JP4853057B2 - 強誘電体メモリ装置の製造方法 - Google Patents

強誘電体メモリ装置の製造方法 Download PDF

Info

Publication number
JP4853057B2
JP4853057B2 JP2006064011A JP2006064011A JP4853057B2 JP 4853057 B2 JP4853057 B2 JP 4853057B2 JP 2006064011 A JP2006064011 A JP 2006064011A JP 2006064011 A JP2006064011 A JP 2006064011A JP 4853057 B2 JP4853057 B2 JP 4853057B2
Authority
JP
Japan
Prior art keywords
layer
mask pattern
ferroelectric
etching
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006064011A
Other languages
English (en)
Other versions
JP2007242929A (ja
Inventor
主 宮治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2006064011A priority Critical patent/JP4853057B2/ja
Priority to US11/680,833 priority patent/US7390679B2/en
Publication of JP2007242929A publication Critical patent/JP2007242929A/ja
Application granted granted Critical
Publication of JP4853057B2 publication Critical patent/JP4853057B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material
    • H01L28/57Capacitors with a dielectric comprising a perovskite structure material comprising a barrier layer to prevent diffusion of hydrogen or oxygen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • H01L28/65Electrodes comprising a noble metal or a noble metal oxide, e.g. platinum (Pt), ruthenium (Ru), ruthenium dioxide (RuO2), iridium (Ir), iridium dioxide (IrO2)
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • H10B53/30Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors characterised by the memory core region

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Semiconductor Memories (AREA)
  • Drying Of Semiconductors (AREA)

Description

本発明は、強誘電体キャパシタを有する強誘電体メモリ装置の製造方法に関する。
強誘電体メモリ装置(FeRAM)は、強誘電体キャパシタを有して構成されたもので、低電圧で高速動作が可能な不揮発性メモリである。このような強誘電体メモリ装置は、例えばメモリセルを1トランジスタ/1キャパシタ(1T/1C)で構成できるため、DRAMなみの集積化が可能であることから、近年、大容量不揮発性メモリとして大きく期待されている。
ところで、このような強誘電体メモリ装置の強誘電体キャパシタは、下部電極と強誘電体膜と上部電極とを有して構成されている。そして、このような強誘電体キャパシタを形成する場合、通常は、下部電極材料からなる層と強誘電体材料からなる層と上部電極材料からなる層を順次積層し、これらを一括してエッチングし、パターニングを行っている。このようなエッチングの際に用いるマスクとしては、レジストマスクでは十分な耐性が得られないなどの理由により、近年では酸化膜(SiO)等のハードマスクが用いられるようになっている(例えば、特許文献1参照)。
さらに、酸化膜(SiO)でも不十分な場合などでは、窒化チタン(TiN)膜をハードマスクに用いることも提案されている。
特開2002−94019号公報
ところで、窒化チタン(TiN)膜をハードマスクに用いる場合、通常は、この窒化チタン膜のパターニングを行うためのマスクとして、SiOからなる第2のマスクパターンを形成し、これを用いて窒化チタン膜からなるマスクパターンを形成する。そして、窒化チタン膜だけでは十分なエッチング耐性が得られないため、通常は、得られた窒化チタン膜からなるマスクパターンと、残った第2のマスクパターンとを共に用いてこれらの積層膜をハードマスクにし、強誘電体キャパシタ層を一括してエッチングすることにより、強誘電体キャパシタを形成している。
ところが、前記のハードマスクは、SiO膜の厚さが700nm程度、TiN膜の厚さが200nm程度であり、合計で900nm程度となる。これに対して形成する強誘電体キャパシタ間の間隔は、通常600nm程度である。したがって、アスペクト比が高くなり、強誘電体キャパシタの底部側となる下部電極側のエッチングが良好になされなくなり、隣り合う強誘電体キャパシタ間で導通してしまうおそれがある。そして、このような隣り合う強誘電体キャパシタ間での導通を防止するため、現状ではオーバーエッチングを過剰に行う必要があるが、このようにオーバーエッチングを過剰に行うと、エッチングによって得られる強誘電体キャパシタの側壁面が荒れてしまい、良好な強誘電体特性が得られにくくなってしまう。
本発明は前記事情に鑑みてなされたもので、その目的とするところは、強誘電体キャパシタを形成する際の加工性を向上し、良好な強誘電体特性を有する強誘電体キャパシタを形成できるようにした、強誘電体メモリ装置の製造方法を提供することにある。
従来、チタニア(TiO)等のチタン酸化物はエッチングされにくく、したがってこれをパターニングするのが困難であることから、ハードマスクとしては使用できないと考えられていた。しかしながら、本発明者は鋭意研究した結果、チタン酸化物も200℃以上での高温エッチングでは適度なエッチングレートを有し、したがってパターニングが可能になることで、ハードマスクとして使用できるとの知見を得た。そして、このような知見を基に、本発明者は本発明を完成させた。
すなわち、本発明の強誘電体メモリ装置の製造方法は、基体上に下部電極層と強誘電体層と上部電極層とからなる強誘電体キャパシタ層を形成する工程と、
前記強誘電体キャパシタ層上にチタン酸化物層を形成する工程と、
前記チタン酸化物層を、200℃以上500℃以下での高温エッチングでパターニングし、マスクパターンを形成する工程と、
前記マスクパターンをマスクにして、前記強誘電体キャパシタ層をエッチングし、下部電極と強誘電体膜と上部電極とを有した強誘電体キャパシタを形成する工程と、を備え、
前記基体上に強誘電体キャパシタ層を形成する工程では、前記基体と下部電極層との間に酸素バリア層を形成するようにし、
前記マスクパターンを形成する工程は、前記チタン酸化物層上に第2マスクパターンを形成する工程と、該第2マスクパターンを用いて前記チタン酸化物層を高温エッチングし、マスクパターンを形成する工程と、を有してなり、
前記強誘電体キャパシタを形成する工程は、前記マスクパターンと前記第2マスクパターンとからなる積層マスクパターンをマスクにして前記上部電極層と強誘電体層と下部電極層とをエッチングし、パターニングする工程と、続いて前記積層マスクパターンから前記第2マスクパターンを選択的に除去する工程と、その後、残った前記マスクパターンをマスクにして前記酸素バリア層をエッチングし、パターニングする工程と、を有してなることを特徴とする。
また、基体上に下部電極層と強誘電体層と上部電極層とからなる強誘電体キャパシタ層を形成する形成する工程と、
前記強誘電体キャパシタ層上にチタン酸化物層を形成する工程と、
前記チタン酸化物層を、200℃以上500℃以下での高温エッチングでパターニングし、マスクパターンを形成する工程と、
前記マスクパターンをマスクにして、前記強誘電体キャパシタ層をエッチングし、下部電極と強誘電体膜と上部電極とを有した強誘電体キャパシタを形成する工程と、を備えたことを特徴としている。


この強誘電体メモリ装置の製造方法によれば、エッチングがされにくく、したがってエッチング耐性が大きいチタン酸化物をマスクパターンにしてエッチングし、強誘電体キャパシタを形成するので、このチタン酸化物からなるマスクパターンの厚さを比較的薄くすることができる。したがって、強誘電体キャパシタ形成時におけるマスクのアスペクト比を比較的低くすることにより、強誘電体キャパシタをその底部側まで良好にエッチングすることが可能になる。よって、過剰なオーバーエッチングを不要にし、過剰なオーバーエッチングに起因して強誘電体キャパシタの側壁面が荒れてしまい、良好な強誘電体特性が得られにくくなるといった不都合を防止することができる。
また、チタン酸化物層のパターニングによるマスクパターンの形成を、200℃以上500℃以下での高温エッチングで行うようにしたので、前述したようにチタン酸化物は常温ではエッチングされにくいものの、特に200℃以上で行うことにより、エッチングによるパターニングが可能になる。また、500℃以下でエッチングを行うようにしたので、他の構成要素、例えば得られる強誘電体キャパシタを駆動させるための駆動トランジスタなどに熱的ダメージが与えられてしまうのが防止される。
また、前記強誘電体メモリ装置の製造方法においては、前記マスクパターンを形成する工程は、前記チタン酸化物層上に第2マスクパターンを形成する工程と、該第2マスクパターンを用いて前記チタン酸化物層を高温エッチングし、マスクパターンを形成する工程と、を有してなり、前記強誘電体キャパシタを形成する工程は、前記マスクパターンと前記第2マスクパターンとからなる積層マスクパターンをマスクにしてエッチングし、パターニングするのが好ましい。
このようにすれば、前記マスクパターンと前記第2マスクパターンとからなる積層マスクパターンをマスクにしてエッチングするので、チタン酸化物からなるマスクパターンの負担を少なくしてこれの膜厚を薄くすることができ、したがってエッチングがされにくいチタン酸化物層に対するエッチングを必要最小限に抑えることができる。
また、前記強誘電体メモリ装置の製造方法においては、前記第2マスクパターンを形成する工程は、テトラエトキシシランを原料とする化学気相堆積法でシリコン酸化物層を形成する工程と、前記シリコン酸化物層をエッチングによりパターニングしてシリコン酸化物からなる第2マスクパターンを形成する工程と、を有してなるのが好ましい。
テトラエトキシシランを原料とする化学気相堆積法でのシリコン酸化物層の形成は、比較的容易な成膜法であり、また、得られたシリコン酸化物層もエッチングが容易で加工性が良好であるため、第2マスクパターンの形成が容易になる。
また、前記強誘電体メモリ装置の製造方法においては、前記基体上に強誘電体キャパシタ層を形成する工程では、前記基体と下部電極層との間に酸素バリア層を形成するようにし、前記強誘電体キャパシタを形成する工程では、酸素バリア膜と下部電極と強誘電体膜と上部電極とを有した強誘電体キャパシタを形成するのが好ましい。
このようにすれば、基体と下部電極との間に酸素バリア膜を形成することにより、例えば強誘電体キャパシタ形成後の工程である酸素雰囲気下での熱処理(強誘電体膜の特性回復のためのリカバリーアニール)で、基体中に形成されたプラグが酸化し、抵抗が大幅に上昇してしまうのを防止することができる。したがって、プラグと下部電極との間の導通を良好に確保することができる。
以下、本発明を詳しく説明する。
まず、本発明の強誘電体メモリ装置の製造方法の説明に先立ち、この方法によって得られる強誘電体メモリ装置の一例について説明する。
図1は、本発明の強誘電体メモリ装置の一例を示す要部断面図であり、図1中符号1は強誘電体メモリ装置である。この強誘電体メモリ装置1は、1T/1C型のメモリセル構造を有したスタック型のもので、基体2と、この基体2上に形成された多数の強誘電体キャパシタ3と、を備えて構成されたものである。
基体2は、シリコン基板(半導体基板)4を備えて構成されたもので、シリコン基板4の表層部に、前記強誘電体キャパシタ4を動作させるための駆動トランジスタ5を形成し、さらにこの駆動トランジスタ5を覆ってシリコン基板4上に下地絶縁膜6を形成したものである。シリコン基板4には、前記駆動トランジスタ5を構成するソース/ドレイン領域(図示せず)とチャネル領域(図示せず)とが形成され、さらにチャネル領域上にはゲート絶縁膜(図示せず)が形成されている。そして、このゲート絶縁膜上にゲート電極5aが形成されたことにより、前記駆動トランジスタ5が構成されている。
なお、各強誘電体キャパシタ3に対応する駆動トランジスタ5は、シリコン基板4に形成された埋め込み分離領域(図示せず)によってそれぞれ電気的に分離されている。
また、下地絶縁膜6は、珪素酸化物(SiO)によって形成されたもので、CMP(化学機械研磨)法等で平坦化されたものである。
このようにシリコン基板4に駆動トランジスタ5を形成し、さらに下地絶縁膜6を形成してなる基体2の上には、その下地絶縁膜6上に前記強誘電体キャパシタ3が形成されている。強誘電体キャパシタ3は、前記下地絶縁膜6上に形成された酸素バリア膜7と、この酸素バリア膜7上に形成された下部電極8と、下部電極8上に形成された強誘電体膜9と、強誘電体膜9上に形成された上部電極10と、から構成されている。
酸素バリア膜7は、例えばTiAlN、TiAl、TiSiN、TiN、TaN、TaSiN等からなるもので、中でもチタン、アルミニウム、窒素を含むTiAlNが好適とされ、したがって本例ではTiAlNによって酸素バリア膜7が形成されている。
下部電極8及び上部電極10は、イリジウム(Ir)や、酸化イリジウム(IrO)、白金(Pt)、ルテニウム(Ru)、酸化ルテニウム(RuO)等からなるもので、本例では特にイリジウムによって形成されている。
強誘電体膜9は、ペロブスカイト型の結晶構造を有し、ABXOの一般式で示されるもので、具体的には、Pb(Zr、Ti)O(PZT)や(Pb、La)(Zr、Ti)O(PLZT)、さらに、これら材料にニオブ(Nb)等の金属が加えられたものなどによって形成されたものである。本例では、特にPZTによって形成されている。
ここで、酸素バリア膜7の底部には、前記下地絶縁膜6を貫通して形成されたコンタクトホール11が通じている。そして、このような構成によって酸素バリア膜7上の下部電極8は、コンタクトホール11内に形成されたプラグ12に接続し導通している。このプラグ12は、前記駆動トランジスタ5の一方のソース/ドレイン領域に接続しており、これによって強誘電体キャパシタ3は、前述したように駆動トランジスタ5によって動作させられるようになっている。
なお、コンタクトホール11に埋設されたプラグ12は、本例ではタングステン(W)によって形成されている。
また、前記下地絶縁膜6上には、強誘電体キャパシタ3を覆って絶縁性の水素バリア膜13が形成されている。この水素バリア膜13は、水素バリア機能を発揮することにより、特に水素による還元作用によって電気特性の低下が起こり易い強誘電体膜9を保護するためのものである。このような絶縁性の水素バリア膜13としては、アルミニウム酸化物であるアルミナ(AlOx)や、チタン酸化物であるチタニア(TiOx)、ジルコニア酸化物であるジルコニア(ZrOx)などが用いられ、特にアルミナ(AlOx)が好適に用いられる。したがって、本例では、水素バリア膜13はアルミナ(AlOx)からなっているものとする。
水素バリア膜13上には層間絶縁膜14が形成されている。この層間絶縁膜14は、前記下地絶縁膜6と同様に、珪素酸化物(SiO)によって形成されたもので、CMP(化学機械研磨)法等で平坦化されたものである。この層間絶縁膜14には、前記上部電極10に通じるコンタクトホール15が形成され、このコンタクトホール15内にはプラグ16が埋設されている。このような構成のもとに、前記強誘電体キャパシタ3は、前記駆動トランジスタ5と前記プラグ16に接続する導電部(図示せず)とによって駆動させられるようになっている。
さらに、前記層間絶縁膜14上には、前記導電部等を覆って第2層間絶縁膜(図示せず)が形成されている。
次に、このような構成の強誘電体メモリ装置1の製造方法を基に、本発明の強誘電体メモリ装置の製造方法の一実施形態を説明する。
まず、図2(a)に示すように、予め公知の手法によってシリコン基板4に駆動トランジスタ5を形成し、続いてCVD法等により珪素酸化物(SiO)を成膜し、さらにこれをCMP法等によって平坦化することにより、下地絶縁膜6を形成する。
続いて、前記下地絶縁膜6上に公知のレジスト技術、露光・現像技術によってレジストパターン(図示せず)を形成し、さらにこのレジストパターンをマスクにしてエッチングすることにより、図2(b)に示すようにコンタクトホール11を形成する。
次いで、プラグ材料としてタングステン(W)をスパッタ法等で成膜し、前記のコンタクトホール11にタングステンを埋め込む。続いて、CMP法等によって下地絶縁膜6上のタングステンを除去し、前記コンタクトホール11にタングステンからなるプラグ12を埋設する。なお、このようなプラグ12の形成に際しては、タングステンの埋め込みに先立ち、TiN(窒化チタン)等の密着層をコンタクトホール11の内壁面に薄く成膜しておき、その後、前記したようにタングステンを埋め込むのが好ましい。
次いで、前記下地絶縁膜6上に強誘電体キャパシタ3を形成するべく、まず、前記プラグ12の上面を覆って、下地絶縁膜6上に酸素バリア膜13の形成材料を成膜する。具体的には、TiAlNをスパッタ法等で成膜することにより、図2(c)に示すように酸素バリア層7aを形成する。
次に、この酸素バリア層7a上に、下部電極8の形成材料であるイリジウムをスパッタ法等によって成膜し、下部電極層8aを形成する。
続いて、この下部電極層8a上に、強誘電体膜9の形成材料であるPZTを、例えばスパッタ法、スピンオン法、MOCVD法等によって成膜し、強誘電体層9aを形成する。
次いで、この強誘電体層9a上に、上部電極10の形成材料であるイリジウムをスパッタ法等によって成膜し、上部電極層10aを形成する。このようにして酸素バリア層7a、下部電極層8a、強誘電体層9a、上部電極層10aを積層することにより、本発明における強誘電体キャパシタ層3aが得られる。
次いで、図3(a)に示すように、前記強誘電体キャパシタ層3a上、すなわち上部電極層10a上に、スパッタ法によってチタン酸化物(TiO等のTiOx)を成膜し、厚さ50〜100nm程度のチタン酸化物層17aを形成する。
次いで、前記チタン酸化物層17a上に、このチタン酸化物層17aをパターニングするためのマスクとなる第2マスク材料を成膜し、第2マスク材料層を形成(図示せず)する。
ここで、この第2マスク材料層を形成する第2マスク材料としては、シリコン酸化物(SiO等のSiOx)が好適に用いられる。このようなシリコン酸化物からなる第2マスク材料層(シリコン酸化物層)の成膜法としては、特にテトラエトキシシラン(TEOS)を原料とする化学気相堆積法(CVD法)が好適とされ、したがって本実施形態では、このようなTEOSを原料とするCVD法によって第2マスク材料層(シリコン酸化物層)を形成する。TEOSを原料とするCVD法でのシリコン酸化物層(第2マスク材料層18a)の形成は、比較的容易な成膜法であり、また、得られたシリコン酸化物層もエッチングが容易で加工性が良好であるため、後述するようにこのシリコン酸化物層(第2マスク材料層)より第2マスクパターンを形成するのが容易になるからである。
次いで、前記第2マスク材料層上に公知のレジスト技術、露光・現像技術によってレジストパターン(図示せず)を形成し、さらにこのレジストパターンをマスクにして第2マスク材料層をエッチングすることにより、図3(b)に示すように第2マスクパターン18を形成する。なお、図3(b)では、第2マスクパターン18を形成した後、前記レジストパターンをアッシング等によって除去した状態を示している。
次いで、前記の第2マスクパターン18をマスクにして、図3(c)に示すように前記チタン酸化物層17aを高温エッチングし、マスクパターン17を形成する。ここで、前記高温エッチングとしては、本発明では200℃以上500℃以下の温度範囲で行うものとし、好ましくは350℃以上450℃以下の温度範囲で行う。具体的には、エッチング装置(高温エッチャー)内において前記基体2を保持部にセットした後、該基体2を前記温度範囲に加熱した状態で、エッチングを行う。エッチングガスについても、必要に応じて予め加熱し、エッチング装置内に導入するようにしてもよい。エッチング法については、エッチングガスとして例えばCl、BCl、CF、C、Cの単体、もしくは、それらとArまたはHeとの混合ガスを用いた反応性イオンエッチング(RIE)法などが好適に採用される。
高温エッチングの温度範囲を200℃以上500℃以下としたのは、チタニア(TiO)等のチタン酸化物は200℃未満ではエッチングがほとんど進まず、したがって実質的にパターニングが困難だからである。また、500℃を越えると、他の構成要素、例えば基体2に形成した駆動トランジスタ5などに熱的ダメージを与えてしまい、その特性に悪影響を及ぼすおそれがあるからである。
そして、このような不都合をより確実に防止し、他の構成要素に熱的ダメージを与えることなく良好にエッチングを行うため、温度範囲を350℃以上450℃以下とするのが好ましいのである。
このようにしてマスクパターン17を形成したら、このマスクパターン17の形成に用いた第2マスクパターン18を除去することなく、そのまま残してこれとマスクパターン17とを積層マスクパターン19とする。そして、図4(a)に示すようにこの積層マスクパターン19をマスクにして前記強誘電体キャパシタ層3aをエッチングし、パターニングする。
ただし、本実施形態においては、特に強誘電体キャパシタ層3a中の上部電極層10a、強誘電体層9a、下部電極層8aまでをエッチングしたら、図4(a)に示したように一旦エッチングを停止する。そして、基体2をエッチング装置(高温エッチャー)から出してドライエッチャーに入れ、ここで図4(b)に示すように第2マスクパターン18のみを選択的に除去する。続いて、基体2を再度高温エッチャーに戻し、残ったマスクパターン17のみをマスクにして再度エッチングを行い、図4(c)に示すように酸素バリア層7aをパターニングする。これにより、強誘電体キャパシタ3を形成する。
ここで、特に酸素バリア層7aのエッチングに際しては、前記のチタン酸化物層17aのエッチングと同様に、高温エッチングで行うようにする。これにより、酸素バリア層7aのパターニング(エッチング)と同時に、マスクパターン17もエッチングするようにする。そして、このようにマスクパターン17も同時にエッチングすることで、酸素バリア層7aのパターニングが終了し、強誘電体キャパシタ3が得られた際に、マスクパターン17もエッチングで除去されているようにする。なお、このような制御については、酸素バリア層7aの厚さ、マスクパターン17の厚さ、さらにエッチング条件等を、予め実験等によって適宜に設定しておくことで、行うことができる。
このように積層マスクパターン19をマスクにしてエッチングすると、特にチタン酸化物からなるマスクパターン17が50〜100nm程度と薄く、したがってシリコン酸化物からなる第2マスクパターン18を従来と同様に700nm程度とした場合に、積層マスクパターン19の合計厚は750nm〜800nm程度となり、従来の900nm程度よりは薄くなる。その結果、アスペクト比が低くなり、強誘電体キャパシタ層3aをその底部側(下部電極層8a)まで良好にエッチングすることができる。そして、特にマスクパターン17を用いて酸素バリア膜7aもパターニングすることにより、過剰なオーバーエッチングを行うことなく、強誘電体キャパシタ3を良好に形成することができる。
次いで、図5(a)に示すように、得られた強誘電体キャパシタ3を覆ってスパッタ法やCVD法等により、前記下地絶縁膜6上にAlOxを成膜し、水素バリア膜13を形成する。
次いで、形成した水素バリア膜13上に、CVD法等によって珪素酸化物(SiO)を成膜し、さらにこれをCMP法等によって平坦化することにより、図5(b)に示すように層間絶縁膜14を形成する。
次いで、層間絶縁膜14上に公知のレジスト技術、露光・現像技術によってレジストパターン(図示せず)を形成する。そして、このレジストパターンをマスクにして層間絶縁膜14をエッチングし、図5(c)に示すように前記上部電極10に通じるコンタクトホール15を形成する。続いて、このコンタクトホール15内にプラグ16を埋設する。そして、このプラグ16に導通する配線等の導電部(図示せず)を形成し、さらにこれを覆って第2層間絶縁膜(図示せず)等を形成することにより、本発明の強誘電体メモリ装置1を得る。
このような強誘電体メモリ装置1の製造方法にあっては、エッチングがされにくく、したがってエッチング耐性が大きいチタン酸化物をマスクパターン17にし、第2マスクパターン18とともに積層マスクパターン19として用いてエッチングし、強誘電体キャパシタ3をパターニングするので、強誘電体キャパシタ形成時におけるマスクのアスペクト比を従来に比べ低くすることができ、したがって強誘電体キャパシタ3をその底部側まで良好にエッチングすることができる。よって、強誘電体キャパシタ3を形成する際の加工性を向上し、過剰なオーバーエッチングを不要にすることができ、これにより、過剰なオーバーエッチングに起因して強誘電体キャパシタ3の側壁面が荒れてしまうのを防止し、良好な強誘電体特性を有する強誘電体キャパシタを形成することができる。
また、前記マスクパターン17と前記第2マスクパターン18とからなる積層マスクパターン19をマスクにしてエッチングするので、チタン酸化物からなるマスクパターンの負担を少なくしてこれの膜厚を薄くすることができ、したがってエッチングがされにくいチタン酸化物層に対するエッチングを必要最小限に抑えることができる。
そして、特に酸素バリア層7aのパターニング(エッチング)と同時にマスクパターン17もエッチングするようにしているので、マスクパターン17のみをエッチングにより除去する工程を省略することができ、生産性を高めることができる。
なお、このような強誘電体メモリ装置1は、携帯電話、パーソナルコンピュータ、液晶装置、電子手帳、ページャ、POS端末、ICカード、ミニディスクプレーヤ、液晶プロジェクタ、およびエンジニアリング・ワークステーション(EWS)、ワードプロセッサ、テレビ、ビューファイダ型またはモニタ直視型のビデオテープレコーダ、電子卓上計算機、カーナビゲーション装置、タッチパネルを備えた装置、時計、ゲーム機器、電気泳動装置など、様々な電子機器に適用することができる。
また、本発明は前記実施形態に限定されることなく、本発明の要旨を逸脱しない限り種々の変更が可能である。例えば、前記実施形態では前記マスクパターン17と前記第2マスクパターン18とからなる積層マスクパターン19をマスクにして強誘電体キャパシタ層3aをエッチングするようにしたが、チタン酸化物からなるマスクパターン17のみをマスクにして強誘電体キャパシタ層3aをエッチングし、パターニングしてもよい。
また、マスクパターン17をチタン酸化物(TiOx)のみによって形成したが、例えばこのチタン酸化物(TiOx)とTiNとを積層して、TiOx(下層)/TiN(上層)からなる積層膜、あるいはTiN(下層)/TiOx(上層)からなる積層膜を形成し、このような積層膜をマスクパターンとしてもよい。
本発明の強誘電体メモリ装置の一実施形態を示す要部断面図である。 (a)〜(c)は図1に示した装置の製造方法説明図である。 (a)〜(c)は図1に示した装置の製造方法説明図である。 (a)〜(c)は図1に示した装置の製造方法説明図である。 (a)〜(c)は図1に示した装置の製造方法説明図である。
符号の説明
1…強誘電体メモリ装置、2…基体、3…強誘電体キャパシタ、3a…強誘電体キャパシタ層、7…酸素バリア膜、7a…酸素バリア層、8…下部電極、8a…下部電極層、9…強誘電体膜、9a…強誘電体層、10…上部電極、10a…上部電極層、15…コンタクトホール、17…マスクパターン、17a…チタン酸化物層、18…第2マスクパターン、19…積層マスクパターン

Claims (2)

  1. 基体上に下部電極層と強誘電体層と上部電極層とからなる強誘電体キャパシタ層を形成する工程と、
    前記強誘電体キャパシタ層上にチタン酸化物層を形成する工程と、
    前記チタン酸化物層を、200℃以上500℃以下での高温エッチングでパターニングし、マスクパターンを形成する工程と、
    前記マスクパターンをマスクにして、前記強誘電体キャパシタ層をエッチングし、下部電極と強誘電体膜と上部電極とを有した強誘電体キャパシタを形成する工程と、を備え
    前記基体上に強誘電体キャパシタ層を形成する工程では、前記基体と下部電極層との間に酸素バリア層を形成するようにし、
    前記マスクパターンを形成する工程は、前記チタン酸化物層上に第2マスクパターンを形成する工程と、該第2マスクパターンを用いて前記チタン酸化物層を高温エッチングし、マスクパターンを形成する工程と、を有してなり、
    前記強誘電体キャパシタを形成する工程は、前記マスクパターンと前記第2マスクパターンとからなる積層マスクパターンをマスクにして前記上部電極層と強誘電体層と下部電極層とをエッチングし、パターニングする工程と、続いて前記積層マスクパターンから前記第2マスクパターンを選択的に除去する工程と、その後、残った前記マスクパターンをマスクにして前記酸素バリア層をエッチングし、パターニングする工程と、を有してなることを特徴とする強誘電体メモリ装置の製造方法。
  2. 前記第2マスクパターンを形成する工程は、テトラエトキシシランを原料とする化学気相堆積法でシリコン酸化物層を形成する工程と、前記シリコン酸化物層をエッチングによりパターニングしてシリコン酸化物からなる第2マスクパターンを形成する工程と、を有してなることを特徴とする請求項記載の強誘電体メモリ装置の製造方法。
JP2006064011A 2006-03-09 2006-03-09 強誘電体メモリ装置の製造方法 Expired - Fee Related JP4853057B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006064011A JP4853057B2 (ja) 2006-03-09 2006-03-09 強誘電体メモリ装置の製造方法
US11/680,833 US7390679B2 (en) 2006-03-09 2007-03-01 Method for manufacturing ferroelectric memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006064011A JP4853057B2 (ja) 2006-03-09 2006-03-09 強誘電体メモリ装置の製造方法

Publications (2)

Publication Number Publication Date
JP2007242929A JP2007242929A (ja) 2007-09-20
JP4853057B2 true JP4853057B2 (ja) 2012-01-11

Family

ID=38518365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006064011A Expired - Fee Related JP4853057B2 (ja) 2006-03-09 2006-03-09 強誘電体メモリ装置の製造方法

Country Status (2)

Country Link
US (1) US7390679B2 (ja)
JP (1) JP4853057B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5028829B2 (ja) * 2006-03-09 2012-09-19 セイコーエプソン株式会社 強誘電体メモリ装置の製造方法
JP4811681B2 (ja) * 2008-04-03 2011-11-09 トヨタ自動車株式会社 電極集電体の製造方法及び製造装置ならびに該集電体を備えた電池
JP5423056B2 (ja) * 2009-03-02 2014-02-19 富士通セミコンダクター株式会社 半導体装置の製造方法
US8796044B2 (en) * 2012-09-27 2014-08-05 International Business Machines Corporation Ferroelectric random access memory with optimized hardmask

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19856082C1 (de) * 1998-12-04 2000-07-27 Siemens Ag Verfahren zum Strukturieren einer metallhaltigen Schicht
KR20000067642A (ko) * 1999-04-30 2000-11-25 윤종용 강유전체 캐패시터 구조체의 건식식각 방법
KR100396879B1 (ko) * 2000-08-11 2003-09-02 삼성전자주식회사 동일 물질로 이루어진 이중막을 포함하는 다중막으로캡슐화된 캐패시터를 구비한 반도체 메모리 소자 및 그의제조 방법
JP2002094019A (ja) 2000-09-18 2002-03-29 Oki Electric Ind Co Ltd 半導体装置の製造方法
US6734477B2 (en) * 2001-08-08 2004-05-11 Agilent Technologies, Inc. Fabricating an embedded ferroelectric memory cell
JP3840123B2 (ja) * 2002-03-07 2006-11-01 株式会社日立ハイテクノロジーズ 難エッチング材のエッチング方法
US20030176073A1 (en) * 2002-03-12 2003-09-18 Chentsau Ying Plasma etching of Ir and PZT using a hard mask and C12/N2/O2 and C12/CHF3/O2 chemistry
JP4132936B2 (ja) * 2002-04-16 2008-08-13 富士通株式会社 半導体装置の製造方法
JP2003332536A (ja) * 2002-05-10 2003-11-21 Fujitsu Ltd 半導体装置の製造方法
JP3833580B2 (ja) * 2002-06-20 2006-10-11 富士通株式会社 半導体装置の製造方法
JP2004023078A (ja) * 2002-06-20 2004-01-22 Fujitsu Ltd 半導体装置の製造方法
US7550799B2 (en) * 2002-11-18 2009-06-23 Fujitsu Microelectronics Limited Semiconductor device and fabrication method of a semiconductor device
US7250349B2 (en) * 2003-03-06 2007-07-31 Texas Instruments Incorporated Method for forming ferroelectric memory capacitor
US7115522B2 (en) * 2004-07-09 2006-10-03 Kabushiki Kaisha Toshiba Method for manufacturing semiconductor device

Also Published As

Publication number Publication date
US7390679B2 (en) 2008-06-24
US20070218568A1 (en) 2007-09-20
JP2007242929A (ja) 2007-09-20

Similar Documents

Publication Publication Date Title
JP2007273899A (ja) 半導体装置及びその製造方法
JP4515333B2 (ja) 半導体装置の製造方法
JP2002280523A (ja) 半導体記憶装置とその製造方法
JP4838613B2 (ja) 半導体装置の製造方法
JP4853057B2 (ja) 強誘電体メモリ装置の製造方法
US7547638B2 (en) Method for manufacturing semiconductor device
JP3166746B2 (ja) キャパシタ及びその製造方法
JP2005183841A (ja) 半導体装置の製造方法
JP5215552B2 (ja) 強誘電体メモリ装置の製造方法
JP2003218325A (ja) 強誘電体膜形成方法及び半導体装置製造方法
JP2001036024A (ja) 容量及びその製造方法
JP4621081B2 (ja) 半導体装置の製造方法
JP5018772B2 (ja) 半導体装置の製造方法
JP5028829B2 (ja) 強誘電体メモリ装置の製造方法
JP4657545B2 (ja) 半導体装置の製造方法
US6764896B2 (en) Semiconductor manufacturing method including patterning a capacitor lower electrode by chemical etching
JP2005116546A (ja) 半導体装置およびその製造方法
JP5242044B2 (ja) 強誘電体メモリ装置とその製造方法
JP5022679B2 (ja) 強誘電体メモリ装置の製造方法
JP4749218B2 (ja) 強誘電体素子の製造方法
JP2018046261A (ja) 強誘電体メモリ装置の製造方法
JP4718193B2 (ja) 半導体装置の製造方法
JP2007073750A (ja) 半導体装置およびその製造方法
JP2007242930A (ja) 強誘電体メモリ装置の製造方法及び強誘電体メモリ装置
JP2007150141A (ja) 強誘電体メモリの製造方法及び強誘電体メモリ

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111010

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees