WO2019208414A1 - 論理集積回路および書き込み方法 - Google Patents

論理集積回路および書き込み方法 Download PDF

Info

Publication number
WO2019208414A1
WO2019208414A1 PCT/JP2019/016754 JP2019016754W WO2019208414A1 WO 2019208414 A1 WO2019208414 A1 WO 2019208414A1 JP 2019016754 W JP2019016754 W JP 2019016754W WO 2019208414 A1 WO2019208414 A1 WO 2019208414A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
circuit
wirings
integrated circuit
electrode
Prior art date
Application number
PCT/JP2019/016754
Other languages
English (en)
French (fr)
Inventor
あゆ香 多田
竜介 根橋
幸秀 辻
阪本 利司
信 宮村
旭 白
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2020516299A priority Critical patent/JPWO2019208414A1/ja
Publication of WO2019208414A1 publication Critical patent/WO2019208414A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/173Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components
    • H03K19/177Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components arranged in matrix form
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/10Phase change RAM [PCRAM, PRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present invention relates to a reconfigurable logic integrated circuit using a resistance change switch and a writing method.
  • a general semiconductor integrated circuit includes a transistor formed on a semiconductor substrate and a wiring structure formed on an upper layer of the semiconductor substrate to connect the transistors.
  • the pattern of transistors and wirings is determined at the design stage of the integrated circuit, and the connection between transistors cannot be changed after the semiconductor integrated circuit is manufactured.
  • Programmable logic integrated circuits such as FPGA (Field Programmable Gate Array) can change the logic operation and the wiring connection by storing the operation of the logic operation circuit and the connection of the logic operation circuit in the memory element.
  • a memory element that stores configuration information is realized by an SRAM (Static Random Access Memory) cell, an antifuse, a floating gate MOS (Metal-Oxide-Semiconductor) transistor, or the like.
  • a programmable logic integrated circuit using a resistance change element that can be formed in a wiring layer is disclosed.
  • Programmable logic integrated circuits using variable resistance elements can change the wiring connection configuration after manufacturing the circuit, and can correct circuit defects and change specifications, reducing chip area and improving power performance ratio. Can be planned.
  • Patent Document 1 and Patent Document 2 have a resistance change element composed of a solid electrolyte material containing metal ions between a first wiring layer and a second wiring layer formed thereon.
  • a programmable logic integrated circuit is disclosed.
  • the programmable logic integrated circuits of Patent Literature 1 and Patent Literature 2 can change the resistance value by applying a forward bias or a reverse bias to both ends of the resistance change element.
  • the ratio of the low resistance state (on state) to the high resistance state (off state) is 10 to the fifth power or higher. That is, the variable resistance element used in Patent Document 1 or Patent Document 2 functions as a switch that can electrically connect or disconnect the first wiring and the second wiring.
  • a switch cell including an SRAM (Static Random Access Memory) cell and a single transistor having a switch function is used.
  • SRAM Static Random Access Memory
  • the resistance change element has a memory function and a switch function, the switch cell can be realized by one element.
  • the programmable logic integrated circuit of Patent Document 1 by arranging a resistance change element at each intersection of the first wiring group and the second wiring group, the arbitrary wiring of the first wiring group, A switch block that can be freely connected to any wiring in the wiring group can be configured in a compact size.
  • the programmable logic integrated circuit of Patent Document 1 it can be expected that the chip area is greatly reduced and the performance is improved by improving the use efficiency of the logic operation circuit.
  • the ON / OFF state of the resistance change element is maintained even when the energization of the integrated circuit is interrupted, it takes time to load circuit configuration information each time the power is turned on. It can be omitted.
  • Patent Documents 3 and 4 disclose a technique in which a spare circuit is formed and a circuit including a defect is replaced with the spare circuit.
  • the programmable logic integrated circuit is made available after a spare circuit is made available and a bypass route is formed so as to avoid the defective circuit.
  • the electric field strength applied to the device increases, and the voltage at which electrical breakdown can occur decreases.
  • the gate breakdown voltage of the transistor is less than 3 volts.
  • a voltage exceeding 3 volts is applied, so that the gate of the core transistor cannot be directly connected to the node to which the write voltage is applied. Therefore, in a programmable logic integrated circuit using a semiconductor integrated circuit manufactured by the latest technology node technology that requires high-speed operation, a crossbar switch with little delay that can withstand writing of a resistance change element is required.
  • An object of the present invention is to solve the above-described problems and provide a logic integrated circuit capable of writing and erasing a variable resistance element that requires a high voltage without electrically destroying a miniaturized semiconductor element. There is to do.
  • the logic integrated circuit of one embodiment of the present invention includes a plurality of first wirings extending in a first direction, a plurality of second wirings extending in a second direction intersecting the first direction, and a second wiring extending along the second wiring.
  • a switch block having at least one redundant wiring extending in two directions, a plurality of resistance change elements arranged in a matrix at positions where the second wiring and the redundant wiring intersect with the first wiring, and a plurality of second wirings
  • a transfer block having a plurality of buffers connected to each of a plurality of third wirings extending in the second direction, and a plurality of switching circuits including high voltage transistors corresponding to each of the plurality of second wirings
  • a shift block that switches connection between the second wiring and the redundant wiring and the third wiring in accordance with the voltage state of the selection terminal corresponding to each of the plurality of switching circuits.
  • a logic integrated circuit of one embodiment of the present invention includes a switch block in which a plurality of resistance change elements that switch connection between a plurality of first wirings and a plurality of second wirings are arranged in a matrix, and is connected to the second wirings.
  • An element capable of transitioning to an impedance state, a redundant wiring extending along the second wiring, a circuit that switches between the second wiring and the redundant wiring, and a circuit that is connected to the redundant wiring and pulls up or down is provided.
  • a switch block in which a plurality of resistance change elements that switch connection between a plurality of first wirings and a plurality of second wirings are arranged in a matrix and connected to the second wirings,
  • a logic integrated circuit comprising an element capable of transitioning to an impedance state, a redundant wiring extending along the second wiring, a circuit for switching the second wiring and the redundant wiring, and a circuit connected to the redundant wiring and pulling up or pulling down
  • the connection between the second wiring and the subsequent element is set to a high impedance state, and the input of the subsequent element of the second wiring is pulled up or pulled down to write the variable resistance element.
  • FIG. 1 is a block diagram showing an outline of a configuration of a programmable logic integrated circuit according to a first embodiment of the present invention. It is a schematic diagram which shows an example of a structure of the switch block with which the programmable logic integrated circuit which concerns on the 1st Embodiment of this invention is provided. It is a schematic diagram which shows an example of a structure of the shift block and transfer block with which the programmable logic integrated circuit which concerns on the 1st Embodiment of this invention is provided. It is a schematic diagram which shows an example of the resistance change element used for the programmable logic integrated circuit which concerns on the 1st Embodiment of this invention.
  • FIG. 1 is a block diagram showing an example of the configuration of the logic integrated circuit 1 of the present embodiment.
  • the logic integrated circuit 1 includes a switch block 11, a shift block 13, and a transfer block 15.
  • FIG. 2 is a schematic diagram showing an example of the configuration of the switch block 11 of the logic integrated circuit 1.
  • the switch block 11 includes a first wiring group extending in the first direction (first wirings in0 to 3), a second wiring group extending in the second direction (second wirings m0 to 3), and a second wiring group. And at least one redundant wiring r extending along the second direction. Further, the switch block 11 includes a plurality of resistance change elements 100 arranged at positions where the plurality of first wirings in0 to 3 and the plurality of second wirings m0 to 3 intersect.
  • the switch block 11 includes a first selection circuit 121, a second selection circuit 122, a first write driver 125, and a second write driver 126.
  • the number at the end is omitted and described as the first wiring in.
  • the last number is omitted and described as the second wiring m.
  • the first wiring in is four
  • the second wiring m is four
  • the redundant wiring r is one
  • the first wiring in, the second wiring m, and The number of redundant wirings r is not limited.
  • the crossbar 110 is configured by the plurality of first wirings in0 to 3, the plurality of second wirings m0 to m3, the redundant wiring r, and the plurality of resistance change elements 100.
  • the output sides of the second wirings m0 to m3 and the redundant wiring r are connected to the shift block 13.
  • the redundant wiring r is configured to be any one of the plurality of second wirings m0 to m3.
  • FIG. 2 shows an example in which the number of redundant wirings r is one, the number of redundant wirings r is not limited to one.
  • the plurality of first wirings in0 to 3 and the plurality of second wirings m0 to m3 are connected by a resistance change element 100 arranged at a position where the first wiring in and the second wiring m intersect.
  • the resistance change element 100 has a structure in which an ion conductive layer (also referred to as a resistance change layer) that conducts metal ions constituting the first electrode is sandwiched between an active first electrode and an inactive second electrode.
  • the second electrode of the variable resistance element 100 formed on the first wiring whose end also serves as the first electrode and the second wiring formed in a layer different from the first wiring are connected via conductive vias. Are electrically connected.
  • the first wiring in and the second wiring m are electrically disconnected at the intersection where the variable resistance element 100 is disposed.
  • the first wiring and the second wiring are electrically connected at the intersection where the resistance change element 100 is disposed.
  • the position of the intersection of the crossbar 110 is represented by coordinates (0, 0), (0, 1),..., (4, 3) from the upper left to the lower right.
  • the first selection circuit 121 is a circuit for selecting the resistance change element 100 to be changed to the ON state or the OFF state in accordance with the control of the external control device.
  • the first selection circuit 121 includes a plurality of first selection transistors TrY0 to TrY3 to which one end (source or drain) of the diffusion layer is connected to each of the input sides of the plurality of first wirings. That is, one end of the diffusion layer of the first selection transistors TrY0 to TrY3 is connected to the input side of the first wirings in0 to 3.
  • the other ends (drains or sources) of the diffusion layers of the first selection transistors TrY0 to TrY3 constituting the first selection circuit 121 are connected to the first write driver 125.
  • the gates of the first selection transistors TrY0 to TrY3 constituting the first selection circuit 121 are connected to the first decoder signal lines WY0 to WY3, and the first decoder selects a column of the crossbar 110 via the first decoder signal line WY. (Not shown).
  • the second selection circuit 122 is a circuit for selecting the resistance change element 100 to be switched to the ON state or the OFF state in accordance with the control of the external control device.
  • the second selection circuit 122 includes a plurality of second selection transistors TrX0 to TrX3 each connected to one end (source or drain) of a diffusion layer on the output side of the plurality of second wirings m0 to m3.
  • the second selection circuit 122 includes a second selection transistor TrXr connected to one end (source or drain) of the diffusion layer on the output side of the redundant wiring r. That is, one end of the diffusion layer of the second selection transistors TrX0 to TrX3, r is connected to the output side of the second wirings m0 to m3 and the redundant wiring r.
  • the other end (drain or source) of the diffusion layer of the second selection transistors TrX 0 to 3, r constituting the second selection circuit 122 is connected to the second write driver 126.
  • the gates of the second selection transistors TrX0-3, r constituting the second selection circuit 122 are connected to the second decoder signal lines WX0-3, r, and the row of the crossbar 110 is connected via the second decoder signal line WX.
  • the second decoder (not shown) to be selected is connected.
  • the first write driver 125 supplies a write current to the first selection circuit 121 based on an external control signal.
  • the first write driver 125 is connected to the other end (drain or source) of the diffusion layer of the first selection transistors TrY0 to TrY3 constituting the first selection circuit 121.
  • the second write driver 126 supplies a write current to the second selection circuit 122 based on an external control signal.
  • the second write driver 126 is connected to the other end (drain or source) of the diffusion layer of the second selection transistors TrX0 to TrX3, r constituting the second selection circuit 122.
  • FIG. 3 is a schematic diagram showing an example of the configuration of the shift block 13 and the transfer block 15.
  • the shift block 13 is a circuit that switches the connection between the second wirings m0 to 3 and the redundant wiring r extending from the switch block 11 and the transfer block 15.
  • the shift block 13 includes a plurality of switching circuits 130 and one AND circuit 135.
  • Shift block 13 includes input terminal WB0, input terminal WB1, and selection terminals S0-3.
  • the plurality of switching circuits 130 are arranged for each of the plurality of second wirings m0 to m3.
  • Each of the plurality of switching circuits 130 includes a first transmission gate TG1, a second transmission gate TG2, a first inverter INV1, and a second inverter INV2.
  • the first transmission gate TG1 and the second transmission gate TG2 have a configuration in which a PMOS (p-Channel Metal-Oxide Semiconductor) and an NMOS (n-Channel Metal-Oxide Semiconductor) are connected in parallel. High-voltage transistors are used for the PMOS and NMOS constituting the first transmission gate TG1 and the second transmission gate TG2.
  • PMOS p-Channel Metal-Oxide Semiconductor
  • NMOS n-Channel Metal-Oxide Semiconductor
  • One end of the PMOS and NMOS diffusion layers constituting the first transmission gate TG1 is connected to the second wirings m0-3.
  • the other ends of the PMOS and NMOS diffusion layers of the first transmission gate TG1 are connected to the third wirings out0-3.
  • the other ends of the PMOS and NMOS diffusion layers of the first transmission gate TG1 are connected to the buffers BUF0 to BUF3 constituting the transfer block 15 via third wirings out0 to 3, respectively.
  • the PMOS gate of the first transmission gate TG1 is connected to the output of the first inverter INV1 in common with the NMOS gate of the second transmission gate TG2.
  • the NMOS gate constituting the first transmission gate TG1 is connected to the output of the second inverter INV2 in common with the PMOS gate of the second transmission gate TG2.
  • One end of the PMOS and NMOS diffusion layers constituting the second transmission gate TG2 is connected to the output of the AND circuit 135.
  • the other ends of the PMOS and NMOS diffusion layers of the second transmission gate TG2 are connected to the third wirings out0-3.
  • the PMOS gate of the second transmission gate TG2 is connected to the output of the second inverter INV2 in common with the NMOS gate of the first transmission gate TG1.
  • the NMOS gate constituting the second transmission gate TG2 is connected to the output of the first inverter INV1 in common with the PMOS gate of the first transmission gate TG1.
  • a high voltage transistor is used for the AND circuit 135.
  • the redundant wiring r and the input terminal WB0 are connected.
  • the output of the AND circuit 135 is connected to one end of the NMOS diffusion layer of the second transmission gate TG2 of the plurality of switching circuits 130.
  • any one of the selection terminals S0 to S3 and the input terminal WB1 are connected to the input of the first inverter INV1.
  • the output of the first inverter INV1 is connected to the input of the second inverter INV2.
  • the voltage state of the selection terminals S0 to S3 is set according to the voltage state of the selection signal input from the input terminal WB1.
  • the input of the second inverter INV2 is connected to the output of the first inverter INV1, like the PMOS gate of the first transmission gate TG1 and the NMOS gate of the second transmission gate TG2.
  • the output of the second inverter INV2 is connected to the NMOS gate of the first transmission gate TG1 and the PMOS gate of the second transmission gate TG2.
  • the selection terminal S0 when the selection terminal S0 is “High”, the second wiring m0 and the third wiring out0 are connected. On the other hand, when the selection terminal S0 is “Low”, the redundant wiring r and the third wiring out0 are connected. Similarly, when the selection terminals S1 to S3 are “High”, the second wirings m1 to m3 and the third wirings out1 to out3 are connected. On the other hand, when any of the selection terminals S1 to S3 is “Low”, the third wiring out connected to the switching circuit 130 connected to the selection terminal S of “Low” and the redundant wiring r are connected.
  • the transfer block 15 has a plurality of buffers BUF0 to BUF3. Third wirings out0 to 3 are connected to inputs of the plurality of buffers BUF0 to BUF3. The outputs of the plurality of buffers BUF0 to BUF3 are connected to a switch block (not shown) for transferring data to other logic blocks.
  • the resistance change element 100 includes a first electrode 101 that is an active electrode, a second electrode 102 that is an inactive electrode, and a resistance change layer 103.
  • the resistance change element 100 has at least two resistance states.
  • the high resistance state is defined as an off state (FIG. 4)
  • the low resistance state is defined as an on state (FIG. 5).
  • the resistance change element 100 is in the ON state (FIG. 5)
  • a signal given at the voltage level passes through the resistance change element 100.
  • the variable resistance element 100 is in an off state (FIG. 4)
  • a signal given at the voltage level is blocked by the variable resistance element 100.
  • variable resistance element 100 First, a method for changing the resistance state of the variable resistance element 100 from the high resistance state (off state) to the low resistance state (on state) will be described. That is, a method for turning on the variable resistance element 100 will be described.
  • the resistance change element 100 in which the resistance state is the high resistance state (off state), when a positive voltage is applied to the first electrode 101 and the second electrode 102 is grounded, the metal contained in the first electrode 101 is ionized to change the resistance. Dissolves in layer 103. When metal ions dissolved in the resistance change layer 103 are reduced, metal is deposited. A metal bridge 105 connecting the first electrode 101 and the second electrode 102 is formed by the deposited metal. When the first electrode 101 and the second electrode 102 are electrically connected by the metal bridge 105, the resistance state of the resistance change element 100 transitions from the high resistance state (off state) to the low resistance state (on state). .
  • the metal bridge 105 forms metal ions in the resistance change layer 103. Dissolves and a part of the metal bridge 105 is cut. When a part of the metal bridge 105 is cut, the electrical connection between the first electrode 101 and the second electrode 102 is canceled, and the resistance state of the resistance change element 100 transitions to the high resistance state (off state). .
  • the electrical characteristics change between the first electrode 101 and the second electrode 102 due to an increase in electrical resistance or a change in capacitance between the electrodes from the stage before the electrical connection is completely broken. Finally, the electrical connection is broken.
  • a negative voltage may be applied to the second electrode 102 again.
  • the resistance between the electrodes gradually decreases or the capacitance between the electrodes changes before the metal bridge 105 is formed.
  • a transient state occurs.
  • a metal bridge 105 is formed between the electrodes.
  • the resistance state of the resistance change element 100 is changed from the low resistance state to the high resistance state, the resistance between the electrodes gradually increases or the capacitance between the electrodes increases before the metal bridge 105 is cut.
  • a transitional state such as a change occurs, and the connection between the electrodes is eventually cut.
  • an intermediate state between the low resistance state and the high resistance state can be used by using a transient state of the resistance state of the variable resistance element 100.
  • the resistance change element 100 may be a resistance change type nonvolatile memory element used for PRAM (Phase change Random Access Memory) or ReRAM (Resistive Random Access Memory).
  • the switch block 11 may be a three-terminal resistance change switch using two resistance change elements 100.
  • “Low” is input from the input terminal WB0, “Low” is input from the input terminal WB1, and all the selection terminals S0 to S3 are set to “Low”.
  • all the third wirings out0 to 3 are connected to the redundant wiring r instead of the second wirings m0 to m3.
  • “Low”, which is the output of the AND circuit 135, is input to the input terminals of all the buffers BUF0 to BUF3 and pulled down, so that a leakage current due to a through current inside the transfer block 15 does not flow.
  • one wiring is selected from the second wirings m0 to m3 and the redundant wiring r by the second selection transistor TrX selected by the second decoder signal line WX.
  • the selected second wiring m and redundant wiring r is connected to the second write driver 126.
  • one wiring is selected from the first wirings in0 to 3 by the first selection transistor TrY selected by the first decoder signal line WY.
  • the selected first wiring in is connected to the first write driver 125.
  • the first write driver 125 and the second write driver 126 have both ends of the resistance change element 100 arranged at the intersections of the selected first wiring in and the selected second wiring m and redundant wiring r.
  • a write voltage is applied to. For example, in a set operation in which the resistance change element 100 is rewritten from an off state to an on state, a forward voltage is applied to the resistance change element 100. On the other hand, in the reset operation for rewriting from the on state to the off state, a reverse voltage is applied to the resistance change element 100.
  • variable resistance element 100 when writing to the variable resistance element 100 of (0, 0), the first decoder signal line WY0 is “High”, the first decoder signal lines WY1 to WY3 are “Low”, and the second decoder signal line WX0 is “ “High”, the second decoder signal lines WX1 to WX3 are set to “Low”.
  • the variable resistance element 100 arranged at (0, 0) is selected and the first write driver 125 and the second write driver 126 apply a voltage exceeding the threshold value to both ends of the element, the variable resistance element 100 can be transitioned to the desired resistance state.
  • the first transmission gate TG1 connected to the second wiring m0 is in a high impedance state because the selection terminal S0 is “Low”, and writing to the third wiring out0 and the transfer block 15 following the shift block 13 is performed. Do not transmit voltage.
  • Writing to the resistance change element 100 arranged on the second wirings m0 to m3 can be performed in the same manner as the resistance change element 100 of (0, 0). That is, by setting the first transmission gate TG1 connected to any one of the second wirings m0 to m3 to a high impedance state, the transfer block 15 and the write voltage at the subsequent stage can be cut off. Further, when writing to the variable resistance element 100 arranged on the redundant wiring r, the write voltage is blocked by the AND circuit 135.
  • the logic integrated circuit of this embodiment includes a switch block, a transfer block, and a shift block.
  • the switch block includes a plurality of first wirings, a plurality of second wirings, at least one redundant wiring, and a plurality of resistance change elements.
  • the plurality of first wirings extend in the first direction.
  • the plurality of second wirings extend in a second direction that intersects the first direction.
  • the redundant wiring extends in the second direction along the second wiring.
  • the variable resistance elements are arranged in a matrix at positions where the second wiring and the redundant wiring intersect with the first wiring.
  • the transfer block has a plurality of buffers connected to each of the plurality of third wirings extending in the second direction corresponding to the plurality of second wirings.
  • the shift block corresponds to each of the plurality of second wirings and has a plurality of switching circuits including high voltage transistors.
  • the shift block switches the connection between the second wiring, the redundant wiring, and the third wiring according to the voltage state of the selection terminal corresponding to each of the plurality of switching circuits.
  • the switching circuit includes a high voltage transistor, and includes an AND circuit having an input terminal connected to the first input terminal and the redundant wiring, and an output terminal connected to the switching circuit.
  • the output from the switch block is input to a transmission gate and an AND circuit constituted by high voltage transistors. Therefore, according to the present embodiment, it is possible to protect the subsequent circuit from the write voltage to the variable resistance element.
  • the switching circuit includes a first inverter, a second inverter, a first transmission gate, and a second transmission gate.
  • the first inverter has an input terminal connected to the selection terminal.
  • the second inverter is arranged at the subsequent stage of the first inverter.
  • the first transmission gate and the second transmission gate have a configuration in which a PMOS transistor and an NMOS transistor are connected in parallel, and are configured by high breakdown voltage transistors.
  • one end of the diffusion layer is connected to the second wiring, and the other end of the diffusion layer is connected to the buffer via the third wiring.
  • the PMOS transistor and the NMOS transistor constituting the first transmission gate have the gate of the PMOS transistor connected to the output terminal of the first inverter and the gate of the NMOS transistor connected to the output terminal of the second inverter.
  • the PMOS transistor and the NMOS transistor constituting the second transmission gate one end of the diffusion layer is connected to the output terminal of the AND circuit, and the other end of the diffusion layer is connected to the buffer via the third wiring.
  • the gate of the PMOS transistor is connected to the output terminal of the second inverter, and the gate of the NMOS transistor is connected to the output terminal of the first inverter.
  • the selection terminal is connected to the second input terminal, and the voltage state transitions according to a signal input via the second input terminal.
  • the switch block includes a first write driver, a second write driver, a first selection circuit, and a second selection circuit.
  • first selection circuit one end of the diffusion layer is connected to the first write driver, the other end of the diffusion layer is connected to one of the plurality of first wirings, and the gate is connected to the plurality of first decoder signal lines. It is composed of a plurality of NMOS transistors.
  • second selection circuit one end of the diffusion layer is connected to the second write driver, the other end of the diffusion layer is connected to one of the plurality of second wirings, and the gate is connected to the plurality of second decoder signal lines. It is composed of a plurality of NMOS transistors.
  • the resistance change element is disposed between the first electrode, the second electrode disposed opposite to the first electrode, the first electrode and the second electrode, and between the first electrode and the second electrode.
  • a resistance change layer capable of ionizing and depositing a metal constituting the first electrode by applying a voltage.
  • the first electrode contains copper, and copper contained in the first electrode is ionized and deposited in the resistance change layer in accordance with a voltage applied between the first electrode and the second electrode.
  • the logic integrated circuit of the present embodiment has the following configuration in addition to a switch block in which a plurality of resistance change elements that switch connection between a plurality of first wirings and a plurality of second wirings are arranged in a matrix.
  • the logic integrated circuit according to the present embodiment includes an element connected to the second wiring and capable of transitioning to a high impedance state, and a redundant wiring extending along the second wiring.
  • the logic integrated circuit of this embodiment includes a circuit that switches between the second wiring and the redundant wiring, and a circuit that is connected to the redundant wiring and pulls up or down.
  • the connection between the second wiring and the subsequent element is set to a high impedance state, and the input of the subsequent element of the second wiring is pulled up or pulled down to write the resistance change element.
  • the signal delay becomes very small.
  • even a transmission gate composed of a high breakdown voltage transistor is about 0.1 to 0.2 nanoseconds compared to a case where a shift block is configured with a NAND circuit of a high breakdown voltage transistor. , Signal propagation is faster.
  • the redundant wiring is connected to the third wiring, an AND circuit of a high breakdown voltage transistor is connected between the second wiring and the third wiring, but the influence on the delay in circuit operation is extremely high. small. This is because the redundant wiring is a spare wiring for the second wiring and is not used unless the resistance change element on the second wiring causes a failure.
  • a programmable logic integrated circuit capable of writing and erasing a variable resistance element that requires a high voltage without electrically destroying a miniaturized semiconductor element. realizable.
  • a programmable logic integrated circuit (also referred to as a logic integrated circuit) according to a second embodiment of the present invention will be described with reference to the drawings.
  • the logic integrated circuit of the present embodiment is different from the logic integrated circuit of the first embodiment in the configuration of the shift block switching circuit. Note that the configuration of the switch block and the transfer block of the logic integrated circuit of this embodiment is the same as that of the logic integrated circuit of the first embodiment, and thus detailed description thereof is omitted.
  • the reference numerals of the first embodiment (FIG. 2) are used.
  • FIG. 6 is a block diagram showing an example of the configuration of the shift block 23 and the transfer block 25 provided in the logic integrated circuit of the present embodiment. Since the configuration of the transfer block 25 is the same as that of the transfer block 15 of the first embodiment, detailed description thereof is omitted.
  • the shift block 23 is a circuit for switching the connection between the second wirings m0 to 3 and the redundant wiring r extending from the switch block 11 and the transfer block 25.
  • the shift block 23 includes a plurality of switching circuits 230 and one AND circuit 235.
  • Shift block 23 includes input terminal WB0, input terminal WB1, and selection terminals S0-3.
  • the plurality of switching circuits 230 are arranged for each of the plurality of second wirings m0 to m3.
  • Each of the plurality of switching circuits 230 includes a first transistor TR1, a second transistor TR2, a first inverter INV1, and a second inverter INV2.
  • High-breakdown-voltage NMOS transistors are used for the first transistor TR1 (also referred to as a first NMOS transistor) and the second transistor TR2 (also referred to as a second NMOS transistor).
  • One end of the diffusion layer of the first transistor TR1 is connected to the second wirings m0 to m3.
  • the other end of the diffusion layer of the first transistor TR1 is connected to the third wirings out0-3.
  • the other end of the diffusion layer of the first transistor TR1 is connected to buffers BUF0 to BUF3 constituting the transfer block 25 via third wirings out0 to out3.
  • the gate of the first transistor TR1 is connected to the output of the second inverter INV2.
  • One end of the diffusion layer of the second transistor TR2 is connected to the output of the AND circuit 235.
  • the other end of the diffusion layer of the second transistor TR2 is connected to the third wirings out0-3.
  • the gate of the second transistor TR2 is connected to the output of the first inverter INV1 in common with the input of the second inverter INV2.
  • a high voltage transistor is used for the AND circuit 235.
  • the redundant wiring r and the input terminal WB0 are connected to the input of the AND circuit 235.
  • the output of the AND circuit 235 is connected to one end of the NMOS diffusion layer of the second transistor TR2 of the plurality of switching circuits 230.
  • any one of the selection terminals S0 to S3 and the input terminal WB1 are connected to the input of the first inverter INV1.
  • the output of the first inverter INV1 is connected to the input of the second inverter INV2 and the gate of the second transistor TR2.
  • the voltage state of the selection terminals S0 to S3 is set according to the voltage state of the selection signal input from the input terminal WB1. That is, if the selection signal input from the input terminal WB1 is “High”, the selection terminal S is “High”, and if the selection signal input from the input terminal WB1 is “Low”, the selection terminal S is “Low”. is there.
  • the input of the second inverter INV2 is connected to the output of the first inverter INV1, like the gate of the second transistor TR2.
  • the output of the second inverter INV2 is connected to the gate of the first transistor TR1.
  • the selection terminal S0 when the selection terminal S0 is “High”, the second wiring m0 and the third wiring out0 are connected. On the other hand, when the selection terminal S0 is “Low”, the redundant wiring r and the third wiring out0 are connected. Similarly, when the selection terminals S1 to S3 are “High”, the “High” second wirings m1 to m3 and the third wirings out1 to out3 are connected. On the other hand, when any one of the selection terminals S1 to S3 is “Low”, the third wiring “out” connected to the switching circuit 130 connected to the “Low” selection terminal S is connected to the redundant wiring r.
  • “Low” is input from the input terminal WB0, “Low” is input from the input terminal WB1, and all the selection terminals S0 to S3 are set to “Low”.
  • all the third wirings out0 to 3 are connected to the redundant wiring r instead of the second wirings m0 to m3.
  • “Low”, which is the output of the AND circuit 135, is input to the input terminals of all the buffers BUF0 to BUF3 and pulled down, so that a leakage current due to a through current inside the transfer block 25 does not flow.
  • one wiring is selected from the second wirings m0 to m3 and the redundant wiring r by the second selection transistor TrX selected by the second decoder signal line WX.
  • the selected second wiring m and redundant wiring r is connected to the second write driver 126.
  • one wiring is selected from the first wirings in0 to 3 by the first selection transistor TrY selected by the first decoder signal line WY.
  • the selected first wiring IN is connected to the first write driver 125.
  • the first write driver 125 and the second write driver 126 have both ends of the resistance change element 100 arranged at the intersections of the selected first wiring in and the selected second wiring m and redundant wiring r.
  • a write voltage is applied to. For example, in a set operation in which the resistance change element 100 is rewritten from an off state to an on state, a forward voltage is applied to the resistance change element 100. On the other hand, in the reset operation for rewriting from the on state to the off state, a reverse voltage is applied to the resistance change element 100.
  • variable resistance element 100 when writing to the variable resistance element 100 of (0, 0), the first decoder signal line WY0 is “High”, the first decoder signal lines WY1 to WY3 are “Low”, and the second decoder signal line WX0 is “ “High”, the second decoder signal lines WX1 to WX3 are set to “Low”.
  • the variable resistance element 100 arranged at (0, 0) is selected and the first write driver 125 and the second write driver 126 apply a voltage exceeding the threshold value to both ends of the element, the variable resistance element 100 can be transitioned to the desired resistance state.
  • the first transistor TR1 connected to the second wiring m0 is in a high impedance state because the selection terminal S0 is “Low”, and the write voltage is applied to the third wiring out0 and the transfer block 25 at the subsequent stage of the shift block 23. Do not tell.
  • Writing to the resistance change element 100 arranged on the second wirings m0 to m3 can be performed in the same manner as the resistance change element 100 of (0, 0). That is, by setting the first transistor TR1 connected to any one of the second wirings m0 to m3 to a high impedance state, the transfer block 25 and the write voltage in the subsequent stage can be cut off. Further, when writing to the variable resistance element 100 disposed on the redundant wiring r, the write voltage is blocked by the AND circuit 235.
  • the switching circuit includes a first inverter, a second inverter, a first NMOS transistor, and a second NMOS transistor.
  • the first inverter has an input terminal connected to the selection terminal.
  • the second inverter is arranged at the subsequent stage of the first inverter.
  • the first NMOS transistor one end of the diffusion layer is connected to the second wiring, the other end of the diffusion layer is connected to the buffer via the third wiring, and the gate is connected to the output terminal of the second inverter.
  • the second NMOS transistor one end of the diffusion layer is connected to the output terminal of the AND circuit, the other end of the diffusion layer is connected to the buffer via the third wiring, and the gate is connected to the output terminal of the first inverter.
  • the first NMOS transistor and the second NMOS transistor are constituted by high voltage transistors.
  • the output from the switch block is input to a transistor constituted by a high voltage transistor and an AND circuit. Therefore, according to the present embodiment, it is possible to protect the subsequent circuit from the write voltage to the variable resistance element.
  • the signal delay becomes very small.
  • even a transmission gate composed of a high breakdown voltage transistor is about 0.1 to 0.2 nanoseconds compared to a case where a shift block is configured with a NAND circuit of a high breakdown voltage transistor. , Signal propagation is faster.
  • the redundant wiring is connected to the third wiring, an AND circuit of a high breakdown voltage transistor is connected between the second wiring and the third wiring, but the influence on the delay in circuit operation is extremely high. small. This is because the redundant wiring is a spare wiring for the second wiring and is not used unless the resistance change element on the second wiring fails.
  • the shift block is configured by NMOS transistors instead of transmission gates, so that the circuit area can be reduced.
  • it is necessary to overdrive the selection signal WE1 by the NMOS threshold voltage.
  • the circuit area can be reduced, the chip cost is reduced and the power consumption and the operation speed are improved.
  • FIG. 7 is a schematic diagram showing an example of the configuration of the related art input signal clamp circuit 31, shift block 33, and transfer block 35.
  • the switch block has the configuration shown in FIG. 2, and includes four first wirings in, four second wirings m, and one redundant wiring r that is a spare wiring.
  • the input signal clamp circuit 31 includes a plurality of NAND circuits 310 (310_0 to 3, r) corresponding to the plurality of second wirings m0 to m3 and the redundant wiring r.
  • the shift block 33 includes multiplexers MUX0 to MUX3 corresponding to the plurality of NAND circuits 310_0 to 310_3, respectively.
  • the transfer block 35 has inverters INV0 to INV3 corresponding to the plurality of multiplexers MUX0 to MUX3, respectively.
  • the second wirings m0 to m3 and the input terminal WB are connected to the inputs of the NAND circuits 310_0 to 310_3.
  • Outputs of the NAND circuits 310_0 to 3_3 are connected to input terminals A of the multiplexers MUX0 to MUX3 of the shift block 33, respectively.
  • the redundant wiring r and the input terminal WB are connected to the input of the NAND circuit 310_r.
  • the output of the NAND circuit 310_r is connected to each input terminal B of the multiplexers MUX0 to MUX3 of the shift block 33.
  • the output terminals O of the multiplexers MUX0 to MUX3 are connected to the inputs of the inverters INV0 to INV3.
  • the selection terminals S of the multiplexers MUX0 to MUX3 are connected to signal lines (not shown) via the selection terminals S0 to S3 of the shift block 33.
  • the multiplexer MUX has the circuit configuration shown in FIG. 8, selects one of the signals of the second wiring m and the redundant wiring r, and outputs the selected signal to the transfer block 35.
  • each of the input terminals A and B of the multiplexers MUX0 to MUX3 is the gate electrode input terminal of the inverters INV0 to INV3, the input signal clamp circuit 31 is arranged in the previous stage so as not to take an intermediate potential.
  • the input signal clamp circuit 31 suppresses a through current that flows when an intermediate potential is applied to the inputs of the inverters INV0 to INV3.
  • the input signal clamp circuit 31 can pull down the input of the shift block 33 by setting the input signal from the input terminal WB to “Low”.
  • the input terminal WB of the input signal clamp circuit 31 is set to “Low”, and the first write driver and the second write driver connected to the variable resistance element are turned on. . Then, a desired write current is supplied from the connected write transistor or a write voltage is applied.
  • the write voltage is 3 volts or more
  • the high voltage is applied not only to the resistance change element to be written, but also to the input signal clamp circuit 31 disposed on the second wiring.
  • the input signal clamp circuit 31 must be composed of a high breakdown voltage transistor, not a core transistor.
  • the NAND circuit and the multiplexer circuit composed of the high-breakdown-voltage transistors are located in the path through which the signal for circuit operation is transmitted, the signal delay occurring there cannot be ignored.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Mathematical Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Logic Circuits (AREA)

