JP4874508B2 - エピトープ配列 - Google Patents

エピトープ配列 Download PDF

Info

Publication number
JP4874508B2
JP4874508B2 JP2002580010A JP2002580010A JP4874508B2 JP 4874508 B2 JP4874508 B2 JP 4874508B2 JP 2002580010 A JP2002580010 A JP 2002580010A JP 2002580010 A JP2002580010 A JP 2002580010A JP 4874508 B2 JP4874508 B2 JP 4874508B2
Authority
JP
Japan
Prior art keywords
epitope
sequence
nucleic acid
cells
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002580010A
Other languages
English (en)
Other versions
JP2005509404A (ja
JP2005509404A5 (ja
Inventor
ジェイ.エル. シマード,ジョン
シー. ダイアモンド,デイビッド
リウ,リピン
シエ,ジドン
Original Assignee
マンカインド コーポレイション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マンカインド コーポレイション filed Critical マンカインド コーポレイション
Publication of JP2005509404A publication Critical patent/JP2005509404A/ja
Publication of JP2005509404A5 publication Critical patent/JP2005509404A5/ja
Application granted granted Critical
Publication of JP4874508B2 publication Critical patent/JP4874508B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0055Oxidoreductases (1.) acting on diphenols and related substances as donors (1.10)
    • C12N9/0057Oxidoreductases (1.) acting on diphenols and related substances as donors (1.10) with oxygen as acceptor (1.10.3)
    • C12N9/0059Catechol oxidase (1.10.3.1), i.e. tyrosinase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4611T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • A61K39/464499Undefined tumor antigens, e.g. tumor lysate or antigens targeted by cells isolated from tumor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/08Drugs for disorders of the urinary system of the prostate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4748Tumour specific antigens; Tumour rejection antigen precursors [TRAP], e.g. MAGE
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Cell Biology (AREA)
  • Oncology (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Urology & Nephrology (AREA)
  • Virology (AREA)
  • Communicable Diseases (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

[発明の分野]
本発明は概して、標的関連抗原の有用なエピトープであるペプチドおよびペプチドをコードする核酸に関する。より具体的には、本発明は、MHCクラスIに対して高親和性を有し、かつ標的特異的プロテアソームにより産生されるエピトープに関する。
[背景技術の説明]
新形成および免疫系
癌として一般に知られる新形成疾患状態は、一般に制御の効かない単一細胞成長に起因すると考えられる。未制御の成長状態は通常、多工程に起因し、ここでは一連の細胞系が衰え、新生細胞の発生をもたらす。生じた新生細胞はそれ自体を迅速に再生し、1つまたは複数の腫瘍を形成し、最終的には宿主の死を招き得る。
新生細胞の前駆体は宿主の遺伝物質を共有するため、新生細胞は宿主免疫系により大いに攻撃されない。宿主免疫系が外来物質を監視して、局在化させるプロセスである免疫監視中、新生細胞は、宿主の免疫監視機構に対し「自己」細胞として出現する。
ウイルスおよび免疫系
癌細胞と対比して、ウイルス感染は、明らかに非自己抗原の発現を包含する。結果として、多くのウイルス感染は、最低限の臨床的後遺症を伴って、免疫系により首尾よく対処される。さらに、重症な疾患を引き起こす多くの感染に関する効果的なワクチンを開発することが可能となっている。各種ワクチンアプローチは、様々な疾患の治療に首尾よく使用されている。これらのアプローチには、組換えDNA技術により産生される個々のタンパク質から構成されるサブユニットワクチンが包含される。これらの向上にも関わらず、ウイルスワクチンとして使用するための最小量エピトープの選択および効果的投与は依然として問題が多い。
エピトープ選択に関与した難題のほかに、宿主免疫系を逃れる能力を発したウイルスの問題が存在する。多くのウイルス、特に永続的な感染を確立するウイルス(例えばヘルペスウイルスおよびポックスウイルスファミリーの成員)は、ウイルスが宿主免疫系を逃れることを可能にする免疫調節性分子を産生する。抗原提示に対するこれらの免疫調節性分子の影響は、免疫原性組成物としての投与に関する選ばれえたエピトープのターゲッティングにより克服され得る。宿主免疫系との、新生細胞およびウイルス感染細胞の相互作用をより良く理解するために、系の構成成分の議論を以下に続ける。
免疫系は、生物にとって内因性の分子(「自己」分子)を、生物に対する外因性または外来性の物質(「非自己分子」)と識別するように機能する。免疫系は、応答を媒介する構成成分に基づいて異物に対して2つのタイプの適応応答:体液性応答および細胞性応答を有する。体液性応答は抗体により媒介される一方で、細胞性免疫は、リンパ球として類別される細胞に関与する。最近の抗癌および抗ウイルス戦略は、抗癌もしくは抗ウイルス治療または療法の手段として、宿主免疫系を動員することに焦点を当てている。
免疫系は、宿主を異物から防御するように3つの相で機能する:認識相、活性化相、およびエフェクター相。認識相では、免疫系は、身体中の外来抗原または侵入物の存在を認識し、それを知らせる。外来抗原は、例えば新生細胞またはウイルスタンパク質由来の細胞表面マーカーであり得る。いったん系が侵入物に気付くと、免疫系の抗原特異的細胞は
、侵入物誘発性シグナルに応答して増殖および分化する。最終段階は、免疫系のエフェクター細胞が検出された侵入物に応答して、それを中和するエフェクター段階である。
一連のエフェクター細胞は、侵入物に対する免疫応答を実行する。エフェクター細胞の1つのタイプであるB細胞は、宿主に遭遇した外来抗原に対して標的とされる抗体を生成する。補体系と組み合わせて、抗体は、標的とされる抗原を保有する細胞または生物の崩壊を誘導する。別のタイプのエフェクター細胞は、様々なウイルス感染細胞ならびに悪性細胞型を自発的に認識および破壊する能力を有するリンパ球タイプであるナチュラルキラー細胞(NK細胞)である。標的細胞を認識するためにNK細胞により使用される方法はあまり理解されていない。
エフェクター細胞の別のタイプであるT細胞は、3つのサブカテゴリーに類別される成員を有し、それぞれが免疫応答において異なる役割を果たす。ヘルパーT細胞は、効果的な免疫応答を高めるのに必要な他の細胞の増殖を刺激するサイトカインを分泌する一方で、サプレッサーT細胞は免疫応答をダウンレギュレートする。T細胞の第3のカテゴリーである細胞傷害性T細胞(CTL)は、表面上に外来抗原を提示する標的とされる細胞を直接溶解することが可能である。
主要組織適合性複合体およびT細胞標的認識
T細胞は、特定抗原シグナルに応答して機能する抗原特異的免疫細胞である。Bリンパ球およびそれらが産生する抗体は、また抗原特異的物体である。しかしながら、Bリンパ球と異なり、T細胞は、遊離型または可溶型の抗原に応答しない。T細胞が抗原に応答するためには、抗原がペプチドにプロセシングされた後、主要組織適合性複合体(MHC)においてコードされる提示構造に結合されることを要する。この要件は「MHC拘束」と呼ばれ、それは、T細胞が「自己」細胞を「非自己」細胞と識別するメカニズムである。抗原が認識可能なMHC分子により提示されない場合、T細胞は抗原シグナルを認識せず、それに作用しない。認識可能なMHC分子に結合されたペプチドに特異的なT細胞は、これらのMHC−ペプチド複合体に結合し、免疫応答の次の段階に進む。
2つのタイプのMHC:クラスI MHC、およびクラスII MHCが存在する。Tヘルパー細胞(CD4+)はクラスII MHCタンパク質と優勢的に相互作用する一方で、細胞傷害性T細胞(CD8+)はクラスI MHCタンパク質と優勢的に相互作用する。両クラスのMHCタンパク質は、細胞の外部表面上にそれらの構造の大部分を有する膜貫通タンパク質である。さらに、両クラスのMHCタンパク質は、それらの外部にペプチド結合間隙を有する。この間隙において、内因性または外来性のタンパク質の小断片は細胞外環境に結合および提示される。
「プロフェッショナル抗原提示細胞」(pAPC)と呼ばれる細胞は、MHCタンパク質を用いてT細胞に対する抗原を提示するが、pAPCの分化/活性化の特定の状態に応じて、様々な共刺激分子をさらに発現する。認識可能なMHCタンパク質に結合されたペプチドに特異的なT細胞がpAPC上のこれらのMHC−ペプチド複合体に結合すると、T細胞に作用する特定の共刺激分子は、T細胞が取る分化/活性化の経路を誘導する。すなわち、共刺激分子は、T細胞が免疫応答の次の段階に進む際に今後の遭遇において抗原シグナルにどのように作用するかに影響を与える。
上述のように、新生細胞は免疫系により大いに無視される。宿主中で新生細胞の存在と闘うことを助長するために、宿主の免疫系を利用するための試みにおいて、今では多くの努力が費やされている。かかる研究分野の1つは、抗癌ワクチンの配合を包含する。
抗癌ワクチン
癌との戦いにおいて腫瘍遺伝学者に利用可能な様々な手段には、患者の免疫系がある。免疫系をガンまたは新形成疾患と闘わせるための様々な試みにおいて研究がなされてきた。不運にも、今日までの結果は大いに期待に反するものであった。特に興味がもたれる領域の1つに、抗癌ワクチンの生成および使用が包含される。
ワクチンまたは他の免疫原性組成物を生成するために、免疫応答が高められ得る抗原またはエピトープを被験体に導入することが必要である。新生細胞は正常細胞に由来し、したがって遺伝子レベルでは正常細胞と実質的に同一であるが、多くの新生細胞は腫瘍関連抗原(TuAA)を提示することが知られている。理論的には、これらの抗原は、これらの抗原を認識して、新生細胞を攻撃するのに、被験体の免疫系により使用され得る。しかしながら、実際には、新生細胞は概して、宿主免疫系により無視されるようである。
新生細胞に対する活性を有するワクチンを生成するための試みにおいて、多数の種々の戦略が開発されてきた。これらの戦略には、腫瘍関連抗原を免疫原として使用することが包含される。例えば、米国特許第5,993,828号は、細胞表面上に泌尿器腫瘍関連抗原、ならびにGM−2、GD−2、胎児抗原、および黒色腫関連抗原からなる群から選択される少なくとも1つの腫瘍関連抗原を有する不活性化腫瘍細胞を含む組成物を有効量、被験体に投与することにより、泌尿器腫瘍関連抗原の特定のサブユニットに対する免疫応答を生じる方法について記載している。したがって、この特許は、抗癌ワクチンにおける免疫原として、不活性化腫瘍細胞全体を使用することについて記載している。
抗癌ワクチンを用いた別の戦略は、単離された腫瘍抗原を含有する組成物を投与することに関与する。アプローチの1つでは、MAGE−A1抗原性ペプチドを免疫原として使用した(Chaux, P., et al., 「MAGE−A1で形質導入した樹状細胞を用いてin vitro刺激することにより得られる細胞傷害性Tリンパ球により認識される5つのMAGE−A1エピトープの同定(Identification of Five MAGE-A1 Epitopes Recognized by Cytolytic T Lymphocytes Obtained by In Vitro Stimulation with Dendritic Cells
Transduced with MAGE-A1)」, J. Immunol., 163 (5): 2928-2936 (1999)を参照)。ワクチン接種のためにMAGE−A1ペプチドを使用する幾つかの治療上の試みが存在するものの、ワクチンレジメンの有効性が制限された。これらの試みの幾つかの結果は、Vose, J.M., 「Tリンパ球により認識される腫瘍抗原(Tumor Antigens Recognized by T Lymphocytes)」, 10th European Cancer Conference, Day 2, Sept. 14, 1999で考察されている。
ワクチンとして使用される腫瘍関連抗原の別の例では、Scheinberg等は、ヘルパーペプチドとアジュバントQS−21とともに、クラスI関連bcr−ablペプチドを5回注射することにより、すでにインターフェロン(IFN)またはヒドロキシ尿素を施した12人の慢性骨髄性白血病(CML)患者を治療した。Scheinberg, D.A. et al., 「BCR−ABLブレイクポイント由来癌遺伝子融合ペプチドワクチンは、慢性骨髄性白血病(CML)の患者において特定の免疫応答を生成する(BCR-ABL Breakpoint Derived Oncogene Fusion Peptide Vaccines Generate Specific Immune Responses in Patients with Chronic Myelogenous Leukemia (CML)」, [Abstract 1665], American Society of Clinical Oncology 35th Annual Meeting, Atlanta (1999)。Tヘルパー活性を示す増殖性および遅延型過敏性(DTH)T細胞応答が誘発されたが、細胞傷害性キラーT細胞活性は新鮮な血液試料内では観察されなかった。
ワクチンとして使用するためのTuAAを同定する試みのさらなる例は、Cebon等およびScheibenbogen等の最近の研究に見られる。Cebon等は、皮下、または静脈内のいずれかで付与した増加用量のIL−12とともに、皮内投与したMART−12635ペプチドを使用して、転移性黒色腫の患者を免疫した。最初の15人の患者のうち、1人が完全な寛
解、1人が部分的寛解、1人が混合応答を示した。T細胞生成に関する免疫アッセイはDTHを包含し、それはIL−12ありまたはなしの患者で施された。CTLアッセイは、臨床的有益性(benefit)の徴候を有する患者で陽性であったが、腫瘍後退のない患者ではそのような結果は得られなかった。Cebon, et al. 「第III期および第IV期の悪性黒色腫のHLA A2+陽性患者におけるMelan−AおよびIL−12による免疫のフェーズI研究(Phase I Studies of Immunization with Melan-A and IL-12 in HLA A2+
Positive Patients with Stage III and IV Malignant Melanoma)」, [Abstract 1671],
American Society of Clinical Oncology 35th Annual Meeting, Atlanta (1999)。
Scheibenbogen等は、転移性黒色腫の16人とアジュバント患者2人の18人の患者を、4HLAクラスI制限チロシナーゼペプチドで免疫した。Scheibenbogen, et al., 「転移性黒色腫におけるチロシナーゼペプチドおよびGM−CSFによるワクチン接種:臨床試験フェーズII (Vaccination with Tyrosinase peptides and GM-CSF in Metastatic Melanoma: a Phase II Trial)」, [Abstract 1680], American Society of Clinical Oncology 35th Annual Meeting, Atlanta (1999)。CTL活性の増加は、15人のうち4人の患者、すなわち2人のアジュバント患者、および腫瘍後退の徴候を有する2人の患者で観察された。Cebon等による臨床試験と同様に、進行性疾患の患者は追加免疫された免疫性を示さなかった。有効な抗癌ワクチンを作製するために今日まで様々な努力が費やされてきたにもかかわらず、かかる組成物はいまだ開発されていない。
抗ウイルスワクチン
ウイルス疾患に対して防御するためのワクチン戦略は多くの成功を収めている。おそらく、これらのうちで最も注目に値するのが、天然痘疾患に対してなされた発展であり、天然痘は撲滅に至った。ポリオワクチンの成功は同様に偉大である。
ウイルスワクチンは、3つの区分に類別することができる:生弱毒ウイルスワクチン(例えば、天然痘用の完全痘疱、セービンポリオウイルスワクチン、ならびに麻疹、おたふくおよび風疹)、全死滅または不活化ウイルスワクチン(例えば、サーク(Salk)ポリオウイルスワクチン、A型肝炎ウイルスワクチンおよび典型的なインフルエンザウイルスワクチン)、およびサブユニットワクチン(例えば、B型肝炎)。完全ウイルスゲノムの欠如により、サブユニットワクチンは、ウイルス全体に基づいたワクチンよりも高い安全性を提供する。
成功したサブユニットワクチンの実例は、ウイルスのエンベロープタンパク質に基づいた組換えB型肝炎ワクチンである。個々のエピトープに対する単一タンパク質を超える還元主義者(reductionist)のサブユニット概念を強調する際のかなりの学問的な興味にもかかわらず、努力はいまだにかなりの成果を生み出していない。細胞応答も行われるものの、ウイルスワクチン研究はまた抗体応答の誘発に集中している。しかしながら、サブユニット配合物の多くはCTL応答を生じる際に特に不足している。
[発明の概要]
標的細胞エピトープを提示するためにプロフェッショナル抗原提示細胞(pAPC)を一次刺激する従来の方法は、単にpAPCに、標的関連抗原(TAA)、またはMHC I分子に対して高親和性を有すると考えられる抗原のエピトープを発現させることに依存している。しかしながら、かかる抗原のプロテアソームプロセシングは、標的細胞上に存在するエピトープに相当しないpAPC上のエピトープの提示をもたらす。
効果的な細胞免疫応答は、pAPCが標的細胞により提示される同じエピトープを提示することを必要とするという知見を用いて、本発明は、MHC Iに対して高親和性を有
し、末梢細胞で活性であるハウスキーピングプロテアソームのプロセシング特異性に相当するエピトープを提供する。したがって、これらのエピトープは、標的細胞上に提示されるエピトープに相応する。ワクチンにおけるかかるエピトープの使用は、細胞免疫応答を活性化して、正確にプロセシングされたTAAを認識することができ、かかるエピトープを提示する標的細胞の除去をもたらし得る。幾つかの実施形態では、本明細書中に提供されるハウスキーピングエピトープは免疫性エピトープと組み合わせて使用することができ、適合性である細胞免疫応答を生成して、インターフェロン導入前および後の両方で、標的細胞を攻撃する。他の実施形態では、エピトープは、標的関連疾患の診断およびモニタリングにおいて、ならびにかかる目的のための免疫学的試薬の生成において有用である。
本発明の実施形態では、単離されたエピトープ、および上記エピトープを含む抗原またはポリペプチドに関する。好ましい実施形態として、表1に記載の配列を有するエピトープまたは抗原が挙げられる。他の実施形態としては、表1由来のポリペプチドを含むエピトープクラスターを挙げることができる。さらに、実施形態としては、上述のエピトープ、ポリペプチド、抗原、またはクラスターに対して実質的類似性を有するポリペプチドが挙げられる。他の好ましい実施形態としては、上記のいずれかに対して機能的類似性を有するポリペプチドが挙げられる。さらなる実施形態は、表1および本明細書に記載されるエピトープ、クラスター、抗原のいずれかのポリペプチドをコードする核酸およびポリペプチドに関する。以下の概要のために、「エピトープ(単数または複数)」を参照する場合、本発明の他の実施形態の議論は、エピトープの上述の形態のすべてに制限されることなく言及し得る。
エピトープは免疫学的に活性であり得る。エピトープを含むポリペプチドは、約30未満のアミノ酸長であり得て、より好ましくは、ポリペプチドは例えば8〜10アミノ酸長である。実質的類似性または機能的類似性は、例えば少なくとも1つのアミノ酸の付加を含むことができ、少なくとも1つの付加されたアミノ酸は、ポリペプチドのN末端にあり得る。実質的類似性または機能的類似性は、少なくとも1つのアミノ酸の置換を含むことができる。
エピトープ、クラスターまたはそれらを含むポリペプチドは、HLA−A2分子に対して親和性を有することができる。親和性は、結合アッセイ、エピトープ認識の制限アッセイ、予測アルゴリズム等により決定することができる。エピトープ、クラスターまたはそれらを含むポリペプチドは、HLA−B7、HLA−B51分子等に対して親和性を有することができる。
好ましい実施形態では、ポリペプチドは、ハウスキーピングエピトープであり得る。エピトープまたはポリペプチドは、腫瘍細胞上に提示されるエピトープ、新生血管系細胞上に提示されるエピトープ等に相当することができる。エピトープまたはポリペプチドは免疫性エピトープであり得る。エピトープ、クラスターおよび/またはポリペプチドは核酸であり得る。
他の実施形態は、表1由来のエピトープ、それらを含むクラスターまたはポリペプチドを包含するポリペプチド、および薬学的に許容可能なアジュバント、キャリア、希釈剤、賦形剤等を含む薬学的組成物に関する。アジュバントはポリヌクレオチドであり得る。ポリヌクレオチドはジヌレクオチドを含むことができ、例えばCpGであり得る。アジュバントは、ポリヌクレオチドによりコードされ得る。アジュバントはサイトカインであり得て、サイトカインは例えばGM−CSFであり得る。
薬学的組成物は、プロフェッショナル抗原提示細胞(pAPC)をさらに含むことができる。pAPCは例えば樹状細胞であり得る。薬学的組成物は第2のエピトープをさらに
含むことができる。第2のエピトープはポリペプチド、核酸、ハウスキーピングエピトープ、免疫性エピトープ等であり得る。
さらなる実施形態は、表1由来のエピトープまたは抗原を含むポリペプチドをコードする核酸を含む本明細書中に記載する核酸のいずれかを含む薬学的組成物に関する。かかる組成物は、薬学的に許容可能なアジュバント、キャリア、希釈剤、賦形剤等を含むことができる。
他の実施形態は、表1由来のエピトープまたは抗原を含むポリペプチドをコードする核酸を含む、本明細書中に記載するような核酸を含む組換え構築物に関する。構築物は、プラスミド、ウイルスベクター、人工染色体等をさらに含むことができる。構築物は、例えば、第2のエピトープ、IRES、ISS、NIS、およびユビキチンのような少なくとも1つの形質をコードする配列をさらに含むことができる。
さらなる実施形態は、表1のエピトープの少なくとも1つに特異的に結合する精製抗体に関する。他の実施形態は、表1に開示するエピトープまたは任意の他の適切なエピトープを含むペプチド−MHCタンパク質複合体に特異的に結合する精製抗体に関する。いずれかの実施形態からの抗体はモノクローナル抗体またはポリクローナル抗体であり得る。
さらに他の実施形態は、例えば表1に開示するエピトープのようなエピトープを含む多量体MHC−ペプチド複合体に関する。また、上記複合体に特異的な抗体も意図される。
実施形態は、MHC−ペプチド複合体に特異的なT細胞受容体を発現する単離されたT細胞に関する。上記複合体は、例えば表1に開示するエピトープのようなエピトープを含むことができる。T細胞は、in vitro免疫により産生することができ、免疫された動物から単離することができる。実施形態は、上述のT細胞のようなクローニングしたT細胞を含むT細胞クローンに関する。実施形態はまたT細胞のポリクローナル集団に関する。かかる集団は、例えば上述のようなT細胞を含むことができる。
さらなる実施形態は、例えば上述に記載するT細胞のようなT細胞、および薬学的に許容可能なアジュバント、キャリア、希釈剤、賦形剤等を含む薬学的組成物に関する。
本発明の実施形態は、MHC−ペプチド複合体に特異的なT細胞受容体の結合ドメインを含む単離されたタンパク質分子に関する。上記複合体は表1に開示されるようなエピトープを含むことができる。タンパク質は多価であり得る。他の実施形態は、かかるタンパク質をコードする単離された核酸に関する。さらなる実施形態はかかる核酸を含む組換え構築物に関する。
本発明の他の実施形態は、例えば表1に開示するエピトープ、クラスターまたはそれらを含むポリペプチドをコードする構築物を含む本明細書中に記載する組換え構築物を発現する宿主細胞に関する。宿主細胞は樹状細胞、マクロファージ、腫瘍細胞、腫瘍由来細胞、細菌、真菌、原生動物等であり得る。実施形態はまた、本明細書中に記載の宿主細胞のような宿主細胞、および薬学的に許容可能なアジュバント、キャリア、希釈剤、賦形剤等を含む薬学的組成物に関する。
さらに他の実施形態は、例えば、表1に開示されるか、あるいは本明細書中に記載されるエピトープ、かかるエピトープを含むクラスター、かかるエピトープを含む抗原またはポリペプチド、上記および本明細書中に記載の組成物、上記および本明細書中に記載の構築物、上記および本明細書中に記載のT細胞または宿主細胞のような少なくとも1つの構成成分を含むワクチンまたは免疫治療用組成物に関する。
さらなる実施形態は、動物の治療方法に関する。上記方法は、上記および本明細書中に開示するものを含むワクチンまたは免疫治療用組成物のような薬学的組成物を動物に投与することを含むことができる。投与工程は、例えば、経皮、結節内、結節周囲、経口、静脈内、皮内、筋内、腹腔内、粘膜、エーロゾル吸入、滴注等のよう送達様式を含むことができる。上記方法は、アッセイする工程であって、そにれより標的細胞(単数または複数)の状態を示す特徴を決定する、アッセイする工程をさらに含むことができる。上記方法は、第1のアッセイ工程、および第2のアッセイ工程をさらに含むことができ、ここで第1のアッセイ工程は上記投与工程前に行われ、該第2のアッセイ工程は上記投与工程後に行われる。上記方法は、第1のアッセイ工程で決定される特徴を、第2のアッセイ工程で決定される特徴と比較する工程であって、それにより結果を得る、比較する工程をさらに含むことができる。結果は、例えば、免疫応答の徴候、標的細胞数の減少、標的細胞を含む腫瘍の質量またはサイズの低下、細胞内寄生生物感染標的細胞の数または濃度の低減等であり得る。
実施形態は、ワクチンまたは免疫治療用組成物の免疫原性を評価する方法に関する。上記方法は、上記および本明細書中の他の箇所に記載するもののようなワクチンまたは免疫治療薬を動物に投与すること、および上記動物の特徴に基づいて免疫原性を評価することを含むことができる。動物はHLAトランスジェニックであり得る。
他の実施形態は、免疫原性を評価する方法であって、上記および本明細書中の他の箇所に記載するもののようなワクチンまたは免疫治療用組成物によるT細胞のin vitro刺激、および上記T細胞の特徴に基づいて免疫原性を評価することを含む方法に関する。刺激は一次刺激であり得る。
さらなる実施形態は、受動/養子免疫治療薬を作製する方法に関する。上記方法は、上記および本明細書中の他の箇所に記載するもののようなT細胞または宿主細胞を、薬学的に許容可能なアジュバント、キャリア、希釈剤、賦形剤等と組み合わせることを含むことができる。
他の実施形態は、特異的T細胞頻度を決定する方法に関し、T細胞を、表1に開示するエピトープを含むMHC−ペプチド複合体、またはかかるエピトープを含むクラスターまたは抗原を含む複合体と接触させる工程を含むことができる。接触工程は、例えば、免疫、再刺激、検出、計数等のよう少なくとも1つの形質を含むことができる。上記方法は、ELISPOT解析、限界希釈解析、フローサイトメトリー、in situハイブリダイゼーション、ポリメラーゼ連鎖反応、それらの任意の組合せ等ををさらに含むことができる。
実施形態は、免疫学的応答を評価する方法に関する。上記方法は、免疫工程の前および後に実施される特異的T細胞頻度を決定する上記方法を含むことができる。
他の実施形態は、免疫学的応答を評価する方法に関する。上記方法は、例えば表1由来のエピトープ、かかるエピトープを含むクラスターまたはポリペプチドのようなエピトープを含むMHC−ペプチド複合体による刺激工程の前および後に、T細胞の頻度、サイトカイン産生、または細胞溶解活性を決定することを含むことができる。
さらなる実施形態は、疾患を診断する方法に関する。上記方法は、被験体組織を、上記および本明細書中の他の箇所に記載するもののいずれかを含む、例えばT細胞、宿主細胞、抗体、タンパク質を含む少なくとも1つの構成成分と接触させること、および上記組織または該構成成分の特徴に基づいて疾患を診断することを含むことができる。接触工程は
、例えばin vivoまたはin vitroで行われ得る。
さらに他の実施形態は、ワクチンを作製する方法に関する。上記方法は、上記および本明細書中の他の箇所に記載するもののいずれかを含むエピトープ、組成物、構築物、T細胞、宿主細胞を含めた少なくとも1つの構成成分を、薬学的に許容可能なアジュバント、キャリア、希釈剤、賦形剤等と組み合わせることを含むことができる。
実施形態は、配列番号1〜602のいずれか1つの配列を包含する分子の物理学的、生化学的、免疫学的、または分子遺伝学的特性を算出するハードウェアまたはソフトウェアを有するマシン等において、上記配列を記録したコンピュータ可読媒体に関する。
さらに他の実施形態は動物を治療する方法に関する。上記方法は、上記および本明細書中の他の箇所に記載するようなワクチンまたは免疫治療用組成物を動物に投与することを含む動物の治療方法を、例えば放射線療法、化学療法、生化学療法、手術を含む少なくとも1つの治療様式と組み合わせることを含むことができる。
さらなる実施形態は、エピトープクラスターを含む単離されたポリペプチドに関する。好ましい実施形態では、クラスターは、表25〜44のいずれか1つに開示されるような配列を有する標的関連抗原由来であり得て、ここでアミノ酸配列は約80%以下の抗原のアミノ酸配列を含む。
他の実施形態は、上記および本明細書中の他の箇所に記載する単離されたペプチドを含むワクチンまたは免疫治療用生成物に関する。さらに他の実施形態は、上記および本明細書中の他の箇所に記載するポリペプチドをコードする単離されたポリヌクレオチドに関する。他の実施形態は、これらのポリヌクレオチドを含むワクチンまたは免疫治療用生成物に関する。ポリヌクレオチドは、DNA、RNA等であり得る。
さらなる実施形態は、送達デバイス、および上記および本明細書中の他の箇所に記述した実施形態のいずれかを含むキットに関する。送達デバイスは、カテーテル、シリンジ、内部または外部ポンプ、リザーバ、吸入器、マイクロインジェクター、パッチ、および送達の任意の経路に適した任意の他の同様のデバイスであり得る。上述のように、送達デバイスに加えて、キットはまた、本明細書中に開示する実施形態のいずれかを含むことができる。例えば、キットは、単離されたエピトープ、ポリペプチド、クラスター、核酸、抗原、上述のいずれかを含む薬学的組成物、抗体、T細胞、T細胞受容体、エピトープ−MHC複合体、ワクチン、免疫治療薬等を含むことができるが、これらに限定されない。キットはまた、使用のための詳細な説明書および任意の他の同様の品目のような品目を含むことができる。
[好適な実施形態の詳細な説明]
定義
本明細書中の用語の使用の状況から別の状況が明らかでない限り、以下に列挙した用語は概して、この説明の目的で示した意味を有する。
プロフェッショナル抗原提示細胞(pAPC):T細胞共刺激分子を保有し、T細胞応答を誘発することが可能である細胞である。十分に特性化されたpAPCとしては、樹状細胞、B細胞、およびマクロファージが挙げられる。
末梢細胞:pAPCではない細胞である。
ハウスキーピングプロテアソーム:一般に末梢細胞で活性であり、pAPCに通常存在しないか、または強力に活性でないプロテアソームである。
免疫プロテアソーム:pAPCにおいて一般に活性なプロテアソームであり、免疫プロテアソームはまた、感染組織における幾つかの末梢細胞で活性である。
エピトープ:免疫応答を刺激することが可能な分子または物質である。好ましい実施形態では、この定義に従ったエピトープとしては、ポリペプチドおよびポリペプチドをコードする核酸(ここで、ポリペプチドは免疫応答を刺激することが可能である)が挙げられるが、必ずしもこれらに限定されない。他の好ましい実施形態では、この定義に従ったエピトープとしては、細胞の表面上に提示されるペプチドが挙げられるが、必ずしもこれに限定されず、ペプチドは、クラスI MHCの結合間隙に非共有結合的に結合され、その結果、ペプチドはT細胞受容体と相互作用することができる。
MHCエピトープ:哺乳動物クラスIまたはクラスII主要組織適合性複合体(MHC)分子に対して既知または予測結合親和性を有するポリペプチドである。
ハウスキーピングエピトープ:好ましい実施形態では、ハウスキーピングエピトープは、MHCエピトープであり、かつハウスキーピングプロテアソームが優勢に活性である細胞上に提示されるポリペプチド断片として定義される。別の好ましい実施形態では、ハウスキーピングエピトープは、1個〜数個のさらなるアミノ酸が隣接した、先述の定義に従ったハウスキーピングエピトープを含有するポリペプチドとして定義される。別の好ましい実施形態では、ハウスキーピングエピトープは、先述の定義に従ったハウスキーピングエピトープをコードする核酸として定義される。
免疫性エピトープ:好ましい実施形態では、免疫性エピトープは、MHCエピトープであり、かつ免疫プロテアソームが優勢に活性である細胞上に提示されるポリペプチド断片として定義される。別の好ましい実施形態では、免疫性エピトープは、1個〜数個のさらなるアミノ酸が隣接した、先述の定義に従った免疫性エピトープを含有するポリペプチドとして定義される。別の好ましい実施形態では、免疫性エピトープは、クラスI MHCに対して既知または予測親和性を有する少なくとも2つのポリペプチド配列を有する、エピトープクラスター配列を含むポリペプチドとして定義される。さらに別の好ましい実施形態では、免疫性エピトープは、先述の定義のいずれかに従った免疫性エピトープをコードする核酸として定義される。
標的細胞:本発明のワクチンおよび方法により標的とされる細胞である。この定義に従った標的細胞の例としては、新生細胞、および細胞内寄生生物(例えばウイルス、細菌、または原生動物のような)を保有する細胞が挙げられるが、必ずしもこれらに限定されない。
標的関連抗原(TAA):標的細胞に存在するタンパク質またはポリペプチドである。
腫瘍関連抗原(TuAA):標的細胞が新生細胞であるTAAである。
HLAエピトープ:ヒトクラスIまたはクラスII HLA複合体分子に対して既知または予測された結合親和性を有するポリペプチドである。
抗体:生化学的に得られようと、または組換えDNAを用いて得られようと、天然免疫グロブリン(Ig)(ポリまたはモノクローナル)、またはIg結合ドメインの全体もしくは部分で構成される任意の分子である。例としては、とりわけF(ab)、単鎖Fv、
およびIg可変領域相コートタンパク質融合物が挙げられる。
コード:特定のアミノ酸配列をコードする核酸はその(ポリ)ペプチドを指定するコドンから構成され得るが、また翻訳可能であるか、または転写、翻訳もしくは複製の制御のための、または幾つかの宿主核酸構築物の操作を容易にするためのさらなる配列を含むことができるような制限のない用語である。
実質的類似性:この用語は、配列試験により判断される場合に、重要でない様式で参照配列と異なる配列を指すのに使用される。同じアミノ酸配列をコードする核酸配列は、縮重位置の違い、または任意の非コード領域の長さもしくは組成の中程度の違いにもかかわらず実質的に類似している。保存的置換またはわずかな長さの変動のみが異なるアミノ酸配列は、実質的に類似している。さらに、N末端フランキング残基の数が異なるハウスキーピングエピトープ、またはいずれかの末端のフランキング残基の数が異なる免疫性エピトープまたはエピトープクラスターを含むアミノ酸配列は、実質的に類似している。実質的に類似性のアミノ酸配列をコードする核酸自体もまた、実質的に類似している。
機能的類似性:この用語は、生物学的特性または生化学的特性試験により判断される場合に、重要でない様式で参照配列と異なる配列を指すのに使用されるが、配列は実質的に類似していない場合がある。例えば、2つの核酸は、同じ配列用のハイブリダイゼーションプローブとして有用であり得るが、異なるアミノ酸配列をコードする。交差反応性CTL応答を誘導する2つのペプチドは、それらが非保存的アミノ酸置換だけ異なる(したがって、実質的類似性の定義を満たさない)場合でも、機能的に類似している。同じエピトープを認識する抗体対、またはTCRは、どんな構造的差異が存在しようとも、互いに機能的に類似し得る。免疫原性の機能的類似性に関して試験する際に、一般に「変性(altered)」抗原で免疫して、誘発される応答(Ab、CTL、サイトカイン産生等)の標的抗原を認識する能力を試験する。したがって、2つの配列は、同じ機能を保持しながら、ある特定の点で異なるように設計され得る。このように設計された配列変異体は、本発明の実施形態中にある。
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
以下の論考は本発明の操作の本発明者等の理解について記載していることに留意されたい。しかしながら、この論考が、本特許を特許請求の範囲に記載しない操作の任意の特定の理論に限定することを意図しない。
エピトープワクチンの開発を遂行する際に、他者等がMHC結合モチーフに基づいた予測エピトープのリストを作成した。かかるペプチドは免疫原性であり得るが、任意の天然で産生される抗原性断片に相当しない場合がある。したがって、全抗原が類似の応答を誘発しないか、またはCTLによる細胞溶解に対して標的細胞を敏感にしない。したがって、かかるリストは、ワクチンとして有用であり得る配列と、有用であり得ない配列とを識別しない。これらの予測エピトープのいずれが実際に天然で産生されるかを決定するための努力は、腫瘍浸潤リンパ球(TIL)とそれらの反応性をスクリーニングすることに依存する場合が多い。しかしながら、TILは強力に免疫性エピトープを認識する傾向にあるのに対して、腫瘍(および慢性感染細胞)は一般にハウスキーピングエピトープを提示する。したがって、エピトープはハウスキーピングプロテアソームおよび免疫プロテアソームの両方により産生される場合を除いて、標的細胞は概して、TIL同定エピトープにより誘発されるCTLに認識されない。対照的に、本発明のエピトープは、特定のプロテアソームの作用により生成され、それらが天然で産生され得ることを示し、それらの適切な使用を可能にする。ワクチン設計に対するハウスキーピングエピトープと免疫性エピトープとの間の区別の重要性は、PCT国際公開第01/82963A2号により詳細に記載されている。
本発明のエピトープは、ハウスキーピングまたは免疫プロテアソームによるプロテアソーム切断の前駆体または生成物であり、MHC Iの少なくとも1つの対立遺伝子に関して既知または予測親和性を有する配列を含有するか、またはそれから構成されるTAAのポリペプチド断片を包含するか、またはそれらをコードする。幾つかの実施形態では、エピトープは、約6〜25アミノ酸長、好ましくは約7〜20アミノ酸長、より好ましくは約8〜15アミノ酸長、さらに好ましくは9または10アミノ酸長のポリペプチドを包含するか、またはそれをコードする。しかしながら、ポリペプチドは、N末端トリミングがMHCエピトープを産生することができる限りより長くてもよく、またポリペプチドは、
ポリペプチドをプロテアソームから離れて誘導させるか、もしくはプロテアソームに破壊させる配列を含有しないことが理解されよう。免疫性エピトープに関して、より大きなペプチドがかかる配列を含有しない場合、それらは免疫性プロテアソームによりpAPCにおいてプロセシングされ得る。ハウスキーピングエピトープはまた、配列が免疫プロテアソームの作用によりエピトープのC末端の遊離を促進するように適応される場合には、より長い配列に包埋され得る。先述の論考は、より長いエピトープのプロセシングがpAPCの免疫プロテアソームの作用により進行すると仮定している。しかしながら、プロセシングはまた、プロテアーゼの作用がMHCエピトープを遊離するように適応させた外因性プロテアーゼ活性および配列を提供するなど、幾つかの他のメカニズムの工夫により達成することができる。物理学的、生化学的、免疫学的、または分子遺伝学的特性(例えば、質量、等電点、電気泳動における予測移動度、他のMHC分子に対する予測結合、核酸プローブの融点、逆翻訳、他の配列に対する類似性または相同性等)を算出するために、これらのエピトープ配列はコンピュータ解析に付すことができる。
本発明のポリペプチドエピトープをコードするポリヌクレオチドを構築する際、関連TAAの遺伝子配列を使用することができるか、またはポリヌクレオチドを、相当するコドンのいずれかから構築することができる。10アミノ酸エピトープに関して、これは、特定のアミノ酸組成に応じて、およそ106個オーダーの異なる配列を構成することができる。大きい一方で、これは、この長さを有する1018個を超える考え得るポリヌクレオチドの非常に少ない割合を示す別個でのかつ容易に限定可能な組であり、したがって幾つかの実施形態では、本明細書中に開示する特定の配列の等価物は、列挙した配列上にかかる別個のかつ容易に限定可能な変動を包含する。ワクチンにおいて使用するためにこれらの配列のうちの特定の1つを選択する場合、コドン使用、自己相補性、制限部位、化学的安定性等のような考慮すべき事柄を、当業者に明らかなように使用することができる。
本発明は、ペプチドエピトープを産生することを意図する。具体的には、これらのエピトープは、TAAの配列に由来し、MHC Iの少なくとも1つの対立遺伝子に対して既知または予測親和性を有する。かかるエピトープは通常、標的細胞またはpAPC上で産生されるエピトープと同一である。
活性エピトープを含有する組成物
本発明の実施形態は、ワクチン、治療薬、診断薬、薬理学的組成物および薬学的組成物を含むポリペプチド組成物を提供する。様々な組成物は、TAAの新たに同定されたエピトープ、ならびにこれらのエピトープの変異体を含む。本発明の他の実施形態は、本発明のポリペプチドエピトープをコードするポリヌクレオチドを提供する。本発明はさらに、精製のためのポリペプチドエピトープの発現用ベクターを提供する。さらに、本発明は、抗腫瘍ワクチンとして使用するためのAPCにおけるポリペプチドエピトープの発現用のベクターを提供する。表1のエピトープまたは抗原のいずれか、あるいはそれらをコードする核酸を使用することができる。他の実施形態は、様々な組成物の作製方法および使用方法に関する。
クラスI MHC結合エピトープに関する一般的構造を記載することができ、Madden, D.R. Annu. Rev. Immunol. 13:587-622, 1995により詳細に概説されている。結合エネルギーの多くは、MHC分子中の保存残基とペプチドのN末端およびC末端との間の主鎖接触から生じる。さらなる主鎖接触がなされるが、MHC対立遺伝子間で変化する。配列特異性は、ポケットとのいわゆるアンカー残基の側鎖接触により付与され、それもまたMHC対立遺伝子間で変化する。アンカー残基は、一次と二次とに分けることができる。一次アンカー位置は、アミノ酸残基の比較的明確な組に関して強力な優先を示す。二次位置は、より好まれる残基というよりはあまり好まれない残基という観点で良好に記載され得ることが多い、より弱いおよび/またはあまり明確でない優勢を示す。さらに、幾つかの二
次アンカー位置の残基は、必ずしもMHC分子上のポケットと接触する位置にあるとは限らない。したがって、特定のMHC分子に結合し、問題となっている位置での側鎖−ポケット接触を有するペプチドのサブセットが存在し、ペプチドがMHC分子のペプチド結合溝中で取るコンホメーションに依存しない同じMHC分子への結合を示す別のサブセットが存在する。C末端残基(P;ω)は好ましくは一次アンカー残基である。よりよく研究されたHLA分子(例えば、A2、A68、B27、B7、B35、およびB53)の多くに関して、第2の位置(P2)もまたアンカー残基である。しかしながら、HLA−B8中のP3およびP5、ならびにそれぞれマウスMHC分子H−2DbおよびH−2Kb中のP5およびP(ω)−3を含む中心アンカー残基もまた観察されている。より安定な結合は一般的に免疫原性を改善するため、アンカー残基は好ましくは、それらの位置に関わらず、変異体の設計において保存または最適化される。
アンカー残基は概してエピトープの末端付近に位置されるため、ペプチドはペプチド結合溝から上方にねじれて、長さを幾らか変化させることができる。8〜11個のアミノ酸の範囲のエピトープがHLA−A68に関して見出され、最大13個のアミノ酸のエピトープがHLA−A2に関して見出された。アンカー位置間の長さ変動のほかに、単一残基切断および伸長が、それぞれN末端およびC末端で報告されている。非アンカー残基のうち幾つかが溝から際立ち、MHC分子との接触を起こさないが、HLA−A2に関するTCR、非常に多くの場合P1,P4およびP(ω)−1と接触させるのに利用可能である。非アンカー残基のうち他のものは、ペプチド結合溝の上部縁とTCRとの間に介在するようになり、両方と接触することができる。これらの側鎖残基の正確な位置付け、したがって結合、MHCの繊細なコンホメーション、および最終的には免疫原性に対する影響は非常に配列依存性である。エピトープが高度に免疫原性であるために、活性化が起こるのに十分に安定なTCR結合を促進しなくてはならないだけでなく、TCRはまた、多量体TCR分子が同じペプチド−MHC複合体と順次接触することができるのに十分高いオフレート(off-rate)を有さなくてはならない(Kalergis, A.M. et al., Nature Immunol. 2:229-234, 2001)。したがって、変異体を設計する際に、三元複合体に関するさらなる情報なしで、これらの位置での保存的置換および非保存的置換の両方が熟考に値する。
ポリペプチドエピトープ変異体は、例えば保存的および非保存的突然変異に関する技法およびガイドラインのいずれかを用いて作製することができる。変異体は、自然配列と比較した場合に1つまたは複数のアミノ酸の置換、欠失または挿入に由来し得る。アミノ酸置換は、例えばスレオニンをセリンで置換するように、あるアミノ酸を類似の構造特性および/または化学特性を有する別のアミノ酸で置換することの結果であり得る。かかる置換は、保存的アミノ酸置換と称され、適切な保存的アミノ酸置換はすべて本発明の実施形態とみなされる。挿入または欠失は任意に、約1〜4、好ましくは1〜2個のアミノ酸範囲であり得る。問題となっているMHC分子への結合を招くペプチドの「アンカー位置」を維持することが一般に好ましい。実際に、ペプチドの免疫原性は、多くの場合、アンカー位置でより好ましい残基を置換することにより改善され得る(Franco, et al., Nature Immunology, 1(2):145-150, 2000)。ペプチドの免疫原性はまた、有用なワクチンを構成するための本来のエピトープとの十分な交差反応性を維持しながら、非アンカー位置に見出される小アミノ酸をより嵩高いアミノ酸で置換することにより改善され得ることが多い。可能とされる変動は、配列中にアミノ酸をルーチンに挿入、欠失または置換すること、および得られた変異体を、ポリペプチドエピトープにより示される活性に関して試験することにより決定され得る。ポリペプチドエピトープは9個のアミノ酸である場合が多いため、置換は好ましくは、最短の活性エピトープ、例えば9個のアミノ酸のエピトープになされる。
変異体はまた、ポリペプチドエピトープ変異体のN末端上に任意の配列を付加することにより作製され得る。かかるN末端付加は、1個のアミノ酸から少なくとも25個のアミ
ノ酸であり得る。ペプチドエピトープはpAPCにおいて活性なN末端エキソペプチダーゼによりトリミングされることが多いため、付加された配列における変異体は、エピトープの活性に影響を与えないことが理解される。好ましい実施形態では、最終の上流プロテアソーム切断部位とMHCエピトープのN末端との間のアミノ酸残基はプロリン残基を含まない。Serwold, T. et al., Nature Immunol. 2:644-651, 2001。したがって、有効なエピトープは、好ましい9量体クラスIモチーフより大きな前駆体から生成され得る。
一般に、ペプチドは、それらが標的細胞またはpAPCの表面上でMHC Iにより実際に提示されるエピトープに相当する範囲で有用である。単一ペプチドは種々のMHC分子に対し様々な親和性を有することができ、良好に結合するものもあれば、十分に結合するものもあり、感知できるほどには結合しないものもある(表2)。MHC対立遺伝子は伝統的に、同じタイプの異なる対立遺伝子が異なり得る、ペプチド結合溝の構造を反映しない血清学的反応性に従って類別することができる。同様に、結合特性は、タイプを超えて共有され得て、共有結合特性に基づいた群はスーパータイプと呼ばれている。ヒト集団にはMHC Iの無数の対立遺伝子が存在し、ある特定の対立遺伝子に特異的なエピトープは、患者の遺伝子型に基づいて選択され得る。
Figure 0004874508
本発明のさらなる実施形態では、ペプチドまたはコードポリヌクレオチドとしてのエピトープは、例えばワクチンまたは免疫治療用組成物のような薬学的組成物として、単独で、または様々なアジュバント、キャリア、または賦形剤と組み合わせて投与され得る。ワクチンという用語は本明細書中の説明全体にわたって使用され得るが、その概念は本明細書中に記載するものを含む任意の他の薬学的組成物とともに適用および使用され得ることに留意されたい。特に好適なアジュバントとしては、様々なサイトカインおよび免疫刺激配列を含有するオリゴヌクレオチド(本明細書中で引用される同時係属中出願により詳細に記載されているような)が挙げられる。さらに、ポリヌクレオチドコードエピトープは、後にポリヌクレオチド用のベクターと使用されるウイルス(例えば、ワクシニアまたはアデノウイルス)、または微生物宿主細胞(例えば、サルモネラ属(Salmonella)またはリステリア菌(Listeria monocytogenes))中に含ませることができる(Dietrich, G. et al.
Nat. Biotech. 16:181-185, 1998)。あるいは、pAPCはex vivoで形質転換されて、エピトープを発現することができるかあるいはペプチドエピトープでパルス標識さ
れて、それ自体ワクチンとして投与され得る。これらのプロセス効率を増大するために、コードされたエピトープは、ウイルスまたは細菌ベクターにより運搬され得るか、またはpAPC上に見出される受容体のリガンドと複合体形成され得る。同様に、ペプチドエピトープは、pAPCリガンドと複合体形成され得るかまたはそれに結合され得る。ワクチンは、単一を越えるエピトープから構成することができる。
エピトープおよび/またはエピトープクラスターをワクチンまたは薬学的組成物に組み込むための特に好適な戦略は、2000年4月28日に出願された「抗原提示細胞におけるエピトープ同調(EPITOPE SYNCHRONIZATION IN ANTIGEN PRESENTING CELLS)」という表題の米国特許出願第09/560,465号に開示されている。本発明に関連して使用するためのエピトープクラスターは、2000年4月28日に出願された「エピトープクラスター(EPITOPE CLUSTER)」という表題の米国特許出願第09/561,571号に開示されている。
本発明の好ましい実施形態は、pAPCまたはpAPC集団に、特定の標的細胞上に提示されるエピトープに相当するハウスキーピングエピトープを提示させるためのワクチンおよび方法に関する。例えば、表1のエピトープまたは抗原のいずれかを使用することができる。一実施形態では、ハウスキーピングエピトープは、特定の腫瘍型のハウスキーピングプロテアソームによりプロセシングされるTuAAエピトープである。別の実施形態では、ハウスキーピングエピトープは、ウイルスに感染した細胞のハウスキーピングプロテアソームによりプロセシングされるウイルス関連エピトープである。これは、標的細胞に対する特異的T細胞応答を促進する。種々の誘導状態(攻撃前および攻撃後)に相当する複数のエピトープのpAPCによる同時発現は、それらがハウスキーピングエピトープまたは免疫性エピトープのいずれかを示す場合に、標的細胞に対して有効なCTL応答を駆動することができる。
pAPC上にハウスキーピングエピトープおよび免疫性エピトープの両方を提示させることにより、この実施形態は、標的細胞に対する細胞傷害性T細胞応答を最適化することができる。二重のエピトープ発現を用いた場合、腫瘍細胞が例えば腫瘍浸潤CTLにより産生され得るIFNの誘導により、ハウスキーピングプロテアソームから免疫プロテアソームに切り換える場合に、pAPCは免疫性エピトープに対するCTL応答を持続し続けることができる。
好ましい実施形態では、患者の免疫は、ハウスキーピングエピトープを含むワクチンを用いて行われる。多くの好ましいTAAは、特に感染細胞の場合に、標的細胞と独占的に関連される。別の実施形態では、多くの好ましいTAAは、形質転換細胞において調節解除された(deregulated)遺伝子発現の結果であるが、精巣、卵巣および胎児の組織でも見出される。別の実施形態では、有用なTAAは、他の細胞中よりも標的細胞中でより高いレベルで発現される。さらに他の実施形態では、TAAは他の細胞と比較して標的細胞上で差次的に発現されないが、TAAは細胞の特定の機能に関連し、ほとんどの他の末梢細胞と標的細胞を識別するため依然として有用である。かかる実施形態では、同様にTAAを示す健常な細胞は、誘導されるT細胞応答により副次的に攻撃され得るが、かかる副次的損傷は、標的細胞により引き起こされる状態に対してかなり好ましいとみなされる。
ワクチンは、pAPCまたはpAPC集団にハウスキーピングエピトープを提示させるのに有効な濃度でハウスキーピングエピトープを含有する。好適には、ワクチンは、任意に1つまたは複数の免疫性エピトープと組み合わせて、複数のハウスキーピングエピトープあるいは1つまたは複数のハウスキーピングエピトープを含むことができる。ワクチン配合物は、pAPCにエピトープを提示させるのに十分な濃度でペプチドおよび/または核酸を含有する。配合物は好ましくは、約1μg〜1mg/(ワクチン調製物100μl
)の総濃度でエピトープを含有する。ペプチドワクチンおよび/または核酸ワクチンに関する従来の投与量および投薬を本発明ととともに使用することができ、かかる投薬レジメンは当該技術分野で十分に理解されている。一実施形態では、成人に関する一回の投与量はかかる組成物約1〜約5000μlであることが好適であり、一回または複数回で、例えば1週間、2週間、1ヶ月、またはそれ以上に分けた2回、3回、4回またはそれ以上の投与量で投与される。インスリンポンプは、結節内方法の特許を参照して、1時間あたり1μl(最低頻度)を送達する。
本明細書中に開示する本発明の組成物および方法はさらに、ワクチンの性能を増強するために、配合物にアジュバントを配合することを意図する。具体的には、配合物へのアジュバントの添加は、pAPCによるエピトープの送達および取り込みを増強するように設計される。本発明により意図されるアジュバントは、当業者に既知であり、例えばGMCSF、GCSF、IL−2、IL−12、BCG、破傷風トキソイド、オステオポンチン、およびETA−1が挙げられる。
本発明の幾つかの実施形態では、ワクチンは、遺伝的に宿主中でエピトープを発現するように操作されたウイルス、細菌または原生動物のような組換え生物を含むことができる。例えば、グラム陽性の条件的細胞内細菌であるリステリア菌は、免疫系に対してTuAAを標的とするための強力なベクターである。好ましい実施形態では、このベクターは、治療上の応答を誘導するために、ハウスキーピングエピトープを発現するように操作することができる。この生物の正常な感染経路は消化管を通るものであり、経口送達することができる。別の実施形態では、TuAAに関するハウスキーピングエピトープをコードするアデノウイルス(Ad)ベクターを使用して、抗ウイルスまたは抗腫瘍応答を誘発することができる。骨髄由来樹状細胞をウイルス構築物で形質転換した後注射する、あるいはウイルスを皮下注射により動物に直接送達して、強力なT細胞応答を誘発することができる。別の実施形態は、TAAに関するハウスキーピングエピトープに相当するアミノ酸配列をコードするように操作した組換えワクシニアウイルスを使用する。ミニ遺伝子構築物の形態で適切なヌクレオチド置換を有する構築物を有するワクシニアウイルスは、ハウスキーピングエピトープの発現を誘導することができ、エピトープに対する治療上のT細胞応答を招く。
DNAによる免疫には、APCがDNAを採取し、コードタンパク質またはペプチドを発現することが必要である。DNA上で別個のクラスIペプチドをコードすることが可能である。この構築物で免疫することにより、APCにハウスキーピングエピトープを発現させることができ、続いて適切なCTL応答を刺激するために細胞表面上のクラスI MHC上に提示される。ハウスキーピングエピトープの適正な末端の生成のための翻訳の終結または非プロテアソームプロテアーゼに概して依存する構築物は、2000年4月28日に出願された標的関連抗原のエピトープをコードする発現ベクター(EXPRESSION VECTORS ENCODING EPITOPES OF TARGET-ASSOCIATED ANTIGENS)という表題の米国特許出願第09/561,572号に記載されている。
上述のように、より大きなタンパク質の状況でハウスキーピングエピトープを発現することが望ましくあり得る。少数のアミノ酸がエピトープ末端を超えて存在する場合でさえ、プロセシングは検出され得る。小さなペプチドホルモンは通常、多くの場合およそ60から120個のアミノ酸のサイズ範囲にあるより大きな翻訳産物からタンパク質分解的にプロセシングされる。この事実は、これが効率的に翻訳されうる最小サイズであるという仮定に幾らか結びついている。幾つかの実施形態では、ハウスキーピングエピトープは、少なくとも約60個のアミノ酸の翻訳産物中に包埋され得る。別の実施形態では、ハウスキーピングペプチドは、少なくとも約50個、30個、15個の翻訳産物中に包埋され得る。
差次的プロテアソームプロセシングに起因して、pAPCの免疫プロテアソームは、末梢身体細胞中のハウスキーピングプロテアソームにより産生されるペプチドとは異なるペプチドを産生する。したがって、より大きなタンパク質の状況でハウスキーピングエピトープを発現する際には、ハウスキーピングエピトープとして、より大きなタンパク質は一般にAPCで活性でないハウスキーピングプロテアソームにより自然タンパク質から単に効率的にプロセシングされるため、その完全長自然配列以外の状況でAPCにおいて発現されることが好ましい。より大きなタンパク質をコードするDNA配列においてハウスキーピングエピトープをコードするために、そのハウスキーピングエピトープを遊離するために免疫プロテアソームによる適切な切断を可能とするエピトープをコードする配列の片側上にフランキング領域を見出すことが有用である。所望のハウスキーピングエピトープのN末端およびC末端にあるフランキングアミノ酸残基を変更することにより、APCにおけるハウスキーピングエピトープの適切な切断および生成を促進することができる。ハウスキーピングエピトープを含む配列は、新規に設計され、どれがハウスキーピングエピトープを遊離するために免疫性エピトープにより首尾よくプロセシングされ得るかを決定するためにスクリーニングされ得る。
あるいは、別の戦略は、APCにおけるハウスキーピングエピトープの産生を可能にする配列を同定するのに非常に有効である。アミノ酸の近接配列は、1つまたは複数のハウスキーピングエピトープの頭尾の配列から生成され得る。この配列を発現する構築物を用いて動物を免疫して、生じたT細胞応答を評価して、アレイ中の1つまたは複数のエピトープに対する特異性を決定する。定義により、これらの免疫応答は、pAPCにおいて効率的にプロセシングされるハウスキーピングエピトープを示す。このエピトープ周辺の必要なフランキング領域はそれにより規定される。所望のペプチドの片側上の約4〜6個のアミノ酸のフランキング領域を使用することにより、免疫プロテアソームによるハウスキーピングエピトープのプロテアソームプロセシングを促進するための必要な情報を提供することができる。したがって、およそ16〜22個のアミノ酸エピトープの同調を請け負う(ensure)配列は、有効に任意のタンパク質配列に挿入することができるか、またはそれらに融合させることができ、APCにおいて産生されるハウスキーピングエピトープを生じる。代替的実施形態では、エピトープの全ての頭尾のアレイ、または正確にプロセシングされるハウスキーピングエピトープにまさにすぐ隣のエピトープは、同様に試験構築物からワクチンベクターに移入することができる。
好ましい実施形態では、ハウスキーピングエピトープは、既知の免疫性エピトープ、またはかかるセグメント間に配置させることができ、それによりプロセシングに適切な状況を提供する。ハウスキーピングエピトープおよび免疫性エピトープの隣接(abutment)は、免疫プロテアソームが、ハウスキーピングエピトープ、または好ましくは正確なC末端を含むより大きな断片を遊離させることが可能となるのに必要な状況を作り出すことができる。所望のエピトープが産生されることを確証するために構築物をスクリーニングすることが有用であり得る。ハウスキーピングエピトープの隣接は、免疫プロテアソームにより切断可能な部位を生成することができる。本発明の幾つかの実施形態は、試験基質においてハウスキーピングエピトープに隣接するために既知のエピトープを使用し、他の実施形態では、フランキング領域が天然フランキング配列の任意の配列であろうとあるいは突然変異であろうと、またプロテアソーム切断の優先の知見が基質を設計するのに使用されようと使用されまいと、以下に記載するようなスクリーニングが使用される。
エピトープの成熟N末端での切断は、様々なN末端トリミング活性が、プロテアソームプロセシング後にエピトープの成熟N末端を生成することができる細胞において存在するため、好適であるが必要とされない。かかるN末端伸長は約25未満のアミノ酸長であることが好ましく、伸長はより少ない残基を有するか、またはプロリン残基を有さないこと
がさらに好ましい。好ましくは、スクリーニングにおいて、エピトープの末端での(または少なくともそのC末端での)切断に対してのみ考慮がなされるだけでなく、エピトープ内での限定された切断を確実にするための考慮もなされ得る。
ショットガンアプローチは、試験基質を設計するのに使用することができ、スクリーニングの効率を上げることができる。一実施形態では、複数のエピトープを、あるものを他のものの後に構築することができ、個々のエピトープは一度以上出現する可能性があると思われる。基質は、どのエピトープが産生され得るかを決定するためにスクリーニングされ得る。特定のエピトープが重要である場合には、特定のエピトープが複数の異なる状況で出現する基質を設計することができる。1つ以上の状況で出現する単一エピトープが基質から遊離される場合、どれが遊離され、エピトープ同調を確実にする配列を真に構成するかを決定するために、エピトープの個々の場合が除去されるか、無能とされるか、または特有であるさらなる二次試験基質が使用され得る。
幾つかの容易に実施可能なスクリーニングが存在する。好ましいin vitroスクリーニングは、精製免疫プロテアソームを用いて、所望のハウスキーピングエピトープが問題となっている配列を包含する合成ペプチドから遊離され得るかどうかを決定するために、プロテアソーム消化解析を利用する。得られる切断位置は、エピトープの発見方法、抗原提示細胞におけるエピトープ同調(METHOD OF EPITOPE DISCOVERY, EPITOPE SYNCHRONIZATION IN ANTIGEN PRESENTING CELLS)という表題の米国特許出願、エピトープ配列(EPITOPE SEQUENCES)という表題の2つの米国特許仮出願に詳述されるように、質量分析、HPLC、およびN末端プールシーケンシングのような技法により決定することができる。
あるいは、免疫または標的感作のようなin vivoスクリーンを使用することができる。免疫に関しては、問題となっている配列を発現することが可能な核酸構築物が使用される。回収したCTLは、問題となっているハウスキーピングエピトープを提示する標的細胞を認識するそれらの能力に関して試験することができる。かかる標的細胞は、成熟ハウスキーピングエピトープを包含する合成ペプチドを有する適切なMHC分子を発現する細胞をパルス標識することにより最も容易に獲得される。あるいは、内因的にもしくは遺伝子操作により、ハウスキーピングプロテアソーム、およびハウスキーピングエピトープが由来する抗原を発現することが知られている細胞を使用することができる。スクリーンとして標的感作を使用するために、ハウスキーピングエピトープを認識するCTL、または好ましくはCTLクローンを使用することができる。この場合、(免疫中のpAPCの代わりに)配置されたハウスキーピングエピトープを発現するのが標的細胞であり、標的細胞は免疫プロテアソームを発現しなくてはならない。一般に、標的細胞は包埋されたハウスキーピングエピトープの発現を付与するために、適切な核酸構築物で形質転換され得る。ペプチド負荷リポソームまたはBIOPORTER(商標)(Gene Therapy Systems, Sna Diegom CA)のようなタンパク質移入試薬を用いて包埋されたエピトープを包含する合成ペプチドを負荷することは代替法を示す。
本発明によるワクチンとして有用なさらなる核酸構築物へのガイダンスは、2000年4月28日に出願された「標的関連抗原のエピトープをコードする発現ベクター(EXPRESSION VECTORS ENCODING EPITOPES OF TARGET-ASSOCIATED ANTIGENS)」という表題の米国特許出願第09/561,572号に開示されている。さらに、本発明により有用な発現ベクターの発現およびそれらの設計方法は、2001年7月11日に出願された「標的関連抗原のエピトープをコードする発現ベクター、およびそれらの設計方法(EXPRESSION VECTORS ENCODING EPITOPES OF TARGET-ASSOCIATED ANTIGENS AND METHODS FOR THEIR DESIGN」という表題の米国特許出願第60/336,968号(代理人整理番号CTLIMM.022PR)に開示されている。
本発明の好ましい実施形態は、治療上の免疫応答を誘発するために、エプトープ(単数または複数)を含むワクチンを投与する方法を包含する。ワクチンは、当該技術分野で既知である標準的なワクチン送達プロトコルと一致した様式で患者に投与される。TAAのエピトープ送達方法としては、注射、滴注、または吸入による送達を含む、経皮、結節内、結節周辺、経口、静脈内、皮内、筋内、腹腔内、および粘膜投与をが挙げられるが、これらに限定されない。CTL応答を誘発するためのワクチン送達の特に有用な方法は、2002年1月17日に発行されたオーストラリア特許第739189号、ともに「CTL応答を誘発する方法(A METHOD OF INDUCING A CTL RESPONSE)」という表題の1999年9月1日に出願された米国特許出願第09/380,534号、および2001年2月2日に出願されたその一部同時継続の米国特許出願第09/776,232号に開示されている。
エピトープ認識試薬
本発明の別の態様では、エピトープおよび/またはエピトープ−MHC分子複合体に関する結合特異性を有するタンパク質、ならびにそれらが発現され得る単離された細胞が意図される。実施形態の一組では、これらの試薬は、免疫グロブリン、すなわちその生成方法が当該技術分野で周知であるポリクローナル血清またはモノクローナル抗体(mAb)の形態をとる。ペプチド−MHC分子複合体に関する特異性を有するmAbの生成は当該技術分野で既知である。例えば、Aharoni et al. Nature 351:147-150, 1991、Andersen et al. Proc. Natl. Acad. Sci. USA 93:1820-1824, 1996、Dadaglio et al. Immunity 6:727-738, 1997、Duc et al. Int. Immunol. 5:427-431, 1993、Eastman et al. Eur. J.
Immunol. 26:385-393, 1996、Engberg et al. Immunotechnology 4:273-278, 1999、Porgdor et al. Immunity 6:715-726, 1997、Puri et al. J. Immunol. 158:2471-2476, 1997、およびPolakova, K., et al. J. Immunol. 165 342-348, 2000を参照されたい。
他の実施形態では、エピトープおよび/またはエピトープ−MHC複合体のいずれかに特異的なT細胞を、in vivoおよびin vitroで誘発および生成するのに組成物を使用することができる。好ましい実施形態では、エピトープは、例えば、表1に列挙した任意の1つまたは複数のエピトープであり得る。したがって、実施形態はまた、単離されたT細胞、T細胞クローン、T細胞ハイブリドーマ、またはクローニングした遺伝子に由来するT細胞受容体(TCR)結合ドメインを含有するタンパク質、ならびにかかるタンパク質を発現する組換え細胞に関し、かつそれらを包含する。かかるTCR由来タンパク質は、単にTCRの細胞外ドメインであり得るか、または所望の特性および機能を付与するための別のタンパク質の一部との融合物であり得る。かかる融合物の一例は、二価の分子を創出するために、抗体分子の定常領域に、TCR結合ドメインを結合することである。この一般的パターンに従った分子の構築および活性は、例えば、Plaksin, D. et
al. J. Immunol. 158:2218-2227, 1997、およびLebowitz, M.S. et al. Cell Immunol. 192:175-184, 1999に報告されている。かかる分子のより一般的な構築および使用は、T細胞受容体、ならびに治療方法および診断方法におけるそれらの使用(T CELL RECEPTORS AND THEIR USE IN THERAPEUTIC AND DIAGNOSTIC METHODS)という表題の米国特許第5,830,755号でも取り扱われている。
かかるT細胞の生成は、実験室動物の標準的な免疫により容易に達成することができ、ヒト標的細胞に対する反応性は、ヒト標的細胞を用いて免疫することにより、あるいはHLAトランスジェニック動物を抗原/エピトープで免疫することにより獲得することができる。幾つかの治療上のアプローチに関して、同種に由来するT細胞が望ましい。かかる細胞は、例えば上述に意図するようにマウスTCRをヒトT細胞にクローニングすることにより創出することができる一方で、ヒト細胞のin vitro免疫は潜在的により迅速な選択を付与する。ナイーブドナーを用いた場合でさえin vitro免疫に関する技法はこの分野で既知であり、例えば、Stauss et al., Proc. Natl. Acad. Sci. USA 89
:7871-7875, 1992、Salgaller et al. Cancer Res. 55:4972-4979, 1995、Tsai et al., J. Immunol. 158:1796-1802, 1997、およびChung et al., J. Immunother. 22:279-287, 1999を参照されたい。
これらの分子のいずれかを、エピトープに関連した病原状態の診断(イメージング、または他の検出)、モニタリング、および治療で使用するために、酵素、放射化学物質、蛍光タグ、および毒素と結合させることができる。したがって、毒素結合体は、腫瘍細胞を死滅させるのに投与することができ、放射標識は、エピトープ陽性腫瘍のイメージングを容易にすることができ、酵素結合体は、癌を診断し生検組織におけるエピトープ発現を確認するために、ELISA様アッセイで使用することができる。さらなる実施形態では、上述に記載するようなT細胞は、エピトープおよび/またはサイトカインによる刺激により達成される増殖後に、養子免疫療法として患者に投与することができる。
エピトープ含有試薬
本発明のさらなる態様は、単離されたエピトープ−MHC複合体を提供する。本発明のこの態様の特に好適な実施形態では、複合体は、米国特許第5,635,363号(四量体)、または米国特許第6,015,884号(Ig−二量体)に記載されるもののような可溶性の多量体タンパク質であり得る。かかる試薬は、特定のT細胞応答を検出およびモニタリングする際に、ならびにかかるT細胞を精製する際に有用である。
エピトープペプチドと複合体を形成した単離されたMHC分子はまた、平面状脂質二重層またはリポソームに組み込むことができる。かかる組成物は、in vitroまたはリポソームの場合には、in vivoでT細胞を刺激するのに使用することができる。共刺激分子(例えば、B7、CD40、LFA−3)を同じ組成物に組み込むことができ、あるいは特にin vitroの研究に関して、同時刺激は、抗補助受容体抗体(例えば、抗CD28、抗CD154、抗CD2)、またはサイトカイン(例えば、IL−2、IL−12)により提供され得る。かかるT細胞の刺激は、ワクチン接種を構成することができるか、免疫療法における続く注入のためのin vitroでのT細胞の増殖を駆動することができるか、またはT細胞機能のアッセイにおける工程を構成することができる。
エピトープ、またはより直接的にはMHC分子とのその複合体は、活性化工程もしくは読み取り工程、またはその両方での抗原特異的T細胞の機能的アッセイの重要な成分であり得る。当該技術分野で知られるT細胞機能の多くのアッセイ(詳細な手順は、Current Protocols in Immunology 1999 John Wiley & Sons Inc., N.Yのような標準的な免疫学的参照文献に見出すことができる)のうち、細胞プールの応答を測定するアッセイと個々の細胞の応答を測定するアッセイの2つの広い部類を定義することができる。前者が応答強度の全体的な測定を伝えるのに対して、後者は、応答細胞の相対的頻度の決定が可能である。全体的な応答を測定するアッセイの例は、細胞傷害性アッセイ、ELISA、およびサイトカイン分泌を検出する増殖アッセイである。個々の細胞(またはそれらに由来する小クローン)の応答を測定するアッセイとしては、限界希釈解析(LDA)、ELISPOT、未分泌サイトカインのフローサイトメトリー検出(「単球リンパ球免疫系の評価方法(METHOD FOR THE ASSESSMENT OF THE MONONUCLEAR LEUKOCYTE IMMUNE SYSTEM)」という表題の米国特許第5,445,939号、ならびにともに「単球リンパ球免疫系の評価方法(METHOD FOR ASSESSMENT OF THE MONONUCLEAR LEUKOCYTE IMMUNE SYSTEM)」という表題の米国特許第5,656,446号および同第5,843,689号に記載されており、それらのための試薬は、商品名「FASTIMMUNE」でBecton, Dickinson & Companyで販売されている)、および上述のように、かつ上記に引用するように四量体またはIg−二量体により特異的TCRの検出が挙げられる。これらの技法の他と比較した場合の長所は、Yee, C. et al. Current Opinion in Immunology, 13:141-146, 2001に概説され
ている。さらに、特異的TCR再配列または発現の検出は、当業者に明らかなように、様々な確立された核酸ベースの技法により、特にin situおよび単一細胞PCR技法において達成され得る。
これらの機能アッセイは、免疫性の内因性レベル、免疫学的刺激(例えば、ワクチン)に対する応答を評価し、疾患と治療の進路による免疫状態をモニタリングするのに使用される。免疫性の内因性レベルを測定する場合を除いて、これらのアッセイのいずれも、対処される問題の性質に応じて、in vivoであろうとin vitroであろうと、免疫の予備工程を前提とする。かかる免疫は、上述の本発明の様々な実施形態を用いて、あるいは同様の免疫性を誘起することができる他の形態の免疫原(例えば、pAPC−腫瘍細胞融合物)を用いて実施することができる。同族TCRの発現を検出することができるPCRおよび四量体/Ig−二量体型解析を除いて、これらのアッセイは概して、特定の機能活性を検出するために、上述のような本発明の様々な実施形態を好適に使用することができるin vitro抗原性刺激の工程から利益を得る(高細胞溶解性応答はときには直接検出され得る)。最終的に、細胞溶解活性の検出はエピトープ提示標的細胞を必要とし、それは本発明の様々な実施形態を用いて生成することができる。任意の特定の工程に関して選択される特定の実施形態は、対処されるべき問題、使用の容易性、コスト等に依存するが、任意の特定組の状況に関する別の実施形態を上回る一実施形態の利点は当業者に明らかである。
この節に記載されるペプチドMHC複合体は伝統的に、非共有結合であると理解されている。しかしながら、例えば単一タンパク質として、エピトープおよびMHC重鎖、またはエピトープ、β2−ミクログロブリンおよびMHC重鎖をコードすることにより、共有結合を創出することが可能であり、かつ好適であり得る(Yu, Y.L.Y., et al., J. Immunol. 168:3145-3149, 2002、Mottez, E., et al., J. Exp. Med. 181:493, 1995、Dela Cruz, C.S., et al., Int. Immunol. 12:1293, 2000、Mage, M.G., et al., Proc. Natl. Acad. Sci. USA 89:10658, 1992、Toshitani, K., et al., Proc. Natl. Acad. Sci. USA 93:236, 1996、Lee, L., et al., Eur. J. Immunol. 24:2633, 1994、Chung, D.H., et al., J. Immunol. 163:3699, 1999、Uger, R.A. and B.H.Barber, J. Immunol. 160:1598,
1998、Uger, R.A., et al., J. Immunol. 162:6024, 1999、およびWhite, J., et al., J. Immunol. 162:2671, 1999)。かかる構築物は、優れた安定性を有することができ、プロセシング−提示経路における障害を克服することができる。かかる構築物は、上述のワクチン、試薬、および類似の様式のアッセイで使用することができる。
腫瘍関連抗原
本発明のエピトープは、TuAAチロシナーゼ(配列番号2)、SSX−2(配列番号3)、PSMA(前立腺特異的膜抗原)(配列番号4)、GP100(配列番号70)、MAGE−1(配列番号71)、MAGE−2(配列番号72)、MAGE−3(配列番号73)、NY−ESO−1(配列番号74)、PRAME(配列番号77)、PSA(配列番号78)、PSCA(配列番号79)、フィブロネクチンのED−Bドメイン(配列番号589および590)、CEA(癌胎児性抗原)(配列番号592)、Her2/Neu(配列番号594)、SCP−1(配列番号596)、およびSSX−4(配列番号598)に由来する。これらの11個のタンパク質に関する天然コード配列、またはそれら内の任意のセグメントは、それらのcDNAまたは完全コード(cds)配列、すなわちそれぞれ配列番号5〜7、80〜87、591、593、595、597および599から決定され得る。
