純物拡散領域との距離を短くすることにより、微細化が可能となる。しかし、MOSトランジスタのゲート電極としても用いられるゲート電極の一部を共通コンタクトとの接続箇所として用いる場合、ゲート電極と半導体領域との距離を短くしすぎると、共通コンタクトとの接続箇所においてもゲート電極側方にソース・ドレインエクステンション領域が形成されてしまう。この場合、コンタクトホール形成時に、サイドウォールがエッチング除去されてしまうと、上述したような電流リークの問題が生じる。本発明の半導体装置およびその製造方法において、ゲート電極と不純物拡散領域との距離を、サイドウォール幅と実質的に等しくするとともに、ゲート電極と不純物拡散領域と間の領域で、コンタクト下には素子分離絶縁膜が形成される構成としている。そのため、電流リークの問題が生じないようにするとともに、半導体装置の微細化を実現することができる。
本発明によれば、半導体装置を微細化するとともに、ゲート電極と不純物拡散領域とを接続する共通コンタクトにおける電流リークを抑制する技術が提供される。
以下、本発明の実施の形態について、図面を用いて説明する。なお、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
図8は、本実施の形態における半導体装置100の構成を説明する模式図である。
図8(a)は半導体基板の上面模式図、図8(b)は、図8(a)の上面模式図に、第1の断面および第2の断面における断面構造を模式的に示した図である。
図8(a)および図8(b)に示すように、一つのゲート電極は、一部の領域においてソース・ドレインエクステンション領域が形成されたトランジスタのゲート、他の領域において、他のトランジスタの不純物拡散領域と接続するための共通コンタクトとの接続箇所となる。このような場合、ゲート電極の側方には、半導体領域が露出していれば、ソース・ドレインエクステンション領域が形成される、ソース・ドレインエクステンション形成予定領域が位置する。ここでは、ゲート電極の側壁に形成されるサイドウォールの下方領域をソース・ドレインエクステンション形成予定領域とする。イオン注入時に、ソース・ドレインエクステンション形成予定領域において半導体領域が露出していれば、ソース・ドレインエクステンション領域が形成される。
本実施の形態において、共通コンタクト形成箇所では、ソース・ドレインエクステンション形成予定領域全面に素子分離絶縁膜が形成される。そのため、共通コンタクト形成箇所において、ソース・ドレインエクステンション形成予定領域にソース・ドレインエクステンション領域が形成されることがない。これにより、共通コンタクト形成箇所において、ソース・ドレインエクステンション形成予定領域上のサイドウォールが除去されてしまっても、共通コンタクトがソース・ドレインエクステンション領域と接続されることがなくなる。以上から、不純物拡散領域(ソース・ドレイン領域)とゲート電極とを共通コンタクトで接続する際の電流リークを抑制することができる。
また、本実施の形態における半導体装置は、半導体基板上に2つのゲート電極が略平行に設けられた構成とすることができる。2つのゲート電極の内側の側方にはそれぞれソース・ドレインエクステンション形成予定領域が位置する。第1の断面において、一方のゲート電極はトランジスタのゲート電極として機能し、他方のゲート電極はそのトランジスタのソース・ドレイン拡散領域と接続するための共通コンタクトとの接続箇所となる。第2の断面において、他方のゲート電極はトランジスタのゲート電極として機能し、一方のゲート電極はそのトランジスタのソース・ドレイン拡散領域と接続するための共通コンタクトとの接続箇所となる。第2の断面において、他方のトランジスタの側方のソース・ドレインエクステンション形成予定領域上には他のサイドウォールが形成される。第1の断面において、他のゲート電極とソース・ドレイン領域とが離間して設けられるとともに当該他のゲート電極と当該ソース・ドレイン領域との間の半導体基板表面全面に素子分離絶縁膜が形成され、当該他のゲート電極と当該ソース・ドレイン領域との間の距離が、第2の断面における他のサイドウォールの幅と実質的に等しい。このような構成とすることにより、一方のトランジスタのソース・ドレイン領域が他方のトランジスタのゲート電極と接続されるとともに、一方のトランジスタのゲート電極が他方のトランジスタのソース・ドレイン領域と接続された構成においても、各共通コンタクトにおける電流リークを抑制することができる。
また、本発明の実施の形態において、半導体装置は、所定の領域内に、ゲート電極と、共通コンタクトと、およびソース・ドレインエクステンション領域と、の組合せを複数含むことができ、所定の領域内に含まれるすべての共通コンタクトがソース・ドレインエクステンション領域と接しない構成とすることができる。ここで、所定の領域とは、たとえばSRAMの単位セルとすることができる。
図1は、本実施の形態における半導体装置100の構成を示す上面図である。半導体装置100は、SRAMを含む。ここでは、単位セル101の構成を示す。
単位セル101は、Nウェルに形成された第1の半導体領域104および第2の半導体領域106、Pウェルに形成された第3の半導体領域130および第4の半導体領域140、ならびにこれらを分離する素子分離絶縁膜102を含む。第3の半導体領域130には、第3のゲート電極132を含むn型MOSトランジスタTr1および第1のゲート電極108を含むn型MOSトランジスタTr2が形成されている。第4の半導体領域140には、第4のゲート電極142を含むn型MOSトランジスタTr3および第2のゲート電極116を含むn型MOSトランジスタTr4が形成されている。
第1の半導体領域104には、第1のゲート電極108を含むp型トランジスタTr5、およびp型トランジスタTr5の第1のソース・ドレイン領域124aと第2のゲート電極116とを電気的に接続する共通コンタクト122が形成されている。第2の半導体領域106には、第2のゲート電極116を含むp型トランジスタTr6、およびp型トランジスタTr6の第4のソース・ドレイン領域114bと第1のゲート電極108とを電気的に接続する共通コンタクト112が形成されている。ここで、第1のゲート電極108、第2のゲート電極116、第3のゲート電極132、および第4のゲート電極142の周囲には、それぞれ、サイドウォール110、サイドウォール118、サイドウォール134、およびサイドウォール144が形成されている。
また、第3の半導体領域130において、第3のゲート電極132と第1のゲート電極108との間のソース・ドレイン領域にはコンタクト150bが形成されており、コンタクト150bおよび共通コンタクト122の上には、これらを電気的に接続する配線156(図中二点破線で示す)が形成されている。第4の半導体領域140において、第4のゲート電極142と第2のゲート電極116との間のソース・ドレイン領域には、これらを電気的に接続するコンタクト152bが形成されており、コンタクト152bおよび共通コンタクト112の上には、これらを電気的に接続する配線154(図中二点破線で示す)が形成されている。さらに、第3の半導体領域130にはコンタクト150aおよびコンタクト150cが、第4の半導体領域140にはコンタクト152aおよびコンタクト152cがそれぞれ設けられる。また、第3のゲート電極132上にはコンタクト136が、第4のゲート電極142上にはコンタクト146が設けられる。なお、図1において、理解を容易にするため、ゲート電極、サイドウォール下、および共通コンタクト下に形成された半導体領域を破線で示す。
本実施の形態における半導体装置100において、第1の半導体領域104および第2の半導体領域106のレイアウトが、図9を参照して説明した従来の半導体装置70における半導体領域4および半導体領域6と異なるが、それ以外のレイアウトは、同様である。
本実施の形態において、p型トランジスタTr5およびp型トランジスタTr6は、それぞれ、ゲート電極が他方のソース・ドレイン領域と電気的に接続された構成となっている。すなわち、第1のゲート電極108は、第1の半導体領域104においてp型トランジスタTr5のゲート電極として機能するとともに、第2の半導体領域106を含むゲート長方向の断面において、共通コンタクト112によりp型トランジスタTr6の第4のソース・ドレイン領域114bと接続される。同様に、第2のゲート電極116は、第2の半導体領域106においてp型トランジスタTr6のゲート電極として機能するとともに、第1の半導体領域104を含むゲート長方向の断面において、共通コンタクト122によりp型トランジスタTr5の第1のソース・ドレイン領域124aと接続される。第2の半導体領域106におけるゲート長方向の断面(A−A’断面、第2の断面)と、第1の半導体領域104におけるゲート長方向の断面(B−B’断面、第1の断面)とは、略対称な構成を有する。
図2は、図1のA−A’断面図である。
半導体装置100は、半導体基板160と、その上に形成されたNウェル162と、Nウェル162に形成され、第2の半導体領域106を区画する素子分離絶縁膜102とを含む。Nウェル162上にはp型トランジスタTr6が、素子分離絶縁膜102上には上部にシリサイド層108aが形成された第1のゲート電極108がそれぞれ配置されている。p型トランジスタTr6は、ゲート絶縁膜172、上部にシリサイド層116aが形成された第2のゲート電極116、第2のゲート電極116の側方に形成されたサイドウォール118aおよびサイドウォール118b(サイドウォール118)、サイドウォール118aおよびサイドウォール118b下にそれぞれ形成されたソース・ドレインエクステンション領域115aおよびソース・ドレインエクステンション領域115b、その両側方に形成された第3のソース・ドレイン領域114aおよび第4のソース・ドレイン領域114bにより構成される。第3のソース・ドレイン領域114aおよび第4のソース・ドレイン領域114bの上部にはシリサイド層163aおよびシリサイド層163bがそれぞれ形成されている。また、第1のゲート電極108の側方には、第2のサイドウォール110b(サイドウォール110)が設けられている。
また、半導体装置100は、p型トランジスタTr6および第1のゲート電極108上に形成されたエッチング阻止絶縁膜164、その上に形成された層間絶縁膜166およびその上に形成された層間絶縁膜168を含む。層間絶縁膜166およびエッチング阻止絶縁膜164には、シリサイド層163bからシリサイド層108aにわたる領域を開口するコンタクトホールが形成され、そのコンタクトホール内に共通コンタクト112が形成されている。また、層間絶縁膜166およびエッチング阻止絶縁膜164には、p型トランジスタTr6のシリサイド層163aに接続されるコンタクト120が形成されている。コンタクト120および共通コンタクト112は、それぞれ、層間絶縁膜168に形成された配線155および配線154に接続される。
図3は、図1のB−B’断面図である。
ここで、素子分離絶縁膜102により第1の半導体領域104として区画されたNウェル162上には、p型トランジスタTr5が、素子分離絶縁膜102上には第2のゲート電極116が配置されている。p型トランジスタTr5は、ゲート絶縁膜173、上部にシリサイド層108aが形成された第1のゲート電極108、第1のゲート電極108の側方に形成された第1のサイドウォール110aおよび第2のサイドウォール110b、第1のサイドウォール110aおよび第2のサイドウォール110b下にそれぞれ形成されたソース・ドレインエクステンション領域169aおよびソース・ドレインエクステンション領域169b、その両側方に形成された第1のソース・ドレイン領域124aおよび第2のソース・ドレイン領域124bにより構成される。第1のソース・ドレイン領域124aおよび第2のソース・ドレイン領域124bの上部にはシリサイド層165aおよびシリサイド層165bがそれぞれ形成されている。また、第2のゲート電極116の側方には、サイドウォール118aが設けられている。
層間絶縁膜166およびエッチング阻止絶縁膜164には、シリサイド層165aからシリサイド層116aにわたる領域を開口するコンタクトホールが形成され、そのコンタクトホール内に共通コンタクト122が形成されている。また、層間絶縁膜166およびエッチング阻止絶縁膜164には、p型トランジスタTr5のシリサイド層165bに接続されるコンタクト126が形成されている。共通コンタクト122およびコンタクト126は、それぞれ、層間絶縁膜168に形成された配線156および配線157に接続される。
図2に示した第1のゲート電極108と第4のソース・ドレイン領域114bとの間の距離dは、図3に示した第1のサイドウォール110aの幅d’と実質的に等しく形成される。また、図2に示すように、第1のゲート電極108と第4のソース・ドレイン領域114bとの間の領域には、素子分離絶縁膜102が形成されている。
同様に、図3に示した第2のゲート電極116と第1のソース・ドレイン領域124aとの間の距離も、図2に示したサイドウォール118bの幅と実質的に等しく形成される。
次に、図4から図6を参照して、本実施の形態における半導体装置100の製造工程を説明する。ここでは、図2と同様、図1のA−A’断面図を用いて説明する。上述したように、図1に示した半導体装置100のA−A’断面とB−B’断面とは、略対称な構成を有するため、以下の製造工程において、p型トランジスタTr5は、p型トランジスタTr6と同様の構成を有する。
まず、たとえばシリコン基板である半導体基板160に素子分離絶縁膜102を形成する。素子分離絶縁膜102は、STI(Shallow Trench Isolation)とすることができる。素子分離絶縁膜102は、半導体基板160に凹部(不図示)を形成し、半導体基板160全面にたとえばシリコン酸化膜等の絶縁膜を形成した後、CMP(Chemical Mechanical Polish)により、凹部の外部に露出した絶縁膜を除去することにより形成することができる。このとき、素子分離絶縁膜102は、後の工程で第1のゲート電極108を形成するゲート電極形成領域と、第2の半導体領域106との間のソース・ドレインエクステンション形成予定領域の幅が第1のゲート電極108の側壁に形成される第1のサイドウォール110aの幅と実質的に等しくなるように第2の半導体領域106を区画するように形成される。
つづいて、ウェル注入によりNウェル162を形成し、次いでチャネル注入を行いチャネル領域170を形成する。その後、Nウェル162表面にゲート絶縁膜172を形成する(図4(a))。つづいて、半導体基板160上全面にポリシリコン層174を形成する(図4(b))。次いで、ポリシリコン層174をゲート形状にエッチングして第2のゲート電極116および第1のゲート電極108を形成する(図4(c))。
その後、第2のゲート電極116および第1のゲート電極108をマスクとして、イオン注入を行い、Nウェル162表面にソース・ドレインエクステンション領域115aおよびソース・ドレインエクステンション領域115bを形成する(図5(d))。このとき、図3に示したB−B’断面において、第1のゲート電極108の両側方にもソース・ドレインエクステンション領域169aおよびソース・ドレインエクステンション領域169bが自己整合的に形成される。しかし、図5(d)のA−A’断面においては、第2の半導体領域106と第1のゲート電極108との間には、素子分離絶縁膜102が形成されている。また、第1のゲート電極108が素子分離絶縁膜102上に形成されているため、A−A’断面を含む領域では第1のゲート電極108の両側方には不純物が注入されない。
つづいて、半導体基板160上全面にサイドウォールとなる絶縁膜176を形成する(図5(e))。絶縁膜176は、たとえばシリコン酸化膜やシリコン窒化膜により構成することができる。次いで、絶縁膜176をエッチバックして、第2のゲート電極116の両側壁にサイドウォール118aおよびサイドウォール118bを、第1のゲート電極108の両側壁に第1のサイドウォール110aおよび第2のサイドウォール110bをそれぞれ形成する(図5(f))。本実施の形態において、上述したように、第1のゲート電極108と第2の半導体領域106との間隔が第1のサイドウォール110aの幅と実質的に等しくなるように素子分離絶縁膜102が形成される。図5(f)における断面において、第1のサイドウォール110aの下方には素子分離絶縁膜102が形成されている。
その後、サイドウォール118a、サイドウォール118b、および第1のサイドウォール110aをマスクとして、イオン注入を行い、第3のソース・ドレイン領域114aおよび第4のソース・ドレイン領域114bを形成する(図5(g))。これにより、第2の半導体領域106において、素子分離絶縁膜102と隣接する領域に、ソース・ドレインエクステンション領域169a等のソース・ドレインエクステンション領域よりも不純物濃度が高い第4のソース・ドレイン領域114bが形成される。このとき、図3に示したB−B’断面において、第1のサイドウォール110aおよび第2のサイドウォール110bをマスクとして、第1のソース・ドレイン領域124aおよび第2のソース・ドレイン領域124bが形成される。なお、第2の半導体領域106の第4のソース・ドレイン領域114bと第1の半導体領域104の第1のソース・ドレイン領域124aとは、図5(d)に示したイオン注入および図5(g)に示したイオン注入により、同時に形成されるため、深さ方向全体にわたって、ゲート長方向において同一の不純物濃度プロファイルを有する。
つづいて、半導体基板160上全面にシリサイド膜を形成し、第3のソース・ドレイン領域114a、第4のソース・ドレイン領域114b、第2のゲート電極116、および第1のゲート電極108上に選択的にシリサイド層163a、163b、116a、および108aをそれぞれ形成する(図6(h))。このようなシリサイド層を設けることにより、半導体装置100の電気抵抗を低下することができる。また、共通コンタクト112における電流リークが生じないようにすることもできる。
次いで、半導体基板160上全面にエッチング阻止絶縁膜164を形成する。エッチング阻止絶縁膜164は、素子分離絶縁膜102や層間絶縁膜166とは異なる材料により構成することができる。これにより、後の工程で、第4のソース・ドレイン領域114bから第1のゲート電極108に至る領域にコンタクトホールを形成する際に、素子分離絶縁膜102がエッチングされるのを防ぐようにすることができる。その後、エッチング阻止絶縁膜164上に層間絶縁膜166を形成する(図6(i))。層間絶縁膜166は、たとえばシリコン酸化膜により構成することができる。
つづいて、層間絶縁膜166を選択的にエッチング除去し、第3のソース・ドレイン領域114a上のシリサイド層163aに通じるコンタクトホール182、および第4のソース・ドレイン領域114b上のシリサイド層163bから第1のゲート電極108上のシリサイド層108aに至る領域を開口するコンタクトホール180を形成する(図6(j))。コンタクトホール180の形成手順は後述する。
この後、コンタクトホール182およびコンタクトホール180内を導電性材料で埋め込むことによりコンタクト120および共通コンタクト112が形成される(図6(k))。つづいて、層間絶縁膜166上に層間絶縁膜168を形成し、所定形状にエッチングして層間絶縁膜168に配線溝を形成し、配線溝を配線材料で埋め込むことにより、コンタクト120および共通コンタクト112にそれぞれ接続する配線155および配線154を形成する。これにより、図2に示した構成の半導体装置100が得られる。
図6(j)を参照して説明したコンタクトホール180は、以下のように形成される。まず、所定形状にパターニングされたレジスト膜を用い、層間絶縁膜166を選択的にドライエッチングする。この際、層間絶縁膜166の下方には全面にエッチング阻止絶縁膜164が形成されている。そのため、エッチング阻止絶縁膜164に対するエッチング選択比が高い条件で層間絶縁膜166をエッチングすると、エッチング阻止絶縁膜164によりエッチングが阻止される。つづいて、今度は第1のサイドウォール110aや素子分離絶縁膜102に対するエッチング選択比が高い条件でエッチング阻止絶縁膜164を選択的に除去することにより、第1のゲート電極108側壁に第1のサイドウォール110aが形成された状態で、コンタクトホールを形成することができる。図7(a)は、第1のゲート電極108の側壁に形成された第1のサイドウォール110aがコンタクトホール180形成時にエッチング除去されなかった単位セル101の構成を示す。
しかし、第1のサイドウォール110a上においては、上述したように第1のサイドウォール110aが半導体装置100表面に対して垂直ではなく幾分傾斜した形状を有するため、層間絶縁膜166をエッチングする際に、第1のサイドウォール110a上に形成されたエッチング阻止絶縁膜164がエッチングされてしまうことがある。この場合、第1のサイドウォール110aも同時にエッチングされてしまうことがある。その結果、半導体装置100が数万ビットの単位セル101を含む場合、図6(j)に示すように、第1のサイドウォール110aが完全に除去された構成や第1のサイドウォール110aの一部が除去され、第1のゲート電極108と第4のソース・ドレイン領域114bとの間において、共通コンタクト112と素子分離絶縁膜102とが直接接する領域を有する単位セル101も得られてしまう(図7(b))。
本実施の形態においては、A−A’断面を含む領域において、第1のサイドウォール110aの下方のソース・ドレインエクステンション形成予定領域に素子分離絶縁膜102が形成されており、素子分離絶縁膜102が第4のソース・ドレイン領域114bおよびその上に形成されたシリサイド層163bと接して設けられている。そのため、コンタクトホール180形成時に第1のサイドウォール110aが除去されても、共通コンタクト112が不純物濃度の低いソース・ドレインエクステンション領域と接することがないため、電流リークを防ぐことができる。
本実施の形態における半導体装置100によれば、電流リークの問題が生じないようにするとともに、A−A’断面を含む領域において、第4のソース・ドレイン領域114bと第1のゲート電極108との間隔を、第1のサイドウォール110a幅と等しくするとともに、この領域の半導体基板160表面に素子分離絶縁膜が形成されるようにしている。そのため、半導体装置100の微細化を実現することができる。
また、図1に示した本実施の形態における半導体装置100と図9に示した半導体装置70とを比較すると明らかなように、素子分離絶縁膜102による第2の半導体領域106および第1の半導体領域104の区画レイアウトを変更するだけで、他の素子のレイアウトを変えることなく、上記の電流リークの問題を解決することができる。また、第1の半導体領域104および第2の半導体領域106を素子分離絶縁膜102により区画し、共通コンタクト形成箇所において、第1のゲート電極108や第2のゲート電極116が素子分離絶縁膜102上に配置されるようにすることにより、重ね合わせずれが生じた場合であっても、共通コンタクトと半導体基板160表面の不純物濃度の低い領域とが直接接することがないようにすることができる。
本発明と非特許文献1に記載された構成を比較すると、非特許文献1に記載された構成では、共通コンタクトが形成される領域において、サイドウォールで被覆されていない素子分離絶縁膜が存在する。そのため、層間絶縁膜をエッチングする際に素子分離領域がエッチングされやすく、図11に示したように、素子分離絶縁膜(STI)2が大きく削れた形状になりやすい。以上の実施の形態で説明したエッチング阻止絶縁膜164を用いない場合は、この問題がさらに顕著に生じ、リーク電流の原因となる。これに対し本発明では、共通コンタクト領域における素子分離絶縁膜の削れ量を少なく抑えることができる。
さらに本発明では、非特許文献1に記載のSRAMセルに比べ、セル面積の縮小が可能である。非特許文献1のFig.7のSEM写真の縮尺を基に、図11のサイドウォール10bの端部からソース・ドレイン領域14bに突き出している素子分離絶縁膜(STI)2の長さDを計測すると、D=約35nmと見積もることができる。
図12は、非特許文献1のFig.2に対応する図である。本発明によれば、共通コンタクトで接続されるゲート電極と不純物拡散領域との間の距離が、サイドウォールの幅と実質的に等しいため、図12に示した非特許文献1のレイアウトにおいては、SRAM単位セルの共通コンタクト長手方向の長さを、35nm×2=70nmほど短くすることができる。SRAM単位セルの縮小面積は、1μm×(0.035×2)μm=0.07μmとなる。本発明を適用しない場合のSRAM単位セル面積は、0.5μmであるから、比率にして約14%に縮小される。本発明はセル面積の縮小、即ち半導体装置の微細化にも有効である。
以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
以上の実施の形態において、素子分離絶縁膜102がSTIである場合を例として説明したが、素子分離絶縁膜102は、LOCOS(Local Oxidation of Silicon)とすることもできる。また、素子分離絶縁膜102をSTIとした場合、半導体基板160に凹部を形成し、凹部側壁にたとえば第1の絶縁膜を形成した後、第1の絶縁膜と異なる第2の絶縁膜で凹部を埋め込むことにより、素子分離絶縁膜102を形成することもできる。この場合、たとえば第1の絶縁膜をシリコン窒化膜とし、第2の絶縁膜をシリコン酸化膜とすることができる。素子分離絶縁膜102の側壁にこのような第1の絶縁膜を設けることにより、素子分離絶縁膜102の端部がエッチングされないように制御することができる。
以上の実施の形態において、SRAMを例として説明したが、本発明は、SRAM以外のフリップフロップ構造等、ゲート電極と不純物拡散領域とを接続する共通コンタクトを含む種々の半導体装置に適用することができる。
また、以上の実施の形態において、Nウェルにp型トランジスタおよび共通コンタクトを形成する例を示したが、Pウェルにn型トランジスタおよび共通コンタクトを形成する場合も、同様に行うことができる。
本発明の実施の形態における半導体装置の構成を示す上面図である。 図1のA−A’断面図である。 図1のB−B’断面図である。 本発明の実施の形態における半導体装置の製造手順を示す工程断面図である。 本発明の実施の形態における半導体装置の製造手順を示す工程断面図である。 本発明の実施の形態における半導体装置の製造手順を示す工程断面図である。 本発明の実施の形態における半導体装置の構成を示す断面図である。 本発明の実施の形態における半導体装置の構成を説明する模式図である。 従来の半導体装置の構成を示す上面図である。 従来の半導体装置の製造手順を示す工程断面図である。 従来の半導体装置の構成を示す断面図である。 従来の半導体装置の構成を示す上面図である。
符号の説明
100 半導体装置
101 単位セル
102 素子分離絶縁膜
104 第1の半導体領域
106 第2の半導体領域
108 第1のゲート電極
108a シリサイド層
110 サイドウォール
110a 第1のサイドウォール
110b 第2のサイドウォール
112 共通コンタクト
114a 第3のソース・ドレイン領域
114b 第4のソース・ドレイン領域
115a ソース・ドレインエクステンション領域
115b ソース・ドレインエクステンション領域
116 第2のゲート電極
116a シリサイド層
118 サイドウォール
120、126、136、146、150a、150b、150c、152a、152b、152c コンタクト
122 第2の共通コンタクト
124a 第1のソース・ドレイン領域
124b 第2のソース・ドレイン領域
130 第3の半導体領域
132 第3のゲート電極
134、144 サイドウォール
140 第4の半導体領域
142 第4のゲート電極
154、156 配線
160 半導体基板
162 Nウェル
163a、163b シリサイド層
164 エッチング阻止絶縁膜
166、168 層間絶縁膜
170 チャネル領域
172 ゲート絶縁膜
174 ポリシリコン層
176 絶縁膜

Claims (2)

  1. 半導体基板上に形成されたゲート電極を含む半導体装置であって、
    前記ゲート電極のゲート長方向の第1の断面において、前記ゲート電極の一側方の側壁に形成されたサイドウォールと、前記半導体基板表面に前記ゲート電極に自己整合的に形成されたソース・ドレインエクステンション領域、および前記サイドウォールに自己整合的に形成されるとともに前記ソース・ドレインエクステンション領域よりも不純物濃度が高いソース・ドレイン領域とが形成され、
    前記ゲート電極はゲート幅方向に延在し、前記ゲート電極のゲート長方向の第2の断面において、前記ゲート電極は素子分離絶縁膜上に形成され、
    前記半導体基板上の前記ゲート電極の前記一側方側に、当該ゲート電極と略平行に前記第1の断面を含む領域から前記第2の断面を含む領域にわたって形成された他のゲート電極をさらに含み、
    前記第2の断面において、前記他のゲート電極の前記ゲート電極と対向する一側方の側壁に形成された他のサイドウォールと、前記半導体基板表面に前記他のゲート電極に自己整合的に形成された他のソース・ドレインエクステンション領域、および前記他のサイドウォールに自己整合的に形成されるとともに前記他のソース・ドレインエクステンション領域よりも不純物濃度が高い他のソース・ドレイン領域とが形成され、
    前記第1の断面において、前記他のゲート電極と前記ソース・ドレイン領域とが離間して設けられるとともに当該他のゲート電極と当該ソース・ドレイン領域との間の前記半導体基板表面全面に前記素子分離絶縁膜が形成され、当該他のゲート電極と当該ソース・ドレイン領域との間の距離が、前記第2の断面における前記他のサイドウォールの幅と実質的に等しく構成され、かつ当該他のゲート電極と当該ソース・ドレイン領域とを電気的に接続する共通コンタクトが構成され、
    前記第2の断面において、前記ゲート電極と前記他のソース・ドレイン領域とが離間して設けられるとともに当該ゲート電極と当該他のソース・ドレイン領域との間の前記半導体基板表面全面に前記素子分離絶縁膜が形成され、当該ゲート電極と当該他のソース・ドレイン領域との間の距離が、前記第1の断面における前記サイドウォールの幅と実質的に等しく構成され、かつ当該ゲート電極と当該他のソース・ドレイン領域とを電気的に接続する他の共通コンタクトが構成される半導体装置。
  2. 請求項に記載の半導体装置において、
    前記共通コンタクトは、前記他のゲート電極の側面と前記ソース・ドレイン領域とを電気的に接続し、
    前記他の共通コンタクトは、前記ゲート電極の側面と前記他のソース・ドレイン領域とを電気的に接続する半導体装置。
JP2006159567A 2005-08-01 2006-06-08 半導体装置 Expired - Fee Related JP5090671B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006159567A JP5090671B2 (ja) 2005-08-01 2006-06-08 半導体装置
US11/490,081 US7633126B2 (en) 2005-08-01 2006-07-21 Semiconductor device having a shared contact and method of fabricating the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005222493 2005-08-01
JP2005222493 2005-08-01
JP2006159567A JP5090671B2 (ja) 2005-08-01 2006-06-08 半導体装置

Publications (2)

Publication Number Publication Date
JP2007067371A JP2007067371A (ja) 2007-03-15
JP5090671B2 true JP5090671B2 (ja) 2012-12-05

Family

ID=37693385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006159567A Expired - Fee Related JP5090671B2 (ja) 2005-08-01 2006-06-08 半導体装置

Country Status (2)

Country Link
US (1) US7633126B2 (ja)
JP (1) JP5090671B2 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7617475B2 (en) 2006-11-13 2009-11-10 United Microelectronics Corp. Method of manufacturing photomask and method of repairing optical proximity correction
US20080251934A1 (en) * 2007-04-13 2008-10-16 Jack Allan Mandelman Semiconductor Device Structures and Methods of Fabricating Semiconductor Device Structures for Use in SRAM Devices
US20080251878A1 (en) * 2007-04-13 2008-10-16 International Business Machines Corporation Structure incorporating semiconductor device structures for use in sram devices
KR101347670B1 (ko) 2007-09-05 2014-01-07 삼성전자주식회사 스태틱 메모리 소자 및 그 제조 방법
JP2009111200A (ja) 2007-10-31 2009-05-21 Panasonic Corp 半導体装置及びその製造方法
JP5272203B2 (ja) * 2007-12-28 2013-08-28 ルネサスエレクトロニクス株式会社 半導体装置およびフォトマスク
US8420460B2 (en) * 2008-03-26 2013-04-16 International Business Machines Corporation Method, structure and design structure for customizing history effects of SOI circuits
KR101376260B1 (ko) * 2008-04-14 2014-03-20 삼성전자 주식회사 반도체 소자 및 그 제조 방법
KR101536562B1 (ko) * 2009-02-09 2015-07-14 삼성전자 주식회사 반도체 집적 회로 장치
KR20100101446A (ko) 2009-03-09 2010-09-17 삼성전자주식회사 반도체 장치 및 이의 제조 방법
DE102009035409B4 (de) * 2009-07-31 2013-06-06 Globalfoundries Dresden Module One Llc & Co. Kg Leckstromsteuerung in Feldeffekttransistoren auf der Grundlage einer Implantationssorte, die lokal an der STI-Kante eingeführt wird
GB2476236A (en) * 2009-12-15 2011-06-22 Cambridge Silicon Radio Ltd On-Gate contacts
US8426310B2 (en) * 2010-05-25 2013-04-23 Freescale Semiconductor, Inc. Method of forming a shared contact in a semiconductor device
JP5746881B2 (ja) * 2011-02-22 2015-07-08 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
US9006826B2 (en) 2012-05-14 2015-04-14 Taiwan Semiconductor Manufacturing Co., Ltd. Butted contact shape to improve SRAM leakage current
US9978755B2 (en) * 2014-05-15 2018-05-22 Taiwan Semiconductor Manufacturing Company Limited Methods and devices for intra-connection structures
US9721956B2 (en) * 2014-05-15 2017-08-01 Taiwan Semiconductor Manufacturing Company Limited Methods, structures and devices for intra-connection structures
US9570573B1 (en) * 2015-08-10 2017-02-14 Globalfoundries Inc. Self-aligned gate tie-down contacts with selective etch stop liner
US10181522B2 (en) * 2017-02-21 2019-01-15 Globalfoundries Inc. Simplified gate to source/drain region connections
US11264393B2 (en) 2019-09-30 2022-03-01 Taiwan Semiconductor Manufacturing Co., Ltd. Source/drain contact having a protruding segment

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61168265A (ja) 1985-01-21 1986-07-29 Matsushita Electric Ind Co Ltd 半導体装置
US5482895A (en) * 1993-08-26 1996-01-09 Fujitsu Limited Method of manufacturing semiconductor devices having silicide electrodes
JPH07115198A (ja) 1993-08-26 1995-05-02 Fujitsu Ltd 半導体装置の製造方法
JP3363750B2 (ja) * 1997-08-15 2003-01-08 株式会社日立製作所 半導体集積回路装置の製造方法
US6074960A (en) * 1997-08-20 2000-06-13 Micron Technology, Inc. Method and composition for selectively etching against cobalt silicide
JP2000200838A (ja) * 1998-10-30 2000-07-18 Seiko Epson Corp 半導体記憶装置およびその製造方法
US6177304B1 (en) * 1999-04-26 2001-01-23 Chartered Semiconductor Manufacturing Ltd. Self-aligned contact process using a poly-cap mask
JP4565700B2 (ja) * 1999-05-12 2010-10-20 ルネサスエレクトロニクス株式会社 半導体装置
US6593632B1 (en) * 1999-08-17 2003-07-15 Advanced Micro Devices, Inc. Interconnect methodology employing a low dielectric constant etch stop layer
US6274409B1 (en) * 2000-01-18 2001-08-14 Agere Systems Guardian Corp. Method for making a semiconductor device
US6534389B1 (en) * 2000-03-09 2003-03-18 International Business Machines Corporation Dual level contacts and method for forming
JP4618914B2 (ja) 2001-03-13 2011-01-26 ルネサスエレクトロニクス株式会社 半導体装置
JP4570811B2 (ja) * 2001-04-27 2010-10-27 ルネサスエレクトロニクス株式会社 半導体装置
KR100365415B1 (en) * 2001-04-30 2002-12-18 Hynix Semiconductor Inc Method for manufacturing static ram cell
KR100414220B1 (ko) * 2001-06-22 2004-01-07 삼성전자주식회사 공유 콘택을 가지는 반도체 장치 및 그 제조 방법
US6673715B2 (en) * 2001-10-24 2004-01-06 Micron Technology, Inc. Methods of forming conductive contacts
JP2003179132A (ja) * 2001-12-10 2003-06-27 Mitsubishi Electric Corp 半導体装置およびその製造方法

Also Published As

Publication number Publication date
JP2007067371A (ja) 2007-03-15
US20070023832A1 (en) 2007-02-01
US7633126B2 (en) 2009-12-15

Similar Documents

Publication Publication Date Title
JP5090671B2 (ja) 半導体装置
JP4776755B2 (ja) 半導体装置およびその製造方法
JP4773169B2 (ja) 半導体装置の製造方法
US7521318B2 (en) Semiconductor device and method of manufacturing the same
JP4993248B2 (ja) リセスチャネル及び非対称接合構造を有する半導体素子の製造方法
JP2006339476A (ja) 半導体装置及びその製造方法
JP2002118177A (ja) 半導体装置及びその製造方法
US20060244014A1 (en) Nonvolatile memory device and method of forming same
US8013373B2 (en) Semiconductor device having MOS-transistor formed on semiconductor substrate and method for manufacturing thereof
JP2005064508A (ja) 高電圧トランジスタおよびその製造方法
JP2006100790A (ja) 半導体装置及びその製造方法
KR0135715B1 (ko) 트렌치 격리구조를 갖는 반도체 장치 및 그의 제조방법
US20060076603A1 (en) Semiconductor device having polycide wiring layer, and manufacturing method of the same
JP4529024B2 (ja) 半導体装置およびその製造方法
KR100515057B1 (ko) 반도체 소자의 트렌치 소자분리막들 형성방법
US7250339B2 (en) Electrically erasable programmable read-only memory cell and memory device and manufacturing method thereof
JP2004235399A (ja) 不揮発性半導体記憶装置
JP2013004791A (ja) 半導体装置およびその製造方法
JP4746600B2 (ja) 縦型mosfetの製造方法
US7408221B2 (en) Electrically erasable programmable read-only memory cell and memory device and manufacturing method thereof
TW201820545A (zh) 半導體裝置之製造方法
JP2004186319A (ja) 半導体装置
JP2005235891A (ja) 不揮発性半導体記憶装置およびその製造方法
JPH06104399A (ja) 半導体記憶装置
JP2005005508A (ja) 半導体装置及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5090671

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees