JP5006938B2 - 表面処理装置およびその基板処理方法 - Google Patents

表面処理装置およびその基板処理方法 Download PDF

Info

Publication number
JP5006938B2
JP5006938B2 JP2009538898A JP2009538898A JP5006938B2 JP 5006938 B2 JP5006938 B2 JP 5006938B2 JP 2009538898 A JP2009538898 A JP 2009538898A JP 2009538898 A JP2009538898 A JP 2009538898A JP 5006938 B2 JP5006938 B2 JP 5006938B2
Authority
JP
Japan
Prior art keywords
plasma
chamber
substrate
processing
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009538898A
Other languages
English (en)
Other versions
JPWO2009057223A1 (ja
Inventor
拓哉 清野
学 池本
公子 真下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Canon Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Anelva Corp filed Critical Canon Anelva Corp
Publication of JPWO2009057223A1 publication Critical patent/JPWO2009057223A1/ja
Application granted granted Critical
Publication of JP5006938B2 publication Critical patent/JP5006938B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02046Dry cleaning only
    • H01L21/02049Dry cleaning only with gaseous HF
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28194Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation by deposition, e.g. evaporation, ALD, CVD, sputtering, laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28202Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation in a nitrogen-containing ambient, e.g. nitride deposition, growth, oxynitridation, NH3 nitridation, N2O oxidation, thermal nitridation, RTN, plasma nitridation, RPN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67196Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the transfer chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4916Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/495Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a simple metal, e.g. W, Mo
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4966Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4966Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2
    • H01L29/4975Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2 being a silicide layer, e.g. TiSi2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66651Lateral single gate silicon transistors with a single crystalline channel formed on the silicon substrate after insulating device isolation

Description

本発明は、半導体素子製造におけるIV族半導体表面の処理を含む装置及び製造方法に係る。
従来、半導体Si基板はウェット洗浄が行われていた。しかし、乾燥時のウォーターマークの完全除去、極薄酸化膜エッチング制御ができない、装置が大型化する等の問題があった。また、半導体基板のウェット洗浄後、大気に露出する時間が長いと表面に自然酸化膜の形成や炭素原子が吸着され、Si単結晶の成膜がされない、凹凸のある膜になる、ゲート絶縁膜界面での不純物準位の発生等の問題が生じる。
そこで、成膜前に750℃以上のUHV真空加熱あるいはH2雰囲気で800℃以上の加熱を行い表面の酸化膜を除去していた。しかし、デバイスの微細化が進み誘電体絶縁膜/金属電極を用いると、デバイスはより低温で作成されることが必要となる。今後、650℃以下の温度でのデバイス作成が要求される。したがって、ウェット洗浄では限界があり、真空中で半導体基板の成膜前処理を行うドライ洗浄方法が必要となってきている。例えば、アルゴンプラズマによる逆スパッタ法(特開平10-147877)。しかし、この方法では、半導体基板表面のSi−Si結合も切断されると考えられる。この場合、Siの欠損部分には直ちに酸化膜が形成され、Siの未結合手には汚染物質が付着しやすく、また、スパッタされた酸化物や汚染物質が側壁に再付着するなどの問題が生じ、この結果、後工程に悪影響(エピタキシャル成長の阻害、シリサイド界面に高抵抗部分を形成)を与える。さらにデバイスへの損傷も問題となる。
また、特開2004−63521号には、プラズマ化されたF2ガスを用いて基板表面のシリコン酸化膜を除去後、基板表面に付着したF成分を除去するための水素ラジカルを照射することが記載されている。さらに、特開平04−96226号には、F2ガスを用いてSi自然酸化膜を基板上から除去した後にラジカル化されて水素を基板に照射し、水素で終端させることが記載されている。しかし、プラズマ化されたF2ガスの中には、ラジカル化したフッ素ガスだけでなく、イオン化したフッ素ガスも含まれているため、基板表面のシリコン酸化膜を除去した際、表面に凹凸が生じるという問題を生じる。さらに、基板表面にシリコン酸化膜だけでなく基板自体を除去してしまう可能性もある。
また、特開2001−102311号には、基板が配置される成膜室に対して導入孔を有するプレートで分離されたプラズマ生成室を有するプラズマ生成部にフッ素等洗浄ガスを供給し、このプラズマ生成部でプラズマを作ってラジカルを発生させ、このフッ素ラジカルを前記導入孔を介して基板が配置された成膜空間に導入し、基板に照射させ、基板を洗浄することが記載されている。しかし、ラジカルの励起エネルギーを抑制した雰囲気に半導体基板表面を晒すことができないため、Siと高い選択性エッチングができず、そのため、表面粗さを損ねることなく自然酸化膜を除去できないという問題を生じる。
また、半導体基板をプラズマに露出しているため、Si−Si結合も切断される。この場合、Siの欠損部分には直ちに酸化膜が形成され、Siの未結合手には汚染物質が付着しやすく、さらにスパッタされた酸化物や汚染物質が側壁に再付着するなどの問題が生じ、この結果、後工程に悪影響(エピ成長の阻害、シリサイド界面に高抵抗部分を形成)を与える。さらにデバイスへの損傷も問題となる。また、本公知例は、プラズマにより積極的にガスを分解して、水素基(Hラジカル)および水素イオンを生成する構成である。水素基(Hラジカル)および水素イオンによって、基板表面のフッ素残留物を除去しようとすると、チャンバからの金属汚染の問題、下地Siエッチレートが大きく、エッチングし過ぎるなどの問題がある。また、反応生成物のHFは再付着し易いため、十分なF除去効果が得られない。特開2002-217169には、高速ガス流の摩擦応力による物理的作用とを併用して異物を除去する洗浄工程を真空一貫で行う装置が開示されている。本公知例では、真空搬送での不純物の吸着や自然酸化の発生が抑制され、生産効率が向上することが記載されている。しかしながら、異物を除去できたとしても表面原子層オーダでは自然酸化膜や表面ラフネスが残ってしまう。すなわち、真空一貫での搬送によるデバイス特性向上の効果を得るためには、Siと自然酸化膜との高い選択性エッチングを原子層オーダで制御する洗浄技術と、大気に晒さずに搬送し成膜することが必要である。これにより、半導体/誘電絶縁膜接合における界面準位や膜中の固定電荷が少ない良好なデバイス特性が得られると考えられる。
従来の基板表面の自然酸化膜や有機物を除去する表面処理においては、次の成膜工程まで大気搬送を伴うため大気中成分が基板表面に吸着し、界面に自然酸化膜や炭素原子等の不純物が残留するため、デバイス特性を劣化するという問題があった。また、界面に自然酸化膜や炭素原子等の不純物が残留しないよう、真空中での基板処理を行なうと、基板表面の自然酸化膜、有機物、炭素などの不純物は除去できるが、基板表面の平坦性が劣化するという問題があった。さらに、基板表面の平坦性が良くないと、作成するデバイスの特性が劣化してしまうという問題があった。
本発明は、前述の問題を解決する目的でなされたものである。
本発明者らの検討結果によれば、プラズマによって生成したラジカルを、プラズマ生成室と処理室を分離する隔壁板に設けられた複数の孔から処理室に導入し、別途処理室に導入した処理ガスとこのラジカルを混合することで、上記ラジカルの励起エネルギーを抑制し、これによりSiと高い選択性を持った基板表面処理が可能となるため、基板表面の平坦性を損なうことなく自然酸化膜や有機物を除去する表面処理が可能となることが見出された。
本発明は
基板を処理室内に設置し、
プラズマ生成ガスをプラズマ化し、
該プラズマ中のラジカルをプラズマ分離用のプラズマ閉じ込め電極板のラジカル通過孔を通して該処理室に導入し、
該処理室に処理ガスを導入して該処理室内でラジカルと混合し、そして
該ラジカルと該処理ガスとの混合雰囲気により該基板表面を洗浄することからなる基板洗浄方法である。
また、該基板の表面はIV族半導体材料であり、該プラズマ生成ガスと処理ガスはHFを含有するものである基板洗浄方法である。
また、該プラズマ分離用のプラズマ閉じ込め電極板は該プラズマ中のラジカルを該処理室に導入する複数のラジカル導入孔と該処理ガスを該処理室内に導入する複数の処理ガス導入孔とを有し、該ラジカルと該処理ガスをそれぞれの導入孔から該処理室内の基板表面に向かって排出している基板洗浄方法である。
また、前述の基板洗浄方法でIV族半導体基板表面を洗浄室にて洗浄し、洗浄された該基板を該洗浄室から大気に晒すことなくトランスファー室を介してエピタキシャル室へ移送し、該エピタキシャル室内で該基板表面上にエピタキシャル単結晶層をエピタキシャル成長させることからなる半導体素子製造方法である。
また、前述の基板洗浄方法で製造されたエピタキシャル層を有する基板を、該エピタキシャル室から大気に晒すことなくトランスファー室を介してスパッタ室に移送し、
該スパッタ室にて該エピタキシャル層上に誘電体膜をスパッタし、
該誘電体膜を有する基板を該スパッタ室から大気に晒すことなくトランスファー室を介して酸化・窒化室へ移送し、
該酸化・窒化室にて該誘電体膜を酸化・窒化又は酸窒化することからなる半導体素子製造方法である。
また、前述の半導体製造方法で、前記誘電体膜は、Hf、La、Ta、Al、W、Ti、Si、Geのグループから選択されたもの又はそれらの合金である半導体素子製造方法。
また前述の基板洗浄方法において、該プラズマガスをプラズマ化する際、プラズマガスに高周波電力を印加してプラズマ化しており、該高周波電力密度は0.001〜0.25W/cm2、望ましくは0.001〜0.125W/cm2、更に望ましくは0.001〜0.025W/cm2であることを特徴とする基板洗浄方法である。
また、真空容器内でプラズマ生成ガスからプラズマを生成してラジカルを発生させ、このラジカルと処理ガスとで基板処理を行なうプラズマ分離型の基板処理装置であって、
導入されたプラズマ生成ガスをプラズマ化させるプラズマ生成室、
被処理基板を設置する基板ホルダーを含む処理室、及び
該プラズマ生成室と該処理室との間に複数のラジカル通過孔を備えたプラズマ分離用のプラズマ閉じ込め電極板とからなる基板処理装置であって、
該プラズマ閉じ込め電極板は中空構造であり、処理室側に開口された複数の処理ガス導入孔が設けられており、該プラズマ閉じ込め電極板には、処理ガスを供給するガス導入管が配置されている基板処理装置において、
該プラズマ生成室内部のプラズマ生成空間には高周波電源から供給される電力によりプラズマを発生させる高周波印加電極を備え、
該高周波印加電極は、該電極を貫く複数の貫通孔を有し、
該プラズマ生成室にプラズマ生成ガスを導入するプラズマ生成ガス導入シャワープレートを更に含み、
該プラズマ生成ガス導入シャワープレートは、該複数のラジカル通過孔を備えたプラズマ分離用のプラズマ閉じ込め電極板に沿って延在する電極上にプラズマ生成ガスを導入する複数のガス排出口を含むものである基板処理装置である。
また、前述の基板処理室において、該電極の複数の貫通孔の全体積をV2、該貫通孔を含む電極の全体積をV1としたとき、堆積比率V2/V1が0.01〜0.8であることを特徴とする基板処理装置である。
また、基板処理装置において、該高周波印加電極へ印加される高周波電力密度は0.001〜0.25W/cm2、望ましくは0.001〜0.125W/cm2、更に望ましくは0.001〜0.025W/cm2であることを特徴とする基板処理装置である。
前述の基板処理装置において、該プラズマ生成室に導入されるプラズマ生成ガスがHFを含むガスであり、かつ該処理室に導入されるガスがHFを含むガスであることを特徴とする基板処理装置である。
また、前述の基板処理装置からなる基板洗浄室、
基板上にエピタキシャル層を形成するエピタキシャル成長室、及び
該基板洗浄室からの基板を大気に晒すことなく該エピタキシャル成長室に移送するトランスファー室とからなる半導体素子製造装置である。
また、前述の装置において、誘電体膜を形成するスパッタ室を更に含み、該洗浄室又は該エピタキシャル成長室からの基板を大気に晒すことなく該トランスファー室を介して該スパッタ室に移送されるよう構成されている半導体素子製造装置である。
また、前述の装置において、誘電体膜を酸化もしくは窒化もしくは酸窒化する酸化・窒化室を更に含み、該洗浄室又は該エピタキシャル成長室又は該スパッタ室からの基板を大気に晒すことなく該トランスファー室を介して該酸化・窒化室に移送されるよう構成されている半導体素子製造装置である。
本発明により、半導体基板表面の自然酸化膜や有機不純物を従来のウェット洗浄よりも低減できる基板処理をすることができた。また、基板表面の平坦性を損ねることなく自然酸化膜や有機物を除去できた。
半導体基板表面の自然酸化膜や有機不純物汚染を除去するために、プラズマ生成ガスと処理ガスとしてのHFまたは少なくともHFガスを含む混合ガスを用い、プラズマ生成室からラジカルを処理室に導入し、同時に処理室にHFを構成元素とするガス分子を導入することにより、上記ラジカルの励起エネルギーを抑制した雰囲気に半導体基板表面を晒して、基板表面の平坦性を損ねることなく自然酸化膜や有機物を除去できた。半導体基板の金属汚染やプラズマダメージを生じることも無い。また、従来のウェット洗浄では、アニール処理等の後処理を併用し、複数の工程を必要としていた基板処理が1つの工程で済むようになり効率よく所定の効果を得ることができるため、コストも低減でき、処理速度の大幅な向上が図れた。さらに、プラズマ生成ガスにシャワープレートを備えることにより均一に生成ガスを導入することができ、電極部に貫通する孔を備えることにより低電力でも放電でき、生成したプラズマ中のラジカルを複数のラジカル通過孔を備えたプラズマ分離用のプラズマ閉じ込め電極板を備えることにより処理室に均一にラジカルが導入できた。原子層オーダーで表面荒さが少ない表面処理を実現することにより、その表面上に単結晶Si、SiGe膜を得ることが可能となった。
また、第1の工程により基板表面処理、第2の工程により単結晶成膜を大気に晒すことなく真空中を搬送することにより、界面の不純物が大気搬送の場合よりも少ないため、良好なデバイス特性を得ることができた。
また、第1の工程により基板表面処理、第2の工程により単結晶成膜、第3の工程により誘電体材料をスパッタ成膜、第4の工程により酸化、窒化、酸窒化し、更に第5の工程により金属材料をスパッタ成膜を、全て大気に晒すことなく真空中で搬送することで、半導体/絶縁膜接合の界面の不純物が大気搬送の場合よりも少ないため、従来の酸化膜同等の界面準位密度、膜中の固定電荷密度が得られ、ヒステリシスが小さいC−V曲線が得られ、リーク電流が小さくなり、良好なデバイス特性を得ることができた。
本発明で使用する成膜装置の構成例を示す模式図である。 本発明で使用する装置に設置されているコントローラの模式図である。 本発明で使用する表面処理装置の構成例を示す模式図である。 本発明で使用する表面処理装置の高周波印加電極部の構成例を示す模式図である。 本発明で使用する表面処理装置のプラズマ閉じ込め電極板部の構成例を示す模式図である。 本発明の実施例によって得られた高周波電力密度を変更した場合の自然酸化膜/Siを示すグラフである。 本発明で使用するUV、X線、マイクロ波励起ラジカル表面処理装置の構成例を示す模式図である。 本発明で使用する触媒化学励起ラジカル表面処理装置の構成例を示す模式図である。 本発明で使用する表面処理方法を示す模式図である。 本発明で使用する搬送コントローラプログラムのフローチャートである。 本発明で使用する成膜コントローラプログラムのフローチャートである。 本発明の実施例によって得られた基板処理後の表面粗さ(Ra)を示すグラフと表面のSEM像である。 本発明の実施例によって得られたプラズマ生成ガス比率を変更した場合の処理室ガス比率に対する表面粗さ(Ra)を示すグラフである。 本発明の実施例によって得られたSi及びSiGe成長後の表面のSEM像である。 本発明の実施例によって得られた界面の酸素及び炭素の原子密度を示すグラフである。 本発明の実施例によって得られたC−V曲線である。 本発明の実施例によって得られた界面準位密度と固定電荷密度の従来の酸化膜との比較例である。 本発明の実施例によって得られた等価酸化膜厚(EOT)とリーク電流の関係を示すグラフである。 本発明の処理によりつくられたMOS−FETの図である。 本発明のプラズマ生成ガスのプラズマ室へのガス導入シャワープレートの効果を示す、シリコン酸化膜エッチング速度の基板面内分布の図である。
本発明の実施例を以下に説明する。

以下、添付図面を参照して、本発明の実施の形態を説明する。
本実施例では、図1に示した成膜装置1において、図3に示される表面処理装置100を用いた第1の工程を行いSi基板上に形成された自然酸化膜及び有機物を除去するプロセスに、本発明を適用した例について述べる。
サンプルとして用いた基板5は清浄空気中に放置して自然酸化膜が形成されている直径300mmのSi単結晶基板である。基板5は、図示しない基板搬送機構によりロードロック室50へ搬送され、載置される。次に、図示しない排気系によりロードロック室50は減圧される。所定の圧力、具体的には1Pa以下まで減圧後、ロードロック室と搬送室の間の図示しないゲートバルブが開かれ、トランスファー室の図示しない搬送機構によって、搬送室60を介して表面処理装置100のへ搬送し、基板ホルダー114上に載置する。
図3は、本発明の表面処理装置100の説明図である。
表面処理装置100は、基板5を載置することができる基板ホルダー114を備えた処理室113と、プラズマ生成室108から構成されている。処理室113とプラズマ生成室108は、複数のラジカル通過孔111を備えたプラズマ分離用のプラズマ閉じ込め電極板110で分離されている。
プラズマ生成ガスは、プラズマ生成ガス供給系101とプラズマ生成ガス供給管102を輸送され、プラズマ生成ガス導入シャワープレート107のプラズマ生成ガス導入孔106からプラズマ生成室108のプラズマ生成空間109へ導入される。これにより、プラズマ生成ガスがプラズマ生成室108のプラズマ生成空間109に均一に導入することが可能である。
図20は、本実施例における、プラズマ生成ガス導入シャワープレート107の効果を説明する図である。プラズマ生成ガスとしてHFガス100sccmを使用し、高周波電力密度0.01W/cm、処理室圧力50Paの条件において、処理室に置いた基板のシリコン酸化膜エッチング速度を測定した。図20において、横軸は基板面内の位置を示し、縦軸は中心のエッチング速度で規格化したシリコン酸化膜のエッチング速度を示す。図20に示すように、プラズマ生成ガス導入シャワープレートを使用した場合901と、従来の導入方法であるシャワープレートを使用しない横方向からの導入の場合902とを比較すると、シャワープレートによる導入の場合901の方が、エッチング速度面内均一性が良好であった。これは、プラズマ生成空間109への均一なガス導入により、プラズマ生成空間109で均一な活性種濃度分布が得られ、これが反映されたためと推察される。従って、後述の高周波印加電極104の貫通孔105による均一なプラズマ生成と相乗された効果により、処理室に導入されるラジカル供給がより均一となることが示された。
高周波印加電極104はプラズマ生成室108を上下の2つの区域に仕切るよう上のプラズマ生成ガス導入シャワープレート107に沿って又は下のプラズマ分離用のプラズマ閉じ込め電極板110に沿って延在している。また、高周波印加電極104は貫通する孔105を備えている。高周波電源103により高周波電力が高周波印加電極104へ印加されることにより、プラズマが生成される。
プラズマ分離用のプラズマ閉じ込め電極板110は、プラズマ生成室108と処理室113との間を区切るプラズマ分離用のプラズマ閉じ込め電極板の機能を有している。このプラズマ閉じ込め電極板110には、プラズマ室内のプラズマ中のイオンを遮蔽しラジカルを処理室113に通過させるラジカル導入孔111が設けられている。
プラズマ分離用のプラズマ閉じ込め電極板110は、中空構造となっており、処理室側に開口された複数の処理ガス導入孔が設けられている。この中空構造へ処理ガスを供給することによって、処理室側に開口された複数の処理ガス導入孔112から処理室へ処理ガスが均一供給できる構造となっている。処理ガス導入孔112は、ラジカル導入孔111付近に開口している。処理ガスは、処理ガス供給系116から処理ガス供給管115を通じて輸送され、処理室側に開口された複数の処理ガス導入孔112から処理室へ導入される。前述のラジカル導入孔111から導入されたプラズマ生成ガスに由来するラジカルと、処理ガス導入孔112から導入された処理ガスの分子は、処理室113内で初めて混合され、基板5の表面へ供給される構造となっている。
前述のように、処理室113とプラズマ生成室108を分離しているプラズマ閉じ込め電極板110に設けられているラジカル導入孔111から、プラズマ生成ガスに由来するラジカルが、処理室113へ導入される。ここで、プラズマ生成室108からプラズマ閉じ込め電極板110のラジカル導入孔111を通過して処理室113に導入されるのは、ラジカルなどの電気的に中性な分子、あるいは原子であり、プラズマ中のイオンは処理室113にほとんど導入されない。プラズマ生成室108において、イオン密度がおよそ1×1010個/cmであるとき、処理室においてのイオン密度はおよそ5×10個/cmであり、実に1000万分の1以下にイオンの密度は減少させられており、実質処理室に導入されるイオンはほとんどないと言って良い。これに対してラジカルは、その寿命にもよるが、プラズマ生成室で発生したラジカルのうち数%から数十%程度が処理室へ輸送される。
なお、高周波印加電極104の貫通孔105は、図4に示すような形態のものを用いた。この電極貫通孔105により、電極は0.25W/cm以下の低電力でもより均一に放電できるので、処理室に均一にラジカルが導入される。電極貫通孔を含む高周波印加電極の全体堆積V1と電極貫通孔の体積V2の体積比率は、V2/V1 = 0.01〜0.8であることが好ましく、複数の電極貫通孔の全体積V2があまり大きいと、V2/V1<0.01ではラジカル分布の悪化が確認された。また、V2/V1>0.8では、放電ができなかった。
次に本発明の図1の成膜装置1を使用した半導体素子の製造方法について説明する。
まず、第1の工程の基板処理工程とその条件について説明する。第1の工程で使用する装置は図3に示す基板処理装置100である。
プラズマ生成ガスとしてHFを100sccmプラズマ生成室108に供給し、プラズマ生成部でプラズマを発生させ、生成したプラズマ中のラジカルを複数のラジカル通過孔を備えたプラズマ分離用のプラズマ閉じ込め電極板110に形成されたラジカル導入孔111を介して処理室113に供給した。上記ラジカルの励起エネルギーを抑制するため、処理ガスとしてHFを100sccmを処理室113に処理ガス導入孔112から供給した。プラズマ生成のための高周波電力密度は0.01W/cm、圧力は50Pa、処理時間は5min、基板5の温度は25℃とした。
図12に、本発明の第1の工程後の表面粗さを調べ、従来のドライ処理、およびウェット処理の結果と比較して示す。図12に示される通り、本発明の第1の工程を使用して得られた表面粗さRaは0.18nmと、希フッ酸溶液によるウェット処理(Wet洗浄)を行った場合の表面粗さRaの0.17nmとほぼ同等の良好な表面粗さが得られている。また、処理ガスにHFガスを供給しない場合、表面粗さRaは2.0nmと荒れている。さらに、処理時間を10minと延長した場合でも表面粗さRaは0.19nmと荒れていないことが確認された。表面平坦性が向上した理由については、Siに対し表面自然酸化膜や有機物が選択的に除去された為である。プラズマにより生成した励起エネルギーの高いHFと別途処理ガスとして導入した励起していないHFを衝突させることにより、励起エネルギーが抑制されたHFが生成され、これが表面のSi原子をエッチングすることなく、表面自然酸化膜を選択的に除去していると推察される。これらの結果から、本発明を使用することにより、高温の前処理を必要としないドライ洗浄において、ウェット洗浄と同等の表面平坦性を実現できることが確認された。
なお、本発明における表面平坦性は、プラズマにより生成した励起エネルギーの高いHFと別途処理ガスとして導入した励起していないHFを混合して衝突させることにより、励起エネルギーが抑制されたHFが生成されれば良い。従って、これが実現される状態であれば、本実施例の構成に限定されるものではない。
すなわち、本実施例ではプラズマにより生成したラジカルを、プラズマ閉じ込め電極板にある複数の貫通孔であるラジカル導入孔を通じて基板に向けて供給しながら、同時に電極板に設けた複数の処理ガス供給孔から処理ガスを供給したが、平坦性を得るためには必ずしもこの構造である必要はなく、HFガスが含まれたガスをプラズマ化し、イオンの大部分を遮蔽し中性活性種のみ輸送できるような装置で励起された活性種のみを処理室に導入し、さらに処理室のいずれかの場所から励起しないHFガスを導入することで、実現可能である。
しかし、均一性の観点からは、とりわけ大口径の基板に対して均一な処理をすることが必要である場合には、ラジカルと励起しない処理ガスの両方を均一に基板へ供給する必要がある。そのため、本実施例のように、基板に対向した位置にある電極板からラジカルをシャワー供給し、さらに同時に処理ガスをシャワー供給できるような構造が望ましい。
なお、本実施例でのラジカル生成は、高周波印加によるプラズマ生成により行なったが、マイクロ波によるプラズマ生成、その他の方法でも良く、具体的には図7に示すUV、X線、マイクロ波励起や、図8に示す触媒化学励起で発生させてもよい。図7ではUV、X線、マイクロ波が導入室203からプラズマガスに照射されプラズマガスをプラズマ化している。5は基板、201はプラズマ生成ガス供給系、202はプラズマガス生成供給管、204は複数のラジカル通過孔を備えたプラズマ分離用のプラズマ閉じ込め電極板、205はラジカル導入孔、207は処理室、208は基板ホルダー、209は処理ガス供給管、210は処理ガス供給系、211は排気系である。処理ガスシステムは図3の構成と同じである。図8は加熱触媒体303によりガスをプラズマ化させる構成である。5は基板、301はプラズマ生成ガス供給系、302はプラズマ生成ガス供給管、304は複数のラジカル通過孔を備えたプラズマ分離用のプラズマ閉じ込め電極板、305はラジカル導入孔、306は処理ガス導入孔、307は処理室、308は基板ホルダー、309は処理ガス供給管、310は処理ガス供給系、311は排気系である。処理ガスシステムは図3の構成と同じである。
プラズマ生成室に導入するプラズマ生成ガスは、本実施例ではHFのみを用いたが、少なくともHFを含んでいれば良く、具体的にはHFをArで希釈したものを用いても良い。プラズマを発生させ、プラズマ閉じ込め電極板110を介すことにより、処理室113にはラジカルが導入される。さらに処理室113に導入する処理ガスは、本実施例ではHFのみを用いたが、少なくともHFを含んでいれば良く、具体的にはHFをArで希釈したものを用いても良い。プラズマ閉じ込め電極板110のラジカル導入孔111から処理室113に導入されたラジカルと、処理ガス導入孔112から導入される処理ガスが混合されることによりラジカルの励起エネルギーが抑制された雰囲気を作り出して、基板であるSiに対して基板表面の自然酸化膜と有機物を選択的に除去することによって、表面粗さを抑えながら基板表面処理を行なうことができる。
HFの総ガス流量に対する比率は、0.2〜1.0であることが、基板処理後の表面粗さの観点から望ましい。このことを確認した実験結果について、次に説明する。
図13は、プラズマ生成ガスと処理ガスにHFとArの混合ガスを使用した場合の表面粗さのHF混合比率依存性を示す。図13に示すように、処理ガスのHFとArの混合比率を変えることにより、自然酸化膜除去後の表面粗さが変化した。HFガス流量を増やすことにより、表面粗さが減少できた。なお、プラズマ生成室108に供給するプラズマ生成ガスとしてHFガスを使用し、複数のラジカル通過孔を備えたプラズマ分離用のプラズマ閉じ込め電極板110に形成されたラジカル導入孔111を介してラジカルを供給した場合でも、処理ガスがArのみの場合には、基板表面の自然酸化膜は除去できず、表面処理の目的を達することができなかった。また、プラズマ生成ガスとしてHFガスを使用し、処理ガスとして何も流さなかった場合について調べると、表面粗さのRaは2.5nmと、HFを流した場合と比べ悪化した。また、本実施例ではSi基板を用いたが、本発明の基板表面処理はSi基板の表面処理に限るものではない。具体的にはSi、SiGeなどのIV族半導体で基板の表面が構成されていれば良く、さらに具体的にはガラス基板上に貼り合わせられたり、又は堆積された薄いSi層などのIV族半導体の表面の自然酸化膜や有機物汚染除去などの基板表面処理に適用できるものである。
なお、高周波印加電極104に印加する高周波電力密度は、0.001〜0.25W/cm2であることが好ましい。
図6は、プラズマ生成ガスにHFガス、処理ガスにHFを用いた場合の、自然酸化膜とSiのエッチング速度比である自然酸化膜/Siの高周波電力密度依存性である。高周波電力密度を減少させることにより、Siのエッチングが抑制され、自然酸化膜のみ選択的にエッチングされる。ここで、自然酸化膜のエッチング量をSiのエッチング量で割った値を自然酸化膜/Siとする。高周波電力密度が小さくなるとSiのエッチング量が相対的に減少するため自然酸化膜/Siが増加する。一方、高周波電力密度が大きくなるとSiのエッチングが顕著に起こり、自然酸化膜/Siは減少する。ここで、高周波電力密度が大きくなるとSiのエッチングが起こるため、表面が荒れてしまう。表面の荒れを少なくするためには、自然酸化膜/Siを大きくし、高周波電力密度を少なくする必要がある。このため、高周波電力密度は上述の0.001〜0.25W/cm2の範囲内、望ましくは0.001〜0.125W/cm2、さらに望ましくは0.001〜0.025W/cm2が選ばれる。
次に第2の工程のSi及びSiGeエピタキシャル単結晶成長工程とその条件について説明する。
図1に示した成膜装置1を用いて、図3に示される表面処理装置100を用いた第1の工程を行うことにより、Si基板上に形成された自然酸化膜を除去した後、真空トランスファーチャンバー60を通して第2の工程を行うCVD装置20に搬送し、表面処理処理後の表面にSi及びSiGeの単結晶膜を成長するプロセスについて述べる。
第1の工程により表面処理し、第2の工程を行うCVD装置20内で基板温度600℃、Si2H6を36sccm供給し、圧力を2E-3Paで保持し、3min処理した。その後、基板温度600℃、Si2H6とGeH4を36sccm供給し、圧力を4E-3Paで保持し、3min処理した。この結果、図14に示すようにSi上のSiGe単結晶成長表面は、希フッ酸処理を用いたウェット洗浄(Wet洗浄)を行った表面と同等の表面粗さとなっており、良好なSiGe単結晶膜が得られた。また、図15に示すように、ウェット洗浄を行った後に上記Si/SiGe成長を行った場合に比べて、本実施例の方がSi基板と成長したSi界面の酸素及び炭素の原子密度が少ない。具体的には、界面の酸素及び炭素の原子密度が2×1020atoms/cm3以下である。これは、基板洗浄後の表面を大気に晒すことなく真空搬送を行うことにより、表面への酸素、炭素不純物の吸着を抑制できたためである。CVD装置20におけるSi及びSiGeの単結晶膜を成長するプロセスにおいては、Si26とGeH4などの水素化物ガスや、それにB26、PH3、AsH3などのドーピング材料ガスを混合して使用しても良い。又、Si26の代わりにSiH4も用い得る。
次に第3の工程の誘電体膜スパッタ成膜工程と、第4の形成誘電体膜の工程の酸化・窒化工程と、第5の工程の電極スパッタ工程について説明する。

第2の工程後、基板をトランスファーチャンバー60を通してスパッタ装置40で誘電体材料をスパッタ成膜する第3の工程を行い、この基板をトランスファーチャンバー60を通して酸化・窒化装置30で誘電体材料を酸化する第4の工程を行い、その後、基板をトランスファーチャンバー60を通してスパッタ装置40で金属電極材料をスパッタする第5の工程を行うプロセスを行い、FETデバイスを製造する。なお、装置10〜50は、それぞれの搬送又はプロセスコントローラ70〜74により制御されている。
尚、第3の工程における誘電体材料成膜は、スパッタリングの他、CVDによるものであっても良い。同様に、第5の工程における金属電極材料成膜は、スパッタリングの他、CVDによるものであっても良い。
図3に示される表面処理装置100において、第1の工程を行い、自然酸化膜を除去し、第2の工程を行い、Si単結晶膜を成長させ、その後、基板5を真空トランスファーチャンバー60を通して誘電体・電極スパッタ装置40に大気に晒すことなく搬送し、Hfをスパッタ成膜し、成膜した誘電体材料を酸化するため真空のトランスファーチャンバー60を通して酸化・窒化装置30に誘電体材料表面を大気に晒すことなく搬送し、プラズマ及びラジカル酸化を行い、さらに基板5を真空トランスファーチャンバー60を通して誘電体・電極スパッタ装置40に大気に晒すことなく搬送し、TiN電極をスパッタ成膜しデバイス特性評価を行った結果、図16、図17、図18に示すデータが得られた。
図15は、本発明と従来の技術(第1の工程の変わりにWet洗浄した場合)により作成したサンプルの電極部に電圧を印加し、キャパシタンスを測定したC−V曲線である。従来の技術と比較し、従来が30mV程のヒステリシスであったものが、ヒステリシスが10mVと小さい結果が得られている。
図17は、本発明によって得られた界面準位密度と固定電荷密度の従来の技術(第1の工程の変わりにWet洗浄した場合)との比較結果である。本発明のプロセスでサンプルを作成し、C−V曲線から界面準位密度と固定電荷密度を計算した結果、固定電荷密度、界面準位密度が従来よりも小さくなっている。これは、図15に示すように、第1の工程の基板洗浄後に第2の工程により成膜したSi表面の酸素、炭素の表面不純物が少ないためである。即ち、ドライ洗浄後の真空一貫処理の効果である。
図1の成膜装置1は、一連のプロセスを真空一貫で行うためのコントローラを各プロセス装置と搬送装置毎に設けられており、すなわち、搬送コントローラ70は、装置からの入力信号を入力部で信号を受け取り、プロセッサでフローチャートで動作させるようにプログラムされた搬送用プログラムを動かし、真空トランスファーを通しての基板の各プロセス装置への移動の動作指示を装置に出力できるようになっている。また、プロセスコントローラA〜D(71〜74)は、プロセス装置からの入力信号を受け取り、処理をフローチャートで動作させるようにプログラムされたプログラムを動かし、動作指示を装置に出力できるようになっている。コントロール70又は71〜74の構成は図2に示すもので、入力部82、プログラム及びデータを有する記憶部83、プロセッサ84及び出力部85からなり、基本的にはコンピュータ構成であり、対応の装置を制御している。
図9に搬送コントローラ70とプロセスコントローラA〜D71〜74の行う制御を示す。ステップ610で自然酸化膜付きSi基板が準備される。搬送コントローラ70はロードロック装置50によるトランスになるよう制御する(ステップ611)。更に表面処理装置100の真空度を1E−4Pa以上になるように指示をし、基板Sを表面処理装置100内にトランスファーチャンバ60を介して移動し、基板ホルダー上に配置する。プロセスコントローラA71は、前述の第1の工程の表面処理を基板5に行う手順を制御する(ステップ613)。
搬送コントローラ70は、CVD成膜装置20の真空度を1E−4Pa以下になるよう真空排気する制御を行い、表面処理装置100内の基板5をトランスファーチャンバ60を介してCVD成膜装置20内に配置する。
プロセスコントローラB72は、CVD成膜装置20内で上述した第2の工程の単結晶成長処理を行う制御をする(ステップ615)。その後直ちに第3の工程の誘電体・電極スパッタ成膜をするためトランスファーチャンバ60を介して誘電体・電極スパッタ装置40内に移動させる(ステップ616)。
プロセスコントローラC73は、誘電体・電極スパッタ装置40内で、第3の工程の成膜処理を行う制御をする(ステップ617)。搬送コントローラ70は酸化・窒化装置30内の真空度を1E−4Pa以下にして、誘電体・電極スパッタ装置40内の基板5を酸化・窒化装置30内へトランスファーチャンバ60を介して移動させる(ステップ618)。プロセスコントローラD74は、酸化・窒化装置30内で第4の工程を行う制御をする(ステップ619)。その後直ちに第5の工程の金属電極スパッタ成膜をするためトランスファーチャンバ60を介して誘電体・電極スパッタ装置40内に移動させる(ステップ620)。プロセスコントローラC73は、誘電体・電極スパッタ装置40内で、実施例3の成膜処理を行う制御をする(ステップ621)。その後、搬送コントローラ70は、ロードロック装置50によりトランスファーチャンバ60内を大気に開放する(ステップ622)。
上述の本発明の処理によって、図19のMOS電界効果トランジスタ(FET)90が製造された。Si基板91におけるソース領域92とドレイン領域93との間のゲート電極94下の誘電体ゲート絶縁膜95として、HfO膜が用いられた。このゲート絶縁膜95として、他に、Hf、La、Ta、Al、W、Ti、Si、Geもしくはそれらの合金膜であることが望ましく、さらに具体的にはHfN、HfON、HfLaO、HfLaN、HfLaON、HfAlLaO、HfAlLaN、HfAlLaON、LaAlO、LaAlN、LaAlON、LaO、LaN、LaON、HfSiO、HfSiONが採用され得、比誘電率は3.9〜100の範囲にある。そして固定電荷密度は0〜1×1011cm-2である。又、ゲート絶縁層の膜厚は0.5nm〜5.0nmとされている。
ここで、「固定電荷」とは、固定酸化膜電荷とも称するが、SiO2膜中に存在し、電界などで移動せず固定された状態の電荷を云う。固定酸化膜電荷は酸化膜の構造欠陥により生じ、酸化膜の形成状態や熱処理に依存する。また通常Si−SiO2界面近傍にはシリコンの未結合手(ダングリングボンド)に起因するプラスの固定電荷が存在する。固定酸化膜電荷は、MOS構造のC−V特性をゲート電圧軸に沿って平行移動させる。固定電荷密度は、C−V法で測定される。
図19のMOS−FETのゲート電極94として、Ti、Al、TiN、TaN、W等の金属、ポリシリコン(B(ボロン)−dope:p−Type又はP(リン)−dope:n−Type)又はNi−FUSI(フルシリサイド)が用いられる。
本発明に従って、自然酸化膜が形成されたSi基板を表面処理し、大気に晒すことなくSi単結晶膜を成長し、さらに大気に晒すことなくHf等の誘電膜をスパッタ成膜し酸化・窒化した半導体/絶縁膜接合は、固定電荷や界面準位が大気搬送の接合よりも少ないため、図16のようなヒステリシスが小さいC−V曲線が得られ、リーク電流が小さくなり、良好なデバイス特性が得られた。「界面準位」とは、異種の半導体接合界面、半導体と金属や絶縁体との接合界面に形成される電子のエネルギー準位を云う。界面では半導体面は原子間の結合が切れた状態になるためダングリングボンドと呼ばれる未結合状態ができ、電荷を捕獲できるエネルギー準位を形成する。界面の不純物や欠陥も電荷を捕獲するエネルギー準位、即ち界面準位を形成する。一般に、界面準位は応答時間が遅く、また不安定であり、デバイス特性に悪影響を及ぼすことが多い。界面準位が少ないほどよい界面といえる。界面準位密度はC−V法で測定される。
なお、本発明の成膜装置では図1に示される通り、表面処理ユニット100、CVD成膜ユニット20、誘電体・電極スパッタユニット30、酸化・窒化ユニット40、ロードロック室50、搬送室60は各1つずつの構成を使用しているが、各ユニットは必ずしも1つずつである必要はなく、スループットや膜の構成などのために複数のユニットを備えても構わない。例えば、ロードロックはスループットを上げるためにロードとアンロードの機能を分けた複数のロードロックで置き換えても構わない。また例えば、スパッタユニット30は誘電体膜を形成するためのユニットと電極を形成するためのユニットの2つ以上のスパッタユニットで置き換えても構わない。
ただし本発明の平坦な表面を維持しながらドライ基板表面処理を行なうことが可能な基板処理方法を有効に使用するためには、表面処理ユニット100、CVD成膜ユニット20、ロードロック室50、搬送室60を少なくとも1つ以上備えていることが好ましい。この構成を持つことにより、ロードロックがあるため安定した雰囲気の減圧状態で高いスループットでドライ基板表面処理を行なうことが可能となり、大気中に基板を持ち出すことなく真空中を搬送室を通してCVD成膜ユニットへ搬送し、成膜を行なうことによって、Si基板表面とCVD成膜したSi/SiGe層との界面状態を良好に保つことが可能となるからである。
またさらに、本発明の平坦な表面を維持しながらドライ基板表面処理を行なうことが可能な基板処理方法を有効に使用するためには、表面処理ユニット100、誘電体・電極スパッタユニット30、ロードロック室50、搬送室60を少なくとも1つ以上備えていることが好ましい。この構成を持つことにより、ロードロックがあるため安定した雰囲気の減圧状態で高いスループットでドライ基板表面処理を行なうことが可能となり、大気中に基板を持ち出すことなく真空中を搬送室を通して誘電体・電極スパッタユニット30へ搬送し、成膜を行なうことによって、Si基板表面と、その上にスパッタ成膜した、絶縁膜の基礎となる誘電体膜または導電性膜との界面状態を、良好に保つことが可能となるからである。
本実施例ではCVD成膜ユニット20の詳細は図示していないが、チャンバと、基板を保持するための基板ホルダーと保持された基板を加熱するための基板加熱機構と、CVD成膜を行なうための原料ガスを含むガスを供給するためのガス導入機構と、チャンバ内部を排気するための排気手段を備えているエピタキシャル成膜ユニットであれば良い。
同様にスパッタユニット30の詳細は図示していないが、チャンバと、基板を保持するための基板ホルダーと、チャンバ内にガスを導入する機構と、チャンバ内を排気する排気手段、および誘電体又は導電性金属のターゲットを設置するためのスパッタリングカソード、そして高周波電力供給機構又は直流電力供給機構があれば良い。
なお、スパッタユニット30の図示しない誘電体又は導電性金属のターゲットを設置するためのスパッタリングカソードは、1つである必要はない。連続または連続しない複数の膜を成膜するため、複数のターゲットを設置するための複数のスパッタリングカソードを備えても良い。また、成膜分布の均一性の観点から、基板ホルダーは載置された基板を回転させるために回転する機構を備えることが好ましい。また、反応性スパッタによる成膜が行なえるように、スパッタユニット30のガス導入機構は、Arなどの不活性ガスのみならず、NやOなどの反応性ガス、またはそれら反応性ガスとArガスとの混合ガスも導入できるようになっていることが好ましい。

Claims (11)

  1. 処理室内に配置された半導体基板の表面を処理する方法であって、
    プラズマ生成室内においてフッ化水素を含有するプラズマ生成ガスを励起して、プラズマを生成し、
    該プラズマ中のイオンを遮蔽し、かつ該プラズマ中のラジカルを該プラズマ生成室から該処理室へと選択的に通過させ
    該処理室内に、励起されていないフッ化水素を含有する処理ガスを導入し、
    該処理室内に導入されたラジカルと該処理ガスとの混合した雰囲気によって、該半導体基板の表面を処理している方法。
  2. 該処理ガスが、実質的にフッ化水素からなる請求項の方法。
  3. 該プラズマ生成ガスが、実質的にフッ化水素からなる請求項の方法。
  4. 該ラジカル選択的に通過させることは、該プラズマ室と該処理室とを仕切るプラズマ閉じ込め電極板のラジカル通過孔を通して、該プラズマ中のイオンを遮蔽しラジカルを該プラズマ室から該処理室へ通過させることで、行なわれている請求項の方法。
  5. 該半導体基板はSi基板であり、Si基板の自然酸化膜をエッチング除去して該Si基板を洗浄処理している請求項の方法。
  6. MOS構造におけるゲート絶縁膜を形成する方法において、
    請求項の方法にてSi基板の表面洗浄をし、
    該表面洗浄されたSi基板を大気に晒すことなくエピタキシャル室に移動させ、該エピタキシャル室で該表面洗浄されたSi基板上にエピタキシャル層を形成し、
    該エピタキシャル層が形成されたSi基板を大気に晒すことなくスパッタ室に移動させ、該エピタキシャル層上に誘電体膜をスパッタリングで形成し、そして
    該誘電体膜の形成されたSi基板を大気に晒すことなく酸化・窒化室に移動させ、該誘電体膜を酸化・窒化又は酸窒化して該ゲート絶縁膜を形成している方法。
  7. 該誘電体膜は、Hf、La、Ta、Al、W、Ti、Si、Geのグループから選択されたもの又はそれらの合金である請求項の方法。
  8. 半導体基板の表面を処理する処理室を含む半導体基板処理装置であって
    フッ化水素を含有するプラズマ生成ガスを励起して、プラズマを生成するプラズマ生成室、
    該プラズマ中のイオンを遮蔽し、かつ該プラズマ中のラジカルを該プラズマ生成室から該処理室へ選択的に通過させる手段、及び
    該処理室内に、励起されていないフッ化水素を含有する処理ガスを導入する手段、を備え
    該処理室内に導入されたラジカルと該処理ガスとの混合した雰囲気によって、該半導体基板の表面を処理することを特徴とする半導体基板処理装置。
  9. 該ラジカル選択的に通過させる手段は、該プラズマ室と該処理室とを仕切るプラズマ閉じ込め電極板であって、該プラズマ閉じ込め電極板には該プラズマ室と該処理室とを連通するラジカル通過孔が設けられ、該ラジカル通過孔を通して該プラズマ中のイオンを遮蔽しラジカルを該プラズマ室から処理室へ通過させることを特徴とする請求項の半導体基板処理装置。
  10. 該プラズマ生成ガスが、総プラズマ生成ガス量に対し0.2〜1.0の比率のフッ化水素を含み、
    該処理ガスが、総処理ガス量に対し0.2〜1.0の比率の励起されていないフッ化水素を含む、
    ことを特徴とする請求項1の方法。
  11. 該プラズマ生成ガスが、総プラズマ生成ガス量に対し0.2〜1.0の比率のフッ化水素を含み、
    該処理ガスが、総処理ガス量に対し0.2〜1.0の比率の励起されていないフッ化水素を含む、
    ことを特徴とする請求項8の半導体基板処理装置。
JP2009538898A 2007-11-02 2007-11-02 表面処理装置およびその基板処理方法 Active JP5006938B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2007/071393 WO2009057223A1 (ja) 2007-11-02 2007-11-02 表面処理装置およびその基板処理方法

Publications (2)

Publication Number Publication Date
JPWO2009057223A1 JPWO2009057223A1 (ja) 2011-03-10
JP5006938B2 true JP5006938B2 (ja) 2012-08-22

Family

ID=40590632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009538898A Active JP5006938B2 (ja) 2007-11-02 2007-11-02 表面処理装置およびその基板処理方法

Country Status (5)

Country Link
US (3) US20100221895A1 (ja)
JP (1) JP5006938B2 (ja)
KR (1) KR101503412B1 (ja)
CN (2) CN101971298A (ja)
WO (2) WO2009057223A1 (ja)

Families Citing this family (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102310063A (zh) * 2010-06-29 2012-01-11 中国科学院微电子研究所 蜂窝形状等离子体自由基清洗系统
JP5955062B2 (ja) * 2011-04-25 2016-07-20 東京エレクトロン株式会社 プラズマ処理装置
US9234276B2 (en) 2013-05-31 2016-01-12 Novellus Systems, Inc. Method to obtain SiC class of films of desired composition and film properties
US10325773B2 (en) 2012-06-12 2019-06-18 Novellus Systems, Inc. Conformal deposition of silicon carbide films
US10832904B2 (en) 2012-06-12 2020-11-10 Lam Research Corporation Remote plasma based deposition of oxygen doped silicon carbide films
US9132436B2 (en) 2012-09-21 2015-09-15 Applied Materials, Inc. Chemical control features in wafer process equipment
CN203237432U (zh) * 2012-12-24 2013-10-16 鸿准精密模具(昆山)有限公司 贴膜机构
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US10297442B2 (en) 2013-05-31 2019-05-21 Lam Research Corporation Remote plasma based deposition of graded or multi-layered silicon carbide film
US9371579B2 (en) * 2013-10-24 2016-06-21 Lam Research Corporation Ground state hydrogen radical sources for chemical vapor deposition of silicon-carbon-containing films
CN103681244B (zh) * 2013-12-25 2016-09-14 深圳市华星光电技术有限公司 低温多晶硅薄膜的制备方法及其制作系统
KR101550526B1 (ko) * 2014-02-21 2015-09-04 에스티에스반도체통신 주식회사 클러스터형 반도체 제조장치 및 이를 이용한 반도체 소자 제조방법
CN105097423B (zh) * 2014-05-12 2018-09-18 中芯国际集成电路制造(上海)有限公司 等离子体反应器及清除等离子体反应腔室颗粒污染的方法
JP2016066641A (ja) * 2014-09-22 2016-04-28 株式会社東芝 半導体装置及び半導体装置の製造方法
US9355922B2 (en) 2014-10-14 2016-05-31 Applied Materials, Inc. Systems and methods for internal surface conditioning in plasma processing equipment
US9966240B2 (en) 2014-10-14 2018-05-08 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
US11637002B2 (en) 2014-11-26 2023-04-25 Applied Materials, Inc. Methods and systems to enhance process uniformity
US10573496B2 (en) 2014-12-09 2020-02-25 Applied Materials, Inc. Direct outlet toroidal plasma source
US20160225652A1 (en) 2015-02-03 2016-08-04 Applied Materials, Inc. Low temperature chuck for plasma processing systems
US20160314964A1 (en) 2015-04-21 2016-10-27 Lam Research Corporation Gap fill using carbon-based films
JP6564642B2 (ja) * 2015-07-23 2019-08-21 東京エレクトロン株式会社 基板搬送室、基板処理システム、及び基板搬送室内のガス置換方法
US9741593B2 (en) 2015-08-06 2017-08-22 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US9691645B2 (en) 2015-08-06 2017-06-27 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
US9349605B1 (en) * 2015-08-07 2016-05-24 Applied Materials, Inc. Oxide etch selectivity systems and methods
US10504700B2 (en) 2015-08-27 2019-12-10 Applied Materials, Inc. Plasma etching systems and methods with secondary plasma injection
US10522371B2 (en) 2016-05-19 2019-12-31 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US10504754B2 (en) 2016-05-19 2019-12-10 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US10629473B2 (en) 2016-09-09 2020-04-21 Applied Materials, Inc. Footing removal for nitride spacer
WO2018052474A2 (en) * 2016-09-16 2018-03-22 Applied Materials, Inc. Uv radiation system and method for arsenic outgassing control in sub 7nm cmos fabrication
US9934942B1 (en) 2016-10-04 2018-04-03 Applied Materials, Inc. Chamber with flow-through source
US10546729B2 (en) * 2016-10-04 2020-01-28 Applied Materials, Inc. Dual-channel showerhead with improved profile
US10163696B2 (en) 2016-11-11 2018-12-25 Applied Materials, Inc. Selective cobalt removal for bottom up gapfill
US10026621B2 (en) 2016-11-14 2018-07-17 Applied Materials, Inc. SiN spacer profile patterning
US10002787B2 (en) 2016-11-23 2018-06-19 Lam Research Corporation Staircase encapsulation in 3D NAND fabrication
US10431429B2 (en) 2017-02-03 2019-10-01 Applied Materials, Inc. Systems and methods for radial and azimuthal control of plasma uniformity
US10319739B2 (en) 2017-02-08 2019-06-11 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
KR20180096853A (ko) * 2017-02-20 2018-08-30 삼성디스플레이 주식회사 박막 증착 장치
US10943834B2 (en) 2017-03-13 2021-03-09 Applied Materials, Inc. Replacement contact process
CN108668422B (zh) * 2017-03-30 2021-06-08 北京北方华创微电子装备有限公司 一种等离子体产生腔室和等离子体处理装置
US11276590B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Multi-zone semiconductor substrate supports
US11276559B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Semiconductor processing chamber for multiple precursor flow
US10920320B2 (en) 2017-06-16 2021-02-16 Applied Materials, Inc. Plasma health determination in semiconductor substrate processing reactors
US10541246B2 (en) 2017-06-26 2020-01-21 Applied Materials, Inc. 3D flash memory cells which discourage cross-cell electrical tunneling
JP6902941B2 (ja) * 2017-06-29 2021-07-14 東京エレクトロン株式会社 プラズマ処理方法およびプラズマ処理装置
US10727080B2 (en) 2017-07-07 2020-07-28 Applied Materials, Inc. Tantalum-containing material removal
WO2019012978A1 (ja) * 2017-07-10 2019-01-17 東京エレクトロン株式会社 基板搬送装置および基板搬送方法
US10541184B2 (en) 2017-07-11 2020-01-21 Applied Materials, Inc. Optical emission spectroscopic techniques for monitoring etching
US10043674B1 (en) 2017-08-04 2018-08-07 Applied Materials, Inc. Germanium etching systems and methods
US10297458B2 (en) 2017-08-07 2019-05-21 Applied Materials, Inc. Process window widening using coated parts in plasma etch processes
US20190093214A1 (en) * 2017-09-22 2019-03-28 Applied Materials, Inc. Native or uncontrolled oxide reduction by a cyclic process of plasma treatment and h* radicals
JP2019075517A (ja) * 2017-10-19 2019-05-16 東京エレクトロン株式会社 処理装置及び拡散路を有する部材
US10903054B2 (en) 2017-12-19 2021-01-26 Applied Materials, Inc. Multi-zone gas distribution systems and methods
US11328909B2 (en) 2017-12-22 2022-05-10 Applied Materials, Inc. Chamber conditioning and removal processes
JP6556822B2 (ja) * 2017-12-26 2019-08-07 キヤノントッキ株式会社 基板処理方法、基板処理装置、及び、成膜装置
US10854426B2 (en) 2018-01-08 2020-12-01 Applied Materials, Inc. Metal recess for semiconductor structures
CN108346561B (zh) * 2018-02-09 2020-12-22 信利(惠州)智能显示有限公司 栅极绝缘层成膜前的多晶硅层处理方法及处理系统
US10964512B2 (en) 2018-02-15 2021-03-30 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus and methods
US10679870B2 (en) 2018-02-15 2020-06-09 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus
TWI716818B (zh) 2018-02-28 2021-01-21 美商應用材料股份有限公司 形成氣隙的系統及方法
US10593560B2 (en) 2018-03-01 2020-03-17 Applied Materials, Inc. Magnetic induction plasma source for semiconductor processes and equipment
US10319600B1 (en) 2018-03-12 2019-06-11 Applied Materials, Inc. Thermal silicon etch
US10497573B2 (en) 2018-03-13 2019-12-03 Applied Materials, Inc. Selective atomic layer etching of semiconductor materials
US10573527B2 (en) 2018-04-06 2020-02-25 Applied Materials, Inc. Gas-phase selective etching systems and methods
US10490406B2 (en) 2018-04-10 2019-11-26 Appled Materials, Inc. Systems and methods for material breakthrough
US10699879B2 (en) 2018-04-17 2020-06-30 Applied Materials, Inc. Two piece electrode assembly with gap for plasma control
US10943768B2 (en) * 2018-04-20 2021-03-09 Applied Materials, Inc. Modular high-frequency source with integrated gas distribution
US10886137B2 (en) 2018-04-30 2021-01-05 Applied Materials, Inc. Selective nitride removal
US10872778B2 (en) 2018-07-06 2020-12-22 Applied Materials, Inc. Systems and methods utilizing solid-phase etchants
US10755941B2 (en) 2018-07-06 2020-08-25 Applied Materials, Inc. Self-limiting selective etching systems and methods
US10840087B2 (en) 2018-07-20 2020-11-17 Lam Research Corporation Remote plasma based deposition of boron nitride, boron carbide, and boron carbonitride films
US10672642B2 (en) 2018-07-24 2020-06-02 Applied Materials, Inc. Systems and methods for pedestal configuration
US11049755B2 (en) 2018-09-14 2021-06-29 Applied Materials, Inc. Semiconductor substrate supports with embedded RF shield
US10892198B2 (en) 2018-09-14 2021-01-12 Applied Materials, Inc. Systems and methods for improved performance in semiconductor processing
US11062887B2 (en) 2018-09-17 2021-07-13 Applied Materials, Inc. High temperature RF heater pedestals
US11417534B2 (en) 2018-09-21 2022-08-16 Applied Materials, Inc. Selective material removal
US11682560B2 (en) 2018-10-11 2023-06-20 Applied Materials, Inc. Systems and methods for hafnium-containing film removal
KR20220056249A (ko) 2018-10-19 2022-05-04 램 리써치 코포레이션 갭 충진 (gapfill) 을 위한 도핑되거나 도핑되지 않은 실리콘 카바이드 증착 및 원격 수소 플라즈마 노출
US11121002B2 (en) 2018-10-24 2021-09-14 Applied Materials, Inc. Systems and methods for etching metals and metal derivatives
US11355620B2 (en) * 2018-10-31 2022-06-07 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET device and method of forming same
US11437242B2 (en) 2018-11-27 2022-09-06 Applied Materials, Inc. Selective removal of silicon-containing materials
US11721527B2 (en) 2019-01-07 2023-08-08 Applied Materials, Inc. Processing chamber mixing systems
US10920319B2 (en) 2019-01-11 2021-02-16 Applied Materials, Inc. Ceramic showerheads with conductive electrodes
US11217672B2 (en) * 2019-08-30 2022-01-04 Taiwan Semiconductor Manufacturing Company, Ltd. Method of forming a source/drain
CN110993467B (zh) * 2019-12-10 2022-07-01 南京三乐集团有限公司 一种微波真空电子器件用阴极的复式表面处理方法
CN112692463A (zh) * 2021-03-25 2021-04-23 快克智能装备股份有限公司 一种电子装联焊接工艺

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004128281A (ja) * 2002-10-03 2004-04-22 Tokyo Electron Ltd 基板処理方法および基板処理装置

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6066823A (ja) * 1983-09-22 1985-04-17 Semiconductor Energy Lab Co Ltd 半導体エッチング方法
US5089441A (en) * 1990-04-16 1992-02-18 Texas Instruments Incorporated Low-temperature in-situ dry cleaning process for semiconductor wafers
JPH0496226A (ja) 1990-08-03 1992-03-27 Fujitsu Ltd 半導体装置の製造方法
DE4029268C2 (de) * 1990-09-14 1995-07-06 Balzers Hochvakuum Verfahren zur gleichspannungs-bogenentladungs-unterstützten, reaktiven Behandlung von Gut und Vakuumbehandlungsanlage zur Durchführung
JPH06120181A (ja) * 1992-10-05 1994-04-28 Hitachi Ltd 半導体製造方法および装置
JPH06236850A (ja) * 1993-02-10 1994-08-23 Sony Corp プラズマ処理装置
JP2804700B2 (ja) * 1993-03-31 1998-09-30 富士通株式会社 半導体装置の製造装置及び半導体装置の製造方法
JPH07307332A (ja) * 1994-05-10 1995-11-21 Nippon Telegr & Teleph Corp <Ntt> 表面清浄化法および薄膜形成法
JPH10147877A (ja) 1996-11-19 1998-06-02 Kokusai Electric Co Ltd ガスクリーニング方法
JP2950785B2 (ja) * 1996-12-09 1999-09-20 セントラル硝子株式会社 酸化膜のドライエッチング方法
US6107192A (en) * 1997-12-30 2000-08-22 Applied Materials, Inc. Reactive preclean prior to metallization for sub-quarter micron application
US6892669B2 (en) * 1998-02-26 2005-05-17 Anelva Corporation CVD apparatus
EP1198610A4 (en) * 1999-05-14 2004-04-07 Univ California PLASMA POWER GENERATING DEVICE WITH A LARGE PRESSURE RANGE AT LOW TEMPERATURES
JP3317935B2 (ja) 1999-09-01 2002-08-26 九州日本電気株式会社 プラズマ処理装置
US6313042B1 (en) * 1999-09-03 2001-11-06 Applied Materials, Inc. Cleaning contact with successive fluorine and hydrogen plasmas
JP4378806B2 (ja) * 1999-09-28 2009-12-09 日本電気株式会社 Cvd装置およびその基板洗浄方法
JP3366301B2 (ja) * 1999-11-10 2003-01-14 日本電気株式会社 プラズマcvd装置
JP2001164371A (ja) * 1999-12-07 2001-06-19 Nec Corp プラズマcvd装置およびプラズマcvd成膜法
US8173783B2 (en) 2000-12-08 2012-05-08 Good Biotech Corporation Process for selectively isolating IgY antibodies from egg yolk of an anseriform bird and IgY antibodies obtained thereby
US7111629B2 (en) * 2001-01-08 2006-09-26 Apl Co., Ltd. Method for cleaning substrate surface
US20020124867A1 (en) * 2001-01-08 2002-09-12 Apl Co., Ltd. Apparatus and method for surface cleaning using plasma
JP4016598B2 (ja) * 2001-01-16 2007-12-05 株式会社日立製作所 半導体装置の製造方法
JP3989286B2 (ja) * 2002-04-26 2007-10-10 株式会社ルネサステクノロジ 半導体装置の製造方法
US6713402B2 (en) * 2002-05-31 2004-03-30 Texas Instruments Incorporated Methods for polymer removal following etch-stop layer etch
JP3997859B2 (ja) * 2002-07-25 2007-10-24 株式会社日立製作所 半導体装置の製造方法および製造装置
JP3991805B2 (ja) * 2002-07-25 2007-10-17 株式会社日立製作所 ドライ洗浄装置及びドライ洗浄方法
US6921703B2 (en) * 2003-05-13 2005-07-26 Texas Instruments Incorporated System and method for mitigating oxide growth in a gate dielectric
JP4115337B2 (ja) 2003-05-30 2008-07-09 俊夫 後藤 プラズマ処理装置
JP2005064120A (ja) 2003-08-08 2005-03-10 Shibaura Mechatronics Corp プラズマ処理装置およびプラズマ処理方法
US20050211171A1 (en) * 2004-03-26 2005-09-29 Applied Materials, Inc. Chemical vapor deposition plasma reactor having an ion shower grid
US20050223986A1 (en) * 2004-04-12 2005-10-13 Choi Soo Y Gas diffusion shower head design for large area plasma enhanced chemical vapor deposition
EP1586674A1 (en) * 2004-04-14 2005-10-19 Nederlandse Organisatie voor Toegepast-Natuuurwetenschappelijk Onderzoek TNO Coatings, and methods and devices for the manufacture thereof
US7381291B2 (en) * 2004-07-29 2008-06-03 Asm Japan K.K. Dual-chamber plasma processing apparatus
JP2006049544A (ja) * 2004-08-04 2006-02-16 Canon Anelva Corp 基板処理装置及びこれを用いた基板処理方法
CN100555657C (zh) * 2005-03-04 2009-10-28 住友电气工业株式会社 垂直氮化镓半导体器件和外延衬底
US7432201B2 (en) * 2005-07-19 2008-10-07 Applied Materials, Inc. Hybrid PVD-CVD system
JP2007273752A (ja) * 2006-03-31 2007-10-18 Mitsui Eng & Shipbuild Co Ltd プラズマ処理装置およびプラズマ生成装置
JP2008072029A (ja) 2006-09-15 2008-03-27 Sumitomo Chemical Co Ltd 半導体エピタキシャル結晶基板の製造方法
JP2008112750A (ja) 2006-10-27 2008-05-15 Furukawa Electric Co Ltd:The 半導体素子製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004128281A (ja) * 2002-10-03 2004-04-22 Tokyo Electron Ltd 基板処理方法および基板処理装置

Also Published As

Publication number Publication date
WO2009057395A1 (ja) 2009-05-07
CN101919030B (zh) 2012-07-04
CN101919030A (zh) 2010-12-15
CN101971298A (zh) 2011-02-09
US20100255667A1 (en) 2010-10-07
KR101503412B1 (ko) 2015-03-17
JPWO2009057223A1 (ja) 2011-03-10
US20100221895A1 (en) 2010-09-02
US20160343565A1 (en) 2016-11-24
WO2009057223A1 (ja) 2009-05-07
KR20100033328A (ko) 2010-03-29
US10083830B2 (en) 2018-09-25

Similar Documents

Publication Publication Date Title
JP5006938B2 (ja) 表面処理装置およびその基板処理方法
US10192735B2 (en) Substrate processing method and substrate processing apparatus
JP4708426B2 (ja) 半導体基板を処理する方法
JP4914902B2 (ja) シリサイド形成方法とその装置
US8309440B2 (en) Method and apparatus for cleaning a substrate surface
CN108573866B (zh) 氧化膜去除方法和装置以及接触部形成方法和系统
KR101307658B1 (ko) 반도체 소자 형성 방법 및 mosfet 소자 형성 방법
US20080076268A1 (en) Fluorine plasma treatment of high-k gate stack for defect passivation
KR102118784B1 (ko) 산화막 제거 방법 및 제거 장치, 그리고 컨택트 형성 방법 및 컨택트 형성 시스템
KR20080073336A (ko) 금속계막의 탈탄소 처리 방법, 성막 방법 및 반도체 장치의제조 방법
JP2011029478A (ja) 誘電体膜、誘電体膜を用いた半導体装置の製造方法及び半導体製造装置
JP5006415B2 (ja) 酸化膜除去のための基板洗浄処理方法
JP4503095B2 (ja) 半導体素子の製造方法
JP2010074065A (ja) 酸化膜除去のための基板洗浄処理方法
JP2018049896A (ja) プラズマ処理方法
TW201001535A (en) Method of semiconductor processing
US20150179743A1 (en) Graphene as a Ge Surface Passivation Layer to Control Metal-Semiconductor Junction Resistivity
JPH05343391A (ja) 半導体装置の製造方法
JP2006237640A (ja) 半導体製造方法
KR20220116254A (ko) 트렌치 구조들 내의 선택적 텅스텐 증착
JPH07235530A (ja) 絶縁膜の形成方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120521

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120525

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5006938

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250