チロシナーゼは、メラニン細胞分化の最も特異的なマーカーの1つであるとみなされる。チロシナーゼは、数種の細胞型、主にメラニン細胞で発現され、黒色腫において高レベルが見出される場合が多い。TuAAとしてのチロシナーゼの有用性は、「異常細胞の幾
つかがHLA−A2/チロシナーゼ由来ペプチドの複合体を提示する細胞異常性を受けている個体を同定する方法、および上記個体を治療する方法(METHOD FOR IDENTIFYING INDIVIDUALS SUFFERING FROM A CELLULAR ABNORMALITY SOME OF WHOSE ABNORMAL CELLS PRESENT COMPLEXES OF HLA-A2/TYROSINASE DERIVED PEPTIDES, AND METHODS FOR TREATING SAID INDIVIDUALS)」という表題の米国特許第5,747,271号に教示されている。
PMe117としても既知のGP100もまた、黒色腫において高レベルで発現されるメラニン生合成タンパク質である。TuAAとしてのGP100は、「黒色腫抗原、ならびに診断方法および治療方法におけるそれらの使用(MELANOMA ANTIGENS AND THEIR USE IN DIAGNOSTIC AND THERAPEUTIC METHODS)」という表題の米国特許第5,844,075号に開示されている。
Hom−Mel−40としても既知のSSX−2は、高度の保存された癌精巣抗原ファミリーの成員である(Gure, A.O. et al. Int. J. Cancer 72:965-971, 1997)。TuAAとしてのその同定は、「黒色腫特異的抗原をコードする単離された核酸分子、およびそれらの使用(ISOLATED NUCLEIC ACID MOLECULES WHICH ENCODE A MELANOMA SPECIFIC ANTIGEN AND USES THEREOF)」という表題の米国特許第6,025,191号に教示されている。癌精巣抗原は、様々な腫瘍に見出されるが、一般に正常な成人の精巣を除く組織には欠如している。SSXファミリーの種々の成員の発現は、腫瘍細胞系において様々に見出されている。SSXファミリー成員間の高度の配列同一性に起因して、ファミリーの1つを超える成員から類似のエピトープが生成され、MHC分子に結合することが可能であり、その結果、このファミリーの一成員に対する幾つかのワクチンがこのファミリーの他の成員と交差反応することができ、それらに対して効果的であり得る(以下の実施例3を参照)。
MAGE−1、MAGE−2およびMAGE−3は、本来黒色腫において発見された癌精巣抗原の別のファミリーの成員である(MAGEは、黒色腫関連抗原の短縮形である)が、様々な腫瘍に見出される。TuAAとしてのMAGEタンパク質の同定は、腫瘍拒絶抗原前駆体であるMAGE−1をコードするヌクレオチド配列(NUCLEOTIDE SEQUENCE ENCODING THE TUMOR REJECTION ANTIGEN PRECURSOR, MAGE-1)という表題の米国特許第5,342,774号、および多くの続く特許において教示されている。現在、SWISSタンパク質データベースに(ヒト)MAGEに関して17個の記入が存在する。多くの場合、同様にこれらのタンパク質間に広範な類似性が存在し、1つ由来のエピトープは、ファミリーの他の成員に対する交差反応性応答を誘発することができる。これらの数種、最も顕著にはMAGE−H1およびMAGE−D1が腫瘍で観察されず、それらはそれぞれ、精巣および脳、ならびに骨髄間質細胞で発現される。正常組織での交差反応性の可能性は、それらが他のMEGEタンパク質に最も類似してないという事実により改善される。
NY−ESO−1は、広範囲の腫瘍において見出される癌精巣抗原であり、CTAG−1(癌精巣抗原−1)およびCAG−3(癌抗原−3)としても既知である。TuAAとしてのNY−ESO−1は、食道癌関連抗原をコードする単離された核酸分子、それらの抗原、およびそれらの使用(ISOLATED NUCLEIC ACID MOLECULE ENCODING AN ESOPHAGEAL CANCER ASSOCIATED ANTIGEN, THE ANTIGEN ITSELF, AND USES THEREOF)という表題の米国特許第5,804,381号に開示されている。広範な配列同一性をコードする抗原を有するパラロガスな遺伝子座であるLAGE−1a/s(配列番号75)およびLAGE−lb/L(配列番号76)は、ヒトゲノムの公的に利用可能なアセンブリにおいて開示され、選択的スプライシングにより生じると結論付けられている。さらに、CT−2(またはCTAG−2、癌精巣抗原−2)は、LAGE−lb/Lの対立遺伝子、突然変異体、またはシーケンシング不一致のようである。広範な配列同一性に起因して、NY−ESO−1由来の多くのエピトープも、これらの他の抗原を発現する腫瘍に対する免疫性を誘発
することができる。図1を参照されたい。タンパク質はアミノ酸70まで事実上同一である。71から134まで、NY−ESO−1とLAGEとの間の最長の同一性の行程は6残基であるが、潜在的交差反応性配列が存在する。また、135から180まで、NY−ESOおよびLAGE−1a/sはたった一つの残基を除いて同一であるが、LAGE−lb/Lは選択的スプライスにより未関連である。CAMELおよびLAGE−2抗原は、LAGE−1 mRNAに由来するようであるが、交互のリーディングフレームに由来し、したがって未関連タンパク質配列を生じる。より最近では、GenBankのアクセッション番号AF277315.5であるホモサピエンスの染色体XクローンRP5−865E18、RP5−1087L19の完全配列は、LAGE1(ゲノム構築物中のCTAG−2に相当する)、さらにLAGE2−AおよびLAGE2−B(ともにゲノム構築物中のCTAG−1に相当する)として呼ばれるこの領域での3つの別個の遺伝子座を報告する。
「前立腺特異的膜抗原(PROSTATE-SPECIFIC MEMBRANES ANTIGEN)」という表題の米国特許第5,538,866号に記載されるTuAAであるPSMA(前立腺特異的膜抗原)は、正常な前立腺上皮により、および前立腺癌中で高レベルで発現される。PSMAは、非前立腺腫瘍の新生血管系でも見出されている。したがって、PSMAは、前立腺癌および他の腫瘍の新生血管系の両方に対して誘導されるワクチンに関する基礎を形成することができる。この後者の概念は、2001年3月7日に出願された癌用の抗新生血管ワクチン(ANTI-NEOVASCULAR VACCINES FOR CANCER)という表題の米国特許仮出願第60/274,063号、および「癌用の抗新生血管調製物(ANTI-NEOVASCULAR PREPARATIONS FOR CANCER)」という表題の2002年3月7日に出願された米国出願第10/094,699号(代理人整理番号CTLIMM.015A)により詳細に記載されている。すなわち、腫瘍が成長するにつれ、腫瘍が新規血管の内殖を強化する。これは、非血管化腫瘍の中心が概して壊死状態にある場合、成長を持続するのに必要であると理解され、血管新生阻害剤は腫瘍後退を引き起こすことが報告されている。かかる新規血管、すなわち新生血管系は、樹立血管において見出されない抗原を発現し、したがってそれらを特異的に標的とすることができる。新血管抗原に対するCTLを誘発することにより、血管を崩壊することができ、腫瘍に対する栄養の流れ(および腫瘍からの廃棄物の除去)を妨げ、後退を招く。
PSMA mRNAの選択的スプライシングはまた、Met58に見かけの開始を有するタンパク質を導き、それにより「選択的にスプライシングされた前立腺特異的膜抗原をコードする単離された核酸分子、およびそれらの使用(ISOLATED NUCLEIC ACID MOLECULE ENCODING ALTERNATIVELY SPLICED PROSTATE-SPECIFIC MEMBRANES ANTIGEN AND USES THEREOF)」という表題の米国特許第5,935,818号に記載されるように、PSMAの推定膜アンカー領域を欠失させる。PSMA様タンパク質と称されるタンパク質であるGenbankアクセッション番号AF261715は、PSMAのアミノ酸309〜750にほぼ同一であり、異なる発現プロフィールを有する。したがって、最も好ましいエピトープは、アミノ酸58〜308に位置されるN末端を有するものである。
MAPE、DAGEおよびOIP4としても既知のPRAMEは、最初は黒色腫抗原として観察された。続いて、PRAMEはCT抗原として認識されたが、多くのCT抗原(例えば、MAGE、GAGEおよびBAGE)と異なり、急性骨髄性白血病において発現される。PRAMEは、それが限定された配列類似性を共有する仮説のタンパク質から大部分が構成されるMAPEファミリーの成員である。TuAAとしてのPRAMEの有用性は、腫瘍拒絶抗原前駆体DAGEをコードする単離された核酸分子、およびそれらの使用(ISOLATED NUCLEIC ACID MOLECULES CODING FOR TUMOR REJECTION ANTIGEN PRECURSOR DAGE AND USES THEREOF)」という表題の米国特許第5,830,753号に教示されている。
PSA、すなわち前立腺特異的抗原は、カリクレインファミリーのペプチダーゼ、および前立腺の分化抗原である。胸部組織での発現も報告されている。代わりの名称としては、γ−セミノプロテイン、カリクレイン3、セミノゲラーゼ(seminogelase)、セミニン、およびP−30抗原が挙げられる。PSAは、様々な選択的スプライシング産物である前立腺/腺のカリクレイン−1および−2、ならびにカリクレイン4と、高度の配列同一性を有し、これは前立腺および胸部組織でも発現される。他のカリクレインは概して、より小さな配列同一性を共有し、異なる発現プロフィールを有する。それにもかかわらず、任意の特定エピトープが非標的組織をプロセシングすることにより(最も一般的にはハウスキーピングプロテアソームにより)遊離される可能性とともに、そのエピトープにより誘起され得る交差反応性が、ワクチンを設計する際に考慮されるべきである。
SCAH−2としても既知のPSCA、すなわち前立腺幹細胞抗原は、前立腺上皮細胞において優先的に発現される分化抗原であり、前立腺癌で過剰発現される。より低レベルの発現が、消化管および腎臓の集合管の神経内分泌細胞を含む幾つかの正常組織で見られる。PSCAは、「ヒト幹細胞抗原(HUMAN STEM CELL ANTIGENS)」という表題の米国特許第5,856,136号に記載されている。
HOM−TES−14としても既知のシナプトネマ構造タンパク質1(SCP−1)は、減数分裂関連タンパク質、および癌精巣抗原である(Tureci, O., et al. Proc. Natl. Acad. Sci. USA 95:5211-5216, 1998)。癌抗原として、その発現は細胞周期調節性でなく、SCP−1は、神経膠腫、胸部、腎細胞および卵巣癌腫において頻繁に見出される。SCP−1は、ミオシンに対していくらかの類似性を有するが、数個の十分な同一性を有する場合、その交差反応性エピトープは目下の期待ではない。
フィブロネクチンのED−Bドメインもまた、潜在的な標的である。フィブロネクチンは、発達上調節される選択的スプライシングの対象であり、ED−Bは、主として腫瘍胎児組織で使用される単一エクソンによりコードされる(Matsuura, H. and S. Hakomori Proc. Natl. Acad. Sci. USA 82:6517-6521, 1985、Carnemolla, B. et al. J. Cell Biol.
108:1139-1148, 1989、Loridon-Rosa, B. et al. Cancer Res. 50:1608-1612, 1990、Nicolo, G. et al. Cell Differ. Dev. 32:401-408, 1990、Borsi, L. et al. Exp. Cell Res. 199:98-105, 1992、Oyama, F. et al. Cancer Res. 53:2005-2011, 1993、Mandel, U. et al. APMIS 102:695-702, 1994、Farnoud, M.R. et al. Int. J. Cancer 61:27-34, 1995、Pujuguet, P. et al. Am. J. Pathol. 148:579-592, 1996、Gabler, U. et al. Heart 75:358-362, 1996、Chevalier, X. Br. Rheumatol. 35:407-415, 1996、Midulla, M.
Cancer Res. 60:164-169, 2000)。
ED−Bドメインはまた、新生血管系のフィブロネクチンでも発現される(Kaczmarek, J. et al. Int. J. Cancer 59:11-16, 1994、Castellani, P. et al. Int. J. Cancer 59:612-618, 1994、Neri, D. et al. Nat. Biotech. 15:1271-1275, 1997、Karelina, T.V.
and A.Z.Eisen Cancer Detect. Prev. 22:438-444, 1998、Tarli, L. et al. Blood 94:192-198, 1999、Castellani, P. et al. Acta Neurochir. (Wien) 142:277-282, 2000)。腫瘍胎児ドメインとして、ED−Bドメインは、新生血管系で発現されるほかに、新生細胞により発現されるフィブロネクチンにおいて一般に見出される。したがって、ED−Bドメインを標的とするCTL誘発性ワクチンは、2つの作用メカニズム:腫瘍細胞の直接溶解、および腫瘍関連新生血管系の破壊による腫瘍血液供給の崩壊を示すことができる。CTL活性はワクチン使用中止後に迅速に遅延することができるため、正常血管新生による妨害は最小限であり得る。新生血管系を標的とするワクチンの設計および試験は、「癌用の抗新生血管系ワクチン(ANTI-NEOVASCULATURE VACCINES FOR CANCER)」という表題の米国特許仮出願第60/274,063号、およびこの出願と同日(2002年3月7日)に出願された「癌用の抗新生血管系調製物(ANTI-NEOVASCULATURE PREPARATIONS FOR CA
NCER)」という表題の米国特許出願第10/094,699号(代理人整理番号CTLIMM.0.15A)に記載されている。腫瘍細胞系は、「HLAトランスジェニックマウス腫瘍細胞系(HLA-TRANSGENIC MURINE TUMOR CELL LINE)」という表題の2002年3月7日に出願された米国特許仮出願第60/363,131号(代理人整理番号CTLIMM.028PR)に開示されている。
癌胎児性抗原(CEA)は、1965年に最初に記載された典型的な腫瘍胎児タンパク質である(Gold and Freedman, J. Exp. Med. 121:439-462, 1965。より完全な参照文献は、Online Medelian Inheritance in Man; record *114890に見出すことができる)。CEAは、癌胎児性抗原関連細胞接着分子5(CEACAM5)と公式に解明された。その発現は、消化管の上皮内層の腺癌および胎児結腸と最も強力に関連している。CEAは、免疫グロブリンスーパー遺伝子ファミリーの成員、およびCEAサブファミリーの特徴的な成員である。
HER2/NEUは、上皮成長因子受容体に関連し(van de Vijver, et al., New Eng.
J. Med. 319:1239-1245, 1988)、かつc−ERBB2癌遺伝子に外見上同一である(Di Fiore, et al., Science 237: 178-182, 1987)癌遺伝子である。ERBB2の過剰発現は、前立腺癌の悪性形質転換に関与される。HER2として、ERBB2は、他の腫瘍の中でも乳癌の25〜30%で増幅および過剰発現され、ここで発現レベルは、腫瘍の攻撃性と相関している(Slamon, et al., New Eng. J. Med. 344:783-792, 2001)。より詳細な説明が、Online Medelian Inheritance in Man, record *164870で入手可能である。
本発明の実施形態に関連したさらなる開示は、2001年11月7日に出願された「抗原提示細胞におけるエピトープ同調(EPITOPE SYNCHRONIZATION IN ANTIGEN PRESENTING CELLS)」という表題の米国特許出願第10/005,905号(代理人整理番号CTLIMM.021CP1)、およびその継続出願である同様に「抗原提示細胞におけるエピトープ同調(EPITOPE SYNCHRONIZATION IN ANTIGEN PRESENTING CELLS)」という表題の2000年12月7日に出願された米国出願第 / 号に見出される。
有用なエピトープを、以下の実施例で記載されるように同定および試験した。しかしながら、これらの実施例は、単なる説明の目的のために意図され、いかなる場合においても本発明の範囲を限定するものと解釈されるべきではない。
特定の好ましいエピトープの配列
実施例1
エピトープの製造
A.エピトープの合成的生産
配列番号1、8、9、11〜23、26〜29、32〜44、47〜54、56〜63、66〜68、88〜253、または256〜588のいずれかのアミノ酸配列を有するペプチドを、FMOC固相合成方法またはtBOC固相合成方法のいずれかを用いて合成する。合成後、適切な保護スカベンジャーの存在下で、それぞれトリフルオロ酢酸またはフッ化水素のいずれかを用いて、ペプチドをそれらの支持体から切り出す。蒸発により酸を除去した後、ペプチドをエーテルで抽出して、スカベンジャーおよび粗原料を除去して、続いて沈殿したペプチドを凍結乾燥する。粗製ペプチドの純度をHPLC、配列解析、アミノ酸解析、対イオン含有量解析、および他の適切な手段により測定する。粗製ペプチドが十分に純粋(約90%以上純粋)である場合、粗製ペプチドをそのまま使用することができる。薬剤物質規格を満たすのに精製が必要とされる場合、以下の:再沈殿、逆相クロマトグラフィ、イオン交換クロマトグラフィ、サイズ排除クロマトグラフィもしくは疎水性相互作用クロマトグラフィ、または向流分配のうちの1つあるいは組合せを用いて、
ペプチドを精製する。
薬剤製品配合物
GMPグレードのペプチドを、非経口的に許容可能な水性、有機性もしくは水性−有機性緩衝液または溶媒系中に配合し、その中ではペプチドは、依然として物理学的および化学的に安定性であり、生物学的に強力のままである。一般に、緩衝液、または緩衝液の組合せ、または緩衝液および有機溶媒の組合せが適切である。pH範囲は通常、6〜9である。有機改質剤または他の賦形剤を添加して、ペプチドを可溶化し、かつそれを安定化するのを助長することができる。これらとしては、界面活性剤、脂質、補助溶媒、酸化防止剤、キレート化剤、および還元剤が挙げられる。凍結乾燥製品の場合には、ショ糖またはマンニトール、あるいは他の凍結乾燥助剤を添加することができる。ペプチド溶液を、それらの最終的な容器施栓系へと膜濾過することにより滅菌し、診療所で溶解するために凍結乾燥するか、または使用するまで保管する。
B.核酸ワクチンとして使用するための発現ベクターの構築
3つの一般的なエピトープ発現ベクターの構築を以下に提示する。これらの設計の特定の利点は、「標的関連抗原のエピトープをコードする発現ベクター(EXPRESSION VECTORS ENCODING EPITOPES OF TARGET-ASSOCIATED ANTIGENS)」という表題の米国特許出願第09/561,572号に記載されている。
次に、適切な大腸菌をプラスミドでトランスフェクトし、選択培地に添加した。幾つかのコロニーが、懸濁培養液中で成長し、制限マッピングにより陽性クローンを同定した。次に、陽性クローンを成長させて、保管バイアル中に分取して、−70℃で保管した。
次に、プラスミドのミニプレップ(QIAprep Spin Mini−prep:Qiagen, Valencia, CA)をこれらの細胞の試料から作製し、自動蛍光ジデオキシ配列解析を用いて、構築物が所望の配列を有するかを確認した。
B.1 pVAX−EP1−IRES−EP2の構築
概要:
この構築物用の開始プラスミドは、Invitrogen(Carlsbad, CA)から購入されるpVAX1である。エピトープEP1およびEP2は、GIBCO BRL(Rockville, MD)により合成された。IRESは、Clontech(Palo Alto, CA)から購入されるpIRESから切除された。
手順:
1 pIRESを、EcoRIおよびNotIで消化した。消化した断片を、アガロースゲル電気泳動で分離し、切り出したバンドからIRES断片を精製した。
2 pVAX1を、EcoRIおよびNotIで消化し、pVAX1断片をゲル精製した。
3 精製したpVAX1およびIRES断片をともに連結させた。
4 株DH5αのコンピテント大腸菌を、連結混合物で形質転換した。
5 得られたコロニーのうちの4つからミニプレップを作製した。
6 制限酵素消化解析を、ミニプレップDNAに実施した。IRES挿入物を有する1つの組換えコロニーを、EP1およびEP2のさらなる挿入に使用した。この中間体構築物をpVAX−IRESと呼んだ。
7 EP1およびEP2をコードするオリゴヌクレオチドを合成した。
8 EP1を、AflII部位とEcoRI部位との間でpVAX−IRESにサブクローニングして、pVAX−EP1−IRESを作製した。
9 EP2を、SalI部位とNotI部位との間でpVAX−EP1−IRESにサブクローニングして、最終構築物pVAX−EP1−IRES−EP2を作製した。
10 EP1−IRES−EP2挿入物の配列をDNAシーケンシングにより確認した。
B2.pVAX−EP1−IRES−ISS−NISの構築
概要:
この構築物用の開始プラスミドは、pVAX−EP1−IRES−EP2(実施例1)であった。この構築物に導入されるISS(免疫刺激配列)はAACGTTであり、使用されるNIS(核内移行配列を意味する)は、SV40 72bp反復配列である。ISS−NISは、GIBCO BRLにより合成された。図2を参照されたい。
手順:
1 pVAX−EP1−IRES−EP2をNruIで消化し、直線化プラスミドをゲル精製した。
2 ISS−NISオリゴヌクレオチドを合成した。
3 精製した直線化pVAX−EP1−IRES−EP2および合成ISS−NISをともに連結させた。
4 株DH5αのコンピテント大腸菌を、連結産物で形質転換した。
5 得られたコロニーからミニプレップを作製した。
6 ミニプレップの制限酵素消化を実施した。
7 挿入物を有するプラスミドをシーケンシングした。
B3.pVAX−EP2−UB−EP1の構築
概要:この構築物用の開始プラスミドは、pVAX1(Invitrogen)であった。EP2およびEP1は、GIBCO BRLにより合成された。構築物における76個のアミノ酸をコードする野生型ユビキチンcDNAは、酵母からクローニングされた。
手順:
1 酵母mRNAを用いて、RT−PCRを実施した。プライマーは、酵母ユビキチンの完全コード配列を増幅するように設計した。
2 RT−PCR産物を、アガロースゲル電気泳動を用いて解析した。予測サイズを有するバンドをゲル精製した。
3 精製したDNAバンドを、EcoRV部位でpZERO1にサブクローニングした。得られたクローンをpZERO−UBと称した。
4 pZERO−UBの幾つかのクローンをシーケンシングして、さらに操作する前にユビキチン配列を確認した。
5 EP1およびEP2を合成した。
6 EP2、ユビキチン、およびEP1を連結させて、挿入物を、BamHIとEcoRIとの間でpVAX1にクローニングして、それをCMVプロモーターの制御下に置いた。
7 挿入物EP2−UB−EP1の配列をDNAシーケンシングにより確認した。
実施例2
有用なエピトープ変異体の同定
10量体FLPWHRLFLL(配列番号1)は、有用なエピトープとして同定される。この配列に基づいて、多数の変異体が作製される。HLA結合アッセイで活性を示す変異体(実施例3、セクション6を参照)が有用であると同定され、続いてワクチンに配合される。
FLPWHRLFLLの長さ変異体のHLA−A2結合を評価した。プロテアソーム消化解析は、9量体FLPWHRLFL(配列番号8)のC末端も産生されることを示す。
さらに、9量体LPWHRLFLL(配列番号9)は、10量体のN末端トリミングから生じ得る。ともにHLA−A*0201分子に結合すると予測されるが、これら2つの9量体のうち、FLPWHRLFLがより有意な結合を示し、好ましい(図3Aおよび図3Bを参照)。
in vitroプロテアソーム消化およびN末端プールシーケンシングは、チロシナーゼ207216(配列番号1)がチロシナーゼ207215(配列番号8)よりも一般的に産生されることを示すが、後者のペプチドは、最適なワクチン設計に到達する際に潜在的に重要である優れた免疫原性を示す。FLPWHRLFL、すなわちチロシナーゼ207215(配列番号8)を、HLA−A2+血液のin vitro免疫で使用して、CTLを生成させた(以下のCTL誘発培養を参照)。標準的クロム放出アッセイにおける標的として、ペプチドパルス化T2細胞を用いて、チロシナーゼ207215(配列番号8)により誘発されるCTLが同様にチロシナーゼ207216(配列番号1)を認識することを見出した(図3Cを参照)。これらのCTLはまた、HLA−A2+のチロシナーゼ+腫瘍細胞系624.38およびHTB64を認識するが、624.38のHLA−A2-誘導体である624.28を認識しない(図3C)。したがって、in vivoで産生されるこれらの2つのエピトープの相対量は、ワクチン設計において重要とならない。
CTL誘導培養
正常ドナー由来のPBMCを、バフィーコートから、Ficoll-Hypaqueにおける遠心分離により精製した。すべての培養が自家血漿(AP)を用いて実施され、潜在的異種病原体への暴露およびFBSペプチドの認識を回避した。ペプチド特異的CTLのin vitro生成を選ぶために、本発明者等は、APCとして自己樹状細胞(DC)を使用した。記載される(Keogh et al., 2001)ように、DCが生成され、DCおよびPBMC由来のペプチドを用いてCTLが誘発された。すなわち、単球が富化された細胞画分をGM−CSFおよびIL−4とともに5日間培養して、2μg/mlのCD40を有する培地中でさらに2日間培養して、成熟させた。2×106個のCD8+が富化されたTリンパ球/ウェル、および2×105個のペプチドパルス化DC/ウェルを、10%AP、10ng/ml IL−7、および20IU/ml IL−2を添加したRPMI2ml中で、24ウェルプレートで共存培養した。7日目および14日目に、自家照射ペプチドパルス化DCで培養物を再刺激した。
FLPWHRLFLの配列変異体を以下のように構築する。NIH/BIMAS MHC結合予測プラグラム(以下の実施例3における参照文献を参照)からの結合係数表(表3を参照)と一貫して、結合は、アンカー位置である位置9にあるLをVに変更することにより改善することができる。結合はまた、一般により少ない程度ではあるが、非アンカー位置での変化により変更することができる。概して表3を参照して、結合は、比較的大きな係数を有する残基を使用することにより増大させることができる。配列中の変化もまた。MHCへの結合に対するそれらの影響に関係なく、免疫原性を変更させることができる。したがって、結合および/または免疫原性は、以下のように改善させることができる。
位置3にあるPを、F、L、M、W、またはYで置換することによるもの:これらはすべて、結合に対する影響に関係なく、免疫原性を改良することもできる嵩高い(bulkier)残基である。それぞれアミンおよびヒドロキシ保有残基であるQおよびN、ならびにSおよびTもまた、より強力な交差反応性応答を誘起することができる。
位置4にあるWをDまたはEで置換することにより、結合を改善するもの:陰電荷のこの付加もまた、エピトープをより免疫原性とさせることができる一方で、場合によっては、天然エピトープとの交差反応性を減少させる。あるいは、FまたはYの保存的置換は交
差反応性応答を誘起することができる。
位置5にあるHをFで置換することにより、結合を改善するもの:Hは、部分的に荷電されるとみなすことができ、したがって場合によっては電荷の損失が交差反応性を妨害し得る。この位置での完全に荷電された残基RまたはKの置換は、電荷依存的交差反応性を崩壊することなく、免疫原性を高めることができる。
位置6にあるRを、I、L、M、V、F、W、またはYで置換することによるもの:同じ注意および代替法が位置5と同様にここでも適用される。
位置7にあるLをWまたはFで置換することにより、結合を改善するもの:この位置でのV、I、S、T、Q、またはNの置換は一般に、このモデルにより結合親和性を減少させると予測されず(NIHアルゴリズム)、依然として上記のように好適であり得る。
位置1および8にあるFとして同様に好ましいYおよびWは、有用な交差反応性を誘起することができる。最終的に、嵩高さの方向における置換が一般に免疫原性を改善するのに好まれる一方で、位置3〜7でのA、S、およびCのようなより小さな残基の置換は、本来嵩高さというよりはサイズの対比が免疫原性において重要な要因であるという理論に従って有用であり得る。Cにおけるチオール基の反応性は、Chen, J.-L., et al. J. Immunol. 165:948-955, 2000で議論されるように、他の特性を導入することができる。
Figure 0004874508
実施例3
クラスター解析(SSX−23168
1.エピトープクラスター領域予測:
H.G.Rammensee, J.Bachmann and S.Stevanovicによる書籍「MHCリガンドおよびペプチドモチーフ」に基づいたコンピュータアルゴリズム:SYFPEITHI(インターネット http://syfpeithi.bmi-heidelberg.com/Scripts/MHCServer.dll/EpPredict.htmにアクセス)、およびParker, K.C. , et al., J. Immunol. 152:163, 1994に記載されるHLAペプチド結合予測(NIH)(インターネット http://bimas.dcrt.nih.gov/molbio/hla_binにアクセス)を用いて、SSX−2(GI:10337583)のタンパク質配列を解析した。エピトープクラスター(高予測MHC親和性を有するペプチド断片の平均密度よりも広い領域)を、2000年4月28日に出願された「エピトープクラスター(EPITOPE CLUSTERS)」という表題の米国特許出願第09/561,571号に完全に記載さ
れるように規定した。エピトープ密度比カットオフ2を用いて、5個のクラスターおよび2個のクラスターを、それぞれSYFPETHIおよびNIHアルゴリズムを用いて規定し、ペプチドは16(SYFPETHI)および5(NIH)のカットオフを得る。1000分を超える解離の推定半減期を有する、NIHアルゴリズムを用いた場合の最高のスコアリングのペプチドであるSSX−24149は、任意の他の予測エピトープと重複しないが、NIH解析においてSSX−25765を有するクラスターと重複する。
2.ペプチド合成および特性化:
SSX−23168、すなわちYFSKEEWEKMKASEKIFYVYMKRKYEAMTKLGFKATLP(配列番号10)は、標準的な固相化学を用いてMPS (Multiple Peptide Sytems, San Diego, CA 92121)により合成された。添付の「解析証明書」によれば、このペプチドの純度は95%であった。
3.プロテアソーム消化:
プロテアソームは、2000年4月28日に出願された「エピトープの発見方法(METHOD OF EPITOPE DISCOVERY)」という表題の米国特許出願第09/561,074号に記載されるプロテアソーム単離プロトコルを用いて、ヒト赤血球から単離した。SDS−PAGE、ウェスタンブロッティング、およびELISAを、品質制御アッセイとして使用した。プロテアソームの最終濃度は4mg/mlであり、これは非妨害タンパク質アッセイにより決定された(Geno Technologies Inc.)。プロテアソームは、25μlのアリコートで−70℃で保管した。
SSX−23168をミリQ水に溶解し、2mMのストック溶液を調製し、20μLのアリコートを−20℃で保管した。
プロテアソームの1つのチューブ(25μL)を−70℃の保管から取り出し、氷上で解凍した。続いて、それを再度ピペッティングすることにより2mMのペプチド12.5μLと、完全に混合した(試料は氷上に保ったままであった)。混合した後、試料5μLを即座に取り出して混合し、10%TFA1.25μLを含有するチューブに移した(TFAの最終濃度は2%であった)T=0分の試料)。次に、プロテアソーム消化反応を開始させ、プログラム可能な熱制御計において37℃で実施した。さらに5μLの試料を、それぞれ15分、30分、60分、120分、180分、および240分に取り出した。反応は、上述と同様に試料を10%TFA1.25μlに添加することにより停止させた。MALDI−MSで解析するまで、試料を氷上に保つか、または凍結させた。HPLC解析およびN末端シーケンシングのために、試料はすべて−20℃で保存および保管された。ペプチドのみ(プロテアソームなし)をブランク対照として使用した(ペプチド2μL+トリス緩衝液(20mM、pH7.6)4μL+TFA1.5μL)。
4.MALDI−TOF MS測定:
各時点に関して、マトリックス溶液(10mg/ml AcCN/H2O(70:30)中のα−シアノ−4−ヒドロキシケイ皮酸)0.3μLをまず試料スライド上に適用し、続いて等容量の消化した試料をスライド上でマトリックス溶液と穏やかに混合した。スライドを周辺空気で3〜5分間乾燥させた後、質量スペクトルを得た。MSは、ペプチド/タンパク質標準物質を用いて較正されるLasermat 2000 MALDI−TOF質量分析計で実施した。測定の精度を向上させるために、ペプチド基質の分子イオン重量(MH+)を内部較正標準として使用した。T=120分の消化試料の質量スペクトルを図4に示す。
5.MSデータ解析およびエピトープの同定:
測定した質量ピークを帰属するために、UCSF Mass Spectrometry Facilityからのツー
ルであるコンピュータプログラムMS−Product(http://prospector.ucsf.edu/ucsfhtml3.4/msprod.htmにアクセス可能)を用いて、すべての考え得る断片(NおよびC末端イオン、および内部断片)、およびそれらの相当する分子量を生成した。質量分析計の感度に起因して、平均分子量を使用した。消化の行程で観察される質量ピークを表4に概要するように同定した。
SYFPEITHIまたはNIHアルゴリズムによりHLAを結合すると予測される8〜10アミノ酸長の配列が同時にC末端にある断片をさらなる研究用に選択した。手順の消化工程および予測工程は任意の順序で有用に実施することができる。ここで記載されるプロテアソーム消化に使用される基質ペプチドは予測HLA−A2.1結合配列を包含するように特異的に設計されたが、消化の実際の産物は、他のMHC分子への実際の結合または予測結合に関する事実の後に試験することができる。選択した結果を表5に示す。
Figure 0004874508
Figure 0004874508
Figure 0004874508
表5にみられるように、エピトープへの確証的配列のN末端付加は、同じか、または異なるMHC制限要素に関するエピトープを生成することができる。特に、(K)RKYEAMTKL(配列番号19および(20))のHLA−B14との対形成(ここでは10量体は同時C末端の9量体よりも長い解離の予測半減期を有する)に留意されたい。また、HLA−B*4403およびHLA−B*08に関するエピトープを創出するために、N末端トリミングに依存することにより、幾つかのMHC型とともに有用なワクチンとして使用することができる10量体KYEAMTKLGF(配列番号21)の場合にも留意されたい。
6.HLA−A0201結合アッセイ:
候補エピトープKASEKIFYV、すなわちSSX−24149(配列番号15)のHLA−A2.1への結合を、Stauss等の方法(Proc Natl Acad Sci USA 89(17):7871-5 (1992))の変法を用いてアッセイした。具体的には、表面上で空のMHC分子または不安定
なMHC分子を発現するT2細胞を、Iscove改変Dulbecco培地(IMDM)で2度洗浄して、3μg/mlでヒトβ2−ミクログロブリン(Sigma, St. Louis, MO)を添加した無血清AIM培地(Life Technologies, Inc., Rockville, MD)中で一晩培養して、96ウェル平底プレート中で、3×105個の細胞/200μl/ウェルで、800、400、200、100、50、25、12.5、および6.25μg/mlでペプチドを添加した。再度ピペッティングすることによりペプチドを細胞と混合した後、プレートに分配し(あるいは、ペプチドを個々のウェルに添加することができる)、プレートを2分間穏やかに振とうした。インキュベーションは、37℃で5% CO2インキュベータ中で行った。翌日、無血清RPMI培地で2度洗浄することにより、未結合のペプチドを除去し、飽和量の抗クラスI HLAモノクローナル抗体であるフルオレセインイソチオシアネート(FITC)−結合抗HLA A2,A28(One Lambda, Canoga Park, CA)を添加した。4℃で30分間インキュベーションした後、0.5%BSA、0.05%(w/v)アジ化ナトリウムを添加したPBS(pH7.4〜7.6、染色緩衝液)で3回洗浄した。(あるいは、W6/32(Sigma)を抗クラスI HLAモノクローナル抗体として使用することができ、細胞を染色緩衝液で洗浄した後、フルオレセインイソチオシアネート(FITC)結合ヤギF(ab’)抗マウス−IgG(Sigma)とともに4℃で30分間インキュベートし、上述のように3回洗浄することができる)。細胞を染色緩衝液0.5ml中の再懸濁させた。ペプチド結合により安定化される表面HLA−A2.1分子の解析は、FACScan(Becton Dickinson, Sna Jose, CA)を用いて、フローサイトメトリーにより実施した。フローサイトメトリーがすぐに実施されない場合は、1/4容量の2%パラホルムアルデヒドを添加して、暗所において4℃で保管することにより、細胞を固定することができる。
実験結果を図5に示す。SSX−24149(配列番号15)は、陽性対照として使用される既知のA2.1バインダーELPSDYFPSV(HBV1827、配列番号24)と同程度に、HLA−A2.1に結合することがわかった。HLA−B44結合ペプチドであるAEMGKYSFY(配列番号25)を陰性対照として使用した。陰性対照から得られる蛍光は、アッセイでペプチドを使用しない場合に得られるシグナルと類似していた。陽性および陰性対照ペプチドは、Current Protocols in Immunology p.18.3.2, John Wiley and Sons, New York, 1998中の表18.3.1から選択した。
7.免疫原性:
A.マウスのin vivo免疫
HHD1トランスジェニックA*0201マウス(Pascolo ,S., et al. J. Exp. Med. 185:2043-2051, 1997)を麻酔して、IFA(不完全フロイントアジュバント)50μlを乳化させたPBS中にSSX−24149(配列番号15)100nmolおよびHTLエピトープペプチド20μgを含有する100μlを用いて、外側尾静脈を避けて、尾の基部に皮下注射した。
B.刺激用細胞(LBS芽細胞)の調製
免疫したマウスの各群に関して2匹のナイーブマウスからの脾臓を用いて、非免疫マウスを屠殺して、死体をアルコール中に入れた。滅菌器具を用いて、マウスの左側(中央下部)上に皮膚の最上皮層を切り出し、腹膜を露出させた。腹膜をアルコールに浸し、脾臓を無菌で摘出した。脾臓を無血清培地の入ったペトリ皿に入れた。3mlシリンジからの滅菌プランジャーを用いて脾臓をつぶして、脾細胞を単離した。細胞を50mlコニカル管中で無血清培地中に回収して、皿を十分にすすいだ。細胞を遠心分離して(12000rpm、7分)、RPMIで一度洗浄した。新鮮な脾臓細胞をRPMI−10%FCS(ウシ胎児血清)中に、1ml当たり1×106個の細胞の濃度で再懸濁させた。25g/mlのリポ多糖および7μg/mlの硫酸デキストランを添加した。細胞を、T−75フラスコ中で37℃にて3日間、5%CO2とともにインキュベートした。脾臓芽細胞を5
0ml管に回収し、ペレット化し(12000rpm、7分)、RPMI中に3×107/mlへと再懸濁した。芽細胞を、50μg/mlで初回刺激用ペプチドにより、室温で4時間パルス標識し、25μg/mlで、37℃にて20分間、マイトマイシンCで処理して、DMEMで3回洗浄した。
C.in vitro刺激
芽細胞のLPS刺激の3日後、およびペプチド負荷と同日に、初回刺激したマウスを屠殺して(免疫後14日目)上述のように脾臓を取り出した。3×106個の脾細胞を、10%FCS、5×10-5M β−メルカプトエタノール、100μg/mlストレプトマイシン、および100IU/ml ペニシリンを添加したDMEM培地中、5%CO2で、24ウェルプレート中で37℃にて1×106個のLPS芽細胞/ウェルと共存培養した。3日目に培養物に5%(vol/vol)ConA上清を供給し、7日目に、51Cr−放出アッセイにおいて細胞溶解活性に関してアッセイした。
D.CTL活性を測定するクロム放出アッセイ
ペプチド特異的溶解を評価するために、2×106個のT2細胞を、50μg/mlのペプチドと一緒に100μCiのクロム酸ナトリウムとともに37℃にて1時間インキュベートした。インキュベーション中、それらを15分毎に穏やかに振とうした。標識および負荷後、DMEM−10%FCS10mlで細胞を3回洗浄し、上清を捨てた後、新しいキムワイプで各チューブを拭った。標的細胞を、DMEM−10%FBS中に1×105/mlで再懸濁させた。エフェクター細胞をDMEM−10%FCS中に1×107/mlに調節し、エフェクターの段階3倍希釈物100μlをU底96ウェルプレート中に調製した。ウェル1つ当たり標的細胞100μlを添加した。自発的放出および最大放出を決定するために、標的細胞100μlを含有する6つのさらなるウェルを各標的に関して調製した。自発的放出は、標的細胞を培地100μlとインキュベートすることにより明らかとなり、最大放出は、標的細胞を2%SDS100μlとインキュベートすることにより明らかとなった。続いて、プレートを600rpmで5分間遠心分離して、5%CO2および80%湿度中、37℃で4時間インキュベートした。インキュベーション後、プレートを1200rpmで5分間遠心分離した。上清を回収して、γカウンターを用いて計数した。特異的溶解は以下のように決定した:特異的放出%=[(実験放出−自発的放出)/(最大放出−自発的放出]×100。
ペプチドでパルス標識した標的細胞の特異的溶解を示すクロム放出アッセイの結果を図6に示す。
8.他のSSXタンパク質との交差反応性:
SSX−24149(配列番号15)は、他のSSXタンパク質の同じ領域と高度の配列同一性を共有する。周辺領域もまた一般に十分に保存されていた。したがって、ハウスキーピングプロテアソームは、5個すべての配列においてV49後に切断することができる。さらに、SSX4149はHLA−A*0201を結合すると予測される(表6を参照)。SSX−24149による免疫により生成されるCTLは、他のSSXタンパク質を発現する腫瘍細胞と交差反応する。
Figure 0004874508
実施例4
クラスター解析(PSMA163192
前立腺特異的膜抗原由来のA1エピトープクラスターであるPSMA168190(配列番号31)を含有するペプチドAFSPQGMPEGDLVYVNYARTEDFFKLERDM、すなわちPSMA163192(配列番号30)を、433A ABIペプチド合成機で、標準的な固相F−moc化学を用いて合成した。側鎖脱保護および樹脂からの切り出し後、まずギ酸中に溶解し続いて30%酢酸へ希釈したペプチドを、以下の条件:4ml/分の流速で線形AB勾配(5%B/分)(ここで、溶離液Aは0.1%TFA水溶液であり、溶離液Bはアセトニトリル中の0.1%TFAである)で、逆相分取HPLC C4カラムに流した。質量分析により判断されるように、予測ペプチドを含有する16.642分時点での画分をプールして、凍結乾燥した。次に、本質的に上述のように、ペプチドをプロテアソーム消化および質量スペクトル解析に付した。質量スペクトルからの顕著なピークを表7に要約する。
Figure 0004874508
N末端プール配列解析
プロテアソーム消化の1時間目のアリコートの1つ(上記実施例3のパート3を参照)を、ABI 473Aタンパク質シーケンサー(Applied Biosystems, Foster City, CA)によりN末端アミノ酸配列解析に付した。切断の部位および効率の決定は、配列サイクル
、タンパク質シーケンサーの反復収率、および解析した配列中に特有のアミノ酸の相対収率の考慮に基づいていた。すなわち、特有(解析した配列中の)残基Xがn番目のサイクルのみに出現する場合、切断部位は、N末端方向でその前のn−1残基に存在する。配列に対する質量の帰属における任意の曖昧性を解決するのを助長するほかに、これらのデータはまた質量分析よりも、様々な断片の相対収率のより信頼性の高い徴候を提供する。
PSMA163192(配列番号30)に関して、このプールシーケンシングは、V177後の単一の主要な切断部位、および幾つかの少量の切断部位(特にY179後のもの)を支持する。図7A〜図7Cに提示した結果を参照することにより以下のことが明らかとなる:
3番目のサイクルにあるSは、基質のN末端の存在を示す。
5番目のサイクルにあるQは、基質のN末端の存在を示す。
1番目のサイクルにあるNは、V177後の切断を示す。
3番目のサイクルにあるNは、V175後の切断を示す。表7の断片176〜192を留意されたい。
5番目のサイクルにあるTは、V177後の切断を示す。
1番目〜3番目のサイクルにあるTは、R181、A180、およびY179後のより一般的な切断を示す。これらのうちの最後のみが、質量分析により検出されるピーク、163〜179および180〜192に相当する。表7を参照。他のものが存在しないことは、それらが質量スペクトルにおいて検査されたものよりも小さい断片上に存在することを示すことができる。
4番目、8番目、および10番目のサイクルにあるKは、それぞれE183、Y179、およびV177後の切断を示し、そのすべてが、質量分析により観察される断片に相当する。表7を参照。
1番目および3番目のサイクルにあるAは、それぞれ基質のN末端の存在、およびV177後の切断を示す。
4番目および8番目のサイクルにあるPは、基質のN末端の存在を示す。
6番目および10番目のサイクルにあるGは、基質のN末端の存在を示す。
7番目のサイクルにあるMは、基質のN末端の存在、および/またはF185後の切断を示す。
15番目のサイクルにあるMは、V177後の切断を示す。
1番目のサイクルは、D191後の切断を示し得る。表7を参照。
4番目および13番目のサイクルにあるRは、V177後の切断を示す。
2番目および11番目のサイクルにあるRは、Y179後の切断を示す。
2番目、6番目、および13番目のサイクルにあるVは、それぞれV175、M169後の切断、および基質のN末端の存在を示す。表7の176および170で始まる断片に留意されたい。
1番目、2番目、および14番目のサイクルにあるYは、それぞれV175、V177後の切断、および基質のN末端の存在を示す。
11番目および12番目のサイクルにあるLは、それぞれV177後の切断、および基質のN末端の存在を示し、他のデータと最も一致した解釈である。質量分析と比較して、本発明者等は、2番目、5番目、および9番目のサイクルにあるLは、それぞれF186、E183またはM169、およびY179後の切断と一致している。表7を参照。
エピトープ同定
SYFPEITHIまたはNIHアルゴリズムによりHLAを結合することが予測される8〜10アミノ酸長の配列が同時にC末端にある断片をさらなる解析用に選択した。手順の消化工程および予測工程は任意の順序で有用に実施することができる。ここで記載されるプロテアソーム消化に使用される基質ペプチドは予測HLA−A1結合配列を包含するように特異的に設計されたが、消化の実際の産物は、他のMHC分子への実際の結合または予測結合に関する事実の後に試験することができる。選択した結果を表8に示す。
Figure 0004874508
HLA−A*0201結合アッセイ:
HLA−A*0201結合研究を、本質的に上記実施例3に記載するように、PSMA168177、すなわちGMPEGDLVYV(配列番号33)を用いて実施した。図8に見られるように、このエピトープは、陽性対照ペプチドよりもはるかに低濃度で、有意な結合を示す。このアッセイ(およびこの開示全体にわたって)対照として使用されるMelan−AペプチドであるELAGIGILTVは、実際に天然配列(EAAGIGILTV)の変異体であり、このアッセイにおいて高親和性を示す。
実施例5
クラスター解析(PSMA281310
前立腺特異的膜抗原由来のA1エピトープクラスターであるPSMA283307(配列番号46)を含有する別のペプチドであるRGIAEAVGLPSIPVHPIGYYDA
QKLLEKMG、すなわちPSMA281310(配列番号45)を、433A ABIペプチド合成機で、標準的な固相F−moc化学を用いて合成した。側鎖脱保護および樹脂からの切り出し後、ddH2O中のペプチドを、以下の条件:4ml/分の流速で線形AB勾配(5%B/分)(ここで、溶離液Aは0.1%TFA水溶液であり、溶離液Bはアセトニトリル中の0.1%TFAである)で、逆相分取HPLC C18カラムに流した。質量分析により判断されるように、予測ペプチドを含有する17.061分時点での画分をプールして、凍結乾燥した。次に、本質的に上述のように、ペプチドをプロテアソーム消化および質量スペクトル解析に付した。質量スペクトルからの顕著なピークを表9に要約する。
Figure 0004874508
Figure 0004874508
N末端プール配列解析
プロテアソーム消化の1時間目のアリコートの1つ(上記実施例3のパート3を参照)を、ABI 473Aタンパク質シーケンサー(Applied Biosystems, Foster City, CA)によりN末端アミノ酸配列解析に付した。切断の部位および効率の決定は、配列サイクル、タンパク質シーケンサーの反復収率、および解析した配列中に特有のアミノ酸の相対収率の考慮に基づいていた。すなわち、特有(解析した配列中の)残基Xがn番目のサイクルのみに出現する場合、切断部位は、N末端方向でその前のn−1残基に存在する。配列に対する質量の帰属における任意の曖昧性を解決するのを助長するほかに、これらのデータはまた質量分析よりも、様々な断片の相対収率のより信頼性高い徴候を提供する。
PSMA281310(配列番号45)に関して、このプールシーケンシングは、他の少量の切断部位の中でも、V287およびI297後の2つの主要な切断部位を支持する。図9に提示した結果を参照することにより以下のことが明らかとなる:
4番目および11番目のサイクルにあるSは、それぞれV287後の切断、および基質のN末端の存在を示す。
8番目のサイクルにあるHは、V287後の切断を示す。10〜11にかけて存在する高さの低下に対して、位置9および位置10のピーク高さの衰退の欠如は、シーケンシング反応における潜伏期を表すピークではなく、同様にA286およびE285後の切断を示唆し得る。
2番目、4番目、および7番目のサイクルにあるDは、それぞれY299、I297、およびV294後の切断を示す。この最後の切断は、表10中の断片にいずれにおいても、あるいは以下の注釈における代替的帰属においても観察されない。
6番目のサイクルにあるQは、I297後の切断を示す。
10番目および12番目のサイクルにあるMは、それぞれY299、およびI297後の切断
を示す。
エピトープ同定
SYFPEITHIまたはNIHアルゴリズムによりHLAを結合することが予測される8〜10アミノ酸長の配列が同時にC末端にある断片をさらなる研究用に選択した。手順の消化工程および予測工程は任意の順序で有用に実施することができる。ここで記載されるプロテアソーム消化に使用される基質ペプチドは予測HLA−A1結合配列を包含するように特異的に設計されたが、消化の実際の産物は、他のMHC分子への実際の結合または予測結合に関する事実の後に試験することができる。選択した結果を表10に示す。
Figure 0004874508
表10に見られるように、エピトープへの確証的配列のN末端付加は、同じかまたは異なるMHC制限要素に関するさらに有用な一層優れたエピトープを生成することができる。例えば、(G)LPSIPVHPIのHLA−A*0201との対形成(ここでは10量体はHLA−B7、HLA−B*5101、およびHLA−Cw*0401に関するエピトープを創出するために、N末端トリミングに依存することにより、幾つかのMHC型とともに有用なワクチンとして使用することができる)に留意されたい。
HLA−A*0201結合アッセイ:
HLA−A*0201結合研究を、本質的に上記実施例3および実施例4に記載するように、PSMA288297、すなわちGLPSIPVHPI(配列番号48)を用いて実施した。図8に見られるように、このエピトープは、陽性対照ペプチドよりもはるかに低濃度で、有意な結合を示す。
実施例6
クラスター解析(PSMA454481
前立腺特異的膜抗原由来のエピトープクラスターを含有する別のペプチドであるSSIEGNYTLRVDCTPLMYSLVHLTKEL、すなわちPSMA454481(配列番号55)を、MPSにより合成し(純度95%を上回る)、上述のように、プロテアソーム消化および質量スペクトル解析に付した。質量スペクトルからの顕著なピークを表11に要約する。
Figure 0004874508
エピトープ同定
SYFPEITHIまたはNIHアルゴリズムによりHLAを結合することが予測される8〜10アミノ酸長の配列が同時にC末端にある断片をさらなる研究用に選択した。手順の消化工程および予測工程は任意の順序で有用に実施することができる。ここで記載されるプロテアソーム消化に使用される基質ペプチドは予測HLA−A2.1結合配列を包含するように特異的に設計されたが、消化の実際の産物は、他のMHC分子への実際の結
合または予測結合に関する事実の後に試験することができる。選択した結果を表12に示す。
Figure 0004874508
表12に見られるように、エピトープへの確証的配列のN末端付加は、同じか、または異なるMHC制限要素に関する、さらに有用な一層優れたエピトープを生成することができることが多い。例えば、(L)RVDCTPLMY(配列番号62および(63))のHLA−B*2702/5との対形成(ここでは10量体は解離の実質的予測半減期を有し、同時C末端の9量体はそれを有さない)に留意されたい。また、エピトープを創出するために、N末端トリミングに依存することにより、HLA−B*5101とともに有用なワクチンとして使用することができる予測HLA−A*0201エピトープであるSIEGNYTLRV(配列番号57)の場合にも留意されたい。
HLA−A*0201結合アッセイ:
HLA−A*0201結合研究を、本質的に上記実施例3に記載するように、PSMA460469、すなわちTLRVDCTPL(配列番号60)を用いて実施した。図10に見られるように、このエピトープは、陽性対照として使用される既知のA2.1バインダーFLPSDYFPSV(HBV1827、配列番号24)と同程度に、HLA−A2.1を結合することがわかった。さらに、PSMA461469(配列番号59)はほぼ同様に結合する。
ELISPOT解析:PSMA463471(配列番号62)
ニトロセルロースをコートしたマイクロタイタープレートのウェルを、4μg/mlのコーティング緩衝液(35mM 炭酸水素ナトリウム、15mM 炭酸ナトリウム、pH9.5)中のマウス抗ヒトγ−IFNモノクローナル抗体50μl/ウェルを用いて、4℃で一晩インキュベートすることにより、捕捉抗体でコーティングした。未結合の抗体を、PBSで5分間4回洗浄することにより除去した。続いて、膜上の未結合部位を、10%血清を含有するRPMI培地200μl/ウェルを添加して、室温で1時間インキュベートすることによりブロックした。1:3の段階希釈物の抗原刺激CD8+T細胞を、100μ/ウェルを用いてマイクロタイタープレートのウェルに播種して、2×105個の細胞/ウェルから開始した(先立っての抗原刺激は、本質的にScheibenbogen, C. et al.
Int. J. Cancer 71:932-936, 1997に記載される通りであった)。PSMA462471(配列番号62)を、最終濃度10μg/mlとなるように、IL−2を100U/mlとなるように添加して、細胞を5%CO2の水飽和雰囲気中で37℃で4時間培養した。このインキュベーション後、プレートを、0.05%ツイーン20を含有するPBS(PBS−ツイーン)200μ/ウェルで6回洗浄した。検出抗体である、2g/mlのPBS+10%ウシ胎児血清中のビオチン化マウス抗ヒトγ−IFNモノクローナル抗体50μl/ウェルを添加して、プレートを室温で2時間インキュベートした。未結合の検出抗体を、PBS−ツイーン200μlで4回洗浄することにより除去した。アビジン結合ホースラディッシュペルオキシダーゼ(Pharmingen, San Diego, CA)100μlを各ウェルに添加して、室温で1時間インキュベートした。未結合の酵素を、PBS−ツイーン200μlで6回洗浄することにより除去した。N,N−ジメチルホルムアミド2.5ml中に3−アミノ−9−エチルカルバゾールの20mgの錠剤を溶解させて、その溶液に0.05M リン酸−クエン酸緩衝液(pH5.0)47.5mlを添加することにより基質を調製した。30%H2225μlを基質溶液に添加した直後に、100μl/ウェルで基質を分配して、プレートを室温でインキュベートした。着色後(一般に15〜30分)、プレートを水で洗浄することにより、反応を停止させた。プレートを風乾させて、立体顕微鏡を用いて、スポットを計数した。
図11は、自己樹状細胞+ペプチドとのHLA−A1+CD8+T細胞の培養物において予め生成されたPSMA463471(配列番号62)反応性HLA−A1+CD8+T細胞の検出を示す。ペプチドなしの培養物からは反応性は検出されない(データは示さず)。この場合、ペプチド反応性T細胞が2.2×104分の1〜6.7×104分の1の頻度で培養物中に存在することが理解され得る。これが本当にHLA−A1制限応答であることは、抗HLA−A1モノクローナル抗体の、γ−IFN産生を阻止する能力により実証される。図12を参照されたい。
実施例7
クラスター解析(PSMA653687
前立腺特異的膜抗原由来のA2エピトープクラスターであるPSMA660681(配列番号65)を含有する別のペプチドであるFDKSNPIVLRMMNDQLMFLERAFIDPLGLPDRPFY、すなわちPSMA653687(配列番号64)を、MPSにより合成し(純度95%を上回る)、上述のように、プロテアソーム消化および質量スペクトル解析に付した。質量スペクトルからの顕著なピークを表13に要約する。
Figure 0004874508
エピトープ同定
SYFPEITHIまたはNIHアルゴリズムによりHLAを結合することが予測される8〜10アミノ酸長の配列が同時にC末端にある断片をさらなる研究用に選択した。手
順の消化工程および予測工程は任意の順序で有用に実施することができる。ここで記載されるプロテアソーム消化に使用される基質ペプチドは予測HLA−A2.1結合配列を包含するように特異的に設計されたが、消化の実際の産物は、他のMHC分子への実際の結合または予測結合に関する事実の後に試験することができる。選択した結果を表14に示す。
Figure 0004874508
表14に見られるように、エピトープへの確証的配列のN末端付加は、同じか、または異なるMHC制限要素に関する、さらに有用な一層優れたエピトープを生成することができる。例えば、(R)MMNDQLMFL(配列番号66および(67))のHLA−A*02との対形成(ここでは10量体は実質的予測結合ポテンシャルを有する)に留意されたい。
HLA−A*0201結合アッセイ:
HLA−A*0201結合研究を、本質的に上記実施例3に記載するように、PSMA663671(配列番号66)、およびPSMA662671、すなわちRMMNDQLMFL(配列番号67)を用いて実施した。図10、図13および図14に見られるように、このエピトープは、陽性対照ペプチド(FLPSDYFPSV(HBV1827)、配列番号24)よりもはるかに低濃度で、有意な結合を示す。並行して実施してはないが、対照との比較は、PSMA662671(これは親和性においてMelanAペプチドに近い)はこれらの2つのPSMAペプチドの優れた結合活性を有することを示唆する。
実施例8
エピトープワクチンによるワクチン接種
1.ペプチドワクチンによるワクチン接種:
A.結節内送達
抗菌剤、酸化防止剤、および免疫調節性サイトカインを有する緩衝水溶液中にペプチドを含有する配合物を、インスリン送達用に開発された小型ポンピングシステム(MiniMed; Northridge, CA)を用いて鼡径リンパ節へ、数日かけて連続的に注入した。この注入周期は、自然感染中の抗原提示の動態を模倣するために選択された。
B.徐放
ペプチド配合物を、当該技術分野で既知であるように制御PLGAミクロスフェアを用いて送達する。これは、ペプチドの薬物動態を変更し、免疫原性を改善させる。この配合物は、注射されるか、または経口摂取される。
C.遺伝子銃送達
当該技術分野で既知であるようにペプチドが金微粒子に接着されたペプチド配合物を調製する。粒子は遺伝子銃で送達され、皮膚を浸透するように高速に加速されることにより、pAPCを含有する皮膚組織へ粒子を運搬する。
D.エーロゾル送達
肺中の適切な血管組織またはリンパ組織への取り込みのために、当該技術分野で既知であるように、ペプチド配合物をエーロゾルとして吸入する。
2.核酸ワクチンによるワクチン接種:
核酸ワクチンを、MiniMedインスリンポンプのような小型ポンピングシステムを用いて、リンパ節に注入する。抗菌剤、酸化防止剤、および免疫調節性サイトカインを含有する緩衝水溶液中に配合された核酸構築物を、天然感染中の抗原提示の動態を模倣するために、数日の注入周期にわたって送達する。
核酸構築物は、PLGAミクロスフェアまたは他の生分解性物質のような徐放性物質を用いて任意に送達される。これらの物質は、注射されるかまたは経口摂取される。核酸ワクチンは、経口送達を用いて付与され、GALT組織への取り込みを通じて免疫応答を初回刺激する。あるいは、核酸ワクチンは遺伝子銃を用いて送達され、ここでは核酸ワクチンは微小金粒子に接着される。核酸構築物はまた、肺中の適切な血管組織またはリンパ組織への取り込みのためにエーロゾルとして吸入することができる。
実施例9
エピトープワクチンに関する有効性に関するアッセイ
1.四量体解析:
クラスI四量体解析を用いて、ハウスキーピングエピトープの投与前および後の動物におけるT細胞頻度を測定する。エピトープに応答したT細胞のクローン増殖は、エピトープがpAPCによりT細胞に提示されることを示す。特異的T細胞頻度を動物へのエピトープの投与前および後にハウスキーピングエピトープに対して測定して、エピトープがpAPC上に存在するかどうかを測定する。投与後のエピトープに特異的なT細胞の頻度の増加は、エピトープがpAPC上に提示されたことを示す。
2.増殖アッセイ:
動物をハウスキーピングエピトープでワクチン接種したおよそ24時間後に、アフィニティ精製用の磁気ビーズに固定した、pPAC上に存在する特定マーカーに対するモノクローナル抗体を用いて、PBMC、脾細胞、またはリンパ節細胞からpAPCを回収する。粗製血液または脾細胞調製物に、この技法を用いてpAPCを富化させる。次に、富化したpAPCを、生成され、かつ所定のハウスキーピングエピトープに特異的なT細胞クローンに対する増殖アッセイに使用する。pAPCを、T細胞クローンと同時インキュベートし、T細胞による放射標識チミジンの組み込みを測定することにより増殖活性に関してT細胞をモニタリングする。増殖は、ハウスキーピングエピトープに特異的なT細胞がpAPC上のそのエピトープにより刺激されることを示す。
3.クロム放出アッセイ:
ヒト患者、またはヒトクラスI MHCを発現するように遺伝子操作した非ヒト動物を、ハウスキーピングエピトープを用いて免疫する。免疫した被験体からのT細胞を、同じクラスI MHCを発現するように操作したヒト腫瘍標的(単数または複数)を用いた標準的なクロム放出アッセイで使用する。標的のT細胞による死滅は、患者におけるT細胞刺激が類似のTuAAを発現する腫瘍を死滅させるのに効果的であることを示す。
実施例10
裸のDNAによるCTL応答の誘発は、リンパ節内免疫により効果的である
種々の免疫経路により誘発されるCD8+CTL応答を定量的に比較するために、以下の系は抗ウイルスCIL応答の包括的な評価が可能であるため、LCMV−糖タンパク質(G)由来の十分に特性化された免疫優性CTLエピトープ(gp33、アミノ酸33〜41)(Oehen, S., et al. Immunology 99, 163-169 2000)を含有するプラスミドDNAワクチン(pEGFPL33A)を使用した。2匹のC57BL/6マウスの群を、i.m.(筋内)、i.d.(皮内)、i.spl.(脾臓内)、またはi.ln.(リンパ節内)に投与して、滴定用量(200〜0.02μg)のpEGFPL33A DNA、または対照プラスミドpEGFP−N3で一度免疫した。陽性対象マウスには、500pfuのLCMVをi.v.(静脈内)に施した。免疫の10日後、脾臓細胞を単離して、二次in vitro再刺激後にgp33特異的CTL活性を決定した。図15に示すように、筋内または皮内免疫は、高用量のpEFGPL33A DNA(200μg)を投与した場合に、弱々しく検出可能なCTL応答を誘発した。対照的に、ほんの2μgのpEFGPLC33 DNAを脾臓内で免疫することにより、またリンパ節内に付与した0.2μg程度と少ないpEFGPL33A DNAで免疫することにより、強力なgp33特異的CTL応答が誘発された(図15、記号は個々のマウスを表し、これらの類似の実験のうちの1つを示している)。対照pEGFP−N3 DNAによる免疫は、いかなる検出可能なgp33特異的CTL応答も誘発しなかった(データは示さず)。
実施例11
リンパ節内DNA免疫は抗腫瘍免疫性を誘発する
リンパ節内での免疫後に誘発される強力なCTL応答は末梢腫瘍に対する防御を付与することが可能であるかどうかを調べるために、6匹のC57BL/6マウスの群を、pEFGPL33A DNAまたは対照pEGFP−N3 DNA 10μgで、6日間隔で3回免疫した。最後の免疫の5日後に、gp33エピトープを発現する固形腫瘍(EL4−33)の小片を、両側腹部に皮下移植して、3〜4日毎に腫瘍成長を測定した。EL4−33腫瘍は、対照pEGFP−N3 DNAで繰り返して免疫したマウスにおいて十分に成長した(図16)が、pEFGPL33A DNAでリンパ節内に免疫したマウスは、末梢EL4−33腫瘍を迅速に根絶した(図16)。
実施例12
リンパ節DNA含有量の差は、リンパ節内および筋内注射後のCTL応答の差を反映する
pEFGPL33A DNAをリンパ節内または筋内注射して、注射リンパ節または排出リンパ節のプラスミド含有量を、6時間、12時間、24時間、48時間、ならびに4日および30日後に、リアルタイムPCRにより評価した。6時間目、12時間目、および24時間目に、注射リンパ節のプラスミドDNA含有量は、筋内注射後の排出リンパ節の含有量よりもおよそ3桁大きかった。プラスミドDNAは、次の時点では排出リンパ節において検出されなかった(図17)。これは、同様のレベルのCTL活性を達成するのに、リンパ節内注射と比較して筋内を用いて必要とされる3桁多い用量と一致する。このエピトープに対するCTL応答を発現させないCD8+ノックアウトマウスにもリンパ節内注射し、リンパ節からのDNAのクリアランスは、リンパ節における細胞のCD8+CTL殺傷に起因しないことを示した。この観察はまた、リンパ節内投与が、リンパ節に対する免疫病理学的損傷を誘起しないという結論を支持する。
実施例13
黒色腫用の治療用ワクチンのDNAプラスミド配合物のヒトへの投与
HLA−A2制限チロシナーゼエピトープ配列番号1およびエピトープクラスター配列番号69をコードする黒色腫ワクチンであるSYNCHROTOPE TA2Mを、1%
ベンジルアルコール、1%エチルアルコール、0.5mM EDTA、クエン酸−リン酸(pH7.6)中に配合した。80、160および320μgDNA/mlのアリコートを、MINIMED 407C 注入ポンプへの負荷用に調製した。SILHOUETTE注入セットのカテーテルを、超音波イメージングにより可視化した鼡径リンパ節に入れた。ポンプおよび注入セットの組立品は本来、糖尿病患者にインスリンを送達するために設計され、通常17mmのカテーテルを、この用途のために31mmのカテーテルで代用した。約25μl/時間の注入速度で、注入セットを4日間(およそ96時間)患者に保持させ、総注入容量はおよそ2.4mlとなった。したがって、注入1回当たりの総投与容量は、上述の3つの濃度に関して、それぞれおよそ200μg、および400μg、および800μgであり得る。注入後、被験体には、次の注入を開始する前に、10日の休息期間をもうけた。投与後のリンパ節中のプラスミドDNAの連続残留(実施例12で見られるような)、および抗原の消失後のCTL応答の通常の動態を考慮して、このスケジュールは、免疫原性CTL応答を維持するのに十分である。
実施例14
さらなるエピトープ
上記、および特に実施例3〜7に記載される方法論をさらなる合成ペプチド基質に適用し、以下の表15〜36に記載するようにさらなるエピトープの同定へと導いた。ここで使用される基質は、HLA−A*0201結合エピトープを生じるハウスキーピングプロテアソームプロセシングの産物を同定するように設計したが、さらなるMHC結合反応性を、上述のように予測することができる。多くのかかる反応性が開示されるが、これらの列挙は、例示的であることを意味し、包括的または限定的であることを意味しない。また上述のように、解析の個々の成分を、組合せおよび順序を変更させる際に使用することができる。NY−ESO−1基質136〜163および150〜177(それぞれ、配列番号254および255)の消化物は、MALDI−TOF質量分析において十分に飛行しない断片を生じた。しかしながら、それらは、N末端ペプチドプールシーケンシングに実に順応しやすく、それにより切断部位の同定が可能であった。基質すべてが必ずしも、実施例3で言及したエピトープクラスターの形式上の定義を満たすとは限らない。クラスターによっては、非常に大きくて(例えば、NY−ESO−186171)、このクラスターの一部のみにかかる基質を使用することがより利便性が高かった。他の場合では、基質は、隣接した予測エピトープを包含するために、形式上の定義を満たすクラスターを超えて伸長された。場合によっては、実際の結合活性は、例えばここで報告されるMAGEエピトープと同様にどの基質が作製されたかということに影響し、ここでHLA結合活性は、合成基質が設計される前に、予測親和性を有するペプチドの選択に関して決定された。
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
実施例15
非標的組織に対するエピトープ交差反応性の可能性の評価
上述のように、PSAは、カリクレインファミリーのプロテアーゼの成員であり、それ自体がセリンプロテアーゼファミリーのサブセットである。PSAとの最大度の配列同一性を共有するこのファミリーの成員もまた類似の発現プロフィールを共有すると同時に、個々のエピトープ配列が明確に異なる発現プロフィールを有するタンパク質と共有され得ることが依然として可能である。望ましくない交差反応性の可能性を評価する際の第1の工程は、共有される配列の同定である。これを達成するための方法の1つは、「短いほぼ正確なマッチに関する検索(Search for short nearly exact matches)」オプション;「ncbi.nlm.nih.gov/blast/index.html」にあるワールドワイドウェブにアクセス可能なハイパーテキストトランスファープロトコル(http://www)を用いて、SWISSPROTまた
はEntrez非重複ペプチド配列データベースに対するエピトープ配列のBLAST検索を実施することである。したがって、SWISSPROT(ホモサピエンスに関するエントリーに限定)に対して、配列番号214、すなわちWVLTAAHCIを検索することにより、PSAを含む4つの正確なマッチが見出される。他の3つは、カリクレイン1(組織カリクレイン)、およびエラスターゼ2Aおよび2B由来である。これらの9個のアミノ酸セグメントが同一である一方で、フランキング配列は、特にC末端側で全く異なっており、プロセシングは異なって進行し得て、したがってこれらの他のタンパク質から同じエピトープが遊離され得ないことを示唆している。(カリクレインの命名が混同されていることに留意されたい)。したがって、カリクレイン1[アクセッション番号P06870]は、腫瘍関連抗原に関する節における上記PSAに関するパラグラフに記載するもの[アクセッション番号AAD13817]とは異なるタンパク質である。
幾つかの方法でこの可能性を試験することが可能である。これらのタンパク質のそれぞれの状況で包埋されたエピトープ配列を含有する合成ペプチドを、上述のようにin vitroプロテアソーム消化および解析に付すことができる。あるいは、エピトープがプロセシングされて,提示されるかどうかを決定するために、天然発現によるものであろうと組換え発現によるものであろうと、これらの他のタンパク質を発現する細胞を、エピトープを認識するCD8+T細胞を用いた細胞傷害性(または類似の)アッセイにおける標的として使用することができる。
実施例16
エピトープクラスター
既知のエピトープおよび予測エピトープは概して、タンパク質抗原の配列にわたって均等に分布しない。上述のように、本発明者等は、エピトープクラスターとして(既知または予測)エピトープの平均密度よりも高い密度を含有する配列のセグメントを定義してきた。なかでも、エピトープクラスターの使用は、本明細書中に記載するように、プロテアソーム消化解析で使用される基質ペプチドにそれらの配列を組み込むことである。エピトープクラスターはまた、ワクチン成分としても有用であり得る。エピトープクラスターの定義および使用のより完全な説明は、エピトープクラスター(EPITOPE CLUSTER)という表題の米国特許出願第09/561,571号に見出される。
以下の表(37〜60)は、SYFPEITHIおよびNIHアルゴリズムの両方を用いたHLA−A2結合に関して予測される9量体エピトープ、ならびに重複エピトープの領域のエピトープ密度、および全タンパク質中の密度、およびこれら2つの密度の比を示す。(比は、上述の定義によりそれらがクラスターであるためには1を超えなくてはならない;この比のより高い値は好ましい実施形態を反映することを要する)。個々の9量体は、スコアによりランク付けされ、完全タンパク質配列中のそれらの最初のアミノの位置により同定される。タンパク質由来の各潜在的クラスターを番号付けする。クラスターが網羅する完全配列内のアミノ酸位置の範囲は、クラスターが構成される個々の予測エピトープの順位と同様に示される。
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
表49〜60では、各アルゴリズムに関するエピトープ予測およびクラスター解析は、単一の表において一緒に示している。
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
本発明の実施形態は、ワールドワイドウェブによりアクセス可能である様々なデータベースにおいて開示されるものを含む、本明細書中に提供する標的抗原の配列における変更に適用可能であり、かつそれらを意図する。具体的には、本明細書中に開示する特定の配列に関して、配列中の変更は、各抗原に関する情報にアクセスするための添付のアクセッション番号を使用することにより見出すことができる。
(表61)
TYROSINASE PROTEIN; SEQ ID NO 2

1 MLLAVLYCLL WSFQTSAGHF PRACVSSKNL MEKECCPPWS GDRSPCGQLS GRGSCQNILL
61 SNAPLGPQFP FTGVDDRESW PSVFYNRTCQ CSGNFMGFNC GNCKFGFWGP NCTERRLLVR
121 RNIFDLSAPE KDKFFAYLTL AKHTISSDYV IPIGTYGQMK NGSTPMFNDI NIYDLFVWMH
181 YYVSMDALLG GSEIWRDIDF AHEAPAFLPW HRLFLLRWEQ EIQKLTGDEN FTIPYWDWRD
241 AEKCDICTDE YMGGQHPTNP NLLSPASFFS SWQIVCSRLE EYNSHQSLCN GTPEGPLRRN
301 PGNHDKSRTP RLPSSADVEF CLSLTQYESG SMDKAANFSF RNTLEGFASP LTGIADASQS
361 SMHNALHIYM NGTMSQVQGS ANDPIFLLHH AFVDSIFEQW LRRHRPLQEV YPEANAPIGH
421 NRESYMVPFI PLYRNGDFFI SSKDLGYDYS YLQDSDPDSF QDYIKSYLEQ ASRIWSWLLG
481 AAMVGAVLTA LLAGLVSLLC RHKRKQLPEE KQPLLMEKED YHSLYQSHL


