JP5032611B2 - 半導体集積回路 - Google Patents

半導体集積回路 Download PDF

Info

Publication number
JP5032611B2
JP5032611B2 JP2010034952A JP2010034952A JP5032611B2 JP 5032611 B2 JP5032611 B2 JP 5032611B2 JP 2010034952 A JP2010034952 A JP 2010034952A JP 2010034952 A JP2010034952 A JP 2010034952A JP 5032611 B2 JP5032611 B2 JP 5032611B2
Authority
JP
Japan
Prior art keywords
variable resistance
switching element
resistance element
terminal
semiconductor integrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010034952A
Other languages
English (en)
Other versions
JP2011172084A (ja
Inventor
心一 安田
恵子 安部
忍 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2010034952A priority Critical patent/JP5032611B2/ja
Priority to US12/880,758 priority patent/US8331130B2/en
Publication of JP2011172084A publication Critical patent/JP2011172084A/ja
Application granted granted Critical
Publication of JP5032611B2 publication Critical patent/JP5032611B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0007Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising metal oxide memory material, e.g. perovskites
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/003Cell access
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/173Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components
    • H03K19/177Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components arranged in matrix form
    • H03K19/17724Structural details of logic blocks
    • H03K19/17728Reconfigurable logic blocks, e.g. lookup tables
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/173Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components
    • H03K19/177Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components arranged in matrix form
    • H03K19/17748Structural details of configuration resources
    • H03K19/1776Structural details of configuration resources for memories
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • G11C2013/0073Write using bi-directional cell biasing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/75Array having a NAND structure comprising, for example, memory cells in series or memory elements in series, a memory element being a memory cell in parallel with an access transistor

Description

本発明は、フィールドプログラマブルゲートアレイ(FPGA)に代表されるようなリコンフィギャラブルな半導体集積回路に関し、特に、配線接続情報や論理情報を保持するメモリ回路に関するものである。
FPGAの基本構成として、任意の論理情報を実現するコンフィギュラブルロジックブロック(CLB)、CLBと配線との入出力を行なうコネクションブロック(CB)、配線の接続を切り替えるスイッチブロック(SB)、からなる。各々のブロックにおいて、論理情報や配線接続情報はコンフィギュレーションメモリに保持される値によって変更される。
このコンフィギュレーションメモリとして近年、いくつかの不揮発性の抵抗変化性メモリが提案されている。これらは配線層に作成されるため、SRAMに比べてシリコン面積を小さくすることが可能である。抵抗変化性メモリはいくつかの種類が提案されているが、電圧の印加する方向で導通、非導通をプログラムするバイポーラ型のメモリは、ユニポーラ型と比較して電圧の値を細かく制御する必要がない分、制御しやすい利点がある。例えば、特許文献1の図23、図24において、バイポーラ型のメモリをFPGAのコンフィギュレーションメモリに用いる方法が提案されている。
2つのメモリ素子を直列に配置したとき、他のメモリセルへの電流回り込みを防ぐには、2つのメモリ素子に直列に選択トランジスタを挿入する必要がある。そのような回路構成として、例えば、特許文献2に記載されているものがある。
米国特許出願公開2007/0146012号公報 特開2009−151885号公報
しかし、特許文献1に記載されているバイポーラ型のメモリをFPGAのコンフィギュレーションメモリに用いる方法では、4つの電源電圧を用意する必要があるという問題がある。また、二つのメモリが配線間に直接接続されているため、プログラムしたくない素子へも電流の回り込みが発生し、誤書き込みが起こるという問題がある。
また、特許文献2に記載されている回路構成はスピン注入MTJ(Magnetic Tunnel Junction)を想定しているため、素子の導通、非導通比が小さく、FPGAのコンフィギュレーションメモリに直接使用するのは難しいという問題がある。また、メモリアレイを想定しており、一つのビットラインに複数のメモリが接続されるため、他のセルのメモリ素子への電流回り込みがあり、動作が不安定になる問題がある。
上記課題を解決するため本発明の半導体集積回路は、第一の極性を有する一端が第一の電源に接続され、第二の極性を有する他端が出力ノードに接続される第一の抵抗変化性素子と、前記第二の極性を有する一端が出力ノードに接続される第二の抵抗変化性素子と、前記第二の抵抗変化性素子の他端と第一の端子が接続され、第二の電源と第二の端子が接続される、第一のスイッチング素子とを備えることを特徴とする。
本発明によれば、抵抗変化性のバイポーラ型メモリを、誤書き込みや誤動作を起こさずにFPGAに適用することが可能になる。
本発明の半導体集積回路の回路図である。 本発明の半導体集積回路へのデータ書き込み方法を示す図である。 本発明の半導体集積回路へのデータ書き込み方法を示す図である。 2つの抵抗変化性素子にかかる電圧と第一のスイッチング素子103のオフ抵抗との関係を示した図である。 第一の抵抗変化性素子101、第二の抵抗変化性素子102および第一のスイッチング素子103の上面図である。 図5のA−A断面及びB−B断面を示す図である。 図6に示す半導体集積回路の製造工程を示す図である。 図6に示す半導体集積回路の製造工程を示す図である。 図6に示す半導体集積回路の製造工程を示す図である。 図6に示す半導体集積回路の製造工程を示す図である。 図6に示す半導体集積回路の製造工程を示す図である。 図5のA−A断面及びB−B断面のもう一つの例を示す図である。 図12に示す半導体集積回路の製造工程を示す図である。 図12に示す半導体集積回路の製造工程を示す図である。 図12に示す半導体集積回路の製造工程を示す図である。 図12に示す半導体集積回路の製造工程を示す図である。 図12に示す半導体集積回路の製造工程を示す図である。 図5に示す半導体集積回路のデバイス構成の変形例を示す図である。 本発明の半導体集積回路の実施例1を示す図である。 本発明の半導体集積回路の実施例2を示す図である。 本発明の半導体集積回路の実施例3を示す図である。 本発明の半導体集積回路の実施例4を示す図である。 本発明の半導体集積回路の実施例5を示す図である。
以下、図面を参照しながら本発明の実施の形態を具体的に説明する。
図1は、本発明の半導体集積回路の基本構成を示す回路図である。図中、第一の抵抗変化性素子101及び第二の抵抗変化性素子102は、バイポーラ型の抵抗変化性メモリを示しており、+−は極性を示す。例えば、+から−の方向へプログラミング電圧がかけられた場合は、メモリは低抵抗状態にプログラムされ、−から+の方向へプログラミング電圧がかけられた場合は、メモリは高抵抗状態にプログラムされる、といった具合である。以下の説明では、第一の抵抗変化性素子101、第二の抵抗変化性素子102とも上記の極性であることを前提とする。
図1の基本構成では、第一の抵抗変化性素子101、第二の抵抗変化性素子102と第一のスイッチング素子103が、第一の電源105と第二の電源106との間に直列に接続される。また、第二のスイッチング素子104が、第一の抵抗変化性素子101と第二の抵抗変化性素子102の出力(接続)ノード108とゲート電極を共有化して接続される。この第二のスイッチング素子104はFPGA内の配線切り替えのスイッチとして使用される。図1では第一のスイッチング素子103および第二のスイッチング素子104ともN型トランジスタ(FET)としているが、それに限るものではなく、P型FETでもよい。ここでは、第一の抵抗変化性素子101、第二の抵抗変化性素子102と第一のスイッチング素子103で一つの抵抗変化性メモリのメモリセルと考える。
第一の抵抗変化性素子101と第二の抵抗変化性素子102の抵抗状態は、定常状態ではそれぞれ相補的にプログラムされる。すなわち、第一の抵抗変化性素子101が高抵抗状態であれば第二の抵抗変化性素子102は低抵抗状態に(状態1とする)、第一の抵抗変化性素子101が低抵抗状態であれば第二の抵抗変化性素子102は高抵抗状態に(状態2とする)、それぞれプログラムされる。そのため、第一の抵抗変化性素子101、第二の抵抗変化性素子102は第一の電源105から第二の電源106の方向に対して極性がお互いに逆になるように接続される。なお、極性の向きについては、図1の方向の組み合わせに限定するものではなく、たとえば、第一の電源105から第二の電源106の方向に対して、第一の抵抗変化性素子101の極性が−+、第二の抵抗変化性素子102の極性が+−、とするように接続してもよい。
FPGAを動作させる場合は、第一のスイッチング素子103を導通させ、第一の電源105と第二の電源106の間に電圧をかけて動作させる。例えば、第一の電源105に高電位側電源電圧Vddを与え、第二の電源106に低電位側電源電圧Vssを与えると、出力ノード108には、状態1の場合にはVssに近い電圧、状態2の場合にはVddに近い電圧がそれぞれ現れる。その電圧値によって、第二のスイッチング素子104の導通あるいは非導通が制御される。出力ノード108の電圧値でトランジスタを駆動するため、状態1と状態2で出力ノード108の電圧値は大きくスイングさせる必要がある。よって第一の抵抗変化性素子101、第二の抵抗変化性素子102の抵抗比は2桁程度必要である。そのため、第一の抵抗変化性素子101、第二の抵抗変化性素子102はバイポーラ型のメモリであることが必要である。抵抗比が2桁程度あるメモリの具体例としては、ReRAM、イオンメモリ、ヒューズ/アンチヒューズメモリ、電界効果メモリなどの材料で決まるものや、MEMSスイッチ、NEMSスイッチなどのメカニカルスイッチなどが挙げられる。
FPGA動作をさせるときの第一の電源105、第二の電源106の電圧は、どちらが高電位側電源でも良いが、第一のスイッチング素子103がN型FETの場合は、第一の電源105を高電位、第二の電源106を低電位にするほうが好ましく、第一のスイッチング素子103がP型FETの場合は、第一の電源105を低電位、第二の電源106を高電位にするほうが好ましい。
次に本発明の半導体集積回路へのデータ書き込み方法について、図2、3を用いて説明する。
第一の抵抗変化性素子101、第二の抵抗変化性素子102への書き込みは、第一のスイッチング素子103を導通させ、第一の電源105と第二の電源106との間に書き込み電圧Vprgを与えることによって行なう。なお、Vprgはメモリ単体の書き込み電圧よりも高い値である。
例えば、2つの抵抗変化性素子を図2に示すように状態1から状態2にプログラムする場合を考える。今の例では、第一の電源105から第二の電源106の方向にVprgをかけることに相当する。図2(a)に示す書き込み初期の段階では、高抵抗状態の第一の抵抗変化性素子101にほぼVprg程度の電圧がかかる。そのため、第一の抵抗変化性素子101が低抵抗状態にプログラムされる。この段階では図2(b)に示すように、第一の抵抗変化性素子101、第二の抵抗変化性素子102とも低抵抗状態となり、出力ノード108はおおよそVprg/2程度の電圧になる。第二の抵抗変化性素子102にはおおよそVprg/2の電圧がかかるが、この値が抵抗変化性素子単体をプログラムするのに十分な値であれば、第二の抵抗変化性素子102は高抵抗状態にプログラムされる。このとき、第一の抵抗変化性素子101にも同様に、おおよそVrpg/2の電圧が印加されるが、極性が高抵抗状態にプログラムされる方向と逆方向であるため、第一の抵抗変化性素子101はプログラムされない。よって、最終的に図2(c)に示すように2つの抵抗変化性素子は状態2に変更される。
状態2から状態1にプログラムする場合は、図3に示すように第二の電源106から第一の電源105の方向にVprgをかければよい。図3(a)に示す書き込み初期の段階では、高抵抗状態の第二の抵抗変化性素子102にほぼVprg程度の電圧がかかる。そのため、第二の抵抗変化性素子102が低抵抗状態にプログラムされる。この段階では図3(b)に示すように、第一の抵抗変化性素子101、第二の抵抗変化性素子102とも低抵抗状態となり、出力ノード108はおおよそVprg/2程度の電圧になる。第一の抵抗変化性素子101にはおおよそVprg/2の電圧がかかるが、この値が抵抗変化性素子単体をプログラムするのに十分な値であれば、第一の抵抗変化性素子101は高抵抗状態にプログラムされる。このとき、第二の抵抗変化性素子102にも同様に、おおよそVrpg/2の電圧が印加されるが、極性が高抵抗状態にプログラムされる方向と逆方向であるため、第二の抵抗変化性素子102はプログラムされない。よって、最終的に図3(c)に示すように2つの抵抗変化性素子は状態1に変更される。
なお、第一のスイッチング素子103がN型FETの場合に第二の電源106から第一の電源105の方向にVprgをかける場合には、第一のスイッチング素子103の閾値電圧に応じた電圧降下が起こることに注意して第一のスイッチング素子103を導通させる必要がある。例えば、ゲート電圧に高めの電圧を与える、基板バイアスを与えて閾値を低くする、チャネル長が短くチャネル幅が大きい素子を用いる、Vprgを高めに与える、などの方法がある。
すでに状態2のメモリに、第一の電源105から第二の電源106の方向にVprgをかけた場合は、高抵抗状態の第二の抵抗変化性素子102にほとんどの電圧がかかるが、極性が低抵抗状態にプログラムされる方向と逆方向のためプログラムされず、状態2が保たれる。逆に状態1のメモリに、第二の電源106から第一の電源105の方向にVprgをかけた場合は、高抵抗状態の第一の抵抗変化性素子101にほとんどの電圧がかかるが、極性が低抵抗状態にプログラムされる方向と逆方向のためプログラムされず、状態1が保たれる。すなわち、現在のメモリの状態を気にすることなく、プログラミング電圧の方向によって状態を切り替えることが可能である。
以上、本発明の実施の形態である半導体集積回路は、抵抗変化性素子と直列に第一のスイッチング素子103が設けられているため、他のメモリセルの書き込み時には第一のスイッチング素子103を非導通としておくことで、電流回り込みをなくすことができ、誤書き込みを避けることができる。また、抵抗比の大きいメモリを使うため、出力ノード108の電圧振幅を大きくすることができ、直接第二のスイッチング素子104の導通または非導通を制御することが可能となる。また、出力ノード108が第二のスイッチング素子104のゲートに直接接続されるため、メモリの読み出し配線からの電流の回り込みもなく、誤書き込みを防ぐことができる。なお、書き込み動作中に、比較的高電圧のVprgが第二のスイッチング素子104のゲートに掛かることがあるが、プログラム時間が短い時間であれば信頼性上の問題はない。
第一の抵抗変化性素子101、または第二の抵抗変化性素子102の高抵抗状態の抵抗値が大きい場合は、第一のスイッチング素子103のオフ抵抗に注意する必要がある。オフ抵抗が小さい、言い換えるとオフリーク電流が大きい場合、非選択のメモリセルに誤書き込みされてしまう可能性があるからである。
図4は、高抵抗状態の抵抗変化性素子の抵抗値を10GΩとしたとき、第一の電源105から第二の電源106の方向にかけるVprgと、2つの抵抗変化性素子にかかる電圧の関係を、第一のスイッチング素子103のオフ抵抗のいくつかに対して示したものである。実際はリーク電流自体がVprgの関数であるため、使用するスイッチング素子とプログラミング電圧に応じて詳細は考慮する必要があるが、大まかにはスイッチング素子のオフ抵抗が1GΩ程度であると、高い電圧が抵抗変化性素子にかかってしまい、スイッチング素子の用をなさず、10GΩ程度は必要であることがわかる。すなわち、オフリーク電流を100pA以下にする必要がある。
メモリセルへの書き込みの際に、選択セル、非選択セルの両方ともに安定に動作する条件から、抵抗変化性素子の抵抗値と第一のスイッチング素子のトランジスタ特性との関係が得られる。高抵抗状態の抵抗変化性素子の抵抗をRoff、低抵抗状態のメモリの抵抗をRonとし、第一のスイッチング素子103のオフリーク電流をIoffとする。リークによる電圧はほとんど高抵抗状態のメモリにかかるが、このときにメモリの状態が書き換わらないようにする必要がある。1以上の任意の正数nを用いて、Vprg/n以下に抑えれば問題ないと考えると、このときの条件は、
Figure 0005032611
とかける。一般的には、高抵抗から低抵抗へ変化させるのに必要な電圧の方が高いので、nは2〜3程度で良いと考えられる。
一方で、最も電流を必要とするのは、上述の書き換え動作で述べた、第一の抵抗変化性素子101、第二の抵抗変化性素子102ともに低抵抗状態となった場合であり、そのとき、おおよそVprg/2の電圧が抵抗変化性素子に印加されている。第一のスイッチング素子103のオン電流をIonとすると、Ionに対する条件として、
Figure 0005032611
と与えられる。(1)、(2)より、第一のスイッチング素子103のオンオフ比は、
Figure 0005032611
である必要がある。また、第一のスイッチング素子103のサブスレッショルドファクター(電流を一桁上げるのに必要なゲート電圧)をSとすると、第一のスイッチング素子103の閾値電圧Vthは、
Figure 0005032611
という条件を満たす必要がある。例えば、n=2として、メモリの抵抗比が6桁、S=60mV/decである場合は、Vthは0.36Vよりも大きくする必要がある。もし、(4)で必要となるしきい値電圧がデバイス設計のみで実現できない場合には、基板バイアスを印加してしきい値電圧を満たすようにしても良い。
また、当然ながら、下記(5)式の通り、Vthは高電位側電源電圧Vddやプログラミング電圧Vprgよりも小さい必要がある。
Figure 0005032611
第一のスイッチング素子103は式(1)〜(5)を満たすように設計する。
リーク電流の点では、第一の電源105を高電位としてVprgが印加される場合よりも、第二の電源106を高電位としてVprgが印加される場合の方が大きい。前者の場合は、第一の抵抗変化性素子101、第二の抵抗変化性素子102による電圧降下があるため、スイッチング素子にかかる電圧はその分小さくなっているのに対し、後者の場合は、Vprgが直接スイッチング素子にかかるためである。FPGAにおいては、第二のスイッチング素子104を非導通にする配線の方が、導通にする配線よりも多いと期待される。よって、第一の電源105を高電位としてVprgが印加される場合に、第二のスイッチング素子104が非導通になるようにすると、消費電力的に有利である。今の場合では、状態1にすることになるが、これはもちろん、メモリの極性や第二のスイッチング素子104の種類によって変わる。
次に本発明の半導体集積回路のデバイス構成およびその製造方法について図5〜11を用いて説明する。
図5は、第一の抵抗変化性素子101、第二の抵抗変化性素子102および第一のスイッチング素子103の上面図である。図において、第一の抵抗変化性素子101および第二の抵抗変化性素子102は丸印で示されている。第一の抵抗変化性素子101の一端及び第二の抵抗変化性素子102の一端とは第二の接続配線層111で接続されている。第一の抵抗変化性素子101の他端は、第一の電源である第一のビット線(BL1)109に接続され、第二の抵抗変化性素子102の他端は第一の接続配線層113を通じて第一のスイッチング素子(トランジスタ)のドレインである第一の活性化領域112に接続される。この活性化領域112とゲート電極107によりスイッチング素子(トランジスタ)を形成する。第一の活性化領域112のゲート電極を挟んだ反対側の端部はソース領域になるが、図に示すとおり、ソース領域はもう一つのスイッチング素子と共通に接続される。第一のスイッチング素子103のソースにはコンタクトを介して、第二の電源である第二のビット線(BL2)110が接続されている。
図6(a)は図5のA−A断面図であり、図6(b)は図5のB−B断面図である。図6(a)において、第一のスイッチング素子103のドレイン領域103aはコンタクトプラグを介して第一の接続配線層113を通じて第二の抵抗変化性素子102に接続される。第二のビット線110に隣接して第一の接続配線層113および第一のビット線109が配置されている。これら第二のビット線110、第一の接続配線層113および第一のビット線109は、後述するように同一層をパターニングすることで形成される。第一のビット線109上には第一の抵抗変化性素子101が配置される。この第一の抵抗変化性素子101は下層から順に下部電極、素子本体、上部電極から構成されている。一方第一の接続配線層113上には第二の抵抗変化性素子102が配置される。この第二の抵抗変化性素子102も第一の抵抗変化性素子101と同様、下層から順に下部電極、素子本体、上部電極から構成されている。第一の抵抗変化性素子101及び第二の抵抗変化性素子102の上部電極は第二の接続配線層111と接続される。図示しないが、この第二の接続配線層111は第二のスイッチング素子104のゲート電極に接続される。
図6(b)において、第一のスイッチング素子103のソース領域103bはコンタクトプラグを介して第二のビット線110に接続される。そして、第一の接続配線層110と同一層内に第一のビット線109が配置される。
図5ではメモリセルを4つ示しているが、第一の活性化領域112により第一のスイッチング素子103の第二の電源106側のコンタクトを2つのセルで共通にすることで、セル面積を縮小することができる。また、第一のビット線109、第二のビット線110、第一の接続配線113を、同一層で作製し、同一方向に配線することでセル面積を縮小することができる。2つの抵抗変化性素子は、第一のスイッチング素子103のゲート電極107方向にならべて配置しているが、抵抗変化性素子は第二の接続配線層111下部に配置することが可能である。従って図5のようにレイアウトすることで、2層の配線層でメモリセルを実現することができ、配線リソースを節約することが可能である。
なお、図では、第一の抵抗変化性素子101、第二の抵抗変化性素子102はそれぞれ第一のビット線109と第二の接続配線層111との間、第一の接続配線層113と第二の接続配線層111との間に形成されているが、必ずしもそれに限るものではない。任意のn層目の導電層とそれより上層のm層目の導電層とを用いて、その間にメモリセルを配置するようにしても良い。また、第一の接続配線層113と第二の抵抗変化性素子102の下部電極を同一構成としてもよい。また、第二の接続配線層111と第一の抵抗変化性素子101の上部電極を同一構成としてもよい。
次に図5、6で示される半導体集積回路の製造方法について図7〜11を用いて説明する。図7〜11において(a)はA−A断面図を、(b)はB−B断面図をそれぞれ示す。
まず図7に示すように、半導体基板上の素子領域に第一のスイッチング素子103を形成する。その後半導体基板上を層間絶縁膜で被覆し、第一のスイッチング素子103のソース、ドレイン上にコンタクト穴を開口する。開口後、ダマシン法等の方法によりコンタクト穴を埋め込むコンタクトプラグを形成しながら、層間絶縁膜上に導電層を形成する。
その後、図8に示すように、この導電層をスパッタエッチング等の方法によりパターニングし、第一のビット線109、第二のビット線110、第一の接続配線層113を形成する。そして第一のビット線109、第二のビット線110、第一の接続配線層113間を層間絶縁膜で埋め込む。
次に、図9に示すように、抵抗変化性素子の下部電極、素子本体、上部電極となる層をこの順に積層し、素子サイズにエッチング加工することにより、第一の抵抗変化性素子101、第二の抵抗変化性素子102を形成する。この工程により、メモリセルの成膜を一度で行なうことができ、プロセス数を少なくすることができる。
その後、図10、11に示すように、層間絶縁膜で第一の抵抗変化性素子101、第二の抵抗変化性素子102を覆い、第一の抵抗変化性素子101、第二の抵抗変化性素子102の上部電極表面をそれぞれ露出するコンタクト穴を開口する。開口後、ダマシン法等の方法によりコンタクト穴を埋め込むコンタクトプラグを形成しながら、層間絶縁膜上に導電層を形成する。その後、この導電層をスパッタエッチング等の方法によりパターニングすることで、第二の接続配線層111を形成する。
その後、第二の接続配線層111を、図示しない第二のスイッチング素子104のゲート電極に接続することで、本発明の半導体集積回路が完成する。
図12は、図5のA−A断面及びB−B断面のもう一つの例を示したものである。図6の構造との違いは、第一の抵抗変化性素子101、第二の抵抗変化性素子102のそれぞれの上部電極の幅が図6の構造では第一の抵抗変化性素子101、第二の抵抗変化性素子102のそれぞれの素子本体、下部電極の幅と同等であるのに対し、図12では素子本体、下部電極の幅より小さいことである。図12の構成によれば、抵抗変化性素子側面でのリーク電流を抑えることができる。
なお、図12の構成においても図6の構成と同様、第一の抵抗変化性素子101、第二の抵抗変化性素子102はそれぞれ第一のビット線109と第二の接続配線層111との間、第一の接続配線層113と第二の接続配線層111との間に形成されているが、必ずしもそれに限るものではない。任意のn層目の導電層とそれより上層のm層目の導電層とを用いて、その間にメモリセルを配置するようにしても良い。また、第一の接続配線層113と第二の抵抗変化性素子102の下部電極を同一構成としてもよい。また、第二の接続配線層111と第一の抵抗変化性素子101の上部電極を同一構成としてもよい。
次に図12の半導体集積回路の製造工程を図13〜18を用いて説明する。図13〜18において(a)はA−A断面図を、(b)はB−B断面図をそれぞれ示す。
まず図13に示すように、半導体基板上の素子領域に第一のスイッチング素子103を形成する。その後半導体基板上を層間絶縁膜で被覆し、第一のスイッチング素子103のソース、ドレイン上にコンタクト穴を開口する。開口後、ダマシン法等の方法によりコンタクト穴を埋め込むコンタクトプラグを形成しながら、層間絶縁膜上に導電層を形成する。その後、この導電層をスパッタエッチング等の方法によりパターニングし、第一のビット線109、第二のビット線110、第一の接続配線層113を形成する。そして第一のビット線109、第二のビット線110、第一の接続配線層113間を層間絶縁膜で埋め込む。
次に、図14に示すように、抵抗変化性素子の下部電極、素子本体となる層をこの順に積層し、素子サイズにエッチング加工する。
エッチング加工後、層間絶縁膜で第一の抵抗変化性素子101、第二の抵抗変化性素子102の下部電極、素子本体を被覆し、第一の抵抗変化性素子101、第二の抵抗変化性素子102の素子本体表面をそれぞれ露出する開口を形成する。開口形成後、図15に示すように、スパッタ等の方法により開口中に上部電極の材料を堆積させる。
その後、図16、17に示すように、層間絶縁膜で第一の抵抗変化性素子101、第二の抵抗変化性素子102を覆い、第一の抵抗変化性素子101、第二の抵抗変化性素子102の上部電極表面をそれぞれ露出するコンタクト穴を開口する。開口後、ダマシン法等の方法によりコンタクト穴を埋め込むコンタクトプラグを形成しながら、層間絶縁膜上に導電層を形成する。その後、この導電層をスパッタエッチング等の方法によりパターニングすることで、第二の接続配線層111を形成する。
その後、第二の接続配線層111を、図示しない第二のスイッチング素子104のゲート電極に接続することで、本発明の半導体集積回路が完成する。
以上、図13〜17の製造工程によれば、素子サイズの調整が抵抗変化性素子のサイズにより調整でき制御しやすいという利点がある。
プログラム電圧のかけ方を工夫することで、図5に示す半導体集積回路のデバイス構成の変形例として図18の構成が可能になる。図18はメモリセルを8つ並べる場合の第一の抵抗変化性素子101、第二の抵抗変化性素子102および第一のスイッチング素子103の上面図を示す。図5との違いは、第一のスイッチング素子103のゲート電極107が図18の上下方向に配置されるメモリセル間で共有していることであり、かつ第二のビット線110を共有していることである。その他は図5の構成と同様であるため、説明を省略する。このようにすることで、セル面積を縮小することが可能になる。この構成の場合、第二のビット線110が共通となっているため、書き込み動作は第一のビット線109の電位を操作することで行なう。すなわち、書き込み動作時においては、第二のビット線110の電位を共通電位V0とし、第一のビット線109に与える電位を+Vprg、または−Vprgとして電圧の方向を変更することで書き込みを行なう。ゲート電極107、第二のビット線110を共有することにより、セル面積を縮小することができる。
図18では第二のビット線110を共有しているが、第一のビット線109を共有し、第二のビット線の電位を操作して書き込みを行なうことも可能である。また、ゲート電極107のみを共有し、ビット線は共有しないようにすると、書き込み動作の操作を変えずにセル面積を縮小することが可能である。
(実施例1)
図19に示す本発明の半導体集積回路の実施例は、図1に示す本発明の半導体集積回路の基本構成において、出力ノード108に第二のスイッチング素子104のゲートとは別に第三のスイッチング素子120のゲートが接続されており、一つのメモリセルに複数のスイッチング素子を接続する形態をとっている。第三のスイッチング素子120は、例えば、第二のスイッチング素子104と同様にFPGA内での配線切り替えスイッチに使用することも可能である。FPGA内で、スイッチング素子の導通、非導通の状態が必ず同じになる箇所がある場合には、メモリセルを増やさずに第三のスイッチング素子120を用いることで、メモリセル数を削減することができ、低面積化が可能になる。
もう一つの利用方法として、第三のスイッチング素子120を、第一の抵抗変化性素子101、第二の抵抗変化性素子102の状態の確認に使用することも可能である。例えばプログラム時には、2つの第一の抵抗変化性素子101、第二の抵抗変化性素子102が両方とも低抵抗状態になり定常状態より大きな電流が流れる時間があるため、第一の電源105と第二の電源106の間に流れる電流を計測することで、書き込みが行なわれたかどうかの判断は可能である。しかし、定常状態では、2つの第一の抵抗変化性素子101、第二の抵抗変化性素子102は状態1、状態2のいずれでも、一方のメモリの抵抗値が高抵抗状態であれば、もう一方のメモリの抵抗値は低抵抗状態であるので、電流量を読むだけでは、いずれの状態であるかの判断ができない。また、何らかのエラーが起きて正しくプログラムできなかった場合でも、電流量だけでは判断することができない。メモリの状態は、第二のスイッチング素子104の導通、非導通状態をソース、ドレインの間に流れる信号によって確認することもできる。ただし、ソース・ドレインはFPGAの信号線として使われているため、確認用の回路を付加して、動作させることで、配線容量の増大や、FPGAを動作させられない時間ができ、実際の回路動作に支障が出る。
第三のスイッチング素子120の導通、非導通状態を第三のスイッチング素子120のソース・ドレイン間にテスト信号を流し、確認することで、同様に接続された第二のスイッチング素子104の導通、非導通状態と第一の抵抗変化性素子101、第二の抵抗変化性素子102の状態を類推することができる。第三のスイッチング素子120のソース・ドレインはテスト用配線として、FPGAの信号線と切り離して使用するため、FPGA動作に負荷をかけることはない利点がある。また、第二のスイッチング素子104は、任意の回路構成で信号遅延を減少させるためにサイズを大きくとっておく必要があるが、第三のスイッチング素子120はテスト信号が読めればよいので、小さいサイズでよく、面積のオーバーヘッドも小さく抑えることができる。また、N型でもP型でも良い。よって第三のスイッチング素子120は、上述の全ての実施例で使用することが可能である。
(実施例2)
図20は図1に示す基本構成の変形例の一つである。第一の抵抗変化性素子101、第二の抵抗変化性素子102と第一のスイッチング素子103の構成は同じであるが、2つの抵抗変化性素子間の出力ノード108は、第一の反転回路130に接続される。第一の反転回路130の出力は第四のスイッチング素子131のゲートに接続される。第一の抵抗変化性素子101、第二の抵抗変化性素子102の抵抗値によっては駆動力が落ちることがあるため、バッファとして第一の反転回路130を挿入し、第四のスイッチング素子131の導通、非導通を切り換える。なお、この場合出力ノード108の論理は反転させてプログラムするようにする。すなわち、第四のスイッチング素子131を導通させる場合には、出力ノード108がVSSに近い電圧になるように、第四のスイッチング素子131を非導通にする場合には、出力ノード108がVDDに近い電圧になるように、第一の抵抗変化性素子101、第二の抵抗変化性素子102をプログラムする。
(実施例3)
図21は、図1に示す本発明の半導体集積回路の基本構成でマルチプレクサを実現したものである。第一の抵抗変化性素子101、第二の抵抗変化性素子102と第一のスイッチング素子103の構成は図1と同じであるが、2つの抵抗変化性素子間の出力ノード108は、第二のスイッチング素子104のゲートと第一の反転回路130に接続される。第一の反転回路130の出力は第四のスイッチング素子131のゲートに接続される。第二のスイッチング素子104のソースには第一の入力端子140が、第四のスイッチング素子131のソースには第二の入力端子141が接続され、第二のスイッチング素子104、第四のスイッチング素子131両方のドレインは出力端子142に接続される。FPGA動作時に、例えば出力ノード108がVDDに近い電圧である場合には、第二のスイッチング素子104はオンであり、第四のスイッチング素子131はオフとなるので、第一の入力端子140の状態が出力端子142に出力される。逆に、出力ノード108がVSSに近い電圧であれば、第二のスイッチング素子104はオフであり、第四のスイッチング素子131はオンとなるので、第二の入力端子141の状態が出力端子142に出力される。このように、相補的な論理を実現したい場合は、二入力の一方に反転回路を追加することで対応できる。また、ここでは2入力1出力のマルチプレクサの例を示したが、これを繰り返すことで、任意の入力数のマルチプレクサを実現することが可能である。
(実施例4)
図22は、ルックアップテーブルを実現したものである。第一の抵抗変化性素子101、第二の抵抗変化性素子102と第一のスイッチング素子103の構成、及び、第三の抵抗変化性素子201、第四の抵抗変化性素子202と第六のスイッチング素子203の構成は同じであるが、抵抗変化性素子間の出力ノード108および出力ノード218はそれぞれ、第五のスイッチング素子208、第七のスイッチング素子209のソースに接続される。入力端子211は第五のスイッチング素子208のゲートと第二の反転回路210に入力され、第二の反転回路210の出力は第七のスイッチング素子209のゲートに接続される。第五のスイッチング素子208、第七のスイッチング素子209のドレインは両方とも出力端子212に接続される。FPGA動作時に、例えば、入力端子211にVDDの電圧が入力された場合、第五のスイッチング素子208はオンとなり、第七のスイッチング素子209はオフとなるので、出力端子212には第一の抵抗変化性素子101、第二の抵抗変化性素子102の状態で決まる出力ノード108の値が出力される。逆に、入力端子211にVSSの電圧が入力された場合、第五のスイッチング素子208はオフとなり、第七のスイッチング素子209はオンとなるので、出力端子212には第三の抵抗変化性素子201、第四の抵抗変化性素子202の状態で決まる出力ノード218の値が出力される。第一の抵抗変化性素子101、第二の抵抗変化性素子102、第三の抵抗変化性素子201、第四の抵抗変化性素子202の値を適切にプログラムすることで、1入力1出力の場合の任意の真理値表を実現することができる。また、ここでは、1入力1出力のルックアップテーブルの例を示したが、これを繰り返すことで、任意の入力数のルックアップテーブルを実現することが可能である。
(実施例5)
図23は図22の変形例の一つで、ルックアップテーブルを実現したものである。第一の抵抗変化性素子101、第二の抵抗変化性素子102と第一のスイッチング素子103の構成、及び第三の抵抗変化性素子201、第四の抵抗変化性素子202と第六のスイッチング素子203の構成は同じであるが、出力ノード108および出力ノード218はそれぞれ、第三の反転回路301と第四の反転回路302に入力される。第三の反転回路301の出力は第五のスイッチング素子208のソースに、第四の反転回路302の出力は第七のスイッチング素子209のソースにそれぞれ接続される。入力端子211は第五のスイッチング素子208のゲートと第二の反転回路210に入力され、第二の反転回路210の出力は第七のスイッチング素子209のゲートに接続される。第五のスイッチング素子208、第七のスイッチング素子209のドレインは両方とも出力端子212に接続される。第一の抵抗変化性素子101、第二の抵抗変化性素子102、および第三の抵抗変化性素子201、第四の抵抗変化性素子202の抵抗値によっては駆動力が落ちることがあるため、バッファとして第三の反転回路301、第四の反転回路302を挿入し、ルックアップテーブルの出力に使用する。FPGA動作時に、例えば、入力端子211にVDDの電圧が入力された場合、第五のスイッチング素子208はオンとなり、第七のスイッチング素子209はオフとなるので、出力端子212には第一の抵抗変化性素子101、第二の抵抗変化性素子102の状態で決まる出力ノード108の反転した値が出力される。逆に、入力端子211にVSSの電圧が入力された場合、第五のスイッチング素子208はオフとなり、第七のスイッチング素子209はオンとなるので、出力端子212には第三の抵抗変化性素子201、第四の抵抗変化性素子202の状態で決まる出力ノード218の反転した値が出力される。第一の抵抗変化性素子101、第二の抵抗変化性素子102、第三の抵抗変化性素子201、及び第四の抵抗変化性素子202の値を適切にプログラムすることで、1入力1出力の場合の任意の真理値表を実現することができる。ただし、バッファとして第三の反転回路301と第四の反転回路302が挿入されているため、メモリ素子のプログラムの際は、出力ノード108、218は逆の値になるようにする。
以上、本発明によれば、抵抗変化性のバイポーラ型メモリを、誤書き込みや誤動作を起こさずにFPGAに適用することが可能になる。以上述べた実施例は一例であり、それらを組み合わせた構成や、同様の機能を有する異なる構成をとることは可能である。
以上本発明の実施形態について説明したが、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
101…第一の抵抗変化性素子
102…第二の抵抗変化性素子
103…第一のスイッチング素子
103a…ドレイン領域
103b…ソース領域
104…第二のスイッチング素子
105…第一の電源
106…第二の電源
107…ゲート電極
108、218…出力ノード
109…第一のビット線
110…第二のビット線
111…第二の接続配線層
112…第一の活性化領域
113…第一の接続配線層
120…第三のスイッチング素子
130…第一の反転回路
131…第四のスイッチング素子
140…第一の入力端子
141…第二の入力端子
142…出力端子
201…第三の抵抗変化性素子
202…第四の抵抗変化性素子
203…第六のスイッチング素子
208…第五のスイッチング素子
209…第七のスイッチング素子
210…第二の反転回路
211…入力端子
212…出力端子
301…第三の反転回路
302…第四の反転回路

Claims (12)

  1. 第一の極性を有する一端が第一の電源に接続され、第二の極性を有する他端が出力ノードに接続される第一の抵抗変化性素子と、
    前記第二の極性を有する一端が出力ノードに接続される第二の抵抗変化性素子と、
    前記第二の抵抗変化性素子の他端と第一の端子が接続され、第二の電源と第二の端子が接続される、第一のスイッチング素子と、
    を備えることを特徴とする半導体集積回路。
  2. 前記出力ノードに制御端子が接続される第二のスイッチング素子をさらに備えることを特徴とする請求項1に記載の半導体集積回路。
  3. 前記出力ノードに制御端子が接続される第三のスイッチング素子をさらに備えることを特徴とする請求項2に記載の半導体集積回路。
  4. 前記出力ノードに第一の反転回路を介して制御端子が接続される第四のスイッチング素子をさらに備えることを特徴とする請求項1、2のいずれか一項に記載の半導体集積回路。
  5. 前記第二のスイッチング素子の第一の端子及び前記第四のスイッチング素子の第一の端子に接続される出力端子をさらに備えることを特徴とする請求項4に記載の半導体集積回路。
  6. 第一の極性を有する一端が第一の電源に接続され、第二の極性を有する他端が出力ノードに接続される第一の抵抗変化性素子と、
    前記第二の極性を有する一端が第一の出力ノードに接続される第二の抵抗変化性素子と、
    前記第二の抵抗変化性素子の他端と第一の端子が接続され、第二の電源と第二の端子が接続される、第一のスイッチング素子と、
    前記第一の出力ノードが第一の端子に接続され、出力端子が第二の端子に接続される第五のスイッチング素子と、
    第一の極性を有する一端が第三の電源に接続され、第二の極性を有する他端が第二の出力ノードに接続される第三の抵抗変化性素子と、
    前記第二の極性を有する一端が第一の出力ノードに接続される第四の抵抗変化性素子と、
    前記第四の抵抗変化性素子の他端と第一の端子が接続され、第四の電源と第二の端子が接続される、第六のスイッチング素子と、
    前記第二の出力ノードが第一の端子に接続され、前記出力端子が第二の端子に接続される第七のスイッチング素子と、
    前記第五のスイッチング素子の制御端子と前記第七のスイッチング素子の制御端子を接続する第二の反転回路と、
    を備えることを特徴とする半導体集積回路。
  7. 前記第一の出力ノードと前記第二のスイッチング素子の前記第一の端子との間に接続される第三の反転回路と、
    前記第二の出力ノードと前記第七のスイッチング素子の前記第一の端子との間に接続される第四の反転回路と、
    を備えることを特徴とする請求項6に記載の半導体集積回路。
  8. 前記第一のスイッチング素子は、高抵抗状態の抵抗変化性素子の抵抗をRoff、低抵抗状態の抵抗変化性素子の抵抗をRonとし、サブスレッショルドファクターをSとした時、閾値電圧が
    Figure 0005032611

    よりも大きいことを特徴とする請求項1から6のいずれか一項に記載の半導体集積回路。
  9. 前記第一の電源端子を高電位とし、前記第二の電源端子を低電位として前記第一及び第二の抵抗変化性素子を書き込むと、前記第二のスイッチング素子がOFFとなることを特徴とする請求項2から8のいずれか一項に記載の半導体集積回路。
  10. 前記第一及び第二の抵抗変化性素子は、上部電極の面積が、下部電極よりも小さいことを特徴とする請求項1から9のいずれか一項に記載の半導体集積回路。
  11. 前記第一の抵抗変化性素子と前記第二の抵抗変化性素子は、抵抗状態が相補的であることを特徴とする請求項1から10のいずれか一項に記載の半導体集積回路。
  12. 前記第一の抵抗変化性素子の前記第一の極性を有する一端は、前記第一の電源に直接接続されていることを特徴とする請求項1から11のいずれか一項に記載の半導体集積回路。
JP2010034952A 2010-02-19 2010-02-19 半導体集積回路 Active JP5032611B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010034952A JP5032611B2 (ja) 2010-02-19 2010-02-19 半導体集積回路
US12/880,758 US8331130B2 (en) 2010-02-19 2010-09-13 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010034952A JP5032611B2 (ja) 2010-02-19 2010-02-19 半導体集積回路

Publications (2)

Publication Number Publication Date
JP2011172084A JP2011172084A (ja) 2011-09-01
JP5032611B2 true JP5032611B2 (ja) 2012-09-26

Family

ID=44476352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010034952A Active JP5032611B2 (ja) 2010-02-19 2010-02-19 半導体集積回路

Country Status (2)

Country Link
US (1) US8331130B2 (ja)
JP (1) JP5032611B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7214736B2 (ja) 2018-01-30 2023-01-30 ゼネラル・エレクトリック・カンパニイ ホース接続システム

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008112525A2 (en) * 2007-03-09 2008-09-18 Link Medicine Corporation Treatment of lysosomal storage diseases
US9263126B1 (en) 2010-09-01 2016-02-16 Nantero Inc. Method for dynamically accessing and programming resistive change element arrays
US8269203B2 (en) 2009-07-02 2012-09-18 Actel Corporation Resistive RAM devices for programmable logic devices
US9601692B1 (en) 2010-07-13 2017-03-21 Crossbar, Inc. Hetero-switching layer in a RRAM device and method
US9570678B1 (en) 2010-06-08 2017-02-14 Crossbar, Inc. Resistive RAM with preferental filament formation region and methods
US8946046B1 (en) 2012-05-02 2015-02-03 Crossbar, Inc. Guided path for forming a conductive filament in RRAM
US8411485B2 (en) 2010-06-14 2013-04-02 Crossbar, Inc. Non-volatile variable capacitive device including resistive memory cell
US9013911B2 (en) 2011-06-23 2015-04-21 Crossbar, Inc. Memory array architecture with two-terminal memory cells
US8884261B2 (en) 2010-08-23 2014-11-11 Crossbar, Inc. Device switching using layered device structure
US8569172B1 (en) 2012-08-14 2013-10-29 Crossbar, Inc. Noble metal/non-noble metal electrode for RRAM applications
JP5092001B2 (ja) 2010-09-29 2012-12-05 株式会社東芝 半導体集積回路
US8315079B2 (en) 2010-10-07 2012-11-20 Crossbar, Inc. Circuit for concurrent read operation and method therefor
JP5664105B2 (ja) * 2010-10-12 2015-02-04 富士通株式会社 半導体メモリおよびシステム
USRE46335E1 (en) 2010-11-04 2017-03-07 Crossbar, Inc. Switching device having a non-linear element
US8502185B2 (en) 2011-05-31 2013-08-06 Crossbar, Inc. Switching device having a non-linear element
JP2012191455A (ja) 2011-03-10 2012-10-04 Toshiba Corp 半導体集積回路
US9620206B2 (en) 2011-05-31 2017-04-11 Crossbar, Inc. Memory array architecture with two-terminal memory cells
US8619459B1 (en) 2011-06-23 2013-12-31 Crossbar, Inc. High operating speed resistive random access memory
US9058865B1 (en) 2011-06-30 2015-06-16 Crossbar, Inc. Multi-level cell operation in silver/amorphous silicon RRAM
US9564587B1 (en) 2011-06-30 2017-02-07 Crossbar, Inc. Three-dimensional two-terminal memory with enhanced electric field and segmented interconnects
US9166163B2 (en) 2011-06-30 2015-10-20 Crossbar, Inc. Sub-oxide interface layer for two-terminal memory
US9627443B2 (en) 2011-06-30 2017-04-18 Crossbar, Inc. Three-dimensional oblique two-terminal memory with enhanced electric field
US8946669B1 (en) 2012-04-05 2015-02-03 Crossbar, Inc. Resistive memory device and fabrication methods
US9059705B1 (en) 2011-06-30 2015-06-16 Crossbar, Inc. Resistive random accessed memory device for FPGA configuration
US10056907B1 (en) 2011-07-29 2018-08-21 Crossbar, Inc. Field programmable gate array utilizing two-terminal non-volatile memory
US8674724B2 (en) * 2011-07-29 2014-03-18 Crossbar, Inc. Field programmable gate array utilizing two-terminal non-volatile memory
US9729155B2 (en) 2011-07-29 2017-08-08 Crossbar, Inc. Field programmable gate array utilizing two-terminal non-volatile memory
US8754671B2 (en) * 2011-07-29 2014-06-17 Crossbar, Inc. Field programmable gate array utilizing two-terminal non-volatile memory
US9025358B2 (en) * 2011-10-13 2015-05-05 Zeno Semiconductor Inc Semiconductor memory having both volatile and non-volatile functionality comprising resistive change material and method of operating
US8964460B2 (en) 2012-02-08 2015-02-24 Taiyo Yuden Co., Ltd. Semiconductor device having a non-volatile memory built-in
JP5677339B2 (ja) * 2012-02-17 2015-02-25 株式会社東芝 メモリ回路
US9685608B2 (en) 2012-04-13 2017-06-20 Crossbar, Inc. Reduced diffusion in metal electrode for two-terminal memory
US8658476B1 (en) 2012-04-20 2014-02-25 Crossbar, Inc. Low temperature P+ polycrystalline silicon material for non-volatile memory device
US9001552B1 (en) 2012-06-22 2015-04-07 Crossbar, Inc. Programming a RRAM method and apparatus
US9583701B1 (en) 2012-08-14 2017-02-28 Crossbar, Inc. Methods for fabricating resistive memory device switching material using ion implantation
US9741765B1 (en) 2012-08-14 2017-08-22 Crossbar, Inc. Monolithically integrated resistive memory using integrated-circuit foundry compatible processes
US9576616B2 (en) 2012-10-10 2017-02-21 Crossbar, Inc. Non-volatile memory with overwrite capability and low write amplification
US11068620B2 (en) 2012-11-09 2021-07-20 Crossbar, Inc. Secure circuit integrated with memory layer
JP6344243B2 (ja) 2013-01-18 2018-06-20 日本電気株式会社 スイッチング素子、および半導体スイッチング装置の製造方法
US10290801B2 (en) 2014-02-07 2019-05-14 Crossbar, Inc. Scalable silicon based resistive memory device
US9502468B2 (en) * 2014-03-06 2016-11-22 Infineon Technologies Ag Nonvolatile memory device having a gate coupled to resistors
JP2015173224A (ja) 2014-03-12 2015-10-01 株式会社東芝 プログラマブルロジックデバイス
US9318158B2 (en) * 2014-05-27 2016-04-19 Freescale Semiconductor, Inc. Non-volatile memory using bi-directional resistive elements
US9299430B1 (en) * 2015-01-22 2016-03-29 Nantero Inc. Methods for reading and programming 1-R resistive change element arrays
JP6901686B2 (ja) 2015-04-06 2021-07-14 ナノブリッジ・セミコンダクター株式会社 スイッチング素子、半導体装置及びその製造方法
US10270451B2 (en) 2015-12-17 2019-04-23 Microsemi SoC Corporation Low leakage ReRAM FPGA configuration cell
US10147485B2 (en) 2016-09-29 2018-12-04 Microsemi Soc Corp. Circuits and methods for preventing over-programming of ReRAM-based memory cells
US9887006B1 (en) 2016-10-24 2018-02-06 Infineon Technologies Ag Nonvolatile memory device
DE112017006212T5 (de) 2016-12-09 2019-08-29 Microsemi Soc Corp. Resistive Speicherzelle mit wahlfreiem Zugriff
US10348306B2 (en) 2017-03-09 2019-07-09 University Of Utah Research Foundation Resistive random access memory based multiplexers and field programmable gate arrays
US10096362B1 (en) 2017-03-24 2018-10-09 Crossbar, Inc. Switching block configuration bit comprising a non-volatile memory cell
CN111033624B (zh) 2017-08-11 2023-10-03 美高森美SoC公司 用于对电阻随机存取存储器设备进行编程的电路和方法
US11195581B1 (en) * 2020-07-22 2021-12-07 Macronix International Co., Ltd. Memory cell, memory array and operation method using the same

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6992503B2 (en) * 2002-07-08 2006-01-31 Viciciv Technology Programmable devices with convertibility to customizable devices
JP2004213744A (ja) * 2002-12-27 2004-07-29 Tdk Corp メモリ装置
US6949435B2 (en) * 2003-12-08 2005-09-27 Sharp Laboratories Of America, Inc. Asymmetric-area memory cell
TWI355661B (en) * 2003-12-18 2012-01-01 Panasonic Corp Method for using a variable-resistance material as
JP4367281B2 (ja) * 2004-08-03 2009-11-18 ソニー株式会社 演算回路
JP4783002B2 (ja) 2004-11-10 2011-09-28 株式会社東芝 半導体メモリ素子
US7511532B2 (en) 2005-11-03 2009-03-31 Cswitch Corp. Reconfigurable logic structures
JP2009087494A (ja) * 2007-10-02 2009-04-23 Toshiba Corp 磁気ランダムアクセスメモリ
JP5233234B2 (ja) 2007-10-05 2013-07-10 富士通株式会社 半導体装置およびその製造方法
CN101627438B (zh) * 2007-10-29 2013-10-09 松下电器产业株式会社 非易失性存储装置以及非易失性数据记录介质
JP5050813B2 (ja) * 2007-11-29 2012-10-17 ソニー株式会社 メモリセル
JP5141237B2 (ja) 2007-12-21 2013-02-13 富士通株式会社 半導体記憶装置、その製造方法、書き込み方法及び読み出し方法
CN101681912B (zh) * 2008-02-19 2011-06-08 松下电器产业株式会社 电阻变化型非易失性存储元件及其制作方法和驱动方法
JP5238430B2 (ja) 2008-09-25 2013-07-17 株式会社東芝 記憶装置
KR101182423B1 (ko) * 2008-12-17 2012-09-12 한국전자통신연구원 상변화 메모리 소자를 이용한 필드프로그래머블 게이트 어레이(fpga)의 프로그래머블 논리 블록
US8269203B2 (en) * 2009-07-02 2012-09-18 Actel Corporation Resistive RAM devices for programmable logic devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7214736B2 (ja) 2018-01-30 2023-01-30 ゼネラル・エレクトリック・カンパニイ ホース接続システム

Also Published As

Publication number Publication date
US20110205780A1 (en) 2011-08-25
US8331130B2 (en) 2012-12-11
JP2011172084A (ja) 2011-09-01

Similar Documents

Publication Publication Date Title
JP5032611B2 (ja) 半導体集積回路
JP5242467B2 (ja) 不揮発性メモリおよび再構成可能な回路
US9520448B1 (en) Compact ReRAM based PFGA
JP5725485B2 (ja) 磁気ビットセル素子のための非対称書込み方式
JP5240596B2 (ja) 半導体集積回路
KR20060052550A (ko) 반도체 메모리 소자 및 반도체 메모리 장치
US7184297B2 (en) Semiconductor memory device
JP6094582B2 (ja) 半導体装置およびプログラミング方法
JP2015230919A (ja) 不揮発性メモリ、この不揮発性メモリを用いた不揮発性プログラマブルロジックスイッチおよび不揮発性プログラマブルロジック回路
KR20150123724A (ko) 반도체 장치
WO2013190741A1 (ja) 半導体装置およびプログラミング方法
US8063455B2 (en) Multi-terminal electromechanical nanocsopic switching device with control and release electrodes
US8437187B2 (en) Semiconductor integrated circuit including memory cells having non-volatile memories and switching elements
JP2015211326A (ja) プログラマブル論理回路および不揮発性fpga
US10396798B2 (en) Reconfigurable circuit
JP5415547B2 (ja) メモリ機能付きパストランジスタ回路およびこのパストランジスタ回路を有するスイッチングボックス回路
WO2012085627A1 (en) Method for operating a transistor, reconfigurable processing architecture and use of a restored broken down transistor for a multiple mode operation
US8611143B2 (en) Memory circuit using spin MOSFETs, path transistor circuit with memory function, switching box circuit, switching block circuit, and field programmable gate array
WO2019208414A1 (ja) 論理集積回路および書き込み方法
JP2009059884A (ja) 電子回路
JP5771315B2 (ja) 半導体集積回路
US7508727B2 (en) Memory structure and data writing method thereof
JP4792093B2 (ja) スイッチングボックス回路、スイッチングブロック回路、およびfpga回路
JP2015173224A (ja) プログラマブルロジックデバイス
TWI574271B (zh) Eprom單元

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111125

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120628

R151 Written notification of patent or utility model registration

Ref document number: 5032611

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3