Abstract

微細化された半導体素子を電気的に破壊することなく、高電圧を必要とする抵抗変化素子への書き込みおよび消去が可能な論理集積回路を提供するために、第1方向に延伸する複数の第1配線と、第1方向に交差する第2方向に延伸する複数の第2配線と、第2配線に沿って第2方向に延伸する少なくとも一つの冗長配線と、第2配線および冗長配線と第1配線とが交差する位置に行列配置される複数の抵抗変化素子とを有するスイッチブロックと、複数の第2配線に対応して第2方向に延伸する複数の第3配線のそれぞれに接続される複数のバッファを有する転送ブロックと、複数の第2配線のそれぞれに対応し、高耐圧トランジスタを含む複数の切替回路を有し、複数の切替回路のそれぞれに対応する選択端子の電圧状態に応じて、第2配線および冗長配線と第3配線との接続を切り替えるシフトブロックとを備える論理集積回路とする。

Description

論理集積回路および書き込み方法
 本発明は、抵抗変化スイッチを用いた再構成可能な論理集積回路および書き込み方法に関する。
 一般的な半導体集積回路は、半導体基板に形成されたトランジスタと、トランジスタを接続するために半導体基板の上層に形成された配線構造とを用いて構成される。一般的な半導体集積回路では、トランジスタや配線のパターンは、集積回路の設計段階で決められており、半導体集積回路製造後にトランジスタ同士の接続を変更することはできない。
 FPGA(Field Programmable Gate Array)などのプログラマブル論理集積回路は、論理演算回路の動作や、論理演算回路の接続をメモリ素子に記憶することによって、論理動作や配線の接続を変更できる。例えば、構成情報の記憶を行うメモリ素子は、SRAM(Static Random Access Memory)セルやアンチフューズ、フローティングゲートMOS(Metal-Oxide-Semiconductor)トランジスタなどで実現される。
 これらのメモリ素子は、トランジスタと同じ層に形成されているため、面積オーバヘッドが大きい。その結果、プログラマブル論理集積回路のチップ面積が大きくなり、製造コストが上昇するという問題点があった。また、論理演算回路同士の接続を変更する配線スイッチの面積が大きくなるために、チップ面積に占める論理演算回路の割合が低くなるという問題点があった。このような使用効率の低下は、FPGAに実装される回路の動作速度の低下や動作電力の増大につながる。
 また、配線層に形成可能な抵抗変化素子を利用したプログラマブル論理集積回路が開示されている。抵抗変化素子を用いたプログラマブル論理集積回路は、回路の製造後に、配線の接続構成を変更でき、回路の不具合の修正や仕様変更が可能になるため、チップ面積の縮小や電力性能比の向上を図ることができる。
 特許文献1や特許文献2には、第1の配線層と、その上部に形成される第2の配線層との間に、金属イオンを含有する固体電解質材料から構成される抵抗変化素子を有するプログラマブル論理集積回路が開示されている。特許文献1や特許文献2のプログラマブル論理集積回路は、抵抗変化素子の両端に順バイアス、あるいは逆バイアスを印加することによりその抵抗値を変えることができる。特許文献1や特許文献2のプログラマブル論理集積回路に用いられる抵抗変化素子では、低抵抗状態(オン状態)と高抵抗状態(オフ状態)との比が10の5乗、あるいはそれ以上となる。すなわち、特許文献1や特許文献2に用いられる抵抗変化素子は、第1の配線と第2の配線とを電気的に接続、あるいは切断できるスイッチとして機能する。
 一般的なプログラマブル論理集積回路における配線の接続/切断においては、SRAM(Static Random Access Memory)セルと、スイッチ機能を有する1個のトランジスタとによって構成されるスイッチセルが用いられる。それに対し、抵抗変化素子は、メモリ機能とスイッチ機能とを有するため、スイッチセルを1個の素子で実現できる。
 特許文献1のプログラマブル論理集積回路によれば、第1の配線群と第2の配線群との各交点に抵抗変化素子を配置することで、第1の配線群の任意の配線と、第2の配線群の任意の配線とを自在に接続可能なスイッチブロックをコンパクトなサイズで構成できる。その結果、特許文献1のプログラマブル論理集積回路によれば、チップ面積の大幅な縮小化や、論理演算回路の使用効率の改善による性能向上が期待できる。また、特許文献1のプログラマブル論理集積回路では、集積回路の通電が遮断された状態でも抵抗変化素子のオン/オフ状態が保持されるため、電源を投入する度に回路構成情報をロードする手間を省くこともできる。
 また、プログラマブル論理集積回路において、製造上の欠陥が生じる場合に備えて、トランジスタや配線の一部に冗長回路を設けることは、生産収率を向上させる上で有効である。例えば、特許文献3や特許文献4には、予備回路を形成しておき、欠陥を含む回路を予備回路に置き換える技術が開示されている。プログラマブル論理集積回路は、出荷前の選別テストで欠陥回路が検出されると、予備回路を利用可能にして、欠陥回路を避けるような迂回ルートを形成するように設定してから出荷される。予備回路を利用可能にして欠陥回路を避けることにより、欠陥箇所が存在していたとしても、ユーザはそれを意識することなく任意の回路をプログラマブル論理集積回路に実装できる。
特許第4356542号公報 国際公開第2012/043502号 米国特許第4899067号明細書 特開2014-093782号公報
 半導体デバイスの微細化に伴って、デバイスに加わる電界強度が高くなるため、電気的な破壊が生じうる電圧が低くなる。例えば、28ナノメートルのノードのコアトランジスタでは、トランジスタのゲート耐圧が3ボルトを切る。一方、抵抗変化素子のオン/オフ状態を書き換えるためには3ボルトを超える電圧が印加されるため、書き込み電圧が印加されるノードには、コアトランジスタのゲートを直接接続することはできない。そのため、高速動作を求められる最新のテクノロジーノード技術で作製した半導体集積回路を用いたプログラマブル論理集積回路においては、抵抗変化素子の書き込みに耐えうる、遅延の少ないクロスバスイッチが求められる。
 本発明の目的は、上述した課題を解決し、微細化された半導体素子を電気的に破壊することなく、高電圧を必要とする抵抗変化素子への書き込みおよび消去が可能な論理集積回路を提供することにある。
 本発明の一態様の論理集積回路は、第1方向に延伸する複数の第1配線と、第1方向に交差する第2方向に延伸する複数の第2配線と、第2配線に沿って第2方向に延伸する少なくとも一つの冗長配線と、第2配線および冗長配線と第1配線とが交差する位置に行列配置される複数の抵抗変化素子とを有するスイッチブロックと、複数の第2配線に対応して第2方向に延伸する複数の第3配線のそれぞれに接続される複数のバッファを有する転送ブロックと、複数の第2配線のそれぞれに対応し、高耐圧トランジスタを含む複数の切替回路を有し、複数の切替回路のそれぞれに対応する選択端子の電圧状態に応じて、第2配線および冗長配線と第3配線との接続を切り替えるシフトブロックとを備える。
 本発明の一態様の論理集積回路は、複数の第1配線と複数の第2配線との接続を切り替える複数の抵抗変化素子とが行列配置されるスイッチブロックと、第2配線に接続され、ハイインピーダンス状態に遷移可能な素子と、第2配線に沿って延伸する冗長配線と、第2配線と冗長配線とを切り替える回路と、冗長配線に接続され、プルアップまたはプルダウンする回路とを備える。
 本発明の一態様の書き込み方法においては、複数の第1配線と複数の第2配線との接続を切り替える複数の抵抗変化素子とが行列配置されるスイッチブロックと、第2配線に接続され、ハイインピーダンス状態に遷移可能な素子と、第2配線に沿って延伸する冗長配線と、第2配線と冗長配線とを切り替える回路と、冗長配線に接続され、プルアップまたはプルダウンする回路とを備える論理集積回路において、第2配線と後段の素子との接続をハイインピーダンス状態とし、第2配線の後段の素子の入力をプルアップまたはプルダウンして抵抗変化素子の書き込みを行う。
 本発明によれば、微細化された半導体素子を電気的に破壊することなく、高電圧を必要とする抵抗変化素子への書き込みおよび消去が可能な論理集積回路を提供することが可能になる。
本発明の第1の実施形態に係るプログラマブル論理集積回路の構成の概要を示すブロック図である。 本発明の第1の実施形態に係るプログラマブル論理集積回路が備えるスイッチブロックの構成の一例を示す模式図である。 本発明の第1の実施形態に係るプログラマブル論理集積回路が備えるシフトブロックおよび転送ブロックの構成の一例を示す模式図である。 本発明の第1の実施形態に係るプログラマブル論理集積回路に用いられる抵抗変化素子の一例を示す模式図である。 本発明の第1の実施形態に係るプログラマブル論理集積回路に用いられる抵抗変化素子の別の状態の一例を示す模式図である。 本発明の第2の実施形態に係るプログラマブル論理集積回路が備えるシフトブロックおよび転送ブロックの構成の一例を示す模式図である。 関連技術のプログラマブル論理集積回路が備えるシフトブロックの構成の一例を示す模式図である。 関連技術のプログラマブル論理集積回路が備えるシフトブロックが有するマルチプレクサ回路の構成の一例を示す模式図である。
 以下に、本発明を実施するための形態について図面を用いて説明する。ただし、以下に述べる実施形態には、本発明を実施するために技術的に好ましい限定がされているが、発明の範囲を以下に限定するものではない。なお、以下の実施形態の説明に用いる全図においては、特に理由がない限り、同様箇所には同一符号を付す。また、以下の実施形態において、同様の構成・動作に関しては繰り返しの説明を省略する場合がある。
 (第1の実施形態)
 まず、本発明の第1の実施形態に係るプログラマブル論理集積回路(論理集積回路とも呼ぶ)について図面を参照しながら説明する。図1は、本実施形態の論理集積回路1の構成の一例を示すブロック図である。図1のように、論理集積回路1は、スイッチブロック11、シフトブロック13、および転送ブロック15を備える。
 図2は、論理集積回路1のスイッチブロック11の構成の一例を示す模式図である。スイッチブロック11は、第1方向に延伸する第1配線群(第1配線in0~3)と、第2方向に延伸する第2配線群(第2配線m0~3)と、第2配線群に沿って第2方向に延伸する少なくとも一つの冗長配線rとを有する。また、スイッチブロック11は、複数の第1配線in0~3と複数の第2配線m0~3とが交差する位置ごとに配置される複数の抵抗変化素子100を有する。また、スイッチブロック11は、第1選択回路121、第2選択回路122、第1書き込みドライバ125、および第2書き込みドライバ126を有する。
 以下において、第1配線群を構成する複数の第1配線in0~3のそれぞれを区別しないときは、末尾の数字を省略して第1配線inと記載する。同様に、第2配線群を構成する複数の第2配線m0~3のそれぞれを区別しないときは、末尾の数字を省略して第2配線mと記載する。なお、本実施形態においては、第1配線inが4本、第2配線mが4本、冗長配線rが1本の例を挙げて説明するが、第1配線in、第2配線m、および冗長配線rの数には限定を加えない。
 複数の第1配線in0~3、複数の第2配線m0~3、冗長配線r、および複数の抵抗変化素子100によってクロスバ110が構成される。第2配線m0~3および冗長配線rの出力側は、シフトブロック13に接続される。
 冗長配線rは、複数の第2配線m0~3のいずれかの予備配線になるように構成される。なお、図2には、冗長配線rが1本の例を示すが、冗長配線rの本数は1本に限定されない。
 複数の第1配線in0~3と、複数の第2配線m0~3とは、第1配線inと第2配線mとが交差する位置に配置される抵抗変化素子100によって接続される。例えば、抵抗変化素子100は、活性な第1電極と、不活性な第2電極とによって、第1電極を構成する金属のイオンを伝導するイオン伝導層(抵抗変化層とも呼ぶ)を挟み込んだ構造を有する。例えば、端部が第1電極を兼ねる第1配線上に形成した抵抗変化素子100の第2電極と、第1配線と異なる層に形成された第2配線とは、導電性のあるビアを介して電気的に接続される。
 ある抵抗変化素子100がオフ状態のとき、その抵抗変化素子100が配置された交点において第1配線inと第2配線mとは電気的に切断される。一方、ある抵抗変化素子100がオン状態のとき、その抵抗変化素子100が配置された交点において第1配線と第2配線とは電気的に接続される。図2においては、クロスバ110の交点の位置を、左上から右下に向けて(0、0)、(0、1)、・・・、(4、3)と座標によって表す。
 第1選択回路121は、外部の制御装置の制御に応じて、ON状態またはOFF状態に遷移させる抵抗変化素子100を選択するための回路である。第1選択回路121は、複数の第1配線の入力側のそれぞれに拡散層の一端(ソースまたはドレイン)が接続される複数の第1選択トランジスタTrY0~3を有する。すなわち、第1選択トランジスタTrY0~3の拡散層の一端は、第1配線in0~3の入力側に接続される。第1選択回路121を構成する第1選択トランジスタTrY0~3の拡散層の他端(ドレインまたはソース)は、第1書き込みドライバ125に接続される。第1選択回路121を構成する第1選択トランジスタTrY0~3のゲートは、第1デコーダ信号線WY0~3に接続され、第1デコーダ信号線WYを介してクロスバ110の列を選択する第1デコーダ(図示しない)に接続される。
 第2選択回路122は、外部の制御装置の制御に応じて、ON状態またはOFF状態に遷移させる抵抗変化素子100を選択するための回路である。第2選択回路122は、複数の第2配線m0~3の出力側のそれぞれに拡散層の一端(ソースまたはドレイン)が接続される複数の第2選択トランジスタTrX0~3を有する。また、第2選択回路122は、冗長配線rの出力側に拡散層の一端(ソースまたはドレイン)が接続される第2選択トランジスタTrXrを有する。すなわち、第2選択トランジスタTrX0~3、rの拡散層の一端は、第2配線m0~3および冗長配線rの出力側に接続される。第2選択回路122を構成する第2選択トランジスタTrX0~3、rの拡散層の他端(ドレインまたはソース)は、第2書き込みドライバ126に接続される。第2選択回路122を構成する第2選択トランジスタTrX0~3、rのゲートは、第2デコーダ信号線WX0~3、rに接続され、第2デコーダ信号線WXを介して、クロスバ110の行を選択する第2デコーダ(図示しない)に接続される。
 第1書き込みドライバ125は、外部からの制御信号に基づいて、第1選択回路121に書き込み電流を供給する。第1書き込みドライバ125は、第1選択回路121を構成する第1選択トランジスタTrY0~3の拡散層の他端(ドレインまたはソース)に接続される。
 第2書き込みドライバ126は、外部からの制御信号に基づいて書き込み電流を第2選択回路122に供給する。第2書き込みドライバ126は、第2選択回路122を構成する第2選択トランジスタTrX0~3、rの拡散層の他端(ドレインまたはソース)に接続される。
 図3は、シフトブロック13および転送ブロック15の構成の一例を示す模式図である。
 シフトブロック13は、スイッチブロック11から延伸する第2配線m0~3および冗長配線rと、転送ブロック15との接続を切り替える回路である。シフトブロック13は、複数の切替回路130と、1つのAND回路135とを有する。また、シフトブロック13は、入力端子WB0、入力端子WB1、および選択端子S0~3を含む。
 複数の切替回路130は、複数の第2配線m0~3ごとに配置される。複数の切替回路130のそれぞれは、第1トランスミッションゲートTG1、第2トランスミッションゲートTG2、第1インバータINV1、および第2インバータINV2を有する。
 第1トランスミッションゲートTG1および第2トランスミッションゲートTG2は、PMOS(p-Channel Metal-Oxide Semiconductor)とNMOS(n-Channel Metal-Oxide Semiconductor)とを並列に接続した構成を有する。第1トランスミッションゲートTG1および第2トランスミッションゲートTG2を構成するPMOSおよびNMOSには、高耐圧トランジスタが用いられる。
 第1トランスミッションゲートTG1を構成するPMOSおよびNMOSの拡散層の一端は、第2配線m0~3に接続される。第1トランスミッションゲートTG1のPMOSおよびNMOSの拡散層の他端は、第3配線out0~3に接続される。第1トランスミッションゲートTG1のPMOSおよびNMOSの拡散層の他端は、第3配線out0~3を介して、転送ブロック15を構成するバッファBUF0~3に接続される。
 第1トランスミッションゲートTG1のPMOSのゲートは、第2トランスミッションゲートTG2のNMOSのゲートと共通して、第1インバータINV1の出力に接続される。第1トランスミッションゲートTG1を構成するNMOSのゲートは、第2トランスミッションゲートTG2のPMOSのゲートと共通して、第2インバータINV2の出力に接続される。
 第2トランスミッションゲートTG2を構成するPMOSおよびNMOSの拡散層の一端は、AND回路135の出力に接続される。第2トランスミッションゲートTG2のPMOSおよびNMOSの拡散層の他端は、第3配線out0~3に接続される。
 第2トランスミッションゲートTG2のPMOSのゲートは、第1トランスミッションゲートTG1のNMOSのゲートと共通して、第2インバータINV2の出力に接続される。第2トランスミッションゲートTG2を構成するNMOSのゲートは、第1トランスミッションゲートTG1のPMOSのゲートと共通して、第1インバータINV1の出力に接続される。
 AND回路135には、高耐圧トランジスタが用いられる。AND回路135の入力には、冗長配線rと入力端子WB0とが接続される。AND回路135の出力は、複数の切替回路130の第2トランスミッションゲートTG2のNMOSの拡散層の一端に接続される。
 第1インバータINV1の入力には、選択端子S0~3のいずれかと入力端子WB1とが接続される。第1インバータINV1の出力は、第2インバータINV2の入力に接続される。選択端子S0~3の電圧状態は、入力端子WB1から入力される選択信号の電圧状態に応じて設定される。
 第2インバータINV2の入力は、第1トランスミッションゲートTG1のPMOSのゲートおよび第2トランスミッションゲートTG2のNMOSのゲートと同じく、第1インバータINV1の出力に接続される。第2インバータINV2の出力は、第1トランスミッションゲートTG1のNMOSのゲートおよび第2トランスミッションゲートTG2のPMOSのゲートに接続される。
 例えば、選択端子S0が「High」のとき、第2配線m0と第3配線out0とが接続される。一方、選択端子S0が「Low」のとき、冗長配線rと第3配線out0とが接続される。同様に、選択端子S1~S3が「High」のとき、第2配線m1~3と、第3配線out1~3とが接続される。一方、選択端子S1~S3のいずれかが「Low」のとき、「Low」の選択端子Sに接続された切替回路130に接続される第3配線outと、冗長配線rとが接続される。
 転送ブロック15は、複数のバッファBUF0~3を有する。複数のバッファBUF0~3の入力には、第3配線out0~3が接続される。複数のバッファBUF0~3の出力は、他のロジックブロックにデータ転送するためのスイッチブロック(図示しない)に接続される。
 〔抵抗変化素子〕
 ここで、論理集積回路1が備えるスイッチブロック11に含まれる抵抗変化素子100の一例について図面を参照しながら説明する。図4および図5は、抵抗変化素子100の構成の一例を示す概念図である。抵抗変化素子100は、活性電極である第1電極101、不活性電極である第2電極102、および抵抗変化層103を有する。
 抵抗変化素子100は、少なくとも2つの抵抗状態を有する。本実施形態では、高抵抗状態をオフ状態(図4)、低抵抗状態をオン状態(図5)と定義する。抵抗変化素子100がオン状態(図5)の場合、電圧レベルで与えられる信号は抵抗変化素子100を通過する。一方、抵抗変化素子100がオフ状態(図4)の場合、電圧レベルで与えられる信号は抵抗変化素子100によって遮断される。
 ここで、抵抗変化素子100の抵抗状態を遷移させる動作について説明する。
 まず、抵抗変化素子100の抵抗状態を高抵抗状態(オフ状態)から低抵抗状態(オン状態)へと遷移させる方法について説明する。すなわち、抵抗変化素子100をオンにする方法について説明する。
 抵抗状態が高抵抗状態(オフ状態)の抵抗変化素子100において、第1電極101に正電圧を印加し、第2電極102を接地すると、第1電極101に含まれる金属がイオン化されて抵抗変化層103に溶解する。抵抗変化層103に溶解した金属イオンが還元されると金属が析出する。析出した金属によって第1電極101と第2電極102とを接続する金属架橋105が形成される。金属架橋105によって第1電極101と第2電極102とが電気的に接続されると、抵抗変化素子100の抵抗状態は高抵抗状態(オフ状態)から低抵抗状態(オン状態)へと遷移する。
 次に、抵抗変化素子100の抵抗状態を低抵抗状態(オン状態)から高抵抗状態(オフ状態)へと遷移させる方法について説明する。すなわち、抵抗変化素子100をオフにする方法について説明する。
 抵抗状態が低抵抗状態(オン状態)の抵抗変化素子100において、第1電極101を接地して、第2電極102に正電圧を印加すると、金属架橋105が金属イオンとして抵抗変化層103内に溶解し、金属架橋105の一部が切れる。金属架橋105の一部が切れると、第1電極101と第2電極102との間の電気的な接続が解消され、抵抗変化素子100の抵抗状態は高抵抗状態(オフ状態)へと遷移する。第1電極101と第2電極102との間では、電気的な接続が完全に切れる前の段階から電気抵抗が大きくなったり、電極間の容量が変化したりして電気的な特性が変化し、最終的に電気的な接続が切れる。抵抗変化素子100の抵抗状態を高抵抗状態(オフ状態)から低抵抗状態(オン状態)にするためには、第2電極102に再び負電圧を印加すればよい。
 以上のように、抵抗変化素子100の抵抗状態(低抵抗状態・高抵抗状態)を用いて、スイッチのオン状態とオフ状態とを実現できる。
 抵抗変化素子100の抵抗状態を高抵抗状態から低抵抗状態に遷移させる際には、金属架橋105が形成される前の段階で、電極間の抵抗が次第に小さくなったり、電極間の容量が変化したりするなどの過渡的な状態が生じる。最終的には、電極間に金属架橋105が形成される。一方、抵抗変化素子100の抵抗状態を低抵抗状態から高抵抗状態に遷移させる際には、金属架橋105が切断する前の段階で、電極間の抵抗が次第に大きくなったり、電極間の容量が変化したりするなどの過渡的な状態が生じ、最終的に電極間の接続が切断する。例えば、抵抗変化素子100の抵抗状態の過渡的な状態を用いて、低抵抗状態と高抵抗状態との間の中間状態を利用することもできる。
 なお、抵抗変化素子100には、PRAM(Phase change Random Access Memory)やReRAM(Resistive Random Access Memory)に用いられる抵抗変化型不揮発性メモリ素子を用いてもよい。また、スイッチブロック11には、二つの抵抗変化素子100を用いた3端子型の抵抗変化スイッチを構成してもよい。
 以上が、本実施形態の論理集積回路の構成についての説明である。
 〔書き込み方法〕
 次に、本実施形態のスイッチブロック11を構成する抵抗変化素子100の書き込み方法について説明する。
 まず、入力端子WB0から「Low」、入力端子WB1から「Low」を入力し、全ての選択端子S0~3を「Low」に設定する。このとき、全ての第3配線out0~3は、第2配線m0~3ではなく、冗長配線rに接続される。その結果、AND回路135の出力である「Low」が全てのバッファBUF0~3の入力端子に入力されてプルダウンされるため、転送ブロック15の内部の貫通電流によるリーク電流は流れない。
 次に、第2デコーダ信号線WXによって選択される第2選択トランジスタTrXによって、第2配線m0~3および冗長配線rの中から一つの配線を選択する。その結果、選択された第2配線mおよび冗長配線rの少なくともいずれかが第2書き込みドライバ126に接続される。
 同様に、第1デコーダ信号線WYによって選択される第1選択トランジスタTrYによって、第1配線in0~3の中から一つの配線を選択する。その結果、選択された第1配線inが第1書込みドライバ125に接続される。
 第1書き込みドライバ125および第2書き込みドライバ126は、選択状態にある第1配線inと、選択状態にある第2配線mおよび冗長配線rとの交点の位置に配置された抵抗変化素子100の両端に書き込み電圧を印加する。例えば、抵抗変化素子100をオフ状態からオン状態に書き換えるセット動作では、順方向の電圧が抵抗変化素子100に印加される。一方、オン状態からオフ状態に書き換えるリセット動作では、逆方向の電圧が抵抗変化素子100に印加される。
 例えば、(0、0)の抵抗変化素子100に書き込みを行う場合、第1デコーダ信号線WY0を「High」、第1デコーダ信号線WY1~3を「Low」、第2デコーダ信号線WX0を「High」、第2デコーダ信号線WX1~3を「Low」に設定する。(0、0)に配置された抵抗変化素子100が選択された状態で、第1書き込みドライバ125および第2書き込みドライバ126によって当該素子の両端に閾値を超える電圧を印加すれば、その抵抗変化素子100を所望の抵抗状態に遷移させることができる。このとき、第2配線m0に接続される第1トランスミッションゲートTG1は、選択端子S0が「Low」であるためにハイインピーダンス状態となり、シフトブロック13の後段の第3配線out0および転送ブロック15に書き込み電圧を伝えない。
 第2配線m0~3上に配置される抵抗変化素子100に対する書き込みは、(0、0)の抵抗変化素子100と同様に行うことができる。すなわち、第2配線m0~3のいずれかに接続された第1トランスミッションゲートTG1をハイインピーダンス状態にすることで、後段の転送ブロック15と書き込み電圧を遮断できる。また、冗長配線r上に配置された抵抗変化素子100に書き込みを行うときは、AND回路135によって書き込み電圧を遮断する。
 以上のように、本実施形態の論理集積回路は、スイッチブロックと、転送ブロックと、シフトブロックとを備える。スイッチブロックは、複数の第1配線と、複数の第2配線と、少なくとも一つの冗長配線と、複数の抵抗変化素子とを有する。複数の第1配線は、第1方向に延伸する。複数の第2配線は、第1方向に交差する第2方向に延伸する。冗長配線は、第2配線に沿って第2方向に延伸する。抵抗変化素子は、第2配線および冗長配線と第1配線とが交差する位置に行列配置される。転送ブロックは、複数の第2配線に対応して第2方向に延伸する複数の第3配線のそれぞれに接続される複数のバッファを有する。シフトブロックは、複数の第2配線のそれぞれに対応し、高耐圧トランジスタを含む複数の切替回路を有する。シフトブロックは、複数の切替回路のそれぞれに対応する選択端子の電圧状態に応じて、第2配線および冗長配線と第3配線との接続を切り替える。切替回路は、高耐圧トランジスタによって構成され、第1入力端子と冗長配線とに入力端が接続され、切替回路に出力端が接続されるAND回路を含む。
 本実施形態においては、高耐圧トランジスタによって構成されるトランスミッションゲートおよびAND回路にスイッチブロックからの出力を入力する。そのため、本実施形態によれば、抵抗変化素子への書き込み電圧から後段の回路を保護することができる。
 例えば、切替回路は、第1インバータと、第2インバータと、第1トランスミッションゲートと、第2トランスミッションゲートとを含む。第1インバータは、選択端子に入力端が接続される。第2インバータは、第1インバータの後段に配置される。第1トランスミッションゲートおよび第2トランスミッションゲートは、PMOSトランジスタとNMOSトランジスタとが並列に接続する構成を有し、高耐圧トランジスタによって構成される。第1トランスミッションゲートは、拡散層の一端が第2配線に接続され、拡散層の他端が第3配線を介してバッファに接続される。また、第1トランスミッションゲートを構成するPMOSトランジスタおよびNMOSトランジスタは、PMOSトランジスタのゲートが第1インバータの出力端に接続され、NMOSトランジスタのゲートが第2インバータの出力端に接続される。第2トランスミッションゲートを構成するPMOSトランジスタおよびNMOSトランジスタは、拡散層の一端がAND回路の出力端に接続され、拡散層の他端が第3配線を介してバッファに接続される。第2トランスミッションゲートは、PMOSトランジスタのゲートが第2インバータの出力端に接続され、NMOSトランジスタのゲートが第1インバータの出力端に接続される。
 例えば、選択端子は、第2入力端子に接続され、第2入力端子を経由して入力される信号に応じて電圧状態が遷移する。
 例えば、スイッチブロックは、第1書き込みドライバと、第2書き込みドライバと、第1選択回路と、第2選択回路とを有する。第1選択回路は、拡散層の一端が第1書き込みドライバに接続され、拡散層の他端が複数の第1配線のいずれかに接続され、ゲートが複数の第1デコーダ信号線に接続される複数のNMOSトランジスタによって構成される。第2選択回路は、拡散層の一端が第2書き込みドライバに接続され、拡散層の他端が複数の第2配線のいずれかに接続され、ゲートが複数の第2デコーダ信号線に接続される複数のNMOSトランジスタによって構成される。
 例えば、抵抗変化素子は、第1電極と、第1電極と対向配置される第2電極と、第1電極と第2電極との間に配置され、第1電極と第2電極との間に電圧を印加することによって第1電極を構成する金属のイオン化および析出が可能な抵抗変化層とを含む。例えば、第1電極が銅を含み、第1電極と第2電極との間に印加される電圧に応じて、第1電極に含まれる銅が抵抗変化層においてイオン化および析出する。
 言い換えると、本実施形態の論理集積回路は、複数の第1配線と複数の第2配線との接続を切り替える複数の抵抗変化素子とが行列配置されるスイッチブロックに加えて、以下の構成を有する。すなわち、本実施形態の論理集積回路は、第2配線に接続され、ハイインピーダンス状態に遷移可能な素子と、第2配線に沿って延伸する冗長配線とを備える。また、本実施形態の論理集積回路は、第2配線と冗長配線とを切り替える回路と、冗長配線に接続され、プルアップまたはプルダウンする回路とを備える。本実施形態の論理集積回路では、第2配線と後段の素子との接続をハイインピーダンス状態とし、第2配線の後段の素子の入力をプルアップまたはプルダウンして抵抗変化素子の書き込みを行う。
 本実施形態によれば、第2配線と第3配線との間にトランスミッションゲートのみを配置するため、信号遅延が非常に小さくなる。本実施形態によれば、高耐圧トランジスタで構成されるトランスミッションゲートであっても、高耐圧トランジスタのNAND回路でシフトブロックを構成する場合と比較して、およそ0.1~0.2ナノ秒程度、信号伝播が早くなる。なお、冗長配線が第3配線に接続されるときは、第2配線と第3配線との間に高耐圧トランジスタのAND回路が接続されてしまうが、回路動作上の遅延に与える影響は非常に小さい。なぜならば、冗長配線は、第2配線の予備配線であるため、第2配線上の抵抗変化素子が故障を起こさない限り使用されないためである。
 すなわち、本実施形態の論理集積回路によれば、微細化された半導体素子を電気的に破壊することなく、高電圧を必要とする抵抗変化素子への書き込みおよび消去が可能なプログラマブル論理集積回路を実現できる。
 (第2の実施形態)
 次に、本発明の第2の実施形態に係るプログラマブル論理集積回路(論理集積回路とも呼ぶ)について図面を参照しながら説明する。本実施形態の論理集積回路は、第1の実施形態の論理集積回路とは、シフトブロックの切替回路の構成が異なる。なお、本実施形態の論理集積回路のスイッチブロックおよび転送ブロックの構成は、第1の実施形態の論理集積回路と同様であるので、詳細な説明は省略する。以下において、スイッチブロックの説明においては、第1の実施形態(図2)の符号を用いる。
 図6は、本実施形態の論理集積回路が備えるシフトブロック23および転送ブロック25の構成の一例を示すブロック図である。なお、転送ブロック25の構成は、第1の実施形態の転送ブロック15と同様であるため、詳細な説明は省略する。
 シフトブロック23は、スイッチブロック11から延伸する第2配線m0~3および冗長配線rと、転送ブロック25との接続を切り替える回路である。シフトブロック23は、複数の切替回路230と、1つのAND回路235とを有する。また、シフトブロック23は、入力端子WB0、入力端子WB1、および選択端子S0~3を含む。
 複数の切替回路230は、複数の第2配線m0~3ごとに配置される。複数の切替回路230のそれぞれは、第1トランジスタTR1、第2トランジスタTR2、第1インバータINV1、および第2インバータINV2を有する。
 第1トランジスタTR1(第1NMOSトランジスタとも呼ぶ)および第2トランジスタTR2(第2NMOSトランジスタとも呼ぶ)には、高耐圧のNMOSトランジスタが用いられる。
 第1トランジスタTR1の拡散層の一端は、第2配線m0~3に接続される。第1トランジスタTR1の拡散層の他端は、第3配線out0~3に接続される。第1トランジスタTR1の拡散層の他端は、第3配線out0~3を介して、転送ブロック25を構成するバッファBUF0~3に接続される。第1トランジスタTR1のゲートは、第2インバータINV2の出力に接続される。
 第2トランジスタTR2の拡散層の一端は、AND回路235の出力に接続される。第2トランジスタTR2の拡散層の他端は、第3配線out0~3に接続される。第2トランジスタTR2のゲートは、第2インバータINV2の入力と共通して、第1インバータINV1の出力に接続される。
 AND回路235には、高耐圧トランジスタが用いられる。AND回路235の入力には、冗長配線rと入力端子WB0とが接続される。AND回路235の出力は、複数の切替回路230の第2トランジスタTR2のNMOSの拡散層の一端に接続される。
 第1インバータINV1の入力には、選択端子S0~3のいずれかと入力端子WB1とが接続される。第1インバータINV1の出力は、第2インバータINV2の入力と、第2トランジスタTR2のゲートとに接続される。選択端子S0~3の電圧状態は、入力端子WB1から入力される選択信号の電圧状態に応じて設定される。すなわち、入力端子WB1から入力される選択信号が「High」ならば選択端子Sは「High」であり、入力端子WB1から入力される選択信号が「Low」ならば選択端子Sは「Low」である。
 第2インバータINV2の入力は、第2トランジスタTR2のゲートと同じく、第1インバータINV1の出力に接続される。第2インバータINV2の出力は、第1トランジスタTR1のゲートに接続される。
 例えば、選択端子S0が「High」のとき、第2配線m0と第3配線out0とが接続される。一方、選択端子S0が「Low」のとき、冗長配線rと第3配線out0とが接続される。同様に、選択端子S1~S3が「High」のとき、「High」の第2配線m1~3と、第3配線out1~3とが接続される。一方、選択端子S1~3のいずれかが「Low」のとき、「Low」の選択端子Sに接続された切替回路130に接続される第3配線outと、冗長配線rとが接続される。
 〔書き込み方法〕
 次に、本実施形態のスイッチブロックを構成する抵抗変化素子の書き込み方法について説明する。以下においても、図2のスイッチブロック11の構成に基づいて説明する。
 まず、入力端子WB0から「Low」、入力端子WB1から「Low」を入力し、全ての選択端子S0~3を「Low」に設定する。このとき、全ての第3配線out0~3は、第2配線m0~3ではなく、冗長配線rに接続される。その結果、AND回路135の出力である「Low」が全てのバッファBUF0~3の入力端子に入力されてプルダウンされるため、転送ブロック25の内部の貫通電流によるリーク電流は流れない。
 次に、第2デコーダ信号線WXによって選択される第2選択トランジスタTrXによって、第2配線m0~3および冗長配線rの中から一つの配線を選択する。その結果、選択された第2配線mおよび冗長配線rの少なくともいずれかが第2書き込みドライバ126に接続される。
 同様に、第1デコーダ信号線WYによって選択される第1選択トランジスタTrYによって、第1配線in0~3の中から一つの配線を選択する。その結果、選択された第1配線INが第1書込みドライバ125に接続される。
 第1書き込みドライバ125および第2書き込みドライバ126は、選択状態にある第1配線inと、選択状態にある第2配線mおよび冗長配線rとの交点の位置に配置された抵抗変化素子100の両端に書き込み電圧を印加する。例えば、抵抗変化素子100をオフ状態からオン状態に書き換えるセット動作では、順方向の電圧が抵抗変化素子100に印加される。一方、オン状態からオフ状態に書き換えるリセット動作では、逆方向の電圧が抵抗変化素子100に印加される。
 例えば、(0、0)の抵抗変化素子100に書き込みを行う場合、第1デコーダ信号線WY0を「High」、第1デコーダ信号線WY1~3を「Low」、第2デコーダ信号線WX0を「High」、第2デコーダ信号線WX1~3を「Low」に設定する。(0、0)に配置された抵抗変化素子100が選択された状態で、第1書き込みドライバ125および第2書き込みドライバ126によって当該素子の両端に閾値を超える電圧を印加すれば、その抵抗変化素子100を所望の抵抗状態に遷移させることができる。このとき、第2配線m0に接続される第1トランジスタTR1は、選択端子S0が「Low」であるためにハイインピーダンス状態となり、シフトブロック23の後段の第3配線out0および転送ブロック25に書き込み電圧を伝えない。
 第2配線m0~3上に配置される抵抗変化素子100に対する書き込みは、(0、0)の抵抗変化素子100と同様に行うことができる。すなわち、第2配線m0~3のいずれかに接続された第1トランジスタTR1をハイインピーダンス状態にすることで、後段の転送ブロック25と書き込み電圧を遮断できる。また、冗長配線r上に配置された抵抗変化素子100に書き込みを行うときは、AND回路235によって書き込み電圧を遮断する。
 切替回路は、第1インバータと、第2インバータと、第1NMOSトランジスタと、第2NMOSトランジスタとを含む。第1インバータは、選択端子に入力端が接続される。第2インバータは、第1インバータの後段に配置される。第1NMOSトランジスタは、拡散層の一端が第2配線に接続され、拡散層の他端が第3配線を介してバッファに接続され、ゲートが第2インバータの出力端に接続される。第2NMOSトランジスタは、拡散層の一端がAND回路の出力端に接続され、拡散層の他端が第3配線を介してバッファに接続され、ゲートが第1インバータの出力端に接続される。第1NMOSトランジスタおよび第2NMOSトランジスタは、高耐圧トランジスタによって構成される。
 本実施形態においては、高耐圧トランジスタによって構成されるトランジスタおよびAND回路にスイッチブロックからの出力を入力する。そのため、本実施形態によれば、抵抗変化素子への書き込み電圧から後段の回路を保護することができる。
 また、本実施形態によれば、第2配線と第3配線との間にNMOSトランジスタのみを配置するため、信号遅延が非常に小さくなる。本実施形態によれば、高耐圧トランジスタで構成されるトランスミッションゲートであっても、高耐圧トランジスタのNAND回路でシフトブロックを構成する場合と比較して、およそ0.1~0.2ナノ秒程度、信号伝播が早くなる。なお、冗長配線が第3配線に接続されるときは、第2配線と第3配線との間に高耐圧トランジスタのAND回路が接続されてしまうが、回路動作上の遅延に与える影響は非常に小さい。なぜならば、冗長配線は第2配線の予備配線であるため、第2配線上の抵抗変化素子が故障を起こさない限り、使用されないためである。
 また、本実施形態によれば、トランスミッションゲートではなく、NMOSトランジスタでシフトブロックを構成するため、回路面積を小さくできる。本実施形態では、選択信号WE1をNMOSの閾値電圧分オーバードライブする必要があるが、回路面積を小さくできるため、チップコストを下げるとともに、消費電力や動作速度の向上を実現する。
 (関連技術)
 ここで、関連技術に係るプログラマブル論理集積回路(論理集積回路とも呼ぶ)について図面を参照しながら説明する。なお、本実施形態の論理集積回路のスイッチブロックの構成は、各実施形態の論理集積回路と同様であるので、詳細な説明は省略する。
 図7は、関連技術の入力信号クランプ回路31、シフトブロック33、および転送ブロック35の構成の一例を示す模式図である。なお、スイッチブロックは、図2の構成を有し、第1配線inが4本、第2配線mが4本、スペア配線である冗長配線rが1本で構成される。
 入力信号クランプ回路31は、複数の第2配線m0~3および冗長配線rのそれぞれに対応する複数のNAND回路310(310_0~3、r)を有する。シフトブロック33は、複数のNAND回路310_0~3のそれぞれに対応するマルチプレクサMUX0~3を有する。転送ブロック35は、複数のマルチプレクサMUX0~3のそれぞれに対応するインバータINV0~3を有する。
 NAND回路310_0~3のそれぞれの入力には、第2配線m0~3と入力端子WBとが接続される。NAND回路310_0~3のそれぞれの出力は、シフトブロック33のマルチプレクサMUX0~3のそれぞれの入力端子Aに接続される。
 また、NAND回路310_rの入力には、冗長配線rと入力端子WBとが接続される。NAND回路310_rの出力は、シフトブロック33のマルチプレクサMUX0~3のそれぞれの入力端子Bに接続される。
 マルチプレクサMUX0~3のそれぞれの出力端子Oは、インバータINV0~3のそれぞれの入力に接続される。マルチプレクサMUX0~3の選択端子Sは、シフトブロック33の選択端子S0~3を介して、図示しない信号線に接続される。
 例えば、マルチプレクサMUXは、図8に示す回路構成を有し、第2配線mおよび冗長配線rのいずれかの信号を選択して転送ブロック35に出力する。
 マルチプレクサMUX0~3の入力端子Aおよび入力端子Bのそれぞれは、インバータINV0~3のゲート電極入力端子のため、中間電位を取らないように、入力信号クランプ回路31を前段に配置する。入力信号クランプ回路31は、インバータINV0~3の入力に中間電位が与えられたときに流れる貫通電流を抑制する。入力信号クランプ回路31は、入力端子WBからの入力信号を「Low」とすることで、シフトブロック33の入力をプルダウンすることができる。
 抵抗変化素子のオン/オフ状態を書き込むには、入力信号クランプ回路31の入力端子WBを「Low」とし、当該抵抗変化素子に接続される第1書き込みドライバおよび第2書き込みドライバをオン状態にする。そして、接続された書き込みトランジスタから所望の書き込み電流を流したり、書き込み電圧を印加したりする。書き込み電圧が3ボルト以上となると、書き込み対象の抵抗変化素子だけではなく、第2配線上に配置された入力信号クランプ回路31にも高電圧が印加される。そのため、入力信号クランプ回路31は、コアトランジスタではなく、高耐圧トランジスタで構成されなければならない。しかしながら、高耐圧トランジスタで構成されたNAND回路およびマルチプレクサ回路は、回路動作上の信号が伝送される経路に位置するため、そこで生じる信号遅延は無視できない。
 それに対し、本発明の各実施形態の論理集積回路では、第2配線と第3配線との間にトランスミッションゲートやトランジスタのみを配置するため、関連技術と比べて、信号遅延が非常に小さくなる。
 以上、実施形態を参照して本発明を説明してきたが、本発明は上記実施形態に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2018年4月27日に出願された日本出願特願2018-086663を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 1  論理集積回路
 11  スイッチブロック
 13、23 シフトブロック
 15、25  転送ブロック
 100  抵抗変化素子
 101  第1電極
 102  第2電極
 103  抵抗変化層
 105  金属架橋
 110  クロスバ
 121  第1選択回路
 122  第2選択回路
 130、230  切替回路
 135、235  AND回路

Claims (10)

  1.  第1方向に延伸する複数の第1配線と、前記第1方向に交差する第2方向に延伸する複数の第2配線と、前記第2配線に沿って前記第2方向に延伸する少なくとも一つの冗長配線と、前記第2配線および前記冗長配線と前記第1配線とが交差する位置に行列配置される複数の抵抗変化素子とを有するスイッチブロックと、
     複数の前記第2配線に対応して前記第2方向に延伸する複数の第3配線のそれぞれに接続される複数のバッファを有する転送ブロックと、
     複数の前記第2配線のそれぞれに対応し、高耐圧トランジスタを含む複数の切替回路を有し、複数の前記切替回路のそれぞれに対応する選択端子の電圧状態に応じて、前記第2配線および前記冗長配線と前記第3配線との接続を切り替えるシフトブロックとを備える論理集積回路。
  2.  前記切替回路は、
     高耐圧トランジスタによって構成され、第1入力端子と前記冗長配線とに入力端が接続され、前記切替回路に出力端が接続されるAND回路を含む請求項1に記載の論理集積回路。
  3.  前記切替回路は、
     前記選択端子に入力端が接続される第1インバータと、
     前記第1インバータの後段に配置される第2インバータと、
     PMOSトランジスタとNMOSトランジスタとが並列に接続する構成を有し、拡散層の一端が前記第2配線に接続され、拡散層の他端が前記第3配線を介して前記バッファに接続され、PMOSトランジスタのゲートが前記第1インバータの出力端に接続され、NMOSトランジスタのゲートが前記第2インバータの出力端に接続される第1トランスミッションゲートと、
     PMOSトランジスタとNMOSトランジスタとが並列に接続する構成を有し、拡散層の一端が前記AND回路の出力端に接続され、拡散層の他端が前記第3配線を介して前記バッファに接続され、PMOSトランジスタのゲートが前記第2インバータの出力端に接続され、NMOSトランジスタのゲートが前記第1インバータの出力端に接続される第2トランスミッションゲートとを含み、
     前記第1トランスミッションゲートおよび前記第2トランスミッションゲートは、高耐圧トランジスタによって構成される請求項2に記載の論理集積回路。
  4.  前記切替回路は、
     前記選択端子に入力端が接続される第1インバータと、
     前記第1インバータの後段に配置される第2インバータと、
     拡散層の一端が前記第2配線に接続され、拡散層の他端が前記第3配線を介して前記バッファに接続され、ゲートが前記第2インバータの出力端に接続される第1NMOSトランジスタと、
     拡散層の一端が前記AND回路の出力端に接続され、拡散層の他端が前記第3配線を介して前記バッファに接続され、ゲートが前記第1インバータの出力端に接続される第2NMOSトランジスタとを含み、
     前記第1NMOSトランジスタおよび前記第2NMOSトランジスタは、高耐圧トランジスタによって構成される請求項2に記載の論理集積回路。
  5.  前記選択端子は、
     第2入力端子に接続され、前記第2入力端子を経由して入力される信号に応じて電圧状態が遷移する請求項1乃至4のいずれか一項に記載の論理集積回路。
  6.  前記スイッチブロックは、
     第1書き込みドライバと、
     第2書き込みドライバと、
     第1選択回路と、
     第2選択回路とを有し、
     前記第1選択回路は、
     拡散層の一端が前記第1書き込みドライバに接続され、拡散層の他端が複数の前記第1配線のいずれかに接続され、ゲートが複数の第1デコーダ信号線に接続される複数のNMOSトランジスタによって構成され、
     前記第2選択回路は、
     拡散層の一端が前記第2書き込みドライバに接続され、拡散層の他端が複数の前記第2配線のいずれかに接続され、ゲートが複数の第2デコーダ信号線に接続される複数のNMOSトランジスタによって構成される請求項1乃至5のいずれか一項に記載の論理集積回路。
  7.  前記抵抗変化素子は、
     第1電極と、
     前記第1電極と対向配置される第2電極と、
     前記第1電極と前記第2電極との間に配置され、前記第1電極と前記第2電極との間に電圧を印加することによって前記第1電極を構成する金属のイオン化および析出が可能な抵抗変化層とを含む請求項1乃至6のいずれか一項に記載の論理集積回路。
  8.  前記第1電極が銅を含み、前記第1電極と前記第2電極との間に印加される電圧に応じて、前記第1電極に含まれる銅が前記抵抗変化層においてイオン化および析出する請求項7に記載の論理集積回路。
  9.  複数の第1配線と複数の第2配線との接続を切り替える複数の抵抗変化素子とが行列配置されるスイッチブロックと、
     前記第2配線に接続され、ハイインピーダンス状態に遷移可能な素子と、
     前記第2配線に沿って延伸する冗長配線と、
     前記第2配線と前記冗長配線とを切り替える回路と、
     前記冗長配線に接続され、プルアップまたはプルダウンする回路とを備える論理集積回路。
  10.  複数の第1配線と複数の第2配線との接続を切り替える複数の抵抗変化素子とが行列配置されるスイッチブロックと、前記第2配線に接続され、ハイインピーダンス状態に遷移可能な素子と、前記第2配線に沿って延伸する冗長配線と、前記第2配線と前記冗長配線とを切り替える回路と、前記冗長配線に接続され、プルアップまたはプルダウンする回路とを備える論理集積回路において、
     前記第2配線と後段の素子との接続をハイインピーダンス状態とし、前記第2配線の後段の素子の入力をプルアップまたはプルダウンして前記抵抗変化素子の書き込みを行う書き込み方法。
PCT/JP2019/016754 2018-04-27 2019-04-19 論理集積回路および書き込み方法 WO2019208414A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020516299A JPWO2019208414A1 (ja) 2018-04-27 2019-04-19 論理集積回路および書き込み方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018086663 2018-04-27
JP2018-086663 2018-04-27

Publications (1)

Publication Number Publication Date
WO2019208414A1 true WO2019208414A1 (ja) 2019-10-31

Family

ID=68294857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016754 WO2019208414A1 (ja) 2018-04-27 2019-04-19 論理集積回路および書き込み方法

Country Status (2)

Country Link
JP (1) JPWO2019208414A1 (ja)
WO (1) WO2019208414A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016129081A (ja) * 2015-01-09 2016-07-14 株式会社東芝 再構成可能な回路
JP2016225797A (ja) * 2015-05-29 2016-12-28 日本電気株式会社 プログラマブル論理集積回路

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016129081A (ja) * 2015-01-09 2016-07-14 株式会社東芝 再構成可能な回路
JP2016225797A (ja) * 2015-05-29 2016-12-28 日本電気株式会社 プログラマブル論理集積回路

Also Published As

Publication number Publication date
JPWO2019208414A1 (ja) 2021-04-08

Similar Documents

Publication Publication Date Title
US8331130B2 (en) Semiconductor integrated circuit
US8084768B2 (en) Semiconductor device
WO2016144434A1 (en) COMPACT ReRAM BASED FPGA
CN110036484B (zh) 电阻式随机存取存储器单元
US8004309B2 (en) Programmable logic device structure using third dimensional memory
WO2012032937A1 (ja) 再構成可能回路
JP2015061238A (ja) 再構成可能な半導体集積回路および電子機器
US20150206595A1 (en) Antifuse array architecture
US11018671B2 (en) Reconfigurable circuit and the method for using the same
KR101182423B1 (ko) 상변화 메모리 소자를 이용한 필드프로그래머블 게이트 어레이(fpga)의 프로그래머블 논리 블록
US9691498B2 (en) Semiconductor integrated circuit
US10396798B2 (en) Reconfigurable circuit
US10360333B1 (en) Configuration memory circuit
JP2015211326A (ja) プログラマブル論理回路および不揮発性fpga
WO2018207831A1 (ja) プログラマブル論理回路とこれを用いた半導体装置
US6639855B2 (en) Semiconductor device having a defect relief function of relieving a failure
US10431306B2 (en) Reconfigurable semiconductor integrated circuit
WO2019208414A1 (ja) 論理集積回路および書き込み方法
JP6156151B2 (ja) 双方向バッファ及びその制御方法
US6333876B1 (en) Semiconductor memory device
JP6795103B2 (ja) 不揮発性抵抗スイッチを用いる再構成可能回路
JP6662370B2 (ja) クロスバースイッチ型メモリ回路、ルックアップテーブル回路、及び、プログラム方法
US9111641B1 (en) Memory circuit including memory devices, a freeze circuit and a test switch
WO2019049980A1 (ja) 再構成回路
WO2018180536A1 (ja) プログラマブル論理集積回路とそのプログラミング方法及びそのプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19793783

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020516299

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19793783

Country of ref document: EP

Kind code of ref document: A1