SSX-2 PROTEIN; SEQ ID NO 3

1 MNGDDAFARR PTVGAQIPEK IQKAFDDIAK YFSKEEWEKM KASEKIFYVY MKRKYEAMTK
61 LGFKATLPPF MCNKRAEDFQ GNDLDNDPNR GNQVERPQMT FGRLQGISPK IMPKKPAEEG
121 NDSEEVPEAS GPQNDGKELC PPGKPTTSEK IHERSGPKRG EHAWTHRLRE RKQLVIYEEI
181 SDPEEDDE


PSMA PROTEIN; SEQ ID NO 4

1 MWNLLHETDS AVATARRPRW LCAGALVLAG GFFLLGFLFG WFIKSSNEAT NITPKHNMKA
61 FLDELKAENI KKFLYNFTQI PHLAGTEQNF QLAKQIQSQW KEFGLDSVEL AHYDVLLSYP
121 NKTHPNYISI INEDGNEIFN TSLFEPPPPG YENVSDIVPP FSAFSPQGMP EGDLVYVNYA
181 RTEDFFKLER DMKINCSGKI VIARYGKVFR GNKVKNAQLA GAKGVILYSD PADYFAPGVK
241 SYPDGWNLPG GGVQRGNILN LNGAGDPLTP GYPANEYAYR RGIAEAVGLP SIPVHPIGYY
301 DAQKLLEKMG GSAPPDSSWR GSLKVPYNVG PGFTGNFSTQ KVKMHIHSTN EVTRIYNVIG
361 TLRGAVEPDR YVILGGHRDS WVFGGIDPQS GAAVVHEIVR SFGTLKKEGW RPRRTILFAS
421 WDAEEFGLLG STEWAEENSR LLQERGVAYI NADSSIEGNY TLRVDCTPLM YSLVHNLTKE
481 LKSPDEGFEG KSLYESWTKK SPSPEFSGMP RISKLGSGND FEVFFQRLGI ASGRARYTKN
541 WETNKFSGYP LYHSVYETYE LVEKFYDPMF KYHLTVAQVR GGMVFELANS IVLPFDCRDY
601 AVVLRKYADK IYSISMKHPQ EMKTYSVSFD SLFSAVKNFT EIASKFSERL QDFDKSNPIV
661 LRMMNDQLMF LERAFIDPLG LPDRPFYRHV IYAPSSHNKY AGESFPGIYD ALFDIESKVD
721 PSKAWGEVKR QIYVAAFTVQ AAAETLSEVA




Homo sapiens tyrosinase (oculocutaneous albinism IA) (TYR), mRNA.;
ACCESSION NM_000372
VERSION NM_000372.1 GI:4507752
SEQ ID NO 2 /translation="MLLAVLYCLLWSFQTSAGHFPRACVSSKNLMEKECCPPWSGDRS
PCGQLSGRGSCQNILLSNAPLGPQFPFTGVDDRESWPSVFYNRTCQCSGNFMGFNCGN
CKFGFWGPNCTERRLLVRRNIFDLSAPEKDKFFAYLTLAKHTISSDYVIPIGTYGQMK
NGSTPMFNDINIYDLFVWMHYYVSMDALLGGSEIWRDIDFAHEAPAFLPWHRLFLLRW
EQEIQKLTGDENFTIPYWDWRDAEKCDICTDEYMGGQHPTNPNLLSPASFFSSWQIVC
SRLEEYNSHQSLCNGTPEGPLRRNPGNHDKSRTPRLPSSADVEFCLSLTQYESGSMDK
AANFSFRNTLEGFASPLTGIADASQSSMHNALHIYMNGTMSQVQGSANDPIFLLHHAF
VDSIFEQWLRRHRPLQEVYPEANAPIGHNRESYMVPFIPLYRNGDFFISSKDLGYDYS
YLQDSDPDSFQDYIKSYLEQASRIWSWLLGAAMVGAVLTALLAGLVSLLCRHKRKQLP
EEKQPLLMEKEDYHSLYQSHL"

SEQ ID NO 5
ORIGIN
1 atcactgtag tagtagctgg aaagagaaat ctgtgactcc aattagccag ttcctgcaga
61 ccttgtgagg actagaggaa gaatgctcct ggctgttttg tactgcctgc tgtggagttt
121 ccagacctcc gctggccatt tccctagagc ctgtgtctcc tctaagaacc tgatggagaa
181 ggaatgctgt ccaccgtgga gcggggacag gagtccctgt ggccagcttt caggcagagg
241 ttcctgtcag aatatccttc tgtccaatgc accacttggg cctcaatttc ccttcacagg
301 ggtggatgac cgggagtcgt ggccttccgt cttttataat aggacctgcc agtgctctgg
361 caacttcatg ggattcaact gtggaaactg caagtttggc ttttggggac caaactgcac
421 agagagacga ctcttggtga gaagaaacat cttcgatttg agtgccccag agaaggacaa
481 attttttgcc tacctcactt tagcaaagca taccatcagc tcagactatg tcatccccat
541 agggacctat ggccaaatga aaaatggatc aacacccatg tttaacgaca tcaatattta
601 tgacctcttt gtctggatgc attattatgt gtcaatggat gcactgcttg ggggatctga
661 aatctggaga gacattgatt ttgcccatga agcaccagct tttctgcctt ggcatagact
721 cttcttgttg cggtgggaac aagaaatcca gaagctgaca ggagatgaaa acttcactat
781 tccatattgg gactggcggg atgcagaaaa gtgtgacatt tgcacagatg agtacatggg
841 aggtcagcac cccacaaatc ctaacttact cagcccagca tcattcttct cctcttggca
901 gattgtctgt agccgattgg aggagtacaa cagccatcag tctttatgca atggaacgcc
961 cgagggacct ttacggcgta atcctggaaa ccatgacaaa tccagaaccc caaggctccc
1021 ctcttcagct gatgtagaat tttgcctgag tttgacccaa tatgaatctg gttccatgga
1081 taaagctgcc aatttcagct ttagaaatac actggaagga tttgctagtc cacttactgg
1141 gatagcggat gcctctcaaa gcagcatgca caatgccttg cacatctata tgaatggaac
1201 aatgtcccag gtacagggat ctgccaacga tcctatcttc cttcttcacc atgcatttgt
1261 tgacagtatt tttgagcagt ggctccgaag gcaccgtcct cttcaagaag tttatccaga
1321 agccaatgca cccattggac ataaccggga atcctacatg gttcctttta taccactgta
1381 cagaaatggt gatttcttta tttcatccaa agatctgggc tatgactata gctatctaca
1441 agattcagac ccagactctt ttcaagacta cattaagtcc tatttggaac aagcgagtcg
1501 gatctggtca tggctccttg gggcggcgat ggtaggggcc gtcctcactg ccctgctggc
1561 agggcttgtg agcttgctgt gtcgtcacaa gagaaagcag cttcctgaag aaaagcagcc
1621 actcctcatg gagaaagagg attaccacag cttgtatcag agccatttat aaaaggctta
1681 ggcaatagag tagggccaaa aagcctgacc tcactctaac tcaaagtaat gtccaggttc
1741 ccagagaata tctgctggta tttttctgta aagaccattt gcaaaattgt aacctaatac
1801 aaagtgtagc cttcttccaa ctcaggtaga acacacctgt ctttgtcttg ctgttttcac
1861 tcagcccttt taacattttc ccctaagccc atatgtctaa ggaaaggatg ctatttggta
1921 atgaggaact gttatttgta tgtgaattaa agtgctctta tttt



Homo sapiens synovial sarcoma, X breakpoint 2 (SSX2), mRNA.
ACCESSION NM_003147
VERSION NM_003147.1 GI:10337582
SEQ ID NO 3
/translation="MNGDDAFARRPTVGAQIPEKIQKAFDDIAKYFSKEEWEKMKASE
KIFYVYMKRKYEAMTKLGFKATLPPFMCNKRAEDFQGNDLDNDPNRGNQVERPQMTFG
RLQGISPKIMPKKPAEEGNDSEEVPEASGPQNDGKELCPPGKPTTSEKIHERSGPKRG
EHAWTHRLRERKQLVIYEEISDPEEDDE"

SEQ ID NO 6
ORIGIN
1 ctctctttcg attcttccat actcagagta cgcacggtct gattttctct ttggattctt
61 ccaaaatcag agtcagactg ctcccggtgc catgaacgga gacgacgcct ttgcaaggag
121 acccacggtt ggtgctcaaa taccagagaa gatccaaaag gccttcgatg atattgccaa
181 atacttctct aaggaagagt gggaaaagat gaaagcctcg gagaaaatct tctatgtgta
241 tatgaagaga aagtatgagg ctatgactaa actaggtttc aaggccaccc tcccaccttt
301 catgtgtaat aaacgggccg aagacttcca ggggaatgat ttggataatg accctaaccg
361 tgggaatcag gttgaacgtc ctcagatgac tttcggcagg ctccagggaa tctccccgaa
421 gatcatgccc aagaagccag cagaggaagg aaatgattcg gaggaagtgc cagaagcatc
481 tggcccacaa aatgatggga aagagctgtg ccccccggga aaaccaacta cctctgagaa
541 gattcacgag agatctggac ccaaaagggg ggaacatgcc tggacccaca gactgcgtga
601 gagaaaacag ctggtgattt atgaagagat cagcgaccct gaggaagatg acgagtaact
661 cccctcaggg atacgacaca tgcccatgat gagaagcaga acgtggtgac ctttcacgaa
721 catgggcatg gctgcggacc cctcgtcatc aggtgcatag caagtg



Homo sapiens folate hydrolase (prostate-specific membrane antigen)
1 (FOLH1), mRNA.
ACCESSION NM_004476
VERSION NM_004476.1 GI:4758397
/translation="MWNLLHETDSAVATARRPRWLCAGALVLAGGFFLLGFLFGWFIK
SSNEATNITPKHNMKAFLDELKAENIKKFLYNFTQIPHLAGTEQNFQLAKQIQSQWKE
FGLDSVELAHYDVLLSYPNKTHPNYISIINEDGNEIFNTSLFEPPPPGYENVSDIVPP
FSAFSPQGMPEGDLVYVNYARTEDFFKLERDMKINCSGKIVIARYGKVFRGNKVKNAQ
LAGAKGVILYSDPADYFAPGVKSYPDGWNLPGGGVQRGNILNLNGAGDPLTPGYPANE
YAYRRGIAEAVGLPSIPVHPIGYYDAQKLLEKMGGSAPPDSSWRGSLKVPYNVGPGFT
GNFSTQKVKMHIHSTNEVTRIYNVIGTLRGAVEPDRYVILGGHRDSWVFGGIDPQSGA
AVVHEIVRSFGTLKKEGWRPRRTILFASWDAEEFGLLGSTEWAEENSRLLQERGVAYI
NADSSIEGNYTLRVDCTPLMYSLVHNLTKELKSPDEGFEGKSLYESWTKKSPSPEFSG
MPRISKLGSGNDFEVFFQRLGIASGRARYTKNWETNKFSGYPLYHSVYETYELVEKFY
DPMFKYHLTVAQVRGGMVFELANSIVLPFDCRDYAVVLRKYADKIYSISMKHPQEMKT
YSVSFDSLFSAVKNFTEIASKFSERLQDFDKSNPIVLRMMNDQLMFLERAFIDPLGLP
DRPFYRHVIYAPSSHNKYAGESFPGIYDALFDIESKVDPSKAWGEVKRQIYVAAFTVQ
AAAETLSEVA"

SEQ ID NO 7
ORIGIN
1 ctcaaaaggg gccggatttc cttctcctgg aggcagatgt tgcctctctc tctcgctcgg
61 attggttcag tgcactctag aaacactgct gtggtggaga aactggaccc caggtctgga
121 gcgaattcca gcctgcaggg ctgataagcg aggcattagt gagattgaga gagactttac
181 cccgccgtgg tggttggagg gcgcgcagta gagcagcagc acaggcgcgg gtcccgggag
241 gccggctctg ctcgcgccga gatgtggaat ctccttcacg aaaccgactc ggctgtggcc
301 accgcgcgcc gcccgcgctg gctgtgcgct ggggcgctgg tgctggcggg tggcttcttt
361 ctcctcggct tcctcttcgg gtggtttata aaatcctcca atgaagctac taacattact
421 ccaaagcata atatgaaagc atttttggat gaattgaaag ctgagaacat caagaagttc
481 ttatataatt ttacacagat accacattta gcaggaacag aacaaaactt tcagcttgca
541 aagcaaattc aatcccagtg gaaagaattt ggcctggatt ctgttgagct agcacattat
601 gatgtcctgt tgtcctaccc aaataagact catcccaact acatctcaat aattaatgaa
661 gatggaaatg agattttcaa cacatcatta tttgaaccac ctcctccagg atatgaaaat
721 gtttcggata ttgtaccacc tttcagtgct ttctctcctc aaggaatgcc agagggcgat
781 ctagtgtatg ttaactatgc acgaactgaa gacttcttta aattggaacg ggacatgaaa
841 atcaattgct ctgggaaaat tgtaattgcc agatatggga aagttttcag aggaaataag
901 gttaaaaatg cccagctggc aggggccaaa ggagtcattc tctactccga ccctgctgac
961 tactttgctc ctggggtgaa gtcctatcca gatggttgga atcttcctgg aggtggtgtc
1021 cagcgtggaa atatcctaaa tctgaatggt gcaggagacc ctctcacacc aggttaccca
1081 gcaaatgaat atgcttatag gcgtggaatt gcagaggctg ttggtcttcc aagtattcct
1141 gttcatccaa ttggatacta tgatgcacag aagctcctag aaaaaatggg tggctcagca
1201 ccaccagata gcagctggag aggaagtctc aaagtgccct acaatgttgg acctggcttt
1261 actggaaact tttctacaca aaaagtcaag atgcacatcc actctaccaa tgaagtgaca
1321 agaatttaca atgtgatagg tactctcaga ggagcagtgg aaccagacag atatgtcatt
1381 ctgggaggtc accgggactc atgggtgttt ggtggtattg accctcagag tggagcagct
1441 gttgttcatg aaattgtgag gagctttgga acactgaaaa aggaagggtg gagacctaga
1501 agaacaattt tgtttgcaag ctgggatgca gaagaatttg gtcttcttgg ttctactgag
1561 tgggcagagg agaattcaag actccttcaa gagcgtggcg tggcttatat taatgctgac
1621 tcatctatag aaggaaacta cactctgaga gttgattgta caccgctgat gtacagcttg
1681 gtacacaacc taacaaaaga gctgaaaagc cctgatgaag gctttgaagg caaatctctt
1741 tatgaaagtt ggactaaaaa aagtccttcc ccagagttca gtggcatgcc caggataagc
1801 aaattgggat ctggaaatga ttttgaggtg ttcttccaac gacttggaat tgcttcaggc
1861 agagcacggt atactaaaaa ttgggaaaca aacaaattca gcggctatcc actgtatcac
1921 agtgtctatg aaacatatga gttggtggaa aagttttatg atccaatgtt taaatatcac
1981 ctcactgtgg cccaggttcg aggagggatg gtgtttgagc tagccaattc catagtgctc
2041 ccttttgatt gtcgagatta tgctgtagtt ttaagaaagt atgctgacaa aatctacagt
2101 atttctatga aacatccaca ggaaatgaag acatacagtg tatcatttga ttcacttttt
2161 tctgcagtaa agaattttac agaaattgct tccaagttca gtgagagact ccaggacttt
2221 gacaaaagca acccaatagt attaagaatg atgaatgatc aactcatgtt tctggaaaga
2281 gcatttattg atccattagg gttaccagac aggccttttt ataggcatgt catctatgct
2341 ccaagcagcc acaacaagta tgcaggggag tcattcccag gaatttatga tgctctgttt
2401 gatattgaaa gcaaagtgga cccttccaag gcctggggag aagtgaagag acagatttat
2461 gttgcagcct tcacagtgca ggcagctgca gagactttga gtgaagtagc ctaagaggat
2521 tctttagaga atccgtattg aatttgtgtg gtatgtcact cagaaagaat cgtaatgggt
2581 atattgataa attttaaaat tggtatattt gaaataaagt tgaatattat atataaaaaa
2641 aaaaaaaaaa aaa



Human melanocyte-specific (pmel 17) gene, exons 2-5, and complete cds.
ACCESSION U20093
VERSION U20093.1 GI:1142634
SEQ ID NO 70
/translation="MDLVLKRCLLHLAVIGALLAVGATKVPRNQDWLGVSRQLRTKAWNRQLYPEWTEAQRLDCWRGGQVSLKVSNDGPTLIGANASFSIALNFPGSQKVLPDGQVIWVNNTIINGSQVWGGQPVYPQETDDACIFPDGGPCPSGSWSQKRSFVYVWKTWGQYWQVLGGPVSGLSIGTGRAMLGTHTMEVTVYHRRGSRSYVPLAHSSSAFTITDQVPFSVSVSQLRALDGGNKHFLRNQPLTFALQLHDPSGYLAEADLSYTWDFGDSSGTLISRAPVVTHTYLEPGPVTAQVVLQAAIPLTSCGSSPVPGTTDGHRPTAEAPNTTAGQVPTTEVVGTTPGQAPTAEPSGTTSVQVPTTEVISTAPVQMPTAESTGMTPEKVPVSEVMGTTLAEMSTPEATGMTPAEVSIVVLSGTTAAQVTTTEWVETTARELPIPEPEGPDASSIMSTESITGSLGPLLDGTATLRLVKRQVPLDCVLYRYGSFSVTLDIVQGIESAEILQAVPSGEGDAFELTVSCQGGLPKEACMEISSPGCQPPAQRLCQPVLPSPACQLVLHQILKGGSGTYCLNVSLADTNSLAVVSTQLIMPGQEAGLGQVPLIVGILLVLMAVVLASLIYRRRLMKQDFSVPQLPHSSSHWLRLPRIFCSCPIGENSPLLSGQQV"

SEQ ID NO 80
ORIGIN
1 gtgctaaaaa gatgccttct tcatttggct gtgataggtg ctttgtggct gtgggggcta
61 caaaagtacc cagaaaccag gactggcttg gtgtctcaag gcaactcaga accaaagcct
121 ggaacaggca gctgtatcca gagtggacag aagcccagag acttgactgc tggagaggtg
181 gtcaagtgtc cctcaaggtc agtaatgatg ggcctacact gattggtgca aatgcctcct
241 tctctattgc cttgaacttc cctggaagcc aaaaggtatt gccagatggg caggttatct
301 gggtcaacaa taccatcatc aatgggagcc aggtgtgggg aggacagcca gtgtatcccc
361 aggaaactga cgatgcctgc atcttccctg atggtggacc ttgcccatct ggctcttggt
421 ctcagaagag aagctttgtt tatgtctgga agacctgggg tgagggactc ccttctcagc
481 ctatcatcca cacttgtgtt tacttctttc tacctgatca cctttctttt ggccgcccct
541 tccaccttaa cttctgtgat tttctctaat cttcattttc ctcttagatc ttttctcttt
601 cttagcacct agcccccttc aagctctatc ataattcttt ctggcaactc ttggcctcaa
661 ttgtagtcct accccatgga atgcctcatt aggacccctt ccctgtcccc ccatatcaca
721 gccttccaaa caccctcaga agtaatcata cttcctgacc tcccatctcc agtgccgttt
781 cgaagcctgt ccctcagtcc cctttgacca gtaatctctt cttccttgct tttcattcca
841 aaaatgcttc aggccaatac tggcaagttc tagggggccc agtgtctggg ctgagcattg
901 ggacaggcag ggcaatgctg ggcacacaca ccatggaagt gactgtctac catcgccggg
961 gatcccggag ctatgtgcct cttgctcatt ccagctcagc cttcaccatt actggtaagg
1021 gttcaggaag ggcaaggcca gttgtagggc aaagagaagg cagggaggct tggatggact
1081 gcaaaggaga aaggtgaaat gctgtgcaaa cttaaagtag aagggccagg aagacctagg
1141 cagagaaatg tgaggcttag tgccagtgaa gggccagcca gtcagcttgg agttggaggg
1201 tgtggctgtg aaaggagaag ctgtggctca ggcctggttc tcaccttttc tggctccaat
1261 cccagaccag gtgcctttct ccgtgagcgt gtcccagttg cgggccttgg atggagggaa
1321 caagcacttc ctgagaaatc agcctctgac ctttgccctc cagctccatg accccagtgg
1381 ctatctggct gaagctgacc tctcctacac ctgggacttt ggagacagta gtggaaccct
1441 gatctctcgg gcacctgtgg tcactcatac ttacctggag cctggcccag tcactgccca
1501 ggtggtcctg caggctgcca ttcctctcac ctcctgtggc tcctccccag ttccaggcac
1561 cacagatggg cacaggccaa ctgcagaggc ccctaacacc acagctggcc aagtgcctac
1621 tacagaagtt gtgggtacta cacctggtca ggcgccaact gcagagccct ctggaaccac
1681 atctgtgcag gtgccaacca ctgaagtcat aagcactgca cctgtgcaga tgccaactgc
1741 agagagcaca ggtatgacac ctgagaaggt gccagtttca gaggtcatgg gtaccacact
1801 ggcagagatg tcaactccag aggctacagg tatgacacct gcagaggtat caattgtggt
1861 gctttctgga accacagctg cacaggtaac aactacagag tgggtggaga ccacagctag
1921 agagctacct atccctgagc ctgaaggtcc agatgccagc tcaatcatgt ctacggaaag
1981 tattacaggt tccctgggcc ccctgctgga tggtacagcc accttaaggc tggtgaagag
2041 acaagtcccc ctggattgtg ttctgtatcg atatggttcc ttttccgtca ccctggacat
2101 tgtccagggt attgaaagtg ccgagatcct gcaggctgtg ccgtccggtg agggggatgc
2161 atttgagctg actgtgtcct gccaaggcgg gctgcccaag gaagcctgca tggagatctc
2221 atcgccaggg tgccagcccc ctgcccagcg gctgtgccag cctgtgctac ccagcccagc
2281 ctgccagctg gttctgcacc agatactgaa gggtggctcg gggacatact gcctcaatgt
2341 gtctctggct gataccaaca gcctggcagt ggtcagcacc cagcttatca tgcctggtag
2401 gtccttggac agagactaag tgaggaggga agtggataga ggggacagct ggcaagcagc
2461 agacatgagt gaagcagtgc ctgggattct tctcacaggt caagaagcag gccttgggca
2521 ggttccgctg atcgtgggca tcttgctggt gttgatggct gtggtccttg catctctgat
2581 atataggcgc agacttatga agcaagactt ctccgtaccc cagttgccac atagcagcag
2641 tcactggctg cgtctacccc gcatcttctg ctcttgtccc attggtgaga atagccccct
2701 cctcagtggg cagcaggtct gagtactctc atatgatgct gtgattttcc tggagttgac
2761 agaaacacct atatttcccc cagtcttccc tgggagacta ctattaactg aaataaa
//


Homo sapiens kallikrein 3, (prostate specific antigen) (KLK3), mRNA.
ACCESSION NM_001648
VERSION NM_001648.1 GI:4502172
SEQ ID NO 78
/translation="MWVPVVFLTLSVTWIGAAPLILSRIVGGWECEKHSQPWQVLVAS
RGRAVCGGVLVHPQWVLTAAHCIRNKSVILLGRHSLFHPEDTGQVFQVSHSFPHPLYDMSLLKNRFLRPGDDSSHDLMLLRLSEPAELTDAVKVMDLPTQEPALGTTCYASGWGSIEPEEFLTPKKLQCVDLHVISNDVCAQVHPQKVTKFMLCAGRWTGGKSTCSGDSGGPLVCNGVLQGITSWGSEPCALPERPSLYTKVVHYRKWIKDTIVANP"

SEQ ID NO 86
ORIGIN
1 agccccaagc ttaccacctg cacccggaga gctgtgtgtc accatgtggg tcccggttgt
61 cttcctcacc ctgtccgtga cgtggattgg tgctgcaccc ctcatcctgt ctcggattgt
121 gggaggctgg gagtgcgaga agcattccca accctggcag gtgcttgtgg cctctcgtgg
181 cagggcagtc tgcggcggtg ttctggtgca cccccagtgg gtcctcacag ctgcccactg
241 catcaggaac aaaagcgtga tcttgctggg tcggcacagc ctgtttcatc ctgaagacac
301 aggccaggta tttcaggtca gccacagctt cccacacccg ctctacgata tgagcctcct
361 gaagaatcga ttcctcaggc caggtgatga ctccagccac gacctcatgc tgctccgcct
421 gtcagagcct gccgagctca cggatgctgt gaaggtcatg gacctgccca cccaggagcc
481 agcactgggg accacctgct acgcctcagg ctggggcagc attgaaccag aggagttctt
541 gaccccaaag aaacttcagt gtgtggacct ccatgttatt tccaatgacg tgtgtgcgca
601 agttcaccct cagaaggtga ccaagttcat gctgtgtgct ggacgctgga cagggggcaa
661 aagcacctgc tcgggtgatt ctgggggccc acttgtctgt aatggtgtgc ttcaaggtat
721 cacgtcatgg ggcagtgaac catgtgccct gcccgaaagg ccttccctgt acaccaaggt
781 ggtgcattac cggaagtgga tcaaggacac catcgtggcc aacccctgag cacccctatc
841 aaccccctat tgtagtaaac ttggaacctt ggaaatgacc aggccaagac tcaagcctcc
901 ccagttctac tgacctttgt ccttaggtgt gaggtccagg gttgctagga aaagaaatca
961 gcagacacag gtgtagacca gagtgtttct taaatggtgt aattttgtcc tctctgtgtc
1021 ctggggaata ctggccatgc ctggagacat atcactcaat ttctctgagg acacagatag
1081 gatggggtgt ctgtgttatt tgtggggtac agagatgaaa gaggggtggg atccacactg
1141 agagagtgga gagtgacatg tgctggacac tgtccatgaa gcactgagca gaagctggag
1201 gcacaacgca ccagacactc acagcaagga tggagctgaa aacataaccc actctgtcct
1261 ggaggcactg ggaagcctag agaaggctgt gagccaagga gggagggtct tcctttggca
1321 tgggatgggg atgaagtaag gagagggact ggaccccctg gaagctgatt cactatgggg
1381 ggaggtgtat tgaagtcctc cagacaaccc tcagatttga tgatttccta gtagaactca
1441 cagaaataaa gagctgttat actgtg
//


Human autoimmunogenic cancer/testis antigen NY-ESO-1 mRNA, complete cds.
ACCESSION U87459
VERSION U87459.1 GI:1890098
SEQ ID NO 74
/translation="MQAEGRGTGGSTGDADGPGGPGIPDGPGGNAGG
PGEAGATGGRGPRGAGAARASGPGGGAPRGPHGGAASGLNGCCRCGARGPESRLLEFYLAMPFATPME
AELARRSLAQDAPPLPVPGVLLKEFTVSGNILTIRLTAADHRQLQLSISSCLQQLSLLMWITQCFLPV
FLAQPPSGQRR"

SEQ ID NO 84
ORIGIN
1 atcctcgtgg gccctgacct tctctctgag agccgggcag aggctccgga gccatgcagg
61 ccgaaggccg gggcacaggg ggttcgacgg gcgatgctga tggcccagga ggccctggca
121 ttcctgatgg cccagggggc aatgctggcg gcccaggaga ggcgggtgcc acgggcggca
181 gaggtccccg gggcgcaggg gcagcaaggg cctcggggcc gggaggaggc gccccgcggg
241 gtccgcatgg cggcgcggct tcagggctga atggatgctg cagatgcggg gccagggggc
301 cggagagccg cctgcttgag ttctacctcg ccatgccttt cgcgacaccc atggaagcag
361 agctggcccg caggagcctg gcccaggatg ccccaccgct tcccgtgcca ggggtgcttc
421 tgaaggagtt cactgtgtcc ggcaacatac tgactatccg actgactgct gcagaccacc
481 gccaactgca gctctccatc agctcctgtc tccagcagct ttccctgttg atgtggatca
541 cgcagtgctt tctgcccgtg tttttggctc agcctccctc agggcagagg cgctaagccc
601 agcctggcgc cccttcctag gtcatgcctc ctcccctagg gaatggtccc agcacgagtg
661 gccagttcat tgtgggggcc tgattgtttg tcgctggagg aggacggctt acatgtttgt
721 ttctgtagaa aataaaactg agctacgaaa aa
//

LAGE-1a protein [Homo sapiens].
ACCESSION CAA11116
PID g3255959
VERSION CAA11116.1 GI:3255959

SEQ ID NO 75
ORIGIN
1 mqaegrgtgg stgdadgpgg pgipdgpggn aggpgeagat ggrgprgaga arasgprgga
61 prgphggaas aqdgrcpcga rrpdsrllel hitmpfsspm eaelvrrils rdaaplprpg
121 avlkdftvsg nllfirltaa dhrqlqlsis sclqqlsllm witqcflpvf laqapsgqrr
181
//


LAGE-1b protein [Homo sapiens].
ACCESSION CAA11117
PID g3255960
VERSION CAA11117.1 GI:3255960

SEQ ID NO 76
ORIGIN
1 mqaegrgtgg stgdadgpgg pgipdgpggn aggpgeagat ggrgprgaga arasgprgga
61 prgphggaas aqdgrcpcga rrpdsrllel hitmpfsspm eaelvrrils rdaaplprpg
121 avlkdftvsg nllfmsvwdq dregagrmrv vgwglgsasp egqkardlrt pkhkvseqrp
181 gtpgppppeg aqgdgcrgva fnvmfsaphi
//


Human antigen (MAGE-1) gene, complete cds.
ACCESSION M77481
VERSION M77481.1 GI:416114
SEQ ID NO 71
/translation="MSLEQRSLHCKPEEALEAQQEALGLVCVQAATS
SSSPLVLGTLEEVPTAGSTDPPQSPQGASAFPTTINFTRQRQPSEGSSSREEEGPSTSCILESLFRAV
ITKKVADLVGFLLLKYRAREPVTKAEMLESVIKNYKHCFPEIFGKASESLQLVFGIDVKEADPTGHSY
VLVTCLGLSYDGLLGDNQIMPKTGFLIIVLVMIAMEGGHAPEEEIWEELSVMEVYDGREHSAYGEPRK
LLTQDLVQEKYLEYRQVPDSDPARYEFLWGPRALAETSYVKVLEYVIKVSARVRFFFPSLREAALREE EEGV"

SEQ ID NO 81
ORIGIN
1 ggatccaggc cctgccagga aaaatataag ggccctgcgt gagaacagag ggggtcatcc
61 actgcatgag agtggggatg tcacagagtc cagcccaccc tcctggtagc actgagaagc
121 cagggctgtg cttgcggtct gcaccctgag ggcccgtgga ttcctcttcc tggagctcca
181 ggaaccaggc agtgaggcct tggtctgaga cagtatcctc aggtcacaga gcagaggatg
241 cacagggtgt gccagcagtg aatgtttgcc ctgaatgcac accaagggcc ccacctgcca
301 caggacacat aggactccac agagtctggc ctcacctccc tactgtcagt cctgtagaat
361 cgacctctgc tggccggctg taccctgagt accctctcac ttcctccttc aggttttcag
421 gggacaggcc aacccagagg acaggattcc ctggaggcca cagaggagca ccaaggagaa
481 gatctgtaag taggcctttg ttagagtctc caaggttcag ttctcagctg aggcctctca
541 cacactccct ctctccccag gcctgtgggt cttcattgcc cagctcctgc ccacactcct
601 gcctgctgcc ctgacgagag tcatcatgtc tcttgagcag aggagtctgc actgcaagcc
661 tgaggaagcc cttgaggccc aacaagaggc cctgggcctg gtgtgtgtgc aggctgccac
721 ctcctcctcc tctcctctgg tcctgggcac cctggaggag gtgcccactg ctgggtcaac
781 agatcctccc cagagtcctc agggagcctc cgcctttccc actaccatca acttcactcg
841 acagaggcaa cccagtgagg gttccagcag ccgtgaagag gaggggccaa gcacctcttg
901 tatcctggag tccttgttcc gagcagtaat cactaagaag gtggctgatt tggttggttt
961 tctgctcctc aaatatcgag ccagggagcc agtcacaaag gcagaaatgc tggagagtgt
1021 catcaaaaat tacaagcact gttttcctga gatcttcggc aaagcctctg agtccttgca
1081 gctggtcttt ggcattgacg tgaaggaagc agaccccacc ggccactcct atgtccttgt
1141 cacctgccta ggtctctcct atgatggcct gctgggtgat aatcagatca tgcccaagac
1201 aggcttcctg ataattgtcc tggtcatgat tgcaatggag ggcggccatg ctcctgagga
1261 ggaaatctgg gaggagctga gtgtgatgga ggtgtatgat gggagggagc acagtgccta
1321 tggggagccc aggaagctgc tcacccaaga tttggtgcag gaaaagtacc tggagtaccg
1381 gcaggtgccg gacagtgatc ccgcacgcta tgagttcctg tggggtccaa gggccctcgc
1441 tgaaaccagc tatgtgaaag tccttgagta tgtgatcaag gtcagtgcaa gagttcgctt
1501 tttcttccca tccctgcgtg aagcagcttt gagagaggag gaagagggag tctgagcatg
1561 agttgcagcc aaggccagtg ggagggggac tgggccagtg caccttccag ggccgcgtcc
1621 agcagcttcc cctgcctcgt gtgacatgag gcccattctt cactctgaag agagcggtca
1681 gtgttctcag tagtaggttt ctgttctatt gggtgacttg gagatttatc tttgttctct
1741 tttggaattg ttcaaatgtt tttttttaag ggatggttga atgaacttca gcatccaagt
1801 ttatgaatga cagcagtcac acagttctgt gtatatagtt taagggtaag agtcttgtgt
1861 tttattcaga ttgggaaatc cattctattt tgtgaattgg gataataaca gcagtggaat
1921 aagtacttag aaatgtgaaa aatgagcagt aaaatagatg agataaagaa ctaaagaaat
1981 taagagatag tcaattcttg ccttatacct cagtctattc tgtaaaattt ttaaagatat
2041 atgcatacct ggatttcctt ggcttctttg agaatgtaag agaaattaaa tctgaataaa
2101 gaattcttcc tgttcactgg ctcttttctt ctccatgcac tgagcatctg ctttttggaa
2161 ggccctgggt tagtagtgga gatgctaagg taagccagac tcatacccac ccatagggtc
2221 gtagagtcta ggagctgcag tcacgtaatc gaggtggcaa gatgtcctct aaagatgtag
2281 ggaaaagtga gagaggggtg agggtgtggg gctccgggtg agagtggtgg agtgtcaatg
2341 ccctgagctg gggcattttg ggctttggga aactgcagtt ccttctgggg gagctgattg
2401 taatgatctt gggtggatcc
//

Human MAGE-2 gene exons 1-4, complete cds.
ACCESSION L18920
VERSION L18920.1 GI:436180
SEQ ID NO 72
/translation="MPLEQRSQHCKPEEGLEARGEALGLVGAQAPATEEQQTASSSSTLVEVTLGEVPAADSPSPPHSPQGASSFSTTINYTLWRQSDEGSSNQEEEGPRMFPDLE SEFQAAISRKMVELVHFLLLKYRAREPVTKAEMLESVLRNCQDFFPVIFSKASEYLQLVFGIEVVEVVPISHLYILVTCLGLSYDGLLGDNQVMPKTGLLIIVLAIIAIEGDCAPEEKIWEELSMLEVFEGREDSVFAHPRKLLMQDLVQENYLEYRQVPGSDPACYEFLWGPRALIETSYVKVLHHTLKIGGEPHISYPPLHERALREGEE"

SEQ ID NO 82
ORIGIN
1 attccttcat caaacagcca ggagtgagga agaggaccct cctgagtgag gactgaggat
61 ccaccctcac cacatagtgg gaccacagaa tccagctcag cccctcttgt cagccctggt
121 acacactggc aatgatctca ccccgagcac acccctcccc ccaatgccac ttcgggccga
181 ctcagagtca gagacttggt ctgaggggag cagacacaat cggcagagga tggcggtcca
241 ggctcagtct ggcatccaag tcaggacctt gagggatgac caaaggcccc tcccaccccc
301 aactcccccg accccaccag gatctacagc ctcaggatcc ccgtcccaat ccctacccct
361 acaccaacac catcttcatg cttaccccca cccccccatc cagatcccca tccgggcaga
421 atccggttcc acccttgccg tgaacccagg gaagtcacgg gcccggatgt gacgccactg
481 acttgcacat tggaggtcag aggacagcga gattctcgcc ctgagcaacg gcctgacgtc
541 ggcggaggga agcaggcgca ggctccgtga ggaggcaagg taagacgccg agggaggact
601 gaggcgggcc tcaccccaga cagagggccc ccaataatcc agcgctgcct ctgctgccgg
661 gcctggacca ccctgcaggg gaagacttct caggctcagt cgccaccacc tcaccccgcc
721 accccccgcc gctttaaccg cagggaactc tggcgtaaga gctttgtgtg accagggcag
781 ggctggttag aagtgctcag ggcccagact cagccaggaa tcaaggtcag gaccccaaga
841 ggggactgag ggcaacccac cccctaccct cactaccaat cccatccccc aacaccaacc
901 ccacccccat ccctcaaaca ccaaccccac ccccaaaccc cattcccatc tcctccccca
961 ccaccatcct ggcagaatcc ggctttgccc ctgcaatcaa cccacggaag ctccgggaat
1021 ggcggccaag cacgcggatc ctgacgttca catgtacggc taagggaggg aaggggttgg
1081 gtctcgtgag tatggccttt gggatgcaga ggaagggccc aggcctcctg gaagacagtg
1141 gagtccttag gggacccagc atgccaggac agggggccca ctgtacccct gtctcaaact
1201 gagccacctt ttcattcagc cgagggaatc ctagggatgc agacccactt cagcaggggg
1261 ttggggccca gcctgcgagg agtcaagggg aggaagaaga gggaggactg aggggacctt
1321 ggagtccaga tcagtggcaa ccttgggctg ggggatcctg ggcacagtgg ccgaatgtgc
1381 cccgtgctca ttgcaccttc agggtgacag agagttgagg gctgtggtct gagggctggg
1441 acttcaggtc agcagaggga ggaatcccag gatctgccgg acccaaggtg tgcccccttc
1501 atgaggactg gggatacccc cggcccagaa agaagggatg ccacagagtc tggaagtccc
1561 ttgttcttag ctctggggga acctgatcag ggatggccct aagtgacaat ctcatttgta
1621 ccacaggcag gaggttgggg aaccctcagg gagataaggt gttggtgtaa agaggagctg
1681 tctgctcatt tcagggggtt gggggttgag aaagggcagt ccctggcagg agtaaagatg
1741 agtaacccac aggaggccat cataacgttc accctagaac caaaggggtc agccctggac
1801 aacgcacgtg ggggtaacag gatgtggccc ctcctcactt gtctttccag atctcaggga
1861 gttgatgacc ttgttttcag aaggtgactc aggtcaacac aggggcccca tctggtcgac
1921 agatgcagtg gttctaggat ctgccaagca tccaggtgga gagcctgagg taggattgag
1981 ggtacccctg ggccagaatg cagcaagggg gccccataga aatctgccct gcccctgcgg
2041 ttacttcaga gaccctgggc agggctgtca gctgaagtcc ctccattatc ctgggatctt
2101 tgatgtcagg gaaggggagg ccttggtctg aaggggctgg agtcaggtca gtagagggag
2161 ggtctcaggc cctgccagga gtggacgtga ggaccaagcg gactcgtcac ccaggacacc
2221 tggactccaa tgaatttgga catctctcgt tgtccttcgc gggaggacct ggtcacgtat
2281 ggccagatgt gggtcccctc atatccttct gtaccatatc agggatgtga gttcttgaca
2341 tgagagattc tcaagccagc aaaagggtgg gattaggccc tacaaggaga aaggtgaggg
2401 ccctgagtga gcacagaggg gaccctccac ccaagtagag tggggacctc acggagtctg
2461 gccaaccctg ctgagacttc tgggaatccg tggctgtgct tgcagtctgc acactgaagg
2521 cccgtgcatt cctctcccag gaatcaggag ctccaggaac caggcagtga ggccttggtc
2581 tgagtcagtg tcctcaggtc acagagcaga ggggacgcag acagtgccaa cactgaaggt
2641 ttgcctggaa tgcacaccaa gggccccacc cgcccagaac aaatgggact ccagagggcc
2701 tggcctcacc ctccctattc tcagtcctgc agcctgagca tgtgctggcc ggctgtaccc
2761 tgaggtgccc tcccacttcc tccttcaggt tctgaggggg acaggctgac aagtaggacc
2821 cgaggcactg gaggagcatt gaaggagaag atctgtaagt aagcctttgt cagagcctcc
2881 aaggttcagt tcagttctca cctaaggcct cacacacgct ccttctctcc ccaggcctgt
2941 gggtcttcat tgcccagctc ctgcccgcac tcctgcctgc tgccctgacc agagtcatca
3001 tgcctcttga gcagaggagt cagcactgca agcctgaaga aggccttgag gcccgaggag
3061 aggccctggg cctggtgggt gcgcaggctc ctgctactga ggagcagcag accgcttctt
3121 cctcttctac tctagtggaa gttaccctgg gggaggtgcc tgctgccgac tcaccgagtc
3181 ctccccacag tcctcaggga gcctccagct tctcgactac catcaactac actctttgga
3241 gacaatccga tgagggctcc agcaaccaag aagaggaggg gccaagaatg tttcccgacc
3301 tggagtccga gttccaagca gcaatcagta ggaagatggt tgagttggtt cattttctgc
3361 tcctcaagta tcgagccagg gagccggtca caaaggcaga aatgctggag agtgtcctca
3421 gaaattgcca ggacttcttt cccgtgatct tcagcaaagc ctccgagtac ttgcagctgg
3481 tctttggcat cgaggtggtg gaagtggtcc ccatcagcca cttgtacatc cttgtcacct
3541 gcctgggcct ctcctacgat ggcctgctgg gcgacaatca ggtcatgccc aagacaggcc
3601 tcctgataat cgtcctggcc ataatcgcaa tagagggcga ctgtgcccct gaggagaaaa
3661 tctgggagga gctgagtatg ttggaggtgt ttgaggggag ggaggacagt gtcttcgcac
3721 atcccaggaa gctgctcatg caagatctgg tgcaggaaaa ctacctggag taccggcagg
3781 tgcccggcag tgatcctgca tgctacgagt tcctgtgggg tccaagggcc ctcattgaaa
3841 ccagctatgt gaaagtcctg caccatacac taaagatcgg tggagaacct cacatttcct
3901 acccacccct gcatgaacgg gctttgagag agggagaaga gtgagtctca gcacatgttg
3961 cagccagggc cagtgggagg gggtctgggc cagtgcacct tccagggccc catccattag
4021 cttccactgc ctcgtgtgat atgaggccca ttcctgcctc tttgaagaga gcagtcagca
4081 ttcttagcag tgagtttctg ttctgttgga tgactttgag atttatcttt ctttcctgtt
4141 ggaattgttc aaatgttcct tttaacaaat ggttggatga acttcagcat ccaagtttat
4201 gaatgacagt agtcacacat agtgctgttt atatagttta ggggtaagag tcctgttttt
4261 tattcagatt gggaaatcca ttccattttg tgagttgtca cataataaca gcagtggaat
4321 atgtatttgc ctatattgtg aacgaattag cagtaaaata catgatacaa ggaactcaaa
4381 agatagttaa ttcttgcctt atacctcagt ctattatgta aaattaaaaa tatgtgtatg
4441 tttttgcttc tttgagaatg caaaagaaat taaatctgaa taaattcttc ctgttcactg
4501 gctcatttct ttaccattca ctcagcatct gctctgtgga aggccctggt agtagtggg
//


Human MAGE-3 antigen (MAGE-3) gene, complete cds.
ACCESSION U03735
VERSION U03735.1 GI:468825
SEQ ID NO 73
/translation="MPLEQRSQHCKPEEGLEARGEALGLVGAQAPATEEQEAASSSSTLVEVTLGEVPAAESPDPPQSPQGASSLPTTMNYPLWSQSYEDSSNQEEEGPSTFPDLESEFQAALSRKVAELVHFLLLKYRAREPVTKAEMLGSVVGNWQYFFPVIFSKASSSLQLVFGIELMEVDPIGHLYIFATCLGLSYDGLLGDNQIMPKAGLLIIVLAIIAREGDCAPEEKIWEELSVLEVFEGREDSILGDPKKLLTQHFVQENYLEYRQVPGSDPACYEFLWGPRALVETSYVKVLHHMVKISGGPHISYPPLHEWVLREGEE"

SEQ ID NO 83
ORIGIN
1 acgcaggcag tgatgtcacc cagaccacac cccttccccc aatgccactt cagggggtac
61 tcagagtcag agacttggtc tgaggggagc agaagcaatc tgcagaggat ggcggtccag
121 gctcagccag gcatcaactt caggaccctg agggatgacc gaaggccccg cccacccacc
181 cccaactccc ccgaccccac caggatctac agcctcagga cccccgtccc aatccttacc
241 ccttgcccca tcaccatctt catgcttacc tccaccccca tccgatcccc atccaggcag
301 aatccagttc cacccctgcc cggaacccag ggtagtaccg ttgccaggat gtgacgccac
361 tgacttgcgc attggaggtc agaagaccgc gagattctcg ccctgagcaa cgagcgacgg
421 cctgacgtcg gcggagggaa gccggcccag gctcggtgag gaggcaaggt aagacgctga
481 gggaggactg aggcgggcct cacctcagac agagggcctc aaataatcca gtgctgcctc
541 tgctgccggg cctgggccac cccgcagggg aagacttcca ggctgggtcg ccactacctc
601 accccgccga cccccgccgc tttagccacg gggaactctg gggacagagc ttaatgtggc
661 cagggcaggg ctggttagaa gaggtcaggg cccacgctgt ggcaggaatc aaggtcagga
721 ccccgagagg gaactgaggg cagcctaacc accaccctca ccaccattcc cgtcccccaa
781 cacccaaccc cacccccatc ccccattccc atccccaccc ccacccctat cctggcagaa
841 tccgggcttt gcccctggta tcaagtcacg gaagctccgg gaatggcggc caggcacgtg
901 agtcctgagg ttcacatcta cggctaaggg agggaagggg ttcggtatcg cgagtatggc
961 cgttgggagg cagcgaaagg gcccaggcct cctggaagac agtggagtcc tgaggggacc
1021 cagcatgcca ggacaggggg cccactgtac ccctgtctca aaccgaggca ccttttcatt
1081 cggctacggg aatcctaggg atgcagaccc acttcagcag ggggttgggg cccagccctg
1141 cgaggagtca tggggaggaa gaagagggag gactgagggg accttggagt ccagatcagt
1201 ggcaaccttg ggctggggga tgctgggcac agtggccaaa tgtgctctgt gctcattgcg
1261 ccttcagggt gaccagagag ttgagggctg tggtctgaag agtgggactt caggtcagca
1321 gagggaggaa tcccaggatc tgcagggccc aaggtgtacc cccaaggggc ccctatgtgg
1381 tggacagatg cagtggtcct aggatctgcc aagcatccag gtgaagagac tgagggagga
1441 ttgagggtac ccctgggaca gaatgcggac tgggggcccc ataaaaatct gccctgctcc
1501 tgctgttacc tcagagagcc tgggcagggc tgtcagctga ggtccctcca ttatcctagg
1561 atcactgatg tcagggaagg ggaagccttg gtctgagggg gctgcactca gggcagtaga
1621 gggaggctct cagaccctac taggagtgga ggtgaggacc aagcagtctc ctcacccagg
1681 gtacatggac ttcaataaat ttggacatct ctcgttgtcc tttccgggag gacctgggaa
1741 tgtatggcca gatgtgggtc ccctcatgtt tttctgtacc atatcaggta tgtgagttct
1801 tgacatgaga gattctcagg ccagcagaag ggagggatta ggccctataa ggagaaaggt
1861 gagggccctg agtgagcaca gaggggatcc tccaccccag tagagtgggg acctcacaga
1921 gtctggccaa ccctcctgac agttctggga atccgtggct gcgtttgctg tctgcacatt
1981 gggggcccgt ggattcctct cccaggaatc aggagctcca ggaacaaggc agtgaggact
2041 tggtctgagg cagtgtcctc aggtcacaga gtagaggggg ctcagatagt gccaacggtg
2101 aaggtttgcc ttggattcaa accaagggcc ccacctgccc cagaacacat ggactccaga
2161 gcgcctggcc tcaccctcaa tactttcagt cctgcagcct cagcatgcgc tggccggatg
2221 taccctgagg tgccctctca cttcctcctt caggttctga ggggacaggc tgacctggag
2281 gaccagaggc ccccggagga gcactgaagg agaagatctg taagtaagcc tttgttagag
2341 cctccaaggt tccattcagt actcagctga ggtctctcac atgctccctc tctccccagg
2401 ccagtgggtc tccattgccc agctcctgcc cacactcccg cctgttgccc tgaccagagt
2461 catcatgcct cttgagcaga ggagtcagca ctgcaagcct gaagaaggcc ttgaggcccg
2521 aggagaggcc ctgggcctgg tgggtgcgca ggctcctgct actgaggagc aggaggctgc
2581 ctcctcctct tctactctag ttgaagtcac cctgggggag gtgcctgctg ccgagtcacc
2641 agatcctccc cagagtcctc agggagcctc cagcctcccc actaccatga actaccctct
2701 ctggagccaa tcctatgagg actccagcaa ccaagaagag gaggggccaa gcaccttccc
2761 tgacctggag tccgagttcc aagcagcact cagtaggaag gtggccgagt tggttcattt
2821 tctgctcctc aagtatcgag ccagggagcc ggtcacaaag gcagaaatgc tggggagtgt
2881 cgtcggaaat tggcagtatt tctttcctgt gatcttcagc aaagcttcca gttccttgca
2941 gctggtcttt ggcatcgagc tgatggaagt ggaccccatc ggccacttgt acatctttgc
3001 cacctgcctg ggcctctcct acgatggcct gctgggtgac aatcagatca tgcccaaggc
3061 aggcctcctg ataatcgtcc tggccataat cgcaagagag ggcgactgtg cccctgagga
3121 gaaaatctgg gaggagctga gtgtgttaga ggtgtttgag gggagggaag acagtatctt
3181 gggggatccc aagaagctgc tcacccaaca tttcgtgcag gaaaactacc tggagtaccg
3241 gcaggtcccc ggcagtgatc ctgcatgtta tgaattcctg tggggtccaa gggccctcgt
3301 tgaaaccagc tatgtgaaag tcctgcacca tatggtaaag atcagtggag gacctcacat
3361 ttcctaccca cccctgcatg agtgggtttt gagagagggg gaagagtgag tctgagcacg
3421 agttgcagcc agggccagtg ggagggggtc tgggccagtg caccttccgg ggccgcatcc
3481 cttagtttcc actgcctcct gtgacgtgag gcccattctt cactctttga agcgagcagt
3541 cagcattctt agtagtgggt ttctgttctg ttggatgact ttgagattat tctttgtttc
3601 ctgttggagt tgttcaaatg ttccttttaa cggatggttg aatgagcgtc agcatccagg
3661 tttatgaatg acagtagtca cacatagtgc tgtttatata gtttaggagt aagagtcttg
3721 ttttttactc aaattgggaa atccattcca ttttgtgaat tgtgacataa taatagcagt
3781 ggtaaaagta tttgcttaaa attgtgagcg aattagcaat aacatacatg agataactca
3841 agaaatcaaa agatagttga ttcttgcctt gtacctcaat ctattctgta aaattaaaca
3901 aatatgcaaa ccaggatttc cttgacttct ttgagaatgc aagcgaaatt aaatctgaat
3961 aaataattct tcctcttcac tggctcgttt cttttccgtt cactcagcat ctgctctgtg
4021 ggaggccctg ggttagtagt ggggatgcta aggtaagcca gactcacgcc tacccatagg
4081 gctgtagagc ctaggacctg cagtcatata attaaggtgg tgagaagtcc tgtaagatgt
4141 agaggaaatg taagagaggg gtgagggtgt ggcgctccgg gtgagagtag tggagtgtca
4201 gtgc
//

Homo sapiens prostate stem cell antigen (PSCA) mRNA, complete cds.
ACCESSION AF043498
VERSION AF043498.1 GI:2909843
SEQ ID NO 79
/translation="MKAVLLALLMAGLALQPGTALLCYSCKAQVSNEDCLQVENCTQLGEQCWTARIRAVGLLTVISKGCSLNCVDDSQDYYVGKKNITCCDTDLCNASGAHALQPAAAILALLPALGLLLWGPGQL"

SEQ ID NO 87
ORIGIN
1 agggagaggc agtgaccatg aaggctgtgc tgcttgccct gttgatggca ggcttggccc
61 tgcagccagg cactgccctg ctgtgctact cctgcaaagc ccaggtgagc aacgaggact
121 gcctgcaggt ggagaactgc acccagctgg gggagcagtg ctggaccgcg cgcatccgcg
181 cagttggcct cctgaccgtc atcagcaaag gctgcagctt gaactgcgtg gatgactcac
241 aggactacta cgtgggcaag aagaacatca cgtgctgtga caccgacttg tgcaacgcca
301 gcggggccca tgccctgcag ccggctgccg ccatccttgc gctgctccct gcactcggcc
361 tgctgctctg gggacccggc cagctatagg ctctgggggg ccccgctgca gcccacactg
421 ggtgtggtgc cccaggcctt tgtgccactc ctcacagaac ctggcccagt gggagcctgt
481 cctggttcct gaggcacatc ctaacgcaag tttgaccatg tatgtttgca ccccttttcc
541 ccnaaccctg accttcccat gggccttttc caggattccn accnggcaga tcagttttag
601 tganacanat ccgcntgcag atggcccctc caaccntttn tgttgntgtt tccatggccc
661 agcattttcc acccttaacc ctgtgttcag gcacttnttc ccccaggaag ccttccctgc
721 ccaccccatt tatgaattga gccaggtttg gtccgtggtg tcccccgcac ccagcagggg
781 acaggcaatc aggagggccc agtaaaggct gagatgaagt ggactgagta gaactggagg
841 acaagagttg acgtgagttc ctgggagttt ccagagatgg ggcctggagg cctggaggaa
901 ggggccaggc ctcacatttg tggggntccc gaatggcagc ctgagcacag cgtaggccct
961 taataaacac ctgttggata agccaaaaaa
//


GLANDULAR KALLIKREIN 1 PRECURSOR (TISSUE KALLIKREIN)
(KIDNEY/PANCREAS/SALIVARY GLAND KALLIKREIN).
ACCESSION P06870
PID g125170
VERSION P06870 GI:125170

SEQ ID NO 600
ORIGIN
1 mwflvlclal slggtgaapp iqsrivggwe ceqhsqpwqa alyhfstfqc ggilvhrqwv
61 ltaahcisdn yqlwlgrhnl fddentaqfv hvsesfphpg fnmsllenht rqadedyshd
121 lmllrltepa dtitdavkvv elptqepevg stclasgwgs iepenfsfpd dlqcvdlkil
181 pndecekahv qkvtdfmlcv ghleggkdtc vgdsggplmc dgvlqgvtsw gyvpcgtpnk
241 psvavrvlsy vkwiedtiae ns
//


ELASTASE 2A PRECURSOR.
ACCESSION P08217
PID g119255
VERSION P08217 GI:119255

SEQ ID NO 601
ORIGIN
1 mirtlllstl vagalscgdp typpyvtrvv ggeearpnsw pwqvslqyss ngkwyhtcgg
61 slianswvlt aahcisssrt yrvglgrhnl yvaesgslav svskivvhkd wnsnqiskgn
121 diallklanp vsltdkiqla clppagtilp nnypcyvtgw grlqtngavp dvlqqgrllv
181 vdyatcsssa wwgssvktsm icaggdgvis scngdsggpl ncqasdgrwq vhgivsfgsr
241 lgcnyyhkps vftrvsnyid winsviann
//

pancreatic elastase IIB [Homo sapiens].
ACCESSION NP_056933
PID g7705648
VERSION NP_056933.1 GI:7705648

SEQ ID NO 602
ORIGIN
1 mirtlllstl vagalscgvs tyapdmsrml ggeearpnsw pwqvslqyss ngqwyhtcgg
61 slianswvlt aahcisssri yrvmlgqhnl yvaesgslav svskivvhkd wnsnqvskgn
121 diallklanp vsltdkiqla clppagtilp nnypcyvtgw grlqtngalp ddlkqgrllv
181 vdyatcsssg wwgstvktnm icaggdgvic tcngdsggpl ncqasdgrwe vhgigsltsv
241 lgcnyyykps iftrvsnynd winsviann
//


PRAME Homo sapiens preferentially expressed antigen in melanoma (PRAME), mRNA.
ACCESSION NM_006115
VERSION NM_006115.1 GI:5174640
SEQ ID NO 77
/translation="MERRRLWGSIQSRYISMSVWTSPRRLVELAGQSLLKDEALAIAALELLPRELFPPLFMAAFDGRHSQTLKAMVQAWPFTCLPLGVLMKGQHLHLETFKAVLDGLDVLLAQEVRPRRWKLQVLDLRKNSHQDFWTVWSGNRASLYSFPEPEAAQPMTKKRKVDGLSTEAEQPFIPVEVLVDLFLKEGACDELFSYLIEKVKRKKNVLRLCCKKLKIFAMPMQDIKMILKMVQLDSIEDLEVTCTWKLPTLAKFSPYLGQMINLRRLLLSHIHASSYISPEKEEQYIAQFTSQFLSLQCLQALYVDSLFFLRGRLDQLLRHVMNPLETLSITNCRLSEGDVMHLSQSPSVSQLSVLSLSGVMLTDVSPEPLQALLERASATLQDLVFDECGITDDQLLALLPSLSHCSQLTTLSFYGNSISISALQSLLQHLIGLSNLTHVLYPVPLESYEDIHGTLHLERLAYLHARLRELLCELGRPSMVWLSANPCPHCGDRTFYDPEPILCPCFMPN"

SEQ ID NO 85
ORIGIN
1 gcttcagggt acagctcccc cgcagccaga agccgggcct gcagcccctc agcaccgctc
61 cgggacaccc cacccgcttc ccaggcgtga cctgtcaaca gcaacttcgc ggtgtggtga
121 actctctgag gaaaaaccat tttgattatt actctcagac gtgcgtggca acaagtgact
181 gagacctaga aatccaagcg ttggaggtcc tgaggccagc ctaagtcgct tcaaaatgga
241 acgaaggcgt ttgtggggtt ccattcagag ccgatacatc agcatgagtg tgtggacaag
301 cccacggaga cttgtggagc tggcagggca gagcctgctg aaggatgagg ccctggccat
361 tgccgccctg gagttgctgc ccagggagct cttcccgcca ctcttcatgg cagcctttga
421 cgggagacac agccagaccc tgaaggcaat ggtgcaggcc tggcccttca cctgcctccc
481 tctgggagtg ctgatgaagg gacaacatct tcacctggag accttcaaag ctgtgcttga
541 tggacttgat gtgctccttg cccaggaggt tcgccccagg aggtggaaac ttcaagtgct
601 ggatttacgg aagaactctc atcaggactt ctggactgta tggtctggaa acagggccag
661 tctgtactca tttccagagc cagaagcagc tcagcccatg acaaagaagc gaaaagtaga
721 tggtttgagc acagaggcag agcagccctt cattccagta gaggtgctcg tagacctgtt
781 cctcaaggaa ggtgcctgtg atgaattgtt ctcctacctc attgagaaag tgaagcgaaa
841 gaaaaatgta ctacgcctgt gctgtaagaa gctgaagatt tttgcaatgc ccatgcagga
901 tatcaagatg atcctgaaaa tggtgcagct ggactctatt gaagatttgg aagtgacttg
961 tacctggaag ctacccacct tggcgaaatt ttctccttac ctgggccaga tgattaatct
1021 gcgtagactc ctcctctccc acatccatgc atcttcctac atttccccgg agaaggaaga
1081 gcagtatatc gcccagttca cctctcagtt cctcagtctg cagtgcctgc aggctctcta
1141 tgtggactct ttatttttcc ttagaggccg cctggatcag ttgctcaggc acgtgatgaa
1201 ccccttggaa accctctcaa taactaactg ccggctttcg gaaggggatg tgatgcatct
1261 gtcccagagt cccagcgtca gtcagctaag tgtcctgagt ctaagtgggg tcatgctgac
1321 cgatgtaagt cccgagcccc tccaagctct gctggagaga gcctctgcca ccctccagga
1381 cctggtcttt gatgagtgtg ggatcacgga tgatcagctc cttgccctcc tgccttccct
1441 gagccactgc tcccagctta caaccttaag cttctacggg aattccatct ccatatctgc
1501 cttgcagagt ctcctgcagc acctcatcgg gctgagcaat ctgacccacg tgctgtatcc
1561 tgtccccctg gagagttatg aggacatcca tggtaccctc cacctggaga ggcttgccta
1621 tctgcatgcc aggctcaggg agttgctgtg tgagttgggg cggcccagca tggtctggct
1681 tagtgccaac ccctgtcctc actgtgggga cagaaccttc tatgacccgg agcccatcct
1741 gtgcccctgt ttcatgccta actagctggg tgcacatatc aaatgcttca ttctgcatac
1801 ttggacacta aagccaggat gtgcatgcat cttgaagcaa caaagcagcc acagtttcag
1861 acaaatgttc agtgtgagtg aggaaaacat gttcagtgag gaaaaaacat tcagacaaat
1921 gttcagtgag gaaaaaaagg ggaagttggg gataggcaga tgttgacttg aggagttaat
1981 gtgatctttg gggagataca tcttatagag ttagaaatag aatctgaatt tctaaaggga
2041 gattctggct tgggaagtac atgtaggagt taatccctgt gtagactgtt gtaaagaaac
2101 tgttgaaaat aaagagaagc aatgtgaagc aaaaaaaaaa aaaaaaaa


ED-B domain of Fibronectin
Human fibronectin gene ED-B region.
ACCESSION X07717
VERSION X07717.1 GI:31406
SEQ ID NO 590
/translation="CTFDNLSPGLEYNVSVYTVKDDKESVPISDTIIPEVPQLTDLSF
VDITDSSIGLRWTPLNSSTIIGYRITVVAAGEGIPIFEDFVDSSVGYYTVTGLEPGID
YDISVITLINGGESAPTTLTQQTAVPPPTDLRFTNIGPDTMRVTW"

SEQ ID NO 591
ORIGIN
1 ctgcactttt gataacctga gtcccggcct ggagtacaat gtcagtgttt acactgtcaa
61 ggatgacaag gaaagtgtcc ctatctctga taccatcatc ccaggtaata gaaaataagc
121 tgctatcctg agagtgacat tccaataaga gtggggatta gcatcttaat ccccagatgc
181 ttaagggtgt caactatatt tgggatttaa ttccgatctc ccagctgcac tttccaaaac
241 caagaagtca aagcagcgat ttggacaaaa tgcttgctgt taacactgct ttactgtctg
301 tgcttcactg ggatgctgtg tgttgcagcg agtatgtaat ggagtggcag ccatggcttt
361 aactctgtat tgtctgctca catggaagta tgactaaaac actgtcacgt gtctgtactc
421 agtactgata ggctcaaagt aatatggtaa atgcatccca tcagtacatt tctgcccgat
481 tttacaatcc atatcaattt ccaacagctg cctatttcat cttgcagttt caaatccttc
541 tttttgaaaa ttggatttta aaaaaaagtt aagtaaaagt cacaccttca gggttgttct
601 ttcttgtggc cttgaaagac aacattgcaa aggcctgtcc taaggatagg cttgtttgtc
661 cattgggtta taacataatg aaagcattgg acagatcgtg tccccctttg gactcttcag
721 tagaatgctt ttactaacgc taattacatg ttttgattat gaatgaacct aaaatagtgg
781 caatggcctt aacctaggcc tgtctttcct cagcctgaat gtgcttttga atggcacatt
841 tcacaccata cattcataat gcattagcgt tatggccatg atgttgtcat gagttttgta
901 tgggagaaaa aaaatcaatt tatcacccat ttattatttt ttccggttgt tcatgcaagc
961 ttattttcta ctaaaacagt tttggaatta ttaaaagcat tgctgatact tacttcagat
1021 attatgtcta ggctctaaga atggtttcga catcctaaac agccatatga tttttaggaa
1081 tctgaacagt tcaaattgta ccctttaagg atgttttcaa aatgtaaaaa atatatatat
1141 atatatatat tccctaaaag aatattcctg tttattcttc tagggaagca aactgttcat
1201 gatgcttagg aagtcttttc agagaattta aaacagattg catattacca tcattgcttt
1261 aacattccac caattttact actagtaacc tgatatacac tgctttattt tttcctcttt
1321 ttttccctct attttccttt tgcctccccc tccctttgct ttgtaactca atagaggtgc
1381 cccaactcac tgacctaagc tttgttgata taaccgattc aagcatcggc ctgaggtgga
1441 ccccgctaaa ctcttccacc attattgggt accgcatcac agtagttgcg gcaggagaag
1501 gtatccctat ttttgaagat tttgtggact cctcagtagg atactacaca gtcacagggc
1561 tggagccggg cattgactat gatatcagcg ttatcactct cattaatggc ggcgagagtg
1621 cccctactac actgacacaa caaacgggtg aattttgaaa acttctgcgt ttgagacata
1681 gatggtgttg catgctgcca ccagttactc cggttaaata tggatgtttc atgggggaag
1741 tcagcaattg gccaaagatt cagataggtg gaattggggg gataaggaat caaatgcatc
1801 tgctaaactg attggagaaa aacacatgca atatcttcag tacactctca tttaaaccac
1861 aagtagatat aaagcctaga gaaatacaga tgtctgctct gttaaatata aaatagcaaa
1921 tgttcattca atttgaagac ctagaatttt tcttcttaaa taccaaacac gaataccaaa
1981 ttgcgtaagt accaattgat aagaatatat caccaaaatg taccatcatg ctcttccttc
2041 taccctttga taaactctac catgctcctt ctttgtagct aaaaacccat caaaatttag
2101 ggtagagtgg atgggcattg ttttgaggta ggagaaaagt aaacttggga ccattctagg
2161 ttttgttgct gtcactaggt aaagaaacac ctctttaacc acagtctggg gacaagcatg
2221 caacatttta aaggttctct gctgtgcatg ggaaaagaaa catgctgaga accaatttgc
2281 atgaacatgt tcacttgtaa gtagaattca ctgaatggaa ctgtagctct agatatctca
2341 catgggggga agtttaggac cctcttgtct ttttgtctgt gtgcatgtat ttctttgtaa
2401 agtactgcta tgtttctctt tgctgtgtgg caacttaagc ctcttcggcc tgggataaaa
2461 taatctgcag tggtattaat aatgtacata aagtcaacat atttgaaagt agattaaaat
2521 cttttttaaa tatatcaatg atggcaaaaa ggttaaaggg ggcctaacag tactgtgtgt
2581 agtgttttat ttttaacagt agtacactat aacttaaaat agacttagat tagactgttt
2641 gcatgattat gattctgttt cctttatgca tgaaatattg attttacctt tccagctact
2701 tcgttagctt taattttaaa atacattaac tgagtcttcc ttcttgttcg aaaccagctg
2761 ttcctcctcc cactgacctg cgattcacca acattggtcc agacaccatg cgtgtcacct
2821 ggg
//

CEA Homo sapiens carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5), mRNA.
ACCESSION NM_004363
VERSION NM_004363.1 GI:11386170
SEQ ID NO 592
/translation="MESPSAPPHRWCIPWQRLLLTASLLTFWNPPTTAKLTIESTPFN
VAEGKEVLLLVHNLPQHLFGYSWYKGERVDGNRQIIGYVIGTQQATPGPAYSGREIIY
PNASLLIQNIIQNDTGFYTLHVIKSDLVNEEATGQFRVYPELPKPSISSNNSKPVEDK
DAVAFTCEPETQDATYLWWVNNQSLPVSPRLQLSNGNRTLTLFNVTRNDTASYKCETQ
NPVSARRSDSVILNVLYGPDAPTISPLNTSYRSGENLNLSCHAASNPPAQYSWFVNGT
FQQSTQELFIPNITVNNSGSYTCQAHNSDTGLNRTTVTTITVYAEPPKPFITSNNSNP
VEDEDAVALTCEPEIQNTTYLWWVNNQSLPVSPRLQLSNDNRTLTLLSVTRNDVGPYE
CGIQNELSVDHSDPVILNVLYGPDDPTISPSYTYYRPGVNLSLSCHAASNPPAQYSWL
IDGNIQQHTQELFISNITEKNSGLYTCQANNSASGHSRTTVKTITVSAELPKPSISSN
NSKPVEDKDAVAFTCEPEAQNTTYLWWVNGQSLPVSPRLQLSNGNRTLTLFNVTRNDA
RAYVCGIQNSVSANRSDPVTLDVLYGPDTPIISPPDSSYLSGANLNLSCHSASNPSPQ
YSWRINGIPQQHTQVLFIAKITPNNNGTYACFVSNLATGRNNSIVKSITVSASGTSPG
LSAGATVGIMIGVLVGVALI"

SEQ ID NO 593
ORIGIN
1 ctcagggcag agggaggaag gacagcagac cagacagtca cagcagcctt gacaaaacgt
61 tcctggaact caagctcttc tccacagagg aggacagagc agacagcaga gaccatggag
121 tctccctcgg cccctcccca cagatggtgc atcccctggc agaggctcct gctcacagcc
181 tcacttctaa ccttctggaa cccgcccacc actgccaagc tcactattga atccacgccg
241 ttcaatgtcg cagaggggaa ggaggtgctt ctacttgtcc acaatctgcc ccagcatctt
301 tttggctaca gctggtacaa aggtgaaaga gtggatggca accgtcaaat tataggatat
361 gtaataggaa ctcaacaagc taccccaggg cccgcataca gtggtcgaga gataatatac
421 cccaatgcat ccctgctgat ccagaacatc atccagaatg acacaggatt ctacacccta
481 cacgtcataa agtcagatct tgtgaatgaa gaagcaactg gccagttccg ggtatacccg
541 gagctgccca agccctccat ctccagcaac aactccaaac ccgtggagga caaggatgct
601 gtggccttca cctgtgaacc tgagactcag gacgcaacct acctgtggtg ggtaaacaat
661 cagagcctcc cggtcagtcc caggctgcag ctgtccaatg gcaacaggac cctcactcta
721 ttcaatgtca caagaaatga cacagcaagc tacaaatgtg aaacccagaa cccagtgagt
781 gccaggcgca gtgattcagt catcctgaat gtcctctatg gcccggatgc ccccaccatt
841 tcccctctaa acacatctta cagatcaggg gaaaatctga acctctcctg ccacgcagcc
901 tctaacccac ctgcacagta ctcttggttt gtcaatggga ctttccagca atccacccaa
961 gagctcttta tccccaacat cactgtgaat aatagtggat cctatacgtg ccaagcccat
1021 aactcagaca ctggcctcaa taggaccaca gtcacgacga tcacagtcta tgcagagcca
1081 cccaaaccct tcatcaccag caacaactcc aaccccgtgg aggatgagga tgctgtagcc
1141 ttaacctgtg aacctgagat tcagaacaca acctacctgt ggtgggtaaa taatcagagc
1201 ctcccggtca gtcccaggct gcagctgtcc aatgacaaca ggaccctcac tctactcagt
1261 gtcacaagga atgatgtagg accctatgag tgtggaatcc agaacgaatt aagtgttgac
1321 cacagcgacc cagtcatcct gaatgtcctc tatggcccag acgaccccac catttccccc
1381 tcatacacct attaccgtcc aggggtgaac ctcagcctct cctgccatgc agcctctaac
1441 ccacctgcac agtattcttg gctgattgat gggaacatcc agcaacacac acaagagctc
1501 tttatctcca acatcactga gaagaacagc ggactctata cctgccaggc caataactca
1561 gccagtggcc acagcaggac tacagtcaag acaatcacag tctctgcgga gctgcccaag
1621 ccctccatct ccagcaacaa ctccaaaccc gtggaggaca aggatgctgt ggccttcacc
1681 tgtgaacctg aggctcagaa cacaacctac ctgtggtggg taaatggtca gagcctccca
1741 gtcagtccca ggctgcagct gtccaatggc aacaggaccc tcactctatt caatgtcaca
1801 agaaatgacg caagagccta tgtatgtgga atccagaact cagtgagtgc aaaccgcagt
1861 gacccagtca ccctggatgt cctctatggg ccggacaccc ccatcatttc ccccccagac
1921 tcgtcttacc tttcgggagc gaacctcaac ctctcctgcc actcggcctc taacccatcc
1981 ccgcagtatt cttggcgtat caatgggata ccgcagcaac acacacaagt tctctttatc
2041 gccaaaatca cgccaaataa taacgggacc tatgcctgtt ttgtctctaa cttggctact
2101 ggccgcaata attccatagt caagagcatc acagtctctg catctggaac ttctcctggt
2161 ctctcagctg gggccactgt cggcatcatg attggagtgc tggttggggt tgctctgata
2221 tagcagccct ggtgtagttt cttcatttca ggaagactga cagttgtttt gcttcttcct
2281 taaagcattt gcaacagcta cagtctaaaa ttgcttcttt accaaggata tttacagaaa
2341 agactctgac cagagatcga gaccatccta gccaacatcg tgaaacccca tctctactaa
2401 aaatacaaaa atgagctggg cttggtggcg cgcacctgta gtcccagtta ctcgggaggc
2461 tgaggcagga gaatcgcttg aacccgggag gtggagattg cagtgagccc agatcgcacc
2521 actgcactcc agtctggcaa cagagcaaga ctccatctca aaaagaaaag aaaagaagac
2581 tctgacctgt actcttgaat acaagtttct gataccactg cactgtctga gaatttccaa
2641 aactttaatg aactaactga cagcttcatg aaactgtcca ccaagatcaa gcagagaaaa
2701 taattaattt catgggacta aatgaactaa tgaggattgc tgattcttta aatgtcttgt
2761 ttcccagatt tcaggaaact ttttttcttt taagctatcc actcttacag caatttgata
2821 aaatatactt ttgtgaacaa aaattgagac atttacattt tctccctatg tggtcgctcc
2881 agacttggga aactattcat gaatatttat attgtatggt aatatagtta ttgcacaagt
2941 tcaataaaaa tctgctcttt gtataacaga aaaa
//

Her2/Neu Human tyrosine kinase-type receptor (HER2) mRNA, complete cds.
ACCESSION M11730
VERSION M11730.1 GI:183986
SEQ ID NO 594
/translation="MELAALCRWGLLLALLPPGAASTQVCTGTDMKLRLPASPETHLD
MLRHLYQGCQVVQGNLELTYLPTNASLSFLQDIQEVQGYVLIAHNQVRQVPLQRLRIV
RGTQLFEDNYALAVLDNGDPLNNTTPVTGASPGGLRELQLRSLTEILKGGVLIQRNPQ
LCYQDTILWKDIFHKNNQLALTLIDTNRSRACHPCSPMCKGSRCWGESSEDCQSLTRT
VCAGGCARCKGPLPTDCCHEQCAAGCTGPKHSDCLACLHFNHSGICELHCPALVTYNT
DTFESMPNPEGRYTFGASCVTACPYNYLSTDVGSCTLVCPLHNQEVTAEDGTQRCEKC
SKPCARVCYGLGMEHLREVRAVTSANIQEFAGCKKIFGSLAFLPESFDGDPASNTAPL
QPEQLQVFETLEEITGYLYISAWPDSLPDLSVFQNLQVIRGRILHNGAYSLTLQGLGI
SWLGLRSLRELGSGLALIHHNTHLCFVHTVPWDQLFRNPHQALLHTANRPEDECVGEG
LACHQLCARGHCWGPGPTQCVNCSQFLRGQECVEECRVLQGLPREYVNARHCLPCHPE CQPQNGSVTCFGPEADQCVACAHYKDPPFCVARCPSGVKPDLSYMPIWKFPDEEGACQ
PCPINCTHSCVDLDDKGCPAEQRASPLTSIVSAVVGILLVVVLGVVFGILIKRRQQKI
RKYTMRRLLQETELVEPLTPSGAMPNQAQMRILKETELRKVKVLGSGAFGTVYKGIWI
PDGENVKIPVAIKVLRENTSPKANKEILDEAYVMAGVGSPYVSRLLGICLTSTVQLVT
QLMPYGCLLDHVRENRGRLGSQDLLNWCMQIAKGMSYLEDVRLVHRDLAARNVLVKSP
NHVKITDFGLARLLDIDETEYHADGGKVPIKWMALESILRRRFTHQSDVWSYGVTVWE
LMTFGAKPYDGIPAREIPDLLEKGERLPQPPICTIDVYMIMVKCWMIDSECRPRFREL
VSEFSRMARDPQRFVVIQNEDLGPASPLDSTFYRSLLEDDDMGDLVDAEEYLVPQQGF
FCPDPAPGAGGMVHHRHRSSSTRSGGGDLTLGLEPSEEEAPRSPLAPSEGAGSDVFDG
DLGMGAAKGLQSLPTHDPSPLQRYSEDPTVPLPSETDGYVAPLTCSPQPEYVNQPDVR
PQPPSPREGPLPAARPAGATLERAKTLSPGKNGVVKDVFAFGGAVENPEYLTPQGGAA
PQPHPPPAFSPAFDNLYYWDQDPPERGAPPSTFKGTPTAENPEYLGLDVPV"

SEQ ID NO 595
ORIGIN Chromosome 17q21-q22.
1 aattctcgag ctcgtcgacc ggtcgacgag ctcgagggtc gacgagctcg agggcgcgcg
61 cccggccccc acccctcgca gcaccccgcg ccccgcgccc tcccagccgg gtccagccgg
121 agccatgggg ccggagccgc agtgagcacc atggagctgg cggccttgtg ccgctggggg
181 ctcctcctcg ccctcttgcc ccccggagcc gcgagcaccc aagtgtgcac cggcacagac
241 atgaagctgc ggctccctgc cagtcccgag acccacctgg acatgctccg ccacctctac
301 cagggctgcc aggtggtgca gggaaacctg gaactcacct acctgcccac caatgccagc
361 ctgtccttcc tgcaggatat ccaggaggtg cagggctacg tgctcatcgc tcacaaccaa
421 gtgaggcagg tcccactgca gaggctgcgg attgtgcgag gcacccagct ctttgaggac
481 aactatgccc tggccgtgct agacaatgga gacccgctga acaataccac ccctgtcaca
541 ggggcctccc caggaggcct gcgggagctg cagcttcgaa gcctcacaga gatcttgaaa
601 ggaggggtct tgatccagcg gaacccccag ctctgctacc aggacacgat tttgtggaag
661 gacatcttcc acaagaacaa ccagctggct ctcacactga tagacaccaa ccgctctcgg
721 gcctgccacc cctgttctcc gatgtgtaag ggctcccgct gctggggaga gagttctgag
781 gattgtcaga gcctgacgcg cactgtctgt gccggtggct gtgcccgctg caaggggcca
841 ctgcccactg actgctgcca tgagcagtgt gctgccggct gcacgggccc caagcactct
901 gactgcctgg cctgcctcca cttcaaccac agtggcatct gtgagctgca ctgcccagcc
961 ctggtcacct acaacacaga cacgtttgag tccatgccca atcccgaggg ccggtataca
1021 ttcggcgcca gctgtgtgac tgcctgtccc tacaactacc tttctacgga cgtgggatcc
1081 tgcaccctcg tctgccccct gcacaaccaa gaggtgacag cagaggatgg aacacagcgg
1141 tgtgagaagt gcagcaagcc ctgtgcccga gtgtgctatg gtctgggcat ggagcacttg
1201 cgagaggtga gggcagttac cagtgccaat atccaggagt ttgctggctg caagaagatc
1261 tttgggagcc tggcatttct gccggagagc tttgatgggg acccagcctc caacactgcc
1321 ccgctccagc cagagcagct ccaagtgttt gagactctgg aagagatcac aggttaccta
1381 tacatctcag catggccgga cagcctgcct gacctcagcg tcttccagaa cctgcaagta
1441 atccggggac gaattctgca caatggcgcc tactcgctga ccctgcaagg gctgggcatc
1501 agctggctgg ggctgcgctc actgagggaa ctgggcagtg gactggccct catccaccat
1561 aacacccacc tctgcttcgt gcacacggtg ccctgggacc agctctttcg gaacccgcac
1621 caagctctgc tccacactgc caaccggcca gaggacgagt gtgtgggcga gggcctggcc
1681 tgccaccagc tgtgcgcccg agggcactgc tggggtccag ggcccaccca gtgtgtcaac
1741 tgcagccagt tccttcgggg ccaggagtgc gtggaggaat gccgagtact gcaggggctc
1801 cccagggagt atgtgaatgc caggcactgt ttgccgtgcc accctgagtg tcagccccag
1861 aatggctcag tgacctgttt tggaccggag gctgaccagt gtgtggcctg tgcccactat
1921 aaggaccctc ccttctgcgt ggcccgctgc cccagcggtg tgaaacctga cctctcctac
1981 atgcccatct ggaagtttcc agatgaggag ggcgcatgcc agccttgccc catcaactgc
2041 acccactcct gtgtggacct ggatgacaag ggctgccccg ccgagcagag agccagccct
2101 ctgacgtcca tcgtctctgc ggtggttggc attctgctgg tcgtggtctt gggggtggtc
2161 tttgggatcc tcatcaagcg acggcagcag aagatccgga agtacacgat gcggagactg
2221 ctgcaggaaa cggagctggt ggagccgctg acacctagcg gagcgatgcc caaccaggcg
2281 cagatgcgga tcctgaaaga gacggagctg aggaaggtga aggtgcttgg atctggcgct
2341 tttggcacag tctacaaggg catctggatc cctgatgggg agaatgtgaa aattccagtg
2401 gccatcaaag tgttgaggga aaacacatcc cccaaagcca acaaagaaat cttagacgaa
2461 gcatacgtga tggctggtgt gggctcccca tatgtctccc gccttctggg catctgcctg
2521 acatccacgg tgcagctggt gacacagctt atgccctatg gctgcctctt agaccatgtc
2581 cgggaaaacc gcggacgcct gggctcccag gacctgctga actggtgtat gcagattgcc
2641 aaggggatga gctacctgga ggatgtgcgg ctcgtacaca gggacttggc cgctcggaac
2701 gtgctggtca agagtcccaa ccatgtcaaa attacagact tcgggctggc tcggctgctg
2761 gacattgacg agacagagta ccatgcagat gggggcaagg tgcccatcaa gtggatggcg
2821 ctggagtcca ttctccgccg gcggttcacc caccagagtg atgtgtggag ttatggtgtg
2881 actgtgtggg agctgatgac ttttggggcc aaaccttacg atgggatccc agcccgggag
2941 atccctgacc tgctggaaaa gggggagcgg ctgccccagc cccccatctg caccattgat
3001 gtctacatga tcatggtcaa atgttggatg attgactctg aatgtcggcc aagattccgg
3061 gagttggtgt ctgaattctc ccgcatggcc agggaccccc agcgctttgt ggtcatccag
3121 aatgaggact tgggcccagc cagtcccttg gacagcacct tctaccgctc actgctggag
3181 gacgatgaca tgggggacct ggtggatgct gaggagtatc tggtacccca gcagggcttc
3241 ttctgtccag accctgcccc gggcgctggg ggcatggtcc accacaggca ccgcagctca
3301 tctaccagga gtggcggtgg ggacctgaca ctagggctgg agccctctga agaggaggcc
3361 cccaggtctc cactggcacc ctccgaaggg gctggctccg atgtatttga tggtgacctg
3421 ggaatggggg cagccaaggg gctgcaaagc ctccccacac atgaccccag ccctctacag
3481 cggtacagtg aggaccccac agtacccctg ccctctgaga ctgatggcta cgttgccccc
3541 ctgacctgca gcccccagcc tgaatatgtg aaccagccag atgttcggcc ccagccccct
3601 tcgccccgag agggccctct gcctgctgcc cgacctgctg gtgccactct ggaaagggcc
3661 aagactctct ccccagggaa gaatggggtc gtcaaagacg tttttgcctt tgggggtgcc
3721 gtggagaacc ccgagtactt gacaccccag ggaggagctg cccctcagcc ccaccctcct
3781 cctgccttca gcccagcctt cgacaacctc tattactggg accaggaccc accagagcgg
3841 ggggctccac ccagcacctt caaagggaca cctacggcag agaacccaga gtacctgggt
3901 ctggacgtgc cagtgtgaac cagaaggcca agtccgcaga agccctgatg tgtcctcagg
3961 gagcagggaa ggcctgactt ctgctggcat caagaggtgg gagggccctc cgaccacttc
4021 caggggaacc tgccatgcca ggaacctgtc ctaaggaacc ttccttcctg cttgagttcc
4081 cagatggctg gaaggggtcc agcctcgttg gaagaggaac agcactgggg agtctttgtg
4141 gattctgagg ccctgcccaa tgagactcta gggtccagtg gatgccacag cccagcttgg
4201 ccctttcctt ccagatcctg ggtactgaaa gccttaggga agctggcctg agaggggaag
4261 cggccctaag ggagtgtcta agaacaaaag cgacccattc agagactgtc cctgaaacct
4321 agtactgccc cccatgagga aggaacagca atggtgtcag tatccaggct ttgtacagag
4381 tgcttttctg tttagttttt actttttttg ttttgttttt ttaaagacga aataaagacc
4441 caggggagaa tgggtgttgt atggggaggc aagtgtgggg ggtccttctc cacacccact
4501 ttgtccattt gcaaatatat tttggaaaac
//


H.sapiens mRNA for SCP1 protein.
ACCESSION X95654
VERSION X95654.1 GI:1212982
SEQ ID NO 596
/translation="MEKQKPFALFVPPRSSSSQVSAVKPQTLGGDSTFFKSFNKCTED
DLEFPFAKTNLSKNGENIDSDPALQKVNFLPVLEQVGNSDCHYQEGLKDSDLENSEGL
SRVFSKLYKEAEKIKKWKVSTEAELRQKESKLQENRKIIEAQRKAIQELQFGNEKVSL
KLEEGIQENKDLIKENNATRHLCNLLKETCARSAEKTKKYEYEREETRQVYMDLNNNI
EKMITAHGELRVQAENSRLEMHFKLKEDYEKIQHLEQEYKKEINDKEKQVSLLLIQIT
EKENKMKDLTFLLEESRDKVNQLEEKTKLQSENLKQSIEKQHHLTKELEDIKVSLQRS
VSTQKALEEDLQIATKTICQLTEEKETQMEESNKARAAHSFVVTEFETTVCSLEELLR
TEQQRLEKNEDQLKILTMELQKKSSELEEMTKLTNNKEVELEELKKVLGEKETLLYEN
KQFEKIAEELKGTEQELIGLLQAREKEVHDLEIQLTAITTSEQYYSKEVKDLKTELEN
EKLKNTELTSHCNKLSLENKELTQETSDMTLELKNQQEDINNNKKQEERMLKQIENLQ
ETETQLRNELEYVREELKQKRDEVKCKLDKSEENCNNLRKQVENKNKYIEELQQENKA
LKKKGTAESKQLNVYEIKVNKLELELESAKQKFGEITDTYQKEIEDKKISEENLLEEV
EKAKVIADEAVKLQKEIDKRCQHKIAEMVALMEKHKHQYDKIIEERDSELGLYKSKEQ
EQSSLRASLEIELSNLKAELLSVKKQLEIEREEKEKLKREAKENTATLKEKKDKKTQT
FLLETPEIYWKLDSKAVPSQTVSRNFTSVDHGISKDKRDYLWTSAKNTLSTPLPKAYT
VKTPTKPKLQQRENLNIPIEESKKKRKMAFEFDINSDSSETTDLLSMVSEEETLKTLY
RNNNPPASHLCVKTPKKAPSSLTTPGPTLKFGAIRKMREDRWAVIAKMDRKKKLKEAE
KLFV"

SEQ ID NO 597
ORIGIN
1 gccctcatag accgtttgtt gtagttcgcg tgggaacagc aacccacggt ttcccgatag
61 ttcttcaaag atatttacaa ccgtaacaga gaaaatggaa aagcaaaagc cctttgcatt
121 gttcgtacca ccgagatcaa gcagcagtca ggtgtctgcg gtgaaacctc agaccctggg
181 aggcgattcc actttcttca agagtttcaa caaatgtact gaagatgatt tggagtttcc
241 atttgcaaag actaatctct ccaaaaatgg ggaaaacatt gattcagatc ctgctttaca
301 aaaagttaat ttcttgcccg tgcttgagca ggttggtaat tctgactgtc actatcagga
361 aggactaaaa gactctgatt tggagaattc agagggattg agcagagtgt tttcaaaact
421 gtataaggag gctgaaaaga taaaaaaatg gaaagtaagt acagaagctg aactgagaca
481 gaaagaaagt aagttgcaag aaaacagaaa gataattgaa gcacagcgaa aagccattca
541 ggaactgcaa tttggaaatg aaaaagtaag tttgaaatta gaagaaggaa tacaagaaaa
601 taaagattta ataaaagaga ataatgccac aaggcattta tgtaatctac tcaaagaaac
661 ctgtgctaga tctgcagaaa agacaaagaa atatgaatat gaacgggaag aaaccaggca
721 agtttatatg gatctaaata ataacattga gaaaatgata acagctcatg gggaacttcg
781 tgtgcaagct gagaattcca gactggaaat gcattttaag ttaaaggaag attatgaaaa
841 aatccaacac cttgaacaag aatacaagaa ggaaataaat gacaaggaaa agcaggtatc
901 actactattg atccaaatca ctgagaaaga aaataaaatg aaagatttaa catttctgct
961 agaggaatcc agagataaag ttaatcaatt agaggaaaag acaaaattac agagtgaaaa
1021 cttaaaacaa tcaattgaga aacagcatca tttgactaaa gaactagaag atattaaagt
1081 gtcattacaa agaagtgtga gtactcaaaa ggctttagag gaagatttac agatagcaac
1141 aaaaacaatt tgtcagctaa ctgaagaaaa agaaactcaa atggaagaat ctaataaagc
1201 tagagctgct cattcgtttg tggttactga atttgaaact actgtctgca gcttggaaga
1261 attattgaga acagaacagc aaagattgga aaaaaatgaa gatcaattga aaatacttac
1321 catggagctt caaaagaaat caagtgagct ggaagagatg actaagctta caaataacaa
1381 agaagtagaa cttgaagaat tgaaaaaagt cttgggagaa aaggaaacac ttttatatga
1441 aaataaacaa tttgagaaga ttgctgaaga attaaaagga acagaacaag aactaattgg
1501 tcttctccaa gccagagaga aagaagtaca tgatttggaa atacagttaa ctgccattac
1561 cacaagtgaa cagtattatt caaaagaggt taaagatcta aaaactgagc ttgaaaacga
1621 gaagcttaag aatactgaat taacttcaca ctgcaacaag ctttcactag aaaacaaaga
1681 gctcacacag gaaacaagtg atatgaccct agaactcaag aatcagcaag aagatattaa
1741 taataacaaa aagcaagaag aaaggatgtt gaaacaaata gaaaatcttc aagaaacaga
1801 aacccaatta agaaatgaac tagaatatgt gagagaagag ctaaaacaga aaagagatga
1861 agttaaatgt aaattggaca agagtgaaga aaattgtaac aatttaagga aacaagttga
1921 aaataaaaac aagtatattg aagaacttca gcaggagaat aaggccttga aaaaaaaagg
1981 tacagcagaa agcaagcaac tgaatgttta tgagataaag gtcaataaat tagagttaga
2041 actagaaagt gccaaacaga aatttggaga aatcacagac acctatcaga aagaaattga
2101 ggacaaaaag atatcagaag aaaatctttt ggaagaggtt gagaaagcaa aagtaatagc
2161 tgatgaagca gtaaaattac agaaagaaat tgataagcga tgtcaacata aaatagctga
2221 aatggtagca cttatggaaa aacataagca ccaatatgat aagatcattg aagaaagaga
2281 ctcagaatta ggactttata agagcaaaga acaagaacag tcatcactga gagcatcttt
2341 ggagattgaa ctatccaatc tcaaagctga acttttgtct gttaagaagc aacttgaaat
2401 agaaagagaa gagaaggaaa aactcaaaag agaggcaaaa gaaaacacag ctactcttaa
2461 agaaaaaaaa gacaagaaaa cacaaacatt tttattggaa acacctgaaa tttattggaa
2521 attggattct aaagcagttc cttcacaaac tgtatctcga aatttcacat cagttgatca
2581 tggcatatcc aaagataaaa gagactatct gtggacatct gccaaaaata ctttatctac
2641 accattgcca aaggcatata cagtgaagac accaacaaaa ccaaaactac agcaaagaga
2701 aaacttgaat atacccattg aagaaagtaa aaaaaagaga aaaatggcct ttgaatttga
2761 tattaattca gatagttcag aaactactga tcttttgagc atggtttcag aagaagagac
2821 attgaaaaca ctgtatagga acaataatcc accagcttct catctttgtg tcaaaacacc
2881 aaaaaaggcc ccttcatctc taacaacccc tggacctaca ctgaagtttg gagctataag
2941 aaaaatgcgg gaggaccgtt gggctgtaat tgctaaaatg gatagaaaaa aaaaactaaa
3001 agaagctgaa aagttatttg tttaatttca gagaatcagt gtagttaagg agcctaataa
3061 cgtgaaactt atagttaata ttttgttctt atttgccaga gccacatttt atctggaagt
3121 tgagacttaa aaaatacttg catgaatgat ttgtgtttct ttatattttt agcctaaatg
3181 ttaactacat attgtctgga aacctgtcat tgtattcaga taattagatg attatatatt
3241 gttgttactt tttcttgtat tcatgaaaac tgtttttact aagttttcaa atttgtaaag
3301 ttagcctttg aatgctagga atgcattatt gagggtcatt ctttattctt tactattaaa
3361 atattttgga tgcaaaaaaa aaaaaaaaaa aaa
//


Homo sapiens synovial sarcoma, X breakpoint 4 (SSX4), mRNA.
ACCESSION NM_005636
VERSION NM_005636.1 GI:5032122
SEQ ID NO 598
/translation="MNGDDAFARRPRDDAQISEKLRKAFDDIAKYFSKKEWEKMKSSEKIVY
VYMKLNYEVMTKLGFKVTLPPFMRSKRAADFHGNDFGNDRNHRNQVERPQMTFG
SLQRIFPKIMPKKPAEEENGLKEVPEASGPQNDGKQLCPPGNPSTLEKINKTSGPKRG
KHAWTHRLRERKQLVVYEEISDPEEDDE"

SEQ ID NO 599
ORIGIN
1 atgaacggag acgacgcctt tgcaaggaga cccagggatg atgctcaaat atcagagaag
61 ttacgaaagg ccttcgatga tattgccaaa tacttctcta agaaagagtg ggaaaagatg
121 aaatcctcgg agaaaatcgt ctatgtgtat atgaagctaa actatgaggt catgactaaa
181 ctaggtttca aggtcaccct cccacctttc atgcgtagta aacgggctgc agacttccac
241 gggaatgatt ttggtaacga tcgaaaccac aggaatcagg ttgaacgtcc tcagatgact
301 ttcggcagcc tccagagaat cttcccgaag atcatgccca agaagccagc agaggaagaa
361 aatggtttga aggaagtgcc agaggcatct ggcccacaaa atgatgggaa acagctgtgc
421 cccccgggaa atccaagtac cttggagaag attaacaaga catctggacc caaaaggggg
481 aaacatgcct ggacccacag actgcgtgag agaaagcagc tggtggttta tgaagagatc
541 agcgaccctg aggaagatga cgagtaactc ccctcg

明細書中に記載した特許および刊行物はすべて、本発明が関連する技術分野の当業者のレベルを示している。
本明細書中で適切に例示的に記載する本発明は、具体的に本明細書中に開示されない任意の要素(単数または複数)、限定物(単数または複数)の非存在下で実施され得る。使用した用語および表現は、説明の用語として使用されるものであり限定の用語として使用されるものではなく、かかる用語および表現の使用において、示して記載した形態の等価物、またはその一部の排除を示す意図はない。様々な変更が、特許請求した本発明の範囲内で可能であることが理解されよう。したがって、本発明を好ましい実施形態および任意の特徴により具体的に開示してきたが、開示した本明細書中の概念の変更および変形が当業者によりなされてもよく、かかる変更および変形は、添付の特許請求の範囲により規定するような本発明の範囲内であるとみなされることが理解されるべきである。
NY−ESO−1および幾つかの類似タンパク質配列の配列アラインメントである。 NY−ESO−1および幾つかの類似タンパク質配列の配列アラインメントである。 NY−ESO−1および幾つかの類似タンパク質配列の配列アラインメントである。 核酸コードエピトープを送達するのに有用なプラスミドワクチン骨格を図で表す。 チロシナーゼ208216に関するHLA−A2結合アッセイの結果を示すFACSプロフィールである。 チロシナーゼ207215に関するHLA−A2結合アッセイの結果を示すFACSプロフィールである。 in vitro免疫により誘発されるヒトCTLによるチロシナーゼエピトープに対する細胞傷害活性を示す図である。 SSX3168のプロテアソーム切断により産生される断片のT=120分の時点のマススペクトルである。 対照とともにHLA−A2:SSX−24149に関する結合曲線を示す図である。 SSX−24149免疫HLA−A2トランスジェニックマウス由来のCTLによるSSX−24149パルス標識標的の特異的溶解を示す図である。 PSMA163192プロテアソーム消化物のT=60分の時点のアリコートのN末端プールシーケンシングの結果を示す図である。 PSMA163192プロテアソーム消化物のT=60分の時点のアリコートのN末端プールシーケンシングの結果を示す図である。 PSMA163192プロテアソーム消化物のT=60分の時点のアリコートのN末端プールシーケンシングの結果を示す図である。 対照とともにHLA−A2:PSMA168177、およびHLA−A2:PSMA288297に関する結合曲線を示す。 PSMA281310プロテアソーム消化物のT=60分の時点のアリコートのN末端プールシーケンシングの結果を示す図である。 対照とともにHLA−A2:PSMA461469、HLA−A2:PSMA460469、およびHLA−A2:PSMA663671に関する結合曲線を示す図である。 PSMA463471反応性HLA−A1+CD8+T細胞を検出するγ−IFNベースのELISPOTアッセイの結果を示す図である。 抗HLA−A1 mAbによる図10で使用されるT細胞の反応性の阻止を示し、HLA−A1制限認識を示す図である。 対照とのHLA−A2:PSMA663671に関する結合曲線を示す図である。 対照とのHLA−A2:PSMA662671に関する結合曲線を示す図である。 種々の注射経路により様々な用量のDNAで免疫した後の抗ペプチドCTL応答の比較の図である。 gp33エピトープ発現プラスミド、または対照プラスミドのリンパ節内注入により免疫したマウスにおける移植gp33発現腫瘍の成長の図である。 それぞれリンパ節内または筋内注射後の様々な時間での注入または排出リンパ節におけるリアルタイムPCRにより検出されるプラスミドDNA量の図である。
配列表
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508
Figure 0004874508

Claims (16)

  1. 第1の配列を含むリーディングフレームを有する単離された核酸であって、
    前記第1の配列は腫瘍関連抗原PSMA(配列番号:4)の1つのセグメントをコードし、
    前記第1の配列は完全なPSMA抗原をコードせず、前記セグメントがエピトープクラスターを有し、前記クラスターはいくつかのMHC受容体ペプチド結合間隙と既知のまたは予測親和性を有し、
    前記リーディングフレームは、プロモーターとその制御下で連結し、
    前記第1の配列がPSMAのフラグメントをコードし、
    前記コードされたフラグメントが、30アミノ酸未満の長さのポリペプチドからなることを特徴とする、単離された核酸。
  2. 前記エピトープクラスターは次のアミノ酸からなるグループから選択されることを特徴とする、請求項1に記載の核酸;
    配列番号4に記載のPSMAの3−12、13−45、20−43、217−227、247−268、278−297、354−381、385−405、415−435、440−450、454−481、547−562、568−591、603−614、660−681、663−676、700−715、726−749及び731−749残基。
  3. 前記1つのセグメントが前記エピトープクラスターからなることを特徴とする、請求項1又は2に記載の核酸。
  4. 前記リーディングフレームが更に、エピトープまたはエピトープ配列から本質的になるポリペプチド配列をコードする第2の配列を有することを特徴とする、請求項1〜3のいずれか1項に記載の核酸。
  5. 第1の配列および第2の配列を含むリーディングフレームを有する単離された核酸であって、
    前記第1の配列は腫瘍関連抗原PSMA(配列番号:4)の1つのセグメントをコードし、
    前記第1の配列は完全なPSMA抗原をコードせず、前記セグメントがエピトープクラスターを有し、前記クラスターはいくつかのMHC受容体ペプチド結合間隙と既知のまたは予測親和性を有し、
    前記リーディングフレームは、プロモーターとその制御下で連結し、
    前記第2の配列が、成熟したハウスキーピングエピトープ、または1〜数個の更なるアミノ酸が隣接したハウスキーピングエピトープであって、免疫プロテアソームプロセッシングにより直接的に遊離することが可能となるかまたはN−末端トリミングとの組み合わせ若しくは外因性の酵素活性との組み合わせにより遊離することが可能となるハウスキーピングエピトープをコードし、
    前記第1の配列がPSMAのフラグメントをコードし、
    前記コードされたフラグメントが、30アミノ酸未満の長さのポリペプチドからなることを特徴とする、単離された核酸。
  6. 前記エピトープクラスターは次のアミノ酸からなるグループから選択されることを特徴とする、請求項5に記載の核酸;
    配列番号4に記載のPSMAの3−12、13−45、20−43、217−227、247−268、278−297、354−381、385−405、415−435、440−450、454−481、547−562、568−591、603−614、660−681、663−676、700−715、726−749及び731−749残基。
  7. 前記第1及び第2の配列が単一のリーディングフレームを構成することを特徴とする、請求項5または6に記載の核酸。
  8. 前記リーディングフレームがプロモーターとその制御下で連結することを特徴とする、請求項に記載の核酸。
  9. 請求項7または8に記載の前記リーディングフレームにおいてコードされるアミノ酸配列を含む単離されたポリペプチド。
  10. 請求項5〜のいずれか1項に記載の核酸を含む免疫原性組成物。
  11. 請求項に記載のポリペプチドを含む免疫原性組成物。
  12. 1つのPSMAエピトープクラスターを有するアミノ酸配列をコードする核酸にプロモーターの制御下で連結されたプロモーターを有する発現ベクターであって、前記核酸が完全なPSMA抗原をコードしないものであり、前記配列がPSMAのフラグメントをコードし、前記コードされたフラグメントが、30アミノ酸未満の長さのポリペプチドからなることを特徴とする、発現ベクター。
  13. 前記ハウスキーピングエピトープが配列番号30〜68、241〜253、および400〜433のいずれかで表されるポリペプチドであることを特徴とする、請求項5〜のいずれか1項に記載の核酸。
  14. 第1の配列を含むリーディングフレームを有する単離された核酸であって、前記第1の配列は腫瘍関連抗原PSMA(配列番号:4)の1つのセグメントをコードし、前記第1の配列は完全なPSMA抗原をコードせず、前記セグメントがエピトープクラスターを有し、前記クラスターはいくつかのMHC受容体ペプチド結合間隙と既知のまたは予測親和性を有し、前記リーディングフレームは、プロモーターとその制御下で連結し、
    前記単離された核酸は、ハウスキーピングプロテアソームが優勢に活性である細胞上に提示されるMHCエピトープをコードする、設計されたかまたは操作された核酸配列を更に有し、前記エピトープが、pAPCにおけるプロセッシングにより遊離し得る状態となるようにより大きな配列に組み込まれており、
    前記第1の配列がPSMAのフラグメントをコードし、
    前記コードされたフラグメントが、30アミノ酸未満の長さのポリペプチドからなることを特徴とする、単離された核酸。
  15. 前記エピトープクラスターは次のアミノ酸からなるグループから選択されることを特徴とする、請求項14に記載の核酸;
    配列番号4に記載のPSMAの3−12、13−45、20−43、217−227、247−268、278−297、354−381、385−405、415−435、440−450、454−481、547−562、568−591、603−614、660−681、663−676、700−715、726−749及び731−749残基。
  16. 前記エピトープが配列番号30〜68、241〜253、および400〜433のいずれかで表されるポリペプチドであることを特徴とする、請求項14または15に記載の核酸。
JP2002580010A 2001-04-06 2002-04-04 エピトープ配列 Expired - Fee Related JP4874508B2 (ja)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US28221101P 2001-04-06 2001-04-06
US60/282,211 2001-04-06
US33701701P 2001-11-07 2001-11-07
US60/337,017 2001-11-07
US36321002P 2002-03-07 2002-03-07
US60/363,210 2002-03-07
PCT/US2002/011101 WO2002081646A2 (en) 2001-04-06 2002-04-04 Epitope sequences

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008251482A Division JP5135150B2 (ja) 2001-04-06 2008-09-29 エピトープ配列

Publications (3)

Publication Number Publication Date
JP2005509404A JP2005509404A (ja) 2005-04-14
JP2005509404A5 JP2005509404A5 (ja) 2005-12-22
JP4874508B2 true JP4874508B2 (ja) 2012-02-15

Family

ID=27403282

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2002580010A Expired - Fee Related JP4874508B2 (ja) 2001-04-06 2002-04-04 エピトープ配列
JP2008251482A Expired - Fee Related JP5135150B2 (ja) 2001-04-06 2008-09-29 エピトープ配列
JP2010002403A Pending JP2010110330A (ja) 2001-04-06 2010-01-07 エピトープ配列

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2008251482A Expired - Fee Related JP5135150B2 (ja) 2001-04-06 2008-09-29 エピトープ配列
JP2010002403A Pending JP2010110330A (ja) 2001-04-06 2010-01-07 エピトープ配列

Country Status (8)

Country Link
US (3) US20030220239A1 (ja)
EP (3) EP2394655A3 (ja)
JP (3) JP4874508B2 (ja)
CN (2) CN101948841A (ja)
AU (1) AU2002254570A1 (ja)
CA (1) CA2442386A1 (ja)
MX (1) MXPA03009042A (ja)
WO (2) WO2003008537A2 (ja)

Families Citing this family (164)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8791237B2 (en) * 1994-11-08 2014-07-29 The Trustees Of The University Of Pennsylvania Compositions and methods for treatment of non-hodgkins lymphoma
US8956621B2 (en) 1994-11-08 2015-02-17 The Trustees Of The University Of Pennsylvania Compositions and methods for treatment of cervical dysplasia
US7794729B2 (en) * 1994-11-08 2010-09-14 The Trustees Of The University Of Pennsylvania Methods and compositions for immunotherapy of cancer
US8114414B2 (en) * 1994-11-08 2012-02-14 The Trustees Of The University Of Pennsylvania Compositions and methods for treatment of cervical cancer
US7820180B2 (en) * 2004-09-24 2010-10-26 The Trustees Of The University Of Pennsylvania Listeria-based and LLO-based vaccines
US6977074B2 (en) 1997-07-10 2005-12-20 Mannkind Corporation Method of inducing a CTL response
US20030138808A1 (en) * 1998-02-19 2003-07-24 Simard John J.L. Expression vectors encoding epitopes of target-associated antigens
US20030176663A1 (en) * 1998-05-11 2003-09-18 Eidgenossische Technische Hochscule Specific binding molecules for scintigraphy
CA2400622A1 (en) * 2000-02-24 2001-08-30 Eidgenossische Technische Hochschule Zurich Antibody specific for the ed-b domain of fibronectin, conjugates comprising said antibody, and their use for the detection and treatment of angiogenesis
US9012141B2 (en) 2000-03-27 2015-04-21 Advaxis, Inc. Compositions and methods comprising KLK3 of FOLH1 antigen
AU2001255196A1 (en) * 2000-03-29 2001-10-08 The Trustees Of The University Of Pennsylvania Compositions and methods for enhancing immunogenicity of antigens
US20030215425A1 (en) * 2001-12-07 2003-11-20 Simard John J. L. Epitope synchronization in antigen presenting cells
RU2280254C2 (ru) * 2000-09-07 2006-07-20 Шеринг Акциенгезельшафт РЕЦЕПТОР EDb-ДОМЕНА ФИБРОНЕКТИНА
US8771702B2 (en) * 2001-03-26 2014-07-08 The Trustees Of The University Of Pennsylvania Non-hemolytic LLO fusion proteins and methods of utilizing same
US7700344B2 (en) * 2001-03-26 2010-04-20 The Trustees Of The University Of Pennsylvania Compositions and methods for enhancing the immunogenicity of antigens
WO2003008537A2 (en) * 2001-04-06 2003-01-30 Mannkind Corporation Epitope sequences
US20050215472A1 (en) 2001-10-23 2005-09-29 Psma Development Company, Llc PSMA formulations and uses thereof
EP3184539A3 (en) 2001-10-23 2017-09-13 PSMA Development Company L.L.C. Psma antibodies
DE60238864D1 (de) * 2001-11-07 2011-02-17 Mankind Corp Für epitope von antigenen kodierende expressionsvektoren und verfahren zu deren konzeption
AU2003217384A1 (en) * 2002-02-13 2003-09-04 Ludwig Institute For Cancer Research Isolated peptides which bind to hla molecules and uses thereof
US20030228308A1 (en) * 2002-06-05 2003-12-11 Yi Zhang Isolated peptides which bind to HLA-Cw6 molecules and uses thereof
MXPA05002455A (es) * 2002-09-06 2005-06-03 Mannkind Corp Secuencias de epitopes.
US7811564B2 (en) 2003-01-28 2010-10-12 Proscan Rx Pharma Prostate cancer diagnosis and treatment
US7178491B2 (en) * 2003-06-05 2007-02-20 Caterpillar Inc Control system and method for engine valve actuator
GB0313132D0 (en) 2003-06-06 2003-07-09 Ich Productions Ltd Peptide ligands
ATE546153T1 (de) * 2003-06-17 2012-03-15 Mannkind Corp Kombinationen von tumor-assoziierten antigenen zur behandlung von verschiedenen krebstypen
MXPA05013973A (es) 2003-06-17 2006-03-02 Mannkind Corp Metodos para producir, mejorar y sustentar respuestas inmunes contra epitopes restringidos mhc clase i, para propositos profilacticos o terapeuticos.
ATE496129T1 (de) 2003-07-22 2011-02-15 Ludwig Inst Cancer Res Von hla-klasse-ii-molekülen präsentierte ssx-2- peptide
KR101438983B1 (ko) 2003-11-06 2014-09-05 시애틀 지네틱스, 인크. 리간드에 접합될 수 있는 모노메틸발린 화합물
AU2005249490B2 (en) 2004-06-01 2010-07-29 Genentech, Inc. Antibody drug conjugates and methods
US20060159689A1 (en) * 2004-06-17 2006-07-20 Chih-Sheng Chiang Combinations of tumor-associated antigens in diagnostics for various types of cancers
US20050287068A1 (en) * 2004-06-17 2005-12-29 Bot Adrian I Efficacy of active immunotherapy by integrating diagnostic with therapeutic methods
WO2006009920A2 (en) * 2004-06-17 2006-01-26 Mannkind Corporation Epitope analogs
US20060008468A1 (en) * 2004-06-17 2006-01-12 Chih-Sheng Chiang Combinations of tumor-associated antigens in diagnostics for various types of cancers
US7858743B2 (en) * 2004-09-09 2010-12-28 Ludwig Institute For Cancer Research SSX-4 peptides presented by HLA class II molecules
PL1791565T3 (pl) 2004-09-23 2016-10-31 Modyfikowane cysteiną przeciwciała i koniugaty
US20100111856A1 (en) 2004-09-23 2010-05-06 Herman Gill Zirconium-radiolabeled, cysteine engineered antibody conjugates
CA2592968A1 (en) * 2004-12-29 2006-07-06 Mannkind Corporation Use of compositions comprising various tumor-associated antigens as anti-cancer vaccines
AU2005321904B2 (en) * 2004-12-29 2012-07-12 Mannkind Corporation Methods to elicit, enhance and sustain immune responses against MHC class I-restricted epitopes, for prophylactic or therapeutic purposes
SG158155A1 (en) * 2004-12-29 2010-01-29 Mannkind Corp Methods to bypass cd+4 cells in the induction of an immune response
US20060153844A1 (en) * 2004-12-29 2006-07-13 Thomas Kundig Methods to trigger, maintain and manipulate immune responses by targeted administration of biological response modifiers into lymphoid organs
JP2008527001A (ja) * 2005-01-13 2008-07-24 ザ ジョンズ ホプキンス ユニバーシティー 前立腺幹細胞抗原ワクチンおよびその使用
NZ564360A (en) * 2005-06-17 2011-03-31 Mannkind Corp Immunogenic product comprising a nucleic acid capable of expressing a PRAME epitope and a PSMA epitope and a peptide composition
SG162817A1 (en) 2005-06-17 2010-07-29 Mannkind Corp Methods and compositions.to elicit multivalent immune responses against dominant and subdominant epitopes, expressed on cancer cells and tumor stroma
EP2371852A3 (en) 2005-06-17 2012-08-01 Mannkind Corporation Epitope analogues
CA2617222A1 (en) * 2005-06-29 2007-01-04 Green Peptide Co., Ltd. Peptide derived from prostate-related protein as cancer vaccine candidate for prostate cancer patient who is positive for hla-a3 super-type allele molecule
EP1996716B1 (en) 2006-03-20 2011-05-11 The Regents of the University of California Engineered anti-prostate stem cell antigen (psca) antibodies for cancer targeting
JP2009544610A (ja) * 2006-07-14 2009-12-17 マンカインド コーポレイション 予防又は治療目的のためにmhcクラスi拘束エピトープに対する免疫応答を引き出し、増強し、保持する方法
MX2009008620A (es) 2007-02-15 2009-10-22 Mannkind Corp Un metodo para mejorar la respuesta de celulas t.
ES2539812T3 (es) 2007-03-26 2015-07-06 Academisch Ziekenhuis Leiden H.O.D.N. Lumc Péptidos derivados de PRAME y composiciones inmunogénicas que comprenden los mismos
US20090131355A1 (en) * 2007-05-23 2009-05-21 Adrian Ion Bot Multicistronic vectors and methods for their design
EP3061462B1 (en) 2007-07-02 2019-02-27 Etubics Corporation Methods and compositions for producing an adenovirus vector for use with multiple vaccinations
WO2009032949A2 (en) 2007-09-04 2009-03-12 The Regents Of The University Of California High affinity anti-prostate stem cell antigen (psca) antibodies for cancer targeting and detection
ES2623447T3 (es) 2007-12-19 2017-07-11 Rhovac Aps Inmunoterapia basada en RhoC
US8253725B2 (en) * 2007-12-28 2012-08-28 St. Jude Medical, Atrial Fibrillation Division, Inc. Method and system for generating surface models of geometric structures
US9650639B2 (en) 2008-05-19 2017-05-16 Advaxis, Inc. Dual delivery system for heterologous antigens
US20110129499A1 (en) 2008-05-19 2011-06-02 Paulo Maciag Dual delivery system for heterologous antigens
US9017660B2 (en) 2009-11-11 2015-04-28 Advaxis, Inc. Compositions and methods for prevention of escape mutation in the treatment of Her2/neu over-expressing tumors
US10024868B2 (en) * 2009-06-09 2018-07-17 Vaxon Biotech Identification, optimization and use of shared HLA-B*0702 epitopes for immunotherapy
US8470980B2 (en) 2009-09-09 2013-06-25 Centrose, Llc Extracellular targeted drug conjugates
WO2011050344A2 (en) 2009-10-23 2011-04-28 Mannkind Corporation Cancer immunotherapy and method of treatment
US10016617B2 (en) 2009-11-11 2018-07-10 The Trustees Of The University Of Pennsylvania Combination immuno therapy and radiotherapy for the treatment of Her-2-positive cancers
WO2011062634A2 (en) * 2009-11-18 2011-05-26 Mannkind Corporation Monoclonal antibodies and diagnostic uses thereof
AU2010329551B2 (en) 2009-12-10 2016-02-11 Turnstone Limited Partnership Oncolytic rhabdovirus
SE535982C2 (sv) * 2009-12-15 2013-03-19 Theravac Pharmaceuticals Ab Ett nytt vaccin som angriper tumörkärl som ett effektivt redskap i tumörterapi
EP2356998A1 (en) * 2010-02-17 2011-08-17 Université de Liège A pharmaceutical composition for treatment of thrombosis-related diseases comprising a fragment of prolactin (PRL)-growth hormone (GH) - placental lactogen (PL)-family protein
WO2011130598A1 (en) 2010-04-15 2011-10-20 Spirogen Limited Pyrrolobenzodiazepines and conjugates thereof
MX336540B (es) 2010-06-08 2016-01-22 Genentech Inc Conjugados y anticuerpos manipulados geneticamente con cisteina.
US9226958B2 (en) 2010-10-01 2016-01-05 University Of Georgia Research Foundation, Inc. Use of Listeria vaccine vectors to reverse vaccine unresponsiveness in parasitically infected individuals
CA2816426A1 (en) 2010-11-17 2012-06-07 Genentech, Inc. Alaninyl maytansinol antibody conjugates
EP2683400A4 (en) 2011-03-11 2014-09-17 Advaxis ADJUVANZIA ON LISTERIA BASE
CA2833212C (en) 2011-05-12 2020-06-09 Genentech, Inc. Multiple reaction monitoring lc-ms/ms method to detect therapeutic antibodies in animal samples using framework signature peptides
GB201114919D0 (en) * 2011-08-30 2011-10-12 Glaxosmithkline Biolog Sa Method
US11135303B2 (en) 2011-10-14 2021-10-05 Medimmune Limited Pyrrolobenzodiazepines and conjugates thereof
WO2013130093A1 (en) 2012-03-02 2013-09-06 Genentech, Inc. Biomarkers for treatment with anti-tubulin chemotherapeutic compounds
SG11201405605VA (en) 2012-03-12 2014-10-30 Advaxis Inc SUPPRESSOR CELL FUNCTION INHIBITION FOLLOWING <i>LISTERIA</i> VACCINE TREATMENT
US9254311B2 (en) 2012-04-02 2016-02-09 Moderna Therapeutics, Inc. Modified polynucleotides for the production of proteins
AU2013243951A1 (en) * 2012-04-02 2014-10-30 Moderna Therapeutics, Inc. Modified polynucleotides for the production of secreted proteins
US9283287B2 (en) 2012-04-02 2016-03-15 Moderna Therapeutics, Inc. Modified polynucleotides for the production of nuclear proteins
CN107881183B (zh) 2012-05-22 2021-04-02 美国卫生和人力服务部 鼠抗-ny-eso-1 t细胞受体
WO2013180200A1 (ja) * 2012-05-30 2013-12-05 中外製薬株式会社 標的組織特異的抗原結合分子
WO2014031178A1 (en) * 2012-08-24 2014-02-27 Etubics Corporation Replication defective adenovirus vector in vaccination
CA2887895C (en) 2012-10-12 2019-10-29 Adc Therapeutics Sarl Pyrrolobenzodiazepine-anti-cd19 antibody conjugates
MX364328B (es) 2012-10-12 2019-04-23 Medimmune Ltd Conjugados del anticuerpo pirrolobenzodiazepina.
WO2014057114A1 (en) 2012-10-12 2014-04-17 Adc Therapeutics Sàrl Pyrrolobenzodiazepine-anti-psma antibody conjugates
JP6392765B2 (ja) 2012-10-12 2018-09-19 エイディーシー・セラピューティクス・エス・アーAdc Therapeutics Sa ピロロベンゾジアゼピン−抗体結合体
CN105102003B (zh) 2012-10-12 2019-03-05 Adc疗法责任有限公司 吡咯并苯并二氮杂卓-抗psma抗体结合物
EP2839860B1 (en) 2012-10-12 2019-05-01 MedImmune Limited Pyrrolobenzodiazepines and conjugates thereof
EP2906297B1 (en) 2012-10-12 2017-12-06 ADC Therapeutics SA Pyrrolobenzodiazepine-antibody conjugates
WO2014096365A1 (en) 2012-12-21 2014-06-26 Spirogen Sàrl Unsymmetrical pyrrolobenzodiazepines-dimers for use in the treatment of proliferative and autoimmune diseases
AU2013366493B2 (en) 2012-12-21 2017-08-24 Medimmune Limited Pyrrolobenzodiazepines and conjugates thereof
ES2741147T3 (es) 2013-02-21 2020-02-10 Turnstone Lp Composición de vacuna
BR112015021965B1 (pt) 2013-03-13 2022-05-03 Medimmune Limited Conjugados e compostos de pirrolobenzodiazepinas, composição farmacêutica, uso dos mesmos para o tratamento de uma doença proliferativa e método de síntese dos ditos compostos
JP6444902B2 (ja) 2013-03-13 2018-12-26 メドイミューン・リミテッドMedImmune Limited ピロロベンゾジアゼピン及びその結合体
KR102057755B1 (ko) 2013-03-13 2019-12-19 메디뮨 리미티드 피롤로벤조디아제핀 및 그의 컨쥬게이트
US10576144B2 (en) 2013-06-28 2020-03-03 Auckland Uniservices Limited Amino acid and peptide conjugates and conjugation process
AU2014286123B2 (en) * 2013-07-05 2019-02-28 Arla Foods Amba Mammalian milk osteopontin for enhancing immune responsiveness
EA201690195A1 (ru) 2013-08-12 2016-05-31 Дженентек, Инк. Конъюгатные соединения антитело-лекарство на основе димера 1-(хлорметил)-2,3-дигидро-1h-бензо[e]индола и способы применения и лечения
EP3054985B1 (en) 2013-10-11 2018-12-26 Medimmune Limited Pyrrolobenzodiazepine-antibody conjugates
GB201317982D0 (en) 2013-10-11 2013-11-27 Spirogen Sarl Pyrrolobenzodiazepines and conjugates thereof
EP3054983B1 (en) 2013-10-11 2019-03-20 Medimmune Limited Pyrrolobenzodiazepine-antibody conjugates
US9956299B2 (en) 2013-10-11 2018-05-01 Medimmune Limited Pyrrolobenzodiazepine—antibody conjugates
TW202043467A (zh) 2013-12-04 2020-12-01 日商中外製藥股份有限公司 因應化合物濃度使抗原結合能力變化的抗原結合分子及其資料庫
CN105828840B (zh) 2013-12-16 2020-08-04 基因泰克公司 1-(氯甲基)-2,3-二氢-1H-苯并[e]吲哚二聚体抗体-药物缀合物化合物及使用和治疗方法
RU2689388C1 (ru) 2013-12-16 2019-05-28 Дженентек, Инк. Пептидомиметические соединения и их конъюгаты антител с лекарственными средствами
CA2933557A1 (en) 2013-12-16 2015-06-25 Genentech, Inc. Peptidomimetic compounds and antibody-drug conjugates thereof
US10188746B2 (en) 2014-09-10 2019-01-29 Medimmune Limited Pyrrolobenzodiazepines and conjugates thereof
EP3191521A2 (en) 2014-09-12 2017-07-19 F. Hoffmann-La Roche AG Cysteine engineered antibodies and conjugates
CN106714844B (zh) 2014-09-12 2022-08-05 基因泰克公司 蒽环类二硫化物中间体、抗体-药物缀合物和方法
GB201416112D0 (en) 2014-09-12 2014-10-29 Medimmune Ltd Pyrrolobenzodiazepines and conjugates thereof
PE20170905A1 (es) 2014-09-17 2017-07-12 Genentech Inc Pirrolobenzodiazepinas y conjugados de anticuerpo-disulfuro de las mismas
CA2968447A1 (en) 2014-11-25 2016-06-02 Adc Therapeutics Sa Pyrrolobenzodiazepine-antibody conjugates and their use to treat neoplasms
CN107206101B (zh) 2014-12-03 2021-06-25 基因泰克公司 季铵化合物及其抗体-药物缀合物
JP2018505152A (ja) 2014-12-23 2018-02-22 アン ブリンブル マーガレット アミノ酸複合体及びペプチド複合体ならびにそれらの使用
KR102193635B1 (ko) 2015-01-09 2020-12-21 이투빅스 코포레이션 복합 면역요법을 위한 방법 및 조성물
WO2016112188A1 (en) 2015-01-09 2016-07-14 Etubics Corporation Methods and compositions for ebola virus vaccination
GB201506411D0 (en) 2015-04-15 2015-05-27 Bergenbio As Humanized anti-axl antibodies
GB201506402D0 (en) 2015-04-15 2015-05-27 Berkel Patricius H C Van And Howard Philip W Site-specific antibody-drug conjugates
WO2016172249A1 (en) 2015-04-20 2016-10-27 Etubics Corporation Methods and compositions for combination immunotherapy
MA43345A (fr) 2015-10-02 2018-08-08 Hoffmann La Roche Conjugués anticorps-médicaments de pyrrolobenzodiazépine et méthodes d'utilisation
MA43354A (fr) 2015-10-16 2018-08-22 Genentech Inc Conjugués médicamenteux à pont disulfure encombré
MA45326A (fr) 2015-10-20 2018-08-29 Genentech Inc Conjugués calichéamicine-anticorps-médicament et procédés d'utilisation
CN106610423A (zh) * 2015-10-26 2017-05-03 复旦大学 评价疫苗疗效的细胞免疫学检测试剂盒及其储存方法
GB201601431D0 (en) 2016-01-26 2016-03-09 Medimmune Ltd Pyrrolobenzodiazepines
GB201602359D0 (en) 2016-02-10 2016-03-23 Medimmune Ltd Pyrrolobenzodiazepine Conjugates
GB201602356D0 (en) 2016-02-10 2016-03-23 Medimmune Ltd Pyrrolobenzodiazepine Conjugates
SG11201807036QA (en) 2016-02-26 2018-09-27 Auckland Uniservices Ltd Amino acid and peptide conjugates and conjugation process
JP6943872B2 (ja) 2016-03-25 2021-10-06 ジェネンテック, インコーポレイテッド 多重全抗体及び抗体複合体化薬物定量化アッセイ
GB201607478D0 (en) 2016-04-29 2016-06-15 Medimmune Ltd Pyrrolobenzodiazepine Conjugates
PL3458101T3 (pl) 2016-05-20 2021-05-31 F. Hoffmann-La Roche Ag Koniugaty PROTAC-przeciwciało i sposoby ich stosowania
CA3025234A1 (en) * 2016-05-23 2017-11-30 The Council Of The Queensland Institute Of Medical Research Cmv epitopes
CN109313200B (zh) 2016-05-27 2022-10-04 豪夫迈·罗氏有限公司 用于表征位点特异性抗体-药物缀合物的生物分析性方法
JP7043425B2 (ja) 2016-06-06 2022-03-29 ジェネンテック, インコーポレイテッド シルベストロール抗体-薬物コンジュゲート及び使用方法
JP7093767B2 (ja) 2016-08-11 2022-06-30 ジェネンテック, インコーポレイテッド ピロロベンゾジアゼピンプロドラッグ及びその抗体コンジュゲート
CN110139674B (zh) 2016-10-05 2023-05-16 豪夫迈·罗氏有限公司 制备抗体药物缀合物的方法
GB201617466D0 (en) 2016-10-14 2016-11-30 Medimmune Ltd Pyrrolobenzodiazepine conjugates
JP6671555B2 (ja) 2017-02-08 2020-03-25 アーデーセー セラピューティクス ソシエテ アノニム ピロロベンゾジアゼピン抗体複合体
GB201702031D0 (en) 2017-02-08 2017-03-22 Medlmmune Ltd Pyrrolobenzodiazepine-antibody conjugates
JP2020517609A (ja) 2017-04-18 2020-06-18 メディミューン リミテッド ピロロベンゾジアゼピン複合体
CA3057748A1 (en) 2017-04-20 2018-10-25 Adc Therapeutics Sa Combination therapy with an anti-axl antibody-drug conjugate
WO2018229222A1 (en) 2017-06-14 2018-12-20 Adc Therapeutics Sa Dosage regimes for the administration of an anti-cd19 adc
CN108503689B (zh) * 2017-07-10 2019-12-31 昆明医科大学第一附属医院 一种抗血小板聚集的多肽km6
WO2019034764A1 (en) 2017-08-18 2019-02-21 Medimmune Limited CONJUGATES OF PYRROLOBENZODIAZEPINE
JP2020534300A (ja) 2017-09-20 2020-11-26 ピーエイチ・ファーマ・カンパニー・リミテッドPh Pharma Co., Ltd. タイランスタチン類似体
WO2019062877A1 (zh) * 2017-09-30 2019-04-04 合肥立方制药股份有限公司 结合至纤维连接蛋白b结构域的蛋白
GB201803342D0 (en) 2018-03-01 2018-04-18 Medimmune Ltd Methods
CN110343167B (zh) * 2018-04-03 2022-10-28 香雪生命科学技术(广东)有限公司 识别ssx2抗原短肽的t细胞受体
GB201806022D0 (en) 2018-04-12 2018-05-30 Medimmune Ltd Pyrrolobenzodiazepines and conjugates thereof
GB201814281D0 (en) 2018-09-03 2018-10-17 Femtogenix Ltd Cytotoxic agents
CN110950949B (zh) * 2018-09-26 2022-04-05 香雪生命科学技术(广东)有限公司 一种识别ssx2抗原的t细胞受体
WO2020086858A1 (en) 2018-10-24 2020-04-30 Genentech, Inc. Conjugated chemical inducers of degradation and methods of use
WO2020123275A1 (en) 2018-12-10 2020-06-18 Genentech, Inc. Photocrosslinking peptides for site specific conjugation to fc-containing proteins
TW202039535A (zh) * 2018-12-18 2020-11-01 德商英麥提克生物技術股份有限公司 B*08限制肽和肽組合物抗癌免疫治療和相關方法
KR102084912B1 (ko) * 2019-01-17 2020-03-05 주식회사 녹십자 B형 간염 바이러스 표면 항원의 입체 에피토프 및 이에 특이적으로 결합하는 항체
GB201901197D0 (en) 2019-01-29 2019-03-20 Femtogenix Ltd G-A Crosslinking cytotoxic agents
CN112442118B (zh) * 2019-08-30 2023-02-14 深圳普瑞金生物药业股份有限公司 一种tcr及其应用
CH717565A1 (fr) 2020-06-25 2021-12-30 Planair Sa Installation photovoltaïque et procédé de construction d'une telle installation.
GB2597532A (en) 2020-07-28 2022-02-02 Femtogenix Ltd Cytotoxic compounds
US11161892B1 (en) 2020-12-07 2021-11-02 Think Therapeutics, Inc. Method of compact peptide vaccines using residue optimization
US11421015B2 (en) 2020-12-07 2022-08-23 Think Therapeutics, Inc. Method of compact peptide vaccines using residue optimization
US11058751B1 (en) 2020-11-20 2021-07-13 Think Therapeutics, Inc. Compositions for optimized RAS peptide vaccines
US11464842B1 (en) 2021-04-28 2022-10-11 Think Therapeutics, Inc. Compositions and method for optimized peptide vaccines using residue optimization
CN116262779A (zh) * 2021-12-14 2023-06-16 深圳先进技术研究院 一种单细胞筛选鉴定人乳头瘤病毒特异性tcr的方法
EP4328239A1 (en) 2022-08-26 2024-02-28 Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft Immunotherapeutics based on magea1-derived epitopes

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996011279A2 (en) * 1994-10-03 1996-04-18 The Government Of The United States Of America, Represented By The Secretary, Department Of Health And Human Services Enhanced immune response by introduction of cytokine gene and/or costimulatory molecule b7 gene in a recombinant virus expressing system
WO1999045954A1 (en) * 1998-03-13 1999-09-16 Epimmune, Inc. Hla-binding peptides and their uses
WO1999047554A1 (en) * 1998-03-18 1999-09-23 Northwest Biotherapeutics, Inc. Monoclonal antibodies specific for the extracellular domain of prostate-specific membrane antigen
WO1999058658A2 (en) * 1998-05-13 1999-11-18 Epimmune, Inc. Expression vectors for stimulating an immune response and methods of using the same
WO2000018933A1 (en) * 1998-09-30 2000-04-06 American Foundation For Biological Research, Inc. Immunotherapy of cancer through expression of truncated tumor or tumor-associated antigen
JP2000505417A (ja) * 1996-01-17 2000-05-09 ルードヴィッヒ・インスティテュート・フォア・キャンサー・リサーチ 単離チロシナーゼ由来ペプチドとその利用方法
WO2000034494A1 (en) * 1998-12-09 2000-06-15 The Government Of The United States Of America Represented By The Secretary, Department Of Health And Human Services A recombinant vector expressing multiple costimulatory molecules and uses thereof
JP2000510689A (ja) * 1996-04-26 2000-08-22 リュクスウニヴェルシテート テ レイデン T細胞ペプチド・エピトープの選択と産生方法および選択したエピトープを組込むワクチン
JP2001500723A (ja) * 1996-05-24 2001-01-23 カイロン コーポレイション 複数エピトープ融合タンパク質
WO2001082963A2 (en) * 2000-04-28 2001-11-08 Ctl Immunotherapies Corp. Method of identifying and producing antigen peptides and use thereof as vaccines

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1296622C (en) * 1986-08-12 1992-03-03 Jeffrey E. Anderson Method and apparatus for automated assessment of the immunoregulatory status of the mononuclear leukocyte immune system
US5030449A (en) * 1988-07-21 1991-07-09 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Synthetic vaccine against AIDS virus
US5804381A (en) 1996-10-03 1998-09-08 Cornell Research Foundation Isolated nucleic acid molecule encoding an esophageal cancer associated antigen, the antigen itself, and uses thereof
ATE184704T1 (de) 1989-11-03 1999-10-15 Donald L Morton Nachweismethode für harnkarzinom-assoziierte antigene
US5342774A (en) * 1991-05-23 1994-08-30 Ludwig Institute For Cancer Research Nucleotide sequence encoding the tumor rejection antigen precursor, MAGE-1
US5679356A (en) * 1992-07-08 1997-10-21 Schering Corporation Use of GM-CSF as a vaccine adjuvant
DK0668777T3 (da) * 1992-11-05 2007-02-19 Sloan Kettering Inst Cancer Prostataspecifikt membran-antigen
US7070782B1 (en) * 1992-11-05 2006-07-04 Sloan-Kettering Institute For Cancer Research Prostate-specific membrane antigen
US5487974A (en) * 1992-12-22 1996-01-30 Ludwig Institute For Cancer-Research Method for detecting complexes containing human leukocyte antigen A2 (HLA-A2) molecules and a tyrosinase drived peptide on abnormal cells
US5747271A (en) 1992-12-22 1998-05-05 Ludwig Institute For Cancer Research Method for identifying individuals suffering from a cellular abnormality some of whose abnormal cells present complexes of HLA-A2/tyrosinase derived peptides, and methods for treating said individuals
US5935818A (en) 1995-02-24 1999-08-10 Sloan-Kettering Institute For Cancer Research Isolated nucleic acid molecule encoding alternatively spliced prostate-specific membrane antigen and uses thereof
US5874560A (en) 1994-04-22 1999-02-23 The United States Of America As Represented By The Department Of Health And Human Services Melanoma antigens and their use in diagnostic and therapeutic methods
CA2188432C (en) * 1994-04-22 2011-02-01 Yutaka Kawakami Melanoma antigens
DE4423392A1 (de) * 1994-07-04 1996-01-11 Birsner & Grob Biotech Gmbh Verfahren zur Identifizierung antigener Peptide
CA2195642A1 (en) * 1994-07-27 1996-02-08 Andreas Suhrbier Polyepitope vaccines
US5830753A (en) 1994-09-30 1998-11-03 Ludwig Institute For Cancer Research Isolated nucleic acid molecules coding for tumor rejection antigen precursor dage and uses thereof.
US5635363A (en) 1995-02-28 1997-06-03 The Board Of Trustees Of The Leland Stanford Junior University Compositions and methods for the detection, quantitation and purification of antigen-specific T cells
US5830755A (en) 1995-03-27 1998-11-03 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services T-cell receptors and their use in therapeutic and diagnostic methods
US6025191A (en) 1995-06-07 2000-02-15 Ludwig Institute For Cancer Research Isolated nucleic acid molecules which encode a melanoma specific antigen and uses thereof
US5788963A (en) * 1995-07-31 1998-08-04 Pacific Northwest Cancer Foundation Isolation and/or preservation of dendritic cells for prostate cancer immunotherapy
WO1997035991A1 (en) 1996-03-28 1997-10-02 The Johns Hopkins University Soluble divalent and multivalent heterodimeric analogs of proteins
US5856136A (en) 1996-07-03 1999-01-05 Incyte Pharmaceuticals, Inc. Human stem cell antigens
EP2286831A1 (en) 1997-07-10 2011-02-23 Mannkind Corporation A method of inducing a CTL response
US6210886B1 (en) * 1998-02-04 2001-04-03 Ludwig Institute For Cancer Research Method for diagnosing multiple myeloma by determining tumor rejection antigen precursors
ATE356630T1 (de) * 1998-04-03 2007-04-15 Univ Iowa Res Found Verfahren und produkte zur stimulierung des immunsystems mittels immunotherapeutischer oligonukleotide und zytokine
IL125608A0 (en) * 1998-07-30 1999-03-12 Yeda Res & Dev Tumor associated antigen peptides and use of same as anti-tumor vaccines
AU3395900A (en) * 1999-03-12 2000-10-04 Human Genome Sciences, Inc. Human lung cancer associated gene sequences and polypeptides
EP1218538A2 (en) * 1999-06-30 2002-07-03 Ludwig Institute For Cancer Research Cancer associated antigens and uses therefor
EP1244465A4 (en) * 1999-12-21 2005-01-12 Epimmune Inc INDUCTION OF CELLULAR IMMUNE RESPONSE TO PROSTATE CANCER BY MEANS OF PEPTIDE AND NUCLEIC ACID COMPOUNDS
EP1118860A1 (en) * 2000-01-21 2001-07-25 Rijksuniversiteit te Leiden Methods for selecting and producing T cell peptide epitopes and vaccines incorporating said selected epitopes
US20030215425A1 (en) * 2001-12-07 2003-11-20 Simard John J. L. Epitope synchronization in antigen presenting cells
FR2812087B1 (fr) * 2000-07-21 2007-05-11 Inst Nat Sante Rech Med Procede de criblage de peptides utilisables en immunotherapie
EP1911461B1 (en) * 2000-10-19 2011-12-07 Epimmune Inc. HLA class I and II binding peptides and their uses
US20030044813A1 (en) * 2001-03-30 2003-03-06 Old Lloyd J. Cancer-testis antigens
WO2003008537A2 (en) * 2001-04-06 2003-01-30 Mannkind Corporation Epitope sequences
DE60238864D1 (de) * 2001-11-07 2011-02-17 Mankind Corp Für epitope von antigenen kodierende expressionsvektoren und verfahren zu deren konzeption
AU2003253860A1 (en) * 2002-07-10 2004-01-23 The Regents Of The University Of Michigan Expression profile of lung cancer
US9469902B2 (en) 2014-02-18 2016-10-18 Lam Research Corporation Electroless deposition of continuous platinum layer

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996011279A2 (en) * 1994-10-03 1996-04-18 The Government Of The United States Of America, Represented By The Secretary, Department Of Health And Human Services Enhanced immune response by introduction of cytokine gene and/or costimulatory molecule b7 gene in a recombinant virus expressing system
JP2000505417A (ja) * 1996-01-17 2000-05-09 ルードヴィッヒ・インスティテュート・フォア・キャンサー・リサーチ 単離チロシナーゼ由来ペプチドとその利用方法
JP2000510689A (ja) * 1996-04-26 2000-08-22 リュクスウニヴェルシテート テ レイデン T細胞ペプチド・エピトープの選択と産生方法および選択したエピトープを組込むワクチン
JP2001500723A (ja) * 1996-05-24 2001-01-23 カイロン コーポレイション 複数エピトープ融合タンパク質
WO1999045954A1 (en) * 1998-03-13 1999-09-16 Epimmune, Inc. Hla-binding peptides and their uses
WO1999047554A1 (en) * 1998-03-18 1999-09-23 Northwest Biotherapeutics, Inc. Monoclonal antibodies specific for the extracellular domain of prostate-specific membrane antigen
WO1999058658A2 (en) * 1998-05-13 1999-11-18 Epimmune, Inc. Expression vectors for stimulating an immune response and methods of using the same
WO2000018933A1 (en) * 1998-09-30 2000-04-06 American Foundation For Biological Research, Inc. Immunotherapy of cancer through expression of truncated tumor or tumor-associated antigen
WO2000034494A1 (en) * 1998-12-09 2000-06-15 The Government Of The United States Of America Represented By The Secretary, Department Of Health And Human Services A recombinant vector expressing multiple costimulatory molecules and uses thereof
WO2001082963A2 (en) * 2000-04-28 2001-11-08 Ctl Immunotherapies Corp. Method of identifying and producing antigen peptides and use thereof as vaccines

Also Published As

Publication number Publication date
US20050221440A1 (en) 2005-10-06
EP2394655A2 (en) 2011-12-14
US20030220239A1 (en) 2003-11-27
EP2394655A3 (en) 2012-05-02
WO2003008537A2 (en) 2003-01-30
JP2005509404A (ja) 2005-04-14
CN101948841A (zh) 2011-01-19
CN1512891A (zh) 2004-07-14
EP2465520A2 (en) 2012-06-20
CA2442386A1 (en) 2002-10-17
AU2002254570A1 (en) 2002-10-21
US20050142144A1 (en) 2005-06-30
EP1383528A4 (en) 2005-03-09
MXPA03009042A (es) 2004-10-15
JP5135150B2 (ja) 2013-01-30
JP2009060910A (ja) 2009-03-26
EP1383528A2 (en) 2004-01-28
WO2002081646A3 (en) 2003-07-17
JP2010110330A (ja) 2010-05-20
WO2002081646A2 (en) 2002-10-17
WO2003008537A9 (en) 2004-02-19
EP2465520A3 (en) 2012-09-12

Similar Documents

Publication Publication Date Title
JP4874508B2 (ja) エピトープ配列
JP2010104370A (ja) エピトープ配列
AU2010227059B2 (en) Combinations of tumor-associated antigens in compositions for various types of cancers
IL184277A (en) Use of a psma antigen and a prame antigen for the manufacture of medicaments for treatment of pancreatic cancer and immunogenic compositions comprising a psma antigen and a prame antigen for the treatment of pancreatic cancer
AU729497B2 (en) Human cancer antigen of tyrosinase-related protein 1 and 2 and genes encoding same
EP1444261B1 (en) Immunogenic alk (anaplastic lymphoma kinase) peptides
EP1752160A2 (en) Epitope sequences
Willem et al. gp100/pmel 17 Is a Murine Tumor Rejection Antigen: Induction of “Self”-reactive, Tumoricidal T Cells Using High-affinity, Altered Peptide Ligand
EP1560848A2 (en) Ptprk immunogenic peptide

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050404

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080630

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080707

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080730

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080806

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080829

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20091005

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20091013

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20091106

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20091113

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20091204

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20091211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101228

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees