JP4847207B2 - 定電圧回路 - Google Patents

定電圧回路 Download PDF

Info

Publication number
JP4847207B2
JP4847207B2 JP2006130566A JP2006130566A JP4847207B2 JP 4847207 B2 JP4847207 B2 JP 4847207B2 JP 2006130566 A JP2006130566 A JP 2006130566A JP 2006130566 A JP2006130566 A JP 2006130566A JP 4847207 B2 JP4847207 B2 JP 4847207B2
Authority
JP
Japan
Prior art keywords
circuit
output
voltage
transistor
amplifier circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006130566A
Other languages
English (en)
Other versions
JP2007304716A (ja
Inventor
一平 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2006130566A priority Critical patent/JP4847207B2/ja
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to PCT/JP2007/059806 priority patent/WO2007129765A1/en
Priority to CN200780000804XA priority patent/CN101341452B/zh
Priority to CN2010105982874A priority patent/CN102004514A/zh
Priority to CN2010105982893A priority patent/CN102004515A/zh
Priority to KR1020087000509A priority patent/KR100957062B1/ko
Priority to US11/988,210 priority patent/US7705573B2/en
Priority to TW096115753A priority patent/TWI334521B/zh
Publication of JP2007304716A publication Critical patent/JP2007304716A/ja
Application granted granted Critical
Publication of JP4847207B2 publication Critical patent/JP4847207B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)
  • Amplifiers (AREA)

Description

本発明は、負荷の急激な変動に高速に応答することができる定電圧回路に関し、特に、低消費電流で、負荷変動による出力電圧の変動を瞬時に検出して出力電圧の変動を大幅に低減させることができる定電圧回路に関する。
入力電圧を所定の定電圧の出力電圧に変換して出力する定電圧回路では、通常、出力電圧を分圧した電圧と基準電圧とを電圧比較し、該電圧差が最小となるように、出力電圧制御用の出力トランジスタにフィードバックを施している。このため、出力電圧の変化が出力トランジスタに伝達されて出力電圧を所定の電圧値に復帰させるまでには多少の時間が必要であった。このような伝達に要する時間が応答遅れである。該応答遅れが大きいと、負荷電流が過渡的に大きく変動した場合等で、該変動に伴って出力電圧も大きく変動し、最悪の場合、出力端子に接続されている回路の動作保証電圧を下回り、該回路を使用した装置に不具合が生じる可能性があった。
前記のような応答遅れの多くは、定電圧回路を構成するトランジスタの入力容量、位相補償用容量及びこれらの容量を充放電する電流値によって決定される。特に、大電流を出力するための出力トランジスタの入力容量や、位相補償を施すための位相補償容量は非常に大きく、致命的な応答遅れを引き起こす原因になっていた。すなわち、応答速度を速くするためには、前記入力容量を減らすか、前記入力容量を充放電する電流値を大きくすればよい。しかし、前記入力容量は、大きな電流を出力するのに必要な出力トランジスタの大きさや、回路の安定性を維持するために必要な容量値によってほぼ決定されることから、通常は前記入力容量を充放電する電流値を大きくする方法が取られている。充放電電流値を大きくするということは、バイアス電流値を大きくすることであり、定電圧回路自体の消費電流が増加する。
近年、環境問題に対する配慮から、電気機器の省電力化が求められおり、特に電池駆動による携帯機器においては、機器の連続使用時間を伸ばすために定電圧回路の低消費電力化が必須であった。このため、定電圧回路における出力トランジスタを制御する制御回路をできるだけ低消費電流で動作させるようにすることが望ましい。更に、携帯機器に多様なアプリケーションが搭載されるようになってきており、大電流出力、低電圧動作、低電圧出力に対応可能な定電圧回路が要求され、これまで以上に出力トランジスタが大きくなるため、致命的な応答速度の劣化を招いている。更に、定電圧回路の出力端子に接続される回路は、微細化が進むことで動作保証電圧の範囲が小さくなり、これまで以上に出力電圧変動の小さな定電圧回路が要求されていた。
そこで、負荷電流の急激な変化に対する出力電圧応答速度を向上させることができる従来の第1の方法として、出力電圧が急激に低下した場合に、コンデンサを介して出力電圧の低下をコンパレータの非反転入力端に伝達し、コンパレータの非反転入力端の電圧が低下すると、コンパレータの出力信号で制御されるPMOSトランジスタがオンして出力端子を充電することにより、出力電圧の低下を抑制するものがあった(例えば、特許文献1参照。)。
また、従来の第2の方法として、図7に示す構成により、通常時は、直流特性に優れた第1の誤差増幅器AMPaにより出力トランジスタM101の動作制御を行って出力電圧Voutの定電圧化を図り、出力電圧Voutが急激に低下すると、第1の誤差増幅器AMPaが応答して出力トランジスタM101の動作制御を行う前に、所定の期間、高速応答性に優れた第2の誤差増幅器AMPbによって出力トランジスタM101の動作制御を行い出力電圧Voutの定電圧化を図るようにしていた(例えば、特許文献2参照。)。このような構成にすることで、入力電圧や負荷電流の急激な変化に対する出力電圧応答速度を速くすることができ、直流特性と高速応答性の両方に優れた定電圧回路を得ることができる。
また、従来の第3の方法として、電源電圧の変動を検出して電圧増幅回路の動作電流を制御することにより、電源電圧の変動がない通常動作時は消費電流が少なくなり、電源電圧が変動した過渡応答時においては消費電流を増加させて応答性をよくするようにしたものがあった(例えば、特許文献3参照。)。
特開2000−47740号公報 特開2005−353037号公報 特開2006−18774号公報
しかし、前記第1の方法では、出力端子を充電するPMOSトランジスタは、急激に変化する負荷電流を補うのに十分な能力が必要であり、該PMOSトランジスタのサイズを非常に大きくしなければならなかった。このため、前記PMOSトランジスタのゲートにおける容量も非常に大きくなり、高速応答できるように前記PMOSトランジスタを素早くオンさせるためには、該PMOSトランジスタのゲートを制御するコンパレータの消費電流を増加させる必要があり、少ない消費電流で実現することは難しかった。
また、前記第2の方法では、出力電圧の急激な低下を検出する第2の誤差増幅器AMPbは、あらかじめオフセットを設けることによって、出力電圧の急激な低下がないときは第2の誤差増幅器AMPbが出力トランジスタM101の動作制御に影響を及ぼさないようにしていた。すなわち、第2の誤差増幅器AMPbのオフセット電圧以上に出力電圧が変動しなければ、出力電圧の変動を検出することができなかった。一般的な誤差増幅器は、製造過程で発生するランダムオフセット電圧が±15mV程度であるため、該ランダムオフセットに対するマージンを考慮して、第2の誤差増幅器AMPbのオフセット電圧は20mV程度に設定する必要があった。製造工程で発生するランダムオフセット電圧が+15mVの場合、あらかじめ設定されたオフセット電圧に加算されて合計で35mVになる。
更に、定電圧回路を構成するすべてのデバイスは、製造工程で電気的特性のバラツキが発生するため、応答特性は2倍程度劣化していた。このように、第2の誤差増幅器AMPbが高速応答性に優れていたとしても、製造工程におけるバラツキにより出力電圧の電圧変動が35mV×2=70mV以上にならないと第2の誤差増幅器AMPbが応答しない可能性があった。
例えば、高速な応答が要求される定電圧回路の負荷として、90nm以下の微細プロセスで製造されたロジック回路を考えた場合、動作保証電圧範囲は1.1V±50mVになることが予想され、前記第2の方法では応答特性が不十分であることは明らかである。また、トリミングによって製造工程で発生するバラツキを補正することもできるが、トリミング素子を配置することでチップサイズの増大とテスト工程の増加につながり、コストアップを招くという問題があった。
一方、前記第3の方法では、負荷電流の急激な増加により電源電圧が降下すると、容量を介してしきい値電圧の異なる2つのNMOSトランジスタのゲート電圧をそれぞれ降下させてしきい値電圧が大きい方のトランジスタをオフさせるため、該トランジスタのドレイン電圧は上昇する。該ドレイン電圧の上昇に応じて動作電流を増加させることで応答性をよくしていたが、電源電圧の変動レベルがしきい値電圧の電圧差以上にならないと動作電流が増加しないため、前記第2の方法と同様の問題があった。
本発明は、上記のような問題を解決するためになされたものであり、チップサイズの増大やテスト工程の増加によるコストアップを招くことなく、低消費電流で出力電圧の応答速度を向上させ、出力電圧の変動を大幅に低減させることができる定電圧回路を得ることを目的とする。
この発明に係る定電圧回路は、入力端子に入力された入力電圧を所定の定電圧に変換して出力端子から出力する定電圧回路において、
入力された制御信号に応じた電流を入力端子から出力端子に出力する出力トランジスタと、
前記出力端子から出力される出力電圧に比例した第1比例電圧が所定の第1基準電圧になるように前記出力トランジスタの動作制御を行う第1誤差増幅回路を有する制御回路部と、
前記第1誤差増幅回路から前記出力トランジスタに出力される制御信号よりもスルーレートが大きくなるように、前記第1誤差増幅回路を構成する差動増幅回路の出力信号を増幅し2値の信号に変換して出力する、前記出力端子から出力される出力電圧の変動を検出する電圧変動検出回路部と、
該電圧変動検出回路部からの出力信号に応じて、前記出力トランジスタの制御電極に寄生する容量に対する放電電流を増加させる放電回路部と、
を備え、
前記電圧変動検出回路部は、
前記差動増幅回路の出力信号を増幅して出力する、出力信号のスルーレートが前記第1誤差増幅回路の出力信号よりも大きい第2増幅回路と、
該第2増幅回路の出力信号を増幅して2値の信号に変換し前記放電回路部に出力する第3増幅回路と、
を備え、
前記出力端子から出力される出力電圧の変動に対して、前記第1誤差増幅回路から前記出力トランジスタに出力される制御信号よりも速く応答して、前記放電回路部による放電動作を行わせるものである。
また、前記第1誤差増幅回路は、
前記第1比例電圧と前記第1基準電圧との電圧差を増幅して出力する差動増幅回路と、
該差動増幅回路の出力信号を増幅して前記出力トランジスタの制御電極に出力する第1増幅回路と、
を備え、
前記第2増幅回路は、電圧利得が前記第1増幅回路よりも大きくなるようにした。
また、前記第1増幅回路は、
制御電極に前記差動増幅回路の出力信号が入力された、電圧増幅素子をなす第1トランジスタと、
該第1トランジスタに第1バイアス電流を供給する第1電流源と、
を備え、
前記第2増幅回路は、
制御電極に前記差動増幅回路の出力信号が入力された、電圧増幅素子をなす第2トランジスタと、
該第2トランジスタに前記第1バイアス電流よりも小さい第2バイアス電流を供給する第2電流源と、
を備えるようにしてもよい。
また、前記第1増幅回路は、
制御電極に前記差動増幅回路の出力信号が入力された、電圧増幅素子をなす第1トランジスタと、
該第1トランジスタに第1バイアス電流を供給する第1電流源と、
を備え、
前記第2増幅回路は、
制御電極に前記差動増幅回路の出力信号が入力された、電流駆動能力が前記第1トランジスタよりも大きい電圧増幅素子をなす第2トランジスタと、
該第2トランジスタに第2バイアス電流を供給する第2電流源と、
を備えるようにしてもよい。
また、前記第3増幅回路は、
制御電極に前記第2増幅回路の出力信号が入力された、電圧増幅素子をなす第3トランジスタと、
該第3トランジスタに第3バイアス電流を供給する第3電流源と、
を備え、
前記第3トランジスタは、制御電極の寄生容量が前記出力トランジスタよりも小さくなるようにした。
具体的には、前記放電回路部は、
前記出力トランジスタの制御電極の容量を放電するための第4電流源と、
前記電圧変動検出回路部からの出力信号に応じて、前記出力トランジスタの制御電極と該第4電流源との接続制御を行う第1スイッチ素子と、
を備えるようにした。
また、前記放電回路部は、
前記差動増幅回路の差動対に供給するバイアス電流を増加させるための第5電流源と、
前記電圧変動検出回路部からの出力信号に応じて、前記差動増幅回路と該第5電流源との接続制御を行う第2スイッチ素子と、
を備え、
前記第2スイッチ素子は、前記第1スイッチ素子と同じ接続動作を行うようにしてもよい。
また、前記第1誤差増幅回路は、前記第1比例電圧と前記第1基準電圧との電圧差を増幅して出力する差動増幅回路で構成され、該差動増幅回路の一方の出力端である第1出力端から出力される第1信号が前記出力トランジスタの制御電極に入力され、該差動増幅回路の他方の出力端である第2出力端から出力される第2信号が前記電圧変動検出回路部の第2増幅回路に出力されるようにしてもよい。
また、前記第2増幅回路は、出力信号のスルーレートが前記差動増幅回路の第1信号よりも大きくなるようにした。
また、前記差動増幅回路は、
差動対を構成し、制御電極に前記第1基準電圧が入力された第1入力トランジスタと、
差動対を構成し、制御電極に前記第1比例電圧が入力された第2入力トランジスタと、
前記第1入力トランジスタの負荷をなす第1負荷回路と、
前記第2入力トランジスタの負荷をなす第2負荷回路と、
差動対をなす前記第1入力トランジスタ及び第2入力トランジスタにバイアス電流を供給するバイアス電流源と、
を備え、
前記第1入力トランジスタと第1負荷回路との接続部から前記第1信号を出力すると共に、前記第2入力トランジスタと第2負荷回路との接続部から前記第2信号を出力するようにした。
また、前記第2増幅回路は、電圧利得が、前記第1入力トランジスタ、第1負荷回路及びバイアス電流源で決定される電圧利得よりも大きくなるようにした。
具体的には、前記第2増幅回路は、
制御電極に前記差動増幅回路の出力信号が入力された、電圧増幅素子をなす第2トランジスタと、
該第2トランジスタに第2バイアス電流を供給する第2電流源と、
を備え、
前記第1負荷回路及び第2負荷回路は、第2負荷回路が入力側トランジスタをなし第1負荷回路が出力側トランジスタをなしたカレントミラー回路を形成し、
前記第2トランジスタは、電流駆動能力が前記第1負荷回路をなすトランジスタよりも大きくなるようにした。
また、前記放電回路部は、
前記差動増幅回路の第1入力トランジスタ及び第2入力トランジスタに供給するバイアス電流を増加させるための第4電流源と、
前記電圧変動検出回路部からの出力信号に応じて、前記差動増幅回路と該第4電流源との接続制御を行う第1スイッチ素子と、
を備えるようにした。
この場合、前記第4電流源は、供給する電流が前記バイアス電流源よりも小さくなるようにした。
一方、前記放電回路部は、
前記出力端子から出力される出力電圧に比例した第2比例電圧が所定の第2基準電圧になるように前記出力トランジスタの動作制御を行う、前記第1誤差増幅回路よりも応答速度が速い第2誤差増幅回路と、
前記電圧変動検出回路部からの出力信号に応じて、該第2誤差増幅回路の出力端に対する前記出力トランジスタの制御電極への接続制御を行うスイッチ回路と、
を備え、
前記電圧変動検出回路部は、前記出力端子から出力される出力電圧の変動に対して、前記第1誤差増幅回路から前記出力トランジスタに出力される制御信号よりも速く応答し、前記第2誤差増幅回路の出力端を前記出力トランジスタの制御電極に接続するように前記スイッチ回路を制御するようにした。
この場合、前記第1誤差増幅回路は、前記第2誤差増幅回路よりも消費電流が小さくなるようにした。
また、前記放電回路部は、
前記出力トランジスタから出力される電流値の検出を行い、該検出した電流値が所定値以上になると所定の信号を出力する出力電流検出回路と、
前記電圧変動検出回路部及び該出力電流検出回路からの各出力信号に応じて、前記スイッチ回路の動作制御を行うスイッチ制御回路と、
を備え、
前記スイッチ制御回路は、前記第2誤差増幅回路の出力端を前記出力トランジスタの制御電極に接続することを示す前記電圧変動検出回路部からの信号、及び/又は検出した電流値が所定値以上になったことを示す信号が前記出力電流検出回路から入力されると、前記スイッチ回路に対して、前記第2誤差増幅回路の出力端を前記出力トランジスタの制御電極に接続させるようにした。
また、前記放電回路部は、
前記第2比例電圧を生成して出力する第2出力電圧検出回路と、
前記第2基準電圧を生成して出力する第2基準電圧発生回路と、
を備え、
前記第2誤差増幅回路、第2出力電圧検出回路及び第2基準電圧発生回路は、
前記第2誤差増幅回路の出力端と前記出力トランジスタの制御電極との接続を遮断させる信号が前記スイッチ制御回路から前記スイッチ回路に出力されると、それぞれ動作を停止して電流消費を低減させるようにした。
また、前記第2比例電圧は、前記第1比例電圧と同一になるようにしてもよく、前記第2基準電圧は、前記第1基準電圧と同一になるようにしてもよい。
また、前記出力トランジスタ、制御回路部、電圧変動検出回路部及び放電回路部は、1つのICに集積されるようにしてもよい。
本発明の定電圧回路によれば、わずかな出力電圧の低下を瞬時に検出して出力トランジスタへの制御の応答性を向上させることができるため、出力電流の急峻な変動による出力電圧の低下を大幅に減少させることができる。更に、出力電流の急激な変動により出力電圧が変動したときだけ、出力トランジスタへの制御の応答性がよくなるようにしたことから、従来のように該応答性を向上させるために定常的に消費電流を増加させる必要がなく、携帯機器等の定電圧回路において、少ない消費電流で高速な応答性を得ることができる。
次に、図面に示す実施の形態に基づいて、本発明を詳細に説明する。
第1の実施の形態.
図1は、本発明の第1の実施の形態における定電圧回路の構成例を示した図である。
図1において、定電圧回路1は、入力端子INに入力された入力電圧Vccから所定の定電圧を生成し出力電圧Voutとして出力端子OUTから負荷10に出力する。出力端子OUTと接地電圧との間には、コンデンサC1が接続されている。なお、定電圧回路1は、1つのICに集積されるようにしてもよい。
定電圧回路1は、所定の基準電圧Vr1を生成して出力する基準電圧発生回路2と、所定のバイアス電圧Vbi1を生成して出力するバイアス電圧発生回路3と、出力電圧Voutを分圧して分圧電圧Vfb1を生成し出力する出力電圧検出用の抵抗R1,R2と、ゲートに入力された信号に応じて出力端子OUTに出力する電流ioの制御を行うPMOSトランジスタからなる出力トランジスタM1と、分圧電圧Vfb1が基準電圧Vr1になるように出力トランジスタM1の動作制御を行う誤差増幅回路4とを備えている。更に、定電圧回路1は、出力電圧Voutの変動を検出する電圧変動検出回路5と、出力トランジスタM1のゲート容量に対する放電電流を増加させて出力電圧Voutを所定の電圧に復帰させる出力電圧復帰回路6とを備えている。
また、誤差増幅回路4は、基準電圧Vr1と分圧電圧Vfb1との電圧差を増幅して出力する差動増幅回路11、及び該差動増幅回路11の出力信号を増幅して出力するソース接地された第1増幅回路12で構成され、電圧変動検出回路5は、差動増幅回路11の出力信号を増幅して出力するソース接地された第2増幅回路15、及び該第2増幅回路15の出力信号を増幅して出力電圧復帰回路6に出力する同じくソース接地された第3増幅回路16で構成されている。なお、基準電圧発生回路2、抵抗R1,R2及び誤差増幅回路4は制御回路部をなし、誤差増幅回路4は第1誤差増幅回路を、電圧変動検出回路5は電圧変動検出回路部を、出力電圧復帰回路6は放電回路部をそれぞれなす。また、分圧電圧Vfb1は第1比例電圧を、基準電圧Vr1は第1基準電圧をそれぞれなす。
差動増幅回路11は、NMOSトランジスタM2〜M4及びPMOSトランジスタM5,M6からなり、NMOSトランジスタM2及びM3は差動対をなし、該差動対の負荷をなすPMOSトランジスタM5及びM6はカレントミラー回路を形成している。第1増幅回路12は、入力電圧Vccと接地電圧との間に直列に接続されたPMOSトランジスタM7及びNMOSトランジスタM8で構成されている。同様に、第2増幅回路15は、入力電圧Vccと接地電圧との間に直列に接続されたPMOSトランジスタM9及びNMOSトランジスタM10で構成され、第3増幅回路16は、入力電圧Vccと接地電圧との間に直列に接続されたPMOSトランジスタM11及びNMOSトランジスタM12で構成されている。また、出力電圧復帰回路6は、NMOSトランジスタM13及びM14で構成されている。
差動増幅回路11において、差動対をなすNMOSトランジスタM2及びM3の各ソースは接続され、該接続部と接地電圧との間にNMOSトランジスタM4が接続されている。NMOSトランジスタM4のゲートにはバイアス電圧Vbi1が入力されており、NMOSトランジスタM4は定電流源をなしている。PMOSトランジスタM5及びM6の各ゲートは接続され、該接続部はPMOSトランジスタM5のドレインに接続されている。PMOSトランジスタM5のドレインはNMOSトランジスタM2のドレインに、PMOSトランジスタM6のドレインはNMOSトランジスタM3のドレインにそれぞれ接続され、PMOSトランジスタM5及びM6の各ソースにはそれぞれ入力電圧Vccが入力されている。NMOSトランジスタM2のゲートは、差動増幅回路11の反転入力端をなし、基準電圧Vr1が入力されており、NMOSトランジスタM3のゲートは、差動増幅回路11の非反転入力端をなし、分圧電圧Vfb1が入力されている。また、PMOSトランジスタM6とNMOSトランジスタM3との接続部は、差動増幅回路11の出力端をなし、PMOSトランジスタM7及びM9の各ゲートにそれぞれ接続されている。
次に、第1増幅回路12において、NMOSトランジスタM8のゲートにはバイアス電圧Vbi1が入力されており、NMOSトランジスタM8は定電流源をなしている。PMOSトランジスタM7とNMOSトランジスタM8との接続部は出力トランジスタM1のゲートに接続されている。
同様に、第2増幅回路15において、NMOSトランジスタM10のゲートにはバイアス電圧Vbi1が入力されており、NMOSトランジスタM10は定電流源をなしている。PMOSトランジスタM9とNMOSトランジスタM10との接続部はPMOSトランジスタM11のゲートに接続されている。
第3増幅回路16において、NMOSトランジスタM12のゲートにはバイアス電圧Vbi1が入力されており、NMOSトランジスタM12は定電流源をなしている。PMOSトランジスタM11とNMOSトランジスタM12との接続部はNMOSトランジスタM13のゲートに接続されている。
出力電圧復帰回路6において、出力トランジスタM1のゲートと接地電圧との間には、NMOSトランジスタM13及びM14が直列に接続され、NMOSトランジスタM14のゲートにはバイアス電圧Vbi1が入力されており、NMOSトランジスタM14は定電流源をなしている。
なお、PMOSトランジスタM7は第1トランジスタを、NMOSトランジスタM8は第1電流源をそれぞれなし、PMOSトランジスタM9は第2トランジスタを、NMOSトランジスタM10は第2電流源をそれぞれなし、PMOSトランジスタM11は第3トランジスタを、NMOSトランジスタM12は第3電流源をそれぞれなす。また、NMOSトランジスタM13は第1スイッチ素子を、NMOSトランジスタM14は第4電流源をそれぞれなす。
このような構成において、第3増幅回路16の入力トランジスタであるPMOSトランジスタM11は、出力トランジスタM1よりもサイズが非常に小さくゲート入力容量も非常に小さい。第2増幅回路15の出力負荷は第3増幅回路16であるため、入力容量が非常に小さく、第2増幅回路15の出力端であるPMOSトランジスタM9のドレインとNMOSトランジスタM10のドレインとの接続部の電圧は、差動増幅回路11の出力信号S11の変化に応じて高速に変化することができる。すなわち、第2増幅回路15の出力信号S15のスルーレートが、第1増幅回路12の出力信号S12のスルーレートよりも非常に大きい。
このため、出力電流ioの急激な増加により出力電圧Voutが低下すると、第1増幅回路12の出力信号S12が出力トランジスタM1の出力電流を増加させるように変化する前に、第2増幅回路15の出力信号S15が変化し、出力電圧復帰回路6の動作制御を行うための制御信号をなす第3増幅回路16の出力信号S16によって、NMOSトランジスタM13をオンさせて導通状態にする。このため、出力トランジスタM1のゲートに定電流源をなすNMOSトランジスタM14が接続されて出力トランジスタM1のゲート容量が高速に放電されることから、出力トランジスタM1から出力される電流が増加して出力電圧Voutが所定の電圧に復帰する。
ここで、第2増幅回路15の電圧利得は、第1増幅回路12の電圧利得よりも大きくなるように設定されており、同じ値の電圧がそれぞれ入力された場合、第2増幅回路15の出力電圧が、第1増幅回路12の出力電圧よりも大きくなる。第2増幅回路15の電圧利得が第1増幅回路12よりも大きくなるようにする方法としては、例えば、定電流源をなすNMOSトランジスタM10から供給される第2バイアス電流が、同じく定電流源をなすNMOSトランジスタM8から供給される第1バイアス電流よりも小さくなるようにしたり、又はPMOSトランジスタM9が、PMOSトランジスタM7よりも電流駆動能力が大きくなるようにすればよい。
図2は、図1における、差動増幅回路11の出力信号S11と、第1増幅回路12、第2増幅回路15及び第3増幅回路16の各出力信号S12,S15,S16との関係例を示した図である。なお、図2では、実線は第1増幅回路12の出力信号S12を、1点鎖線は第2増幅回路15の出力信号S15を、2点鎖線は第3増幅回路16の出力信号S16をそれぞれ示している。
第1増幅回路12の出力信号S12は、負荷電流ioに応じて電源電圧Vccからほぼ0Vまで変化して、出力トランジスタM1から出力される電流を制御する。すなわち、すべての負荷条件において差動増幅回路11の出力信号S11はVaからVbまで変化する。このとき、第2増幅回路15の出力信号S15は電源電圧Vccから変化せず、第3増幅回路16の出力信号S16も0Vから変化しない。したがって、出力電圧復帰回路6のNMOSトランジスタM13は、常にオフして遮断状態になる。
次に、出力電圧復帰回路6のNMOSトランジスタM13がオンするには、第2増幅回路15の出力信号S15の電圧が低下して第3増幅回路16の出力信号S16が0Vから電源電圧Vccに変化すればよい。すなわち、図2では、負荷電流ioが小さいとき、差動増幅回路11の出力信号S11の電圧はVaであり、差動増幅回路11の出力信号S11の電圧がVaから35mV増加してVcまで変化するようにすればよい。
差動増幅回路11の出力信号S11が35mV増加するためには、例えば差動増幅回路11の電圧利得を30dBとすると、分圧電圧Vfb1が35mV/30dB=1.1mV変化すればよい。これを出力電圧Voutの変化に換算すると、例えば、抵抗R1とR2の抵抗値をr1とr2にすると、(r1+r2)/r2=2として、1.1mV×(r1+r2)/r2=2.2mVになる。すなわち、わずか2.2mVの出力電圧Voutの低下を検出して、出力電圧復帰回路6のNMOSトランジスタM13がオンして出力トランジスタM1のゲート容量を高速に放電する。また、第2増幅回路15は、第1増幅回路12よりも電圧利得が大きく、出力電圧を低下させるのに必要な入力電圧は第1増幅回路12よりも大きい。このような入力電圧の差が第1増幅回路12と第2増幅回路15とのオフセット電圧になり、VcとVbとの差が正であれば、負荷電流ioの急峻な増加による出力電圧Voutの低下がなければ出力電圧復帰回路6のNMOSトランジスタM13はオンしない。
このようなオフセット電圧を設定する場合、例えば製造過程で発生するランダムオフセット電圧が±15mVであるとすると、該ランダムオフセット電圧に対するマージンを考慮してオフセット電圧が20mVになるようにする。このとき、製造過程でランダムオフセット電圧が+15mVになった場合、VcとVaの差は最大値の50mVになるが、出力電圧Voutの変化に換算すると、50mV/30dB×(r1+r2)/r2=3.1mVになる。すなわち、オフセット電圧のバラツキは、誤差増幅回路4の電圧利得で減衰されるため、その影響は非常に小さい。
このようなことから、負荷電流が小さい定常状態では、第2増幅回路15の出力電圧が電源電圧である入力電圧Vccになり、第3増幅回路16は接地電圧の信号を出力して出力電圧復帰回路6のNMOSトランジスタM13はオフして遮断状態になる。負荷電流ioが急激に増加して出力電圧Voutが低下すると、第2増幅回路15の出力電圧は接地電圧まで低下し、第3増幅回路16の出力電圧は入力電圧Vccになって出力電圧復帰回路6のNMOSトランジスタM13がオンして導通状態になる。
このように、出力電圧復帰回路6は、出力電圧Voutがわずかに変動しただけでも出力トランジスタM1のゲート電極の容量を放電し、出力トランジスタM1の電流を増加させるように動作するため、出力電圧Voutの低下を瞬時に復帰させることができる。また、前記オフセット電圧のバラツキは誤差増幅回路4の電圧利得で減衰されるため、その影響が非常に小さい。更に、出力電圧Voutの急激な低下がないときは出力電圧復帰回路6は動作せず、通常時において差動増幅回路11、第1増幅回路12及び出力トランジスタM1で行われる動作に影響することがないため、少ない消費電流で高速応答が可能な定電圧回路を得ることができる。
第2の実施の形態.
一般的に差動増幅回路を設計する際には入力オフセット電圧を小さくするために、例えば差動増幅回路11において、NMOSトランジスタM2とM3のドレイン電流を等しくする必要がある。NMOSトランジスタM2とM3のドレイン電流は、PMOSトランジスタM5とM6によって決定されることから、PMOSトランジスタM5とM6は、同一の素子を使用して同一のサイズになるように形成され、各ソースが接続されると共に各ゲートが接続されていることから、ドレイン電圧が等しくなるように設計されると、PMOSトランジスタM5とM6のドレイン電流が等しくなり、NMOSトランジスタM2とM3のドレイン電流も等しくなる。
ここで、PMOSトランジスタM5のドレイン−ソース間電圧はPMOSトランジスタM5のゲート−ソース間電圧に等しく、PMOSトランジスタM6のドレイン−ソース間電圧はPMOSトランジスタM7のゲート−ソース間電圧に等しい。すなわち、PMOSトランジスタM5のゲート−ソース間電圧とPMOSトランジスタM7のゲート−ソース間電圧が等しくなるようにすればよい。
このため、出力電圧Voutが急激に低下したときに、PMOSトランジスタM7だけではなくPMOSトランジスタM5のバイアス電流も増加させるようにするとよく、このようにしたものを本発明の第2の実施の形態とする。
図3は、本発明の第2の実施の形態における定電圧回路の構成例を示した図である。なお、図3では、図1と同じもの又は同様のものは同じ符号で示し、ここではその説明を省略すると共に図1との相違点のみ説明する。
図3における図1との相違点は、出力電圧復帰回路6にNMOSトランジスタM15及びM16を追加したことにあり、これに伴って、図1の出力電圧復帰回路6を出力電圧復帰回路6aにし、図1の定電圧回路1を定電圧回路1aにした。
図3において、定電圧回路1aは、入力端子INに入力された入力電圧Vccから所定の定電圧を生成し出力電圧Voutとして出力端子OUTから負荷10に出力する。なお、定電圧回路1aは、1つのICに集積されるようにしてもよい。
定電圧回路1aは、基準電圧発生回路2と、バイアス電圧発生回路3と、抵抗R1,R2と、誤差増幅回路4と、電圧変動検出回路5と、出力トランジスタM1のゲート容量を放電し出力電圧Voutを所定の電圧に復帰させる出力電圧復帰回路6aとを備えている。
出力電圧復帰回路6aは、NMOSトランジスタM13〜M16で構成されている。NMOSトランジスタM15及びM16の直列回路がNMOSトランジスタM4に並列に接続されており、NMOSトランジスタM15のゲートはNMOSトランジスタM13のゲートに接続され、NMOSトランジスタM16は、ゲートにバイアス電圧Vbi1が入力されて定電流源をなしている。なお、出力電圧復帰回路6aは放電回路部をなし、NMOSトランジスタM15は第2スイッチ素子を、NMOSトランジスタM16は第5電流源をそれぞれなす。
このような構成にすることにより、出力電圧Voutの急激な低下が発生したときに、PMOSトランジスタM7だけでなくPMOSトランジスタM5のバイアス電流も増加させることができ、出力電圧復帰回路6aが動作した場合でも、PMOSトランジスタM5のゲート−ソース間電圧とPMOSトランジスタM7のゲート−ソース間電圧は常に等しくなり、差動増幅回路11に発生する入力オフセット電圧による出力電圧Voutの変動を低減させることができる。
第3の実施の形態.
前記第1の実施の形態では、誤差増幅回路4が差動増幅回路11と第1増幅回路12で構成されている場合を例にして説明したが、誤差増幅回路4が差動増幅回路11のみで構成されているようにしてもよく、このようにしたものを本発明の第3の実施の形態とする。
図4は、本発明の第3の実施の形態における定電圧回路の構成例を示した図である。なお、図4では、図1と同じもの又は同様のものは同じ符号で示し、ここではその説明を省略すると共に図1との相違点のみ説明する。
図4における図1との相違点は、第1増幅回路12がなく、差動増幅回路11において、PMOSトランジスタM5とM6の各ゲートの接続部がPMOSトランジスタM6のドレインに接続され、出力トランジスタM1のゲートはNMOSトランジスタM2のドレインに、PMOSトランジスタM9のゲートはNMOSトランジスタM3のドレインにそれぞれ接続され、更に出力電圧復帰回路6をNMOSトランジスタM4に並列に接続したことにある。これに伴って、図1の差動増幅回路11を差動増幅回路11bに、図1の誤差増幅回路4を誤差増幅回路4bに、図1の定電圧回路1を定電圧回路1bにそれぞれした。
図4において、定電圧回路1bは、入力端子INに入力された入力電圧Vccから所定の定電圧を生成し出力電圧Voutとして出力端子OUTから負荷10に出力する。なお、定電圧回路1bは、1つのICに集積されるようにしてもよい。
定電圧回路1bは、基準電圧発生回路2と、バイアス電圧発生回路3と、抵抗R1,R2と、出力トランジスタM1と、分圧電圧Vfb1が基準電圧Vr1になるように出力トランジスタM1の動作制御を行う誤差増幅回路4bと、電圧変動検出回路5と、出力電圧復帰回路6とを備えている。
また、誤差増幅回路4bは、基準電圧Vr1と分圧電圧Vfb1との電圧差を増幅して出力する差動増幅回路11bで構成され、電圧変動検出回路5は、差動増幅回路11bの出力信号を増幅して出力する、ソース接地された第2増幅回路15、及び該第2増幅回路15の出力信号を増幅して出力電圧復帰回路6に出力する、同じくソース接地された第3増幅回路16で構成されている。なお、誤差増幅回路4bは第1誤差増幅回路をなしている。
差動増幅回路11bは、NMOSトランジスタM2〜M4及びPMOSトランジスタM5,M6からなり、NMOSトランジスタM2及びM3は差動対をなし、該差動対の負荷をなすPMOSトランジスタM5及びM6はカレントミラー回路を形成している。PMOSトランジスタM5とNMOSトランジスタM2との接続部は、差動増幅回路11bの一方の出力端である第1出力端をなし、出力トランジスタM1のゲートに接続されている。PMOSトランジスタM6とNMOSトランジスタM3との接続部は、差動増幅回路11bの他方の出力端である第2出力端をなし、PMOSトランジスタM9のゲートに接続されている。
出力電圧復帰回路6において、NMOSトランジスタM4に並列に、NMOSトランジスタM13及びM14の直列回路が接続され、NMOSトランジスタM14のゲートにはバイアス電圧Vbi1が入力されており、NMOSトランジスタM14は定電流源をなしている。
なお、NMOSトランジスタM2は第1入力トランジスタを、NMOSトランジスタM3は第2入力トランジスタを、PMOSトランジスタM5は第1負荷回路を、PMOSトランジスタM6は第2負荷回路を、NMOSトランジスタM4はバイアス電流源をそれぞれなしている。
このような構成において、第3増幅回路16の入力トランジスタであるPMOSトランジスタM11は、出力トランジスタM1よりもサイズが非常に小さくゲート入力容量も非常に小さい。第2増幅回路15の出力負荷は第3増幅回路16であるため、入力容量が非常に小さく、第2増幅回路15の出力端であるPMOSトランジスタM9のドレインとNMOSトランジスタM10のドレインとの接続部の電圧は、差動増幅回路11bの出力信号の変化に応じて高速に変化することができる。すなわち、第2増幅回路15の出力信号のスルーレートが、差動増幅回路11bにおける出力トランジスタM1のゲートに出力する信号のスルーレートよりも非常に大きい。
このため、出力電流ioの急激な変動により出力電圧Voutが低下すると、第2増幅回路15の出力信号が変化し、出力電圧復帰回路6の動作制御を行うための制御信号をなす第3増幅回路16の出力信号によって、NMOSトランジスタM13をオンさせて導通状態にする。このため、出力トランジスタM1のゲートに定電流源をなすNMOSトランジスタM14が接続されて出力トランジスタM1のゲート容量が高速に放電されることから、出力電流ioが増加して出力電圧Voutが所定の電圧に復帰する。
ここで、例えば、PMOSトランジスタM9の電流駆動能力がPMOSトランジスタM5よりも大きくなるようにして、第2増幅回路15の電圧利得が、NMOSトランジスタM2,M4及びPMOSトランジスタM5で決まる電圧利得よりも大きくなるように設定されている。同じ電圧が入力された場合、第2増幅回路15の出力電圧レベルが、NMOSトランジスタM2とPMOSトランジスタM5との接続部からの出力電圧レベルよりも大きくなる。このため、負荷電流が少ない定常状態では、第2増幅回路15の出力電圧レベルが電源電圧Vccとなり、第3増幅回路16は接地電圧を出力して出力電圧復帰回路6のNMOSトランジスタM13をオフさせる。
負荷電流ioが急激に低下して出力電圧Voutが低下すると、第2増幅回路15の出力電圧レベルは接地電圧まで低下し、第3増幅回路16は電源電圧Vccを出力して出力電圧復帰回路6のNMOSトランジスタM13がオンする。このような構成により、出力電圧Voutがわずかに低下しただけでも、出力電圧復帰回路6がNMOSトランジスタM2に流れる電流を増加させて出力トランジスタM1の出力電流を増加させるように動作するため、出力電圧Voutの低下を瞬時に復帰させることができる。また、出力電圧Voutの急激な低下がないとき、又は出力電流が非常に少ないときには出力電圧復帰回路6は動作せず、通常時において誤差増幅回路4b、及び出力トランジスタM1でなされる動作制御に影響することがないため、少ない消費電流で高速応答が可能な定電圧回路を構成することができる。
一方、図4では、出力電圧復帰回路6をNMOSトランジスタM4に並列に接続するようにしたが、図5で示すように、出力トランジスタM1のゲートと接地電圧との間に出力電圧復帰回路6を接続するようにしてもよい。なお、図5における出力電圧復帰回路6の動作は図4と同様であるのでその説明を省略する。
このように、誤差増幅回路4bが差動増幅回路11bのみで構成されている場合は、出力電圧復帰回路6を差動増幅回路11bの定電流源をなすNMOSトランジスタM4に並列に接続するか、又は出力トランジスタM1のゲートと接地電圧との間に接続することにより前記第1の実施の形態と同様の効果を得ることができる。
なお、定電流源をなすNMOSトランジスタM14によって供給される電流は、定電流源をなすNMOSトランジスタM4によって供給される電流よりも小さくなるようにしてもよい。
第4の実施の形態.
前記第1から第3の各実施の形態における出力電圧復帰回路6のNMOSトランジスタM14の代わりに応答速度の速い誤差増幅回路を使用してもよく、このようにしたものを本発明の第4の実施の形態とする。
図6は、本発明の第4の実施の形態における定電圧回路の構成例を示した図である。なお、図6では、図5と同じもの又は同様のものは同じ符号で示し、ここではその説明を省略すると共に図5との相違点のみ説明する。
図6における図5との相違点は、図5の出力電圧復帰回路6において、NMOSトランジスタM13からなるスイッチ回路の構成を変えると共に、定電流源をなすNMOSトランジスタM14の代わりに図5の誤差増幅回路4bよりも応答速度の速い誤差増幅回路を使用するようにしたことにあり、これに伴って、図5の出力電圧復帰回路6を出力電圧復帰回路6cにし、図5の定電圧回路1bを定電圧回路1cにした。
図6において、定電圧回路1cは、入力端子INに入力された入力電圧Vccから所定の定電圧を生成し出力電圧Voutとして出力端子OUTから負荷10に出力する。
定電圧回路1cは、基準電圧発生回路2と、バイアス電圧発生回路3と、抵抗R1,R2と、出力トランジスタM1と、誤差増幅回路4bと、電圧変動検出回路5と、出力トランジスタM1のゲート容量を放電し出力電圧Voutを所定の電圧に復帰させる出力電圧復帰回路6cとを備えている。なお、出力電圧復帰回路6cは放電回路部をなし、定電圧回路1cは、1つのICに集積されるようにしてもよい。
出力電圧復帰回路6cは、所定の基準電圧Vr2を生成して出力する基準電圧発生回路21と、所定のバイアス電圧Vbi2を生成して出力するバイアス電圧発生回路22と、出力電圧Voutを分圧して分圧電圧Vfb2を生成し出力する出力電圧検出用の抵抗R3,R4と、スイッチ素子をなすNMOSトランジスタM17と、分圧電圧Vfb2が基準電圧Vr2になるように出力トランジスタM1の動作制御を行う誤差増幅回路23とを備えている。更に、出力電圧復帰回路6cは、スイッチ回路35、OR回路OR1、PMOSトランジスタM18及び抵抗R5を備えている。誤差増幅回路23は、出力電圧Voutの変動に対する応答速度が誤差増幅回路4bよりも速く、基準電圧Vr2と分圧電圧Vfb2との電圧差を増幅して出力する差動増幅回路31、及び該差動増幅回路31の出力信号を増幅して出力するソース接地された増幅回路32で構成されている。
なお、誤差増幅回路23は第2誤差増幅回路を、PMOSトランジスタM18及び抵抗R5は出力電流検出回路を、OR回路OR1はスイッチ制御回路をそれぞれなす。また、抵抗R3,R4及びNMOSトランジスタM17は第2出力電圧検出回路を、基準電圧発生回路21は第2基準電圧発生回路をそれぞれなし、分圧電圧Vfb2は第2比例電圧を、基準電圧Vr2は第2基準電圧をそれぞれなす。
入力電圧Vccと接地電圧との間にはPMOSトランジスタM18と抵抗R5が直列に接続され、PMOSトランジスタM18のゲートは出力トランジスタM1のゲートに接続されている。第3増幅回路16の出力信号So1は、OR回路OR1の一方の入力端に入力され、OR回路OR1の他方の入力端は、PMOSトランジスタM18と抵抗R5との接続部に接続され、信号So2が入力される。OR回路OR1の出力信号である切換信号So3は、基準電圧発生回路21、バイアス電圧発生回路22、差動増幅回路31、増幅回路32、スイッチ回路35及びNMOSトランジスタM17のゲートにそれぞれ出力される。また、出力端子OUTと接地電圧との間には、抵抗R3、R4及びNMOSトランジスタM17が直列に接続されており、抵抗R3とR4との接続部から分圧電圧Vfb2が出力される。スイッチ回路35は、出力トランジスタM1のゲートと増幅回路32の出力端との間に接続され、切換信号So3に応じてスイッチングを行う。
差動増幅回路31は、NMOSトランジスタM20〜M23及びPMOSトランジスタM24,M25からなり、NMOSトランジスタM20及びM21は差動対をなし、該差動対の負荷をなすPMOSトランジスタM24及びM25はカレントミラー回路を形成している。増幅回路32は、入力電圧Vccと接地電圧との間に直列に接続されたPMOSトランジスタM26及びNMOSトランジスタM27,M28で構成されている。
差動増幅回路31において、差動対をなすNMOSトランジスタM20及びM21の各ソースは接続され、該接続部と接地電圧との間にNMOSトランジスタM22及びM23が直列に接続されている。NMOSトランジスタM22のゲートには切換信号So3が入力され、NMOSトランジスタM23のゲートにはバイアス電圧Vbi2が入力されており、NMOSトランジスタM23は定電流源をなしている。
PMOSトランジスタM24及びM25の各ゲートは接続され、該接続部はPMOSトランジスタM24のドレインに接続されている。PMOSトランジスタM24のドレインはNMOSトランジスタM20のドレインに、PMOSトランジスタM25のドレインはNMOSトランジスタM21のドレインにそれぞれ接続され、PMOSトランジスタM24及びM25の各ソースにはそれぞれ入力電圧Vccが入力されている。NMOSトランジスタM20のゲートは、差動増幅回路31の反転入力端をなし、基準電圧Vr2が入力されており、NMOSトランジスタM21のゲートは、差動増幅回路31の非反転入力端をなし、分圧電圧Vfb2が入力されている。また、PMOSトランジスタM25とNMOSトランジスタM21との接続部は、差動増幅回路31の出力端をなし、増幅回路32の入力端をなすPMOSトランジスタM26のゲートに接続されている。
次に、増幅回路32において、入力電圧Vccと接地電圧との間に、PMOSトランジスタM26、NMOSトランジスタM27及びM28が直列に接続されており、NMOSトランジスタM28のゲートにはバイアス電圧Vbi2が入力され、NMOSトランジスタM28は定電流源をなしている。NMOSトランジスタM27のゲートには切換信号So3が入力されており、PMOSトランジスタM26とNMOSトランジスタM27との接続部がスイッチ35を介して出力トランジスタM1のゲートに接続されている。
このような構成において、第2増幅回路15及び第3増幅回路16は、前記第3の実施の形態と同じ動作をし、出力電圧Voutが急激に低下したときに、第3増幅回路16の出力信号So1の信号レベルが反転し、図6の場合、出力信号So1は、ローレベルからハイレベルに立ち上がる。また、PMOSトランジスタM18からは、出力トランジスタM1に流れる電流に比例した電流が流れ、該電流が抵抗R5で電圧に変換され、信号So2としてOR回路OR1に入力される。このことから、切換信号So3は、出力電流ioが所定値以上に増加したこと、及び/又は出力電流ioが急峻に増加して出力電圧Voutが低下したことにより信号レベルが反転する。
切換信号So3は、スイッチ回路35に入力され、出力電流ioが増加するか、及び/又は出力電流ioが急峻に増加して出力電圧Voutが低下すると、誤差増幅回路23が出力トランジスタM1を制御するように、スイッチ回路35によって増幅回路32の出力端と出力トランジスタM1のゲートが接続される。誤差増幅回路23は、誤差増幅回路4bよりも消費電流が多く、出力トランジスタM1を高速に制御することができるように設計されている。このため、出力電圧Voutの急激な低下が発生したときに、誤差増幅回路23が出力トランジスタM1のゲート電極の容量を高速に放電することができ、瞬時に出力電圧Voutを所定の電圧に復帰させることができる。
負荷電流が小さいときは、信号So1及びSo2によって切換信号So3がローレベルになり、基準電圧発生回路21及びバイアス電圧発生回路22が動作を停止すると共に、NMOSトランジスタM17、M22及びM27はそれぞれオフして遮断状態になり、誤差増幅回路23の動作は停止し、出力電圧復帰回路6cは低消費電流状態になる。このとき、出力トランジスタM1は、誤差増幅回路4bのみで動作制御される。次に、負荷電流が増加すると、信号So2によって切換信号So3がハイレベルになり、基準電圧発生回路21及びバイアス電圧発生回路22が作動すると共に、NMOSトランジスタM17、M22及びM27はそれぞれオンして導通状態になり、誤差増幅回路23は作動し、出力電圧復帰回路6cは作動する。このようなことから、定電圧回路1cは、負荷電流が小さいときは少ない消費電流で作動し、負荷電流が大きいときは高速応答が可能になる。
更に、出力電流ioの急峻な増加により出力電圧Voutが低下したときは、信号So1によって切換信号So3がハイレベルになり、出力電圧復帰回路6cによって出力トランジスタM1が動作制御され、出力電圧Voutの低下を抑えて出力電圧Voutを所定の電圧に高速に復帰させることができる。
なお、図6において、切換信号So3によって出力電圧復帰回路6cが出力トランジスタM1の動作を制御しているときに、基準電圧発生回路2、バイアス電圧発生回路3及び誤差増幅回路4bがそれぞれ動作を停止すると共に、抵抗R1とR2との直列回路と接地電圧との接続を遮断するようにしてもよい。
また、出力電圧復帰回路6cにおいて、基準電圧発生回路21の代わりに基準電圧発生回路2を、バイアス電圧発生回路22の代わりにバイアス電圧発生回路3を、分圧電圧Vfb2の代わりに分圧電圧Vfb1をそれぞれ使用するようにして、回路素子を削減するようにしてもよい。
また、前記第1〜第3の各実施の形態におけるNMOSトランジスタM14及び第3の実施の形態におけるNMOSトランジスタM16は、出力トランジスタM1のゲート容量を高速に放電することができれば、特に定電流源をなさなくてもよい。
また、前記第1〜第4の各実施の形態において、PMOSトランジスタをNMOSトランジスタに置き換えると共にNMOSトランジスタをPMOSトランジスタに置き換えるようにしてもよい。
また、前記第1〜第4の各実施の形態において、PMOSトランジスタM11の代わりにバイポーラトランジスタを使用するようにしてもよい。
本発明の第1の実施の形態における定電圧回路の構成例を示した図である。 差動増幅回路11の出力信号と、第1増幅回路12、第2増幅回路15及び第3増幅回路16の各出力信号との関係例を示した図である。 本発明の第2の実施の形態における定電圧回路の構成例を示した図である。 本発明の第3の実施の形態における定電圧回路の構成例を示した図である。 本発明の第3の実施の形態における定電圧回路の他の構成例を示した図である。 本発明の第4の実施の形態における定電圧回路の構成例を示した図である。 従来の定電圧回路の構成例を示した図である。
符号の説明
1,1a,1b,1c 定電圧回路
2,21 基準電圧発生回路
3,22 バイアス電圧発生回路
4,4b,23 誤差増幅回路
5 電圧変動検出回路
6,6a,6c 出力電圧復帰回路
10 負荷
11,11b,31 差動増幅回路
12 第1増幅回路
15 第2増幅回路
16 第3増幅回路
32 増幅回路
35 スイッチ回路
M1 出力トランジスタ
M17 NMOSトランジスタ
M18 PMOSトランジスタ
R1〜R5 抵抗
OR1 OR回路

Claims (21)

  1. 入力端子に入力された入力電圧を所定の定電圧に変換して出力端子から出力する定電圧回路において、
    入力された制御信号に応じた電流を入力端子から出力端子に出力する出力トランジスタと、
    前記出力端子から出力される出力電圧に比例した第1比例電圧が所定の第1基準電圧になるように前記出力トランジスタの動作制御を行う第1誤差増幅回路を有する制御回路部と、
    前記第1誤差増幅回路から前記出力トランジスタに出力される制御信号よりもスルーレートが大きくなるように、前記第1誤差増幅回路を構成する差動増幅回路の出力信号を増幅し2値の信号に変換して出力する、前記出力端子から出力される出力電圧の変動を検出する電圧変動検出回路部と、
    該電圧変動検出回路部からの出力信号に応じて、前記出力トランジスタの制御電極に寄生する容量に対する放電電流を増加させる放電回路部と、
    を備え、
    前記電圧変動検出回路部は、
    前記差動増幅回路の出力信号を増幅して出力する、出力信号のスルーレートが前記第1誤差増幅回路の出力信号よりも大きい第2増幅回路と、
    該第2増幅回路の出力信号を増幅して2値の信号に変換し前記放電回路部に出力する第3増幅回路と、
    を備え、
    前記出力端子から出力される出力電圧の変動に対して、前記第1誤差増幅回路から前記出力トランジスタに出力される制御信号よりも速く応答して、前記放電回路部による放電動作を行わせることを特徴とする定電圧回路。
  2. 前記第1誤差増幅回路は、
    前記第1比例電圧と前記第1基準電圧との電圧差を増幅して出力する差動増幅回路と、
    該差動増幅回路の出力信号を増幅して前記出力トランジスタの制御電極に出力する第1増幅回路と、
    を備え、
    前記第2増幅回路は、電圧利得が前記第1増幅回路よりも大きいことを特徴とする請求項1記載の定電圧回路。
  3. 前記第1増幅回路は、
    制御電極に前記差動増幅回路の出力信号が入力された、電圧増幅素子をなす第1トランジスタと、
    該第1トランジスタに第1バイアス電流を供給する第1電流源と、
    を備え、
    前記第2増幅回路は、
    制御電極に前記差動増幅回路の出力信号が入力された、電圧増幅素子をなす第2トランジスタと、
    該第2トランジスタに前記第1バイアス電流よりも小さい第2バイアス電流を供給する第2電流源と、
    を備えることを特徴とする請求項2記載の定電圧回路。
  4. 前記第1増幅回路は、
    制御電極に前記差動増幅回路の出力信号が入力された、電圧増幅素子をなす第1トランジスタと、
    該第1トランジスタに第1バイアス電流を供給する第1電流源と、
    を備え、
    前記第2増幅回路は、
    制御電極に前記差動増幅回路の出力信号が入力された、電流駆動能力が前記第1トランジスタよりも大きい電圧増幅素子をなす第2トランジスタと、
    該第2トランジスタに第2バイアス電流を供給する第2電流源と、
    を備えることを特徴とする請求項記載の定電圧回路。
  5. 前記第増幅回路は、
    制御電極に前記第2増幅回路の出力信号が入力された、電圧増幅素子をなす第トランジスタと、
    該第トランジスタに第バイアス電流を供給する第電流源と、
    を備え、
    前記第3トランジスタは、制御電極の寄生容量が前記出力トランジスタよりも小さいことを特徴とする請求項1、2、3又は記載の定電圧回路。
  6. 前記放電回路部は、
    前記出力トランジスタの制御電極の容量を放電するための第4電流源と、
    前記電圧変動検出回路部からの出力信号に応じて、前記出力トランジスタの制御電極と該第4電流源との接続制御を行う第1スイッチ素子と、
    を備えことを特徴とする請求項1、2、3、4又は5記載の定電圧回路。
  7. 前記放電回路部は、
    前記差動増幅回路の差動対に供給するバイアス電流を増加させるための第電流源と、
    前記電圧変動検出回路部からの出力信号に応じて、前記差動増幅回路と該第電流源との接続制御を行う第スイッチ素子と、
    を備え
    前記第2スイッチ素子は、前記第1スイッチ素子と同じ接続動作を行うことを特徴とする請求項6記載の定電圧回路。
  8. 前記第1誤差増幅回路は、前記第1比例電圧と前記第1基準電圧との電圧差を増幅して出力する差動増幅回路で構成され、該差動増幅回路の一方の出力端である第1出力端から出力される第1信号が前記出力トランジスタの制御電極に入力され、該差動増幅回路の他方の出力端である第2出力端から出力される第2信号が前記電圧変動検出回路部の第2増幅回路に出力されることを特徴とする請求項記載の定電圧回路。
  9. 前記第増幅回路は、出力信号のスルーレートが前記差動増幅回路の第1信号よりも大きいことを特徴とする請求項記載の定電圧回路。
  10. 前記差動増幅回路は、
    差動対を構成し、制御電極に前記第1基準電圧が入力された第1入力トランジスタと、
    差動対を構成し、制御電極に前記第1比例電圧が入力された第2入力トランジスタと、
    前記第1入力トランジスタの負荷をなす第1負荷回路と、
    前記第2入力トランジスタの負荷をなす第2負荷回路と、
    差動対をなす前記第1入力トランジスタ及び第2入力トランジスタにバイアス電流を供給するバイアス電流源と、
    を備え、
    前記第1入力トランジスタと第1負荷回路との接続部から前記第1信号を出力すると共に、前記第2入力トランジスタと第2負荷回路との接続部から前記第2信号を出力することを特徴とする請求項8又は9記載の定電圧回路。
  11. 前記第2増幅回路は、電圧利得が、前記第1入力トランジスタ、第1負荷回路及びバイアス電流源で決定される電圧利得よりも大きいことを特徴とする請求項10記載の定電圧回路。
  12. 前記第2増幅回路は、
    制御電極に前記差動増幅回路の出力信号が入力された、電圧増幅素子をなす第2トランジスタと、
    該第2トランジスタに第2バイアス電流を供給する第2電流源と、
    を備え、
    前記第1負荷回路及び第2負荷回路は、第2負荷回路が入力側トランジスタをなし第1負荷回路が出力側トランジスタをなしたカレントミラー回路を形成し、
    前記第2トランジスタは、電流駆動能力が前記第1負荷回路をなすトランジスタよりも大きいことを特徴とする請求項11記載の定電圧回路。
  13. 前記放電回路部は、
    前記差動増幅回路の第1入力トランジスタ及び第2入力トランジスタに供給するバイアス電流を増加させるための第4電流源と、
    前記電圧変動検出回路部からの出力信号に応じて、前記差動増幅回路と該第4電流源との接続制御を行う第1スイッチ素子と、
    を備えことを特徴とする請求項10、11又は12記載の定電圧回路。
  14. 前記第4電流源は、供給する電流が前記バイアス電流源よりも小さいことを特徴とする請求項12記載の定電圧回路。
  15. 前記放電回路部は、
    前記出力端子から出力される出力電圧に比例した第2比例電圧が所定の第2基準電圧になるように前記出力トランジスタの動作制御を行う、前記第1誤差増幅回路よりも応答速度が速い第2誤差増幅回路と、
    前記電圧変動検出回路部からの出力信号に応じて、該第2誤差増幅回路の出力端に対する前記出力トランジスタの制御電極への接続制御を行うスイッチ回路と、
    を備え、
    前記電圧変動検出回路部は、前記出力端子から出力される出力電圧の変動に対して、前記第1誤差増幅回路から前記出力トランジスタに出力される制御信号よりも速く応答し、前記第2誤差増幅回路の出力端を前記出力トランジスタの制御電極に接続するように前記スイッチ回路を制御することを特徴とする請求項記載の定電圧回路。
  16. 前記第1誤差増幅回路は、前記第2誤差増幅回路よりも消費電流が小さいことを特徴とする請求項15記載の定電圧回路。
  17. 前記放電回路部は、
    前記出力トランジスタから出力される電流値の検出を行い、該検出した電流値が所定値以上になると所定の信号を出力する出力電流検出回路と、
    前記電圧変動検出回路部及び該出力電流検出回路からの各出力信号に応じて、前記スイッチ回路の動作制御を行うスイッチ制御回路と、
    を備え、
    前記スイッチ制御回路は、前記第2誤差増幅回路の出力端を前記出力トランジスタの制御電極に接続することを示す前記電圧変動検出回路部からの信号、及び/又は検出した電流値が所定値以上になったことを示す信号が前記出力電流検出回路から入力されると、前記スイッチ回路に対して、前記第2誤差増幅回路の出力端を前記出力トランジスタの制御電極に接続させることを特徴とする請求項15又は16記載の定電圧回路。
  18. 前記放電回路部は、
    前記第2比例電圧を生成して出力する第2出力電圧検出回路と、
    前記第2基準電圧を生成して出力する第2基準電圧発生回路と、
    を備え、
    前記第2誤差増幅回路、第2出力電圧検出回路及び第2基準電圧発生回路は、前記第2誤差増幅回路の出力端前記出力トランジスタの制御電極との接続を遮断させる信号が前記スイッチ制御回路から前記スイッチ回路に出力されると、それぞれ動作を停止して電流消費を低減させることを特徴とする請求項17記載の定電圧回路。
  19. 前記第2比例電圧は、前記第1比例電圧と同一であることを特徴とする請求項15、16又は17記載の定電圧回路。
  20. 前記第2基準電圧は、前記第1基準電圧と同一であることを特徴とする請求項15、16又は17記載の定電圧回路。
  21. 前記出力トランジスタ、制御回路部、電圧変動検出回路部及び放電回路部は、1つのICに集積されることを特徴とする請求項1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19又は20記載の定電圧回路。
JP2006130566A 2006-05-09 2006-05-09 定電圧回路 Active JP4847207B2 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2006130566A JP4847207B2 (ja) 2006-05-09 2006-05-09 定電圧回路
CN200780000804XA CN101341452B (zh) 2006-05-09 2007-05-02 恒压电路
CN2010105982874A CN102004514A (zh) 2006-05-09 2007-05-02 恒压电路
CN2010105982893A CN102004515A (zh) 2006-05-09 2007-05-02 恒压电路
PCT/JP2007/059806 WO2007129765A1 (en) 2006-05-09 2007-05-02 Constant voltage circuit
KR1020087000509A KR100957062B1 (ko) 2006-05-09 2007-05-02 정전압 회로
US11/988,210 US7705573B2 (en) 2006-05-09 2007-05-02 Constant voltage circuit
TW096115753A TWI334521B (en) 2006-05-09 2007-05-03 Constant voltage circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006130566A JP4847207B2 (ja) 2006-05-09 2006-05-09 定電圧回路

Publications (2)

Publication Number Publication Date
JP2007304716A JP2007304716A (ja) 2007-11-22
JP4847207B2 true JP4847207B2 (ja) 2011-12-28

Family

ID=38667870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006130566A Active JP4847207B2 (ja) 2006-05-09 2006-05-09 定電圧回路

Country Status (6)

Country Link
US (1) US7705573B2 (ja)
JP (1) JP4847207B2 (ja)
KR (1) KR100957062B1 (ja)
CN (3) CN101341452B (ja)
TW (1) TWI334521B (ja)
WO (1) WO2007129765A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4955239A (en) * 1986-05-22 1990-09-11 Micro Motion, Inc. Apparatus for electrically interconnecting vibrating structures
JP5303910B2 (ja) 2007-11-20 2013-10-02 株式会社リコー スイッチングレギュレータ
KR100938892B1 (ko) * 2007-11-23 2010-01-27 한양대학교 산학협력단 동적 전류 바이어스 회로
JP5047815B2 (ja) 2008-01-11 2012-10-10 株式会社リコー 過電流保護回路及びその過電流保護回路を備えた定電圧回路
JP5160317B2 (ja) * 2008-06-09 2013-03-13 セイコーインスツル株式会社 ボルテージレギュレータ
JP2009303317A (ja) 2008-06-11 2009-12-24 Ricoh Co Ltd 基準電圧発生回路及びその基準電圧発生回路を備えたdc−dcコンバータ
JP2011053765A (ja) * 2009-08-31 2011-03-17 Sanyo Electric Co Ltd オーバーシュート防止回路
JP5467845B2 (ja) * 2009-09-29 2014-04-09 セイコーインスツル株式会社 ボルテージレギュレータ
US8063622B2 (en) * 2009-10-02 2011-11-22 Power Integrations, Inc. Method and apparatus for implementing slew rate control using bypass capacitor
JP5402530B2 (ja) 2009-10-27 2014-01-29 株式会社リコー 電源回路
CN102075155A (zh) * 2010-12-30 2011-05-25 天津南大强芯半导体芯片设计有限公司 一种集成低通滤波器电路
JP6168864B2 (ja) * 2012-09-07 2017-07-26 エスアイアイ・セミコンダクタ株式会社 ボルテージレギュレータ
JP5997620B2 (ja) * 2013-01-28 2016-09-28 株式会社東芝 レギュレータ
US9312824B2 (en) * 2014-01-14 2016-04-12 Intel Deutschland Gmbh Low noise low-dropout regulator
JP6966367B2 (ja) * 2018-03-23 2021-11-17 エイブリック株式会社 基準電圧発生回路
JP7391791B2 (ja) 2020-08-12 2023-12-05 株式会社東芝 定電圧回路

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5373226A (en) * 1991-11-15 1994-12-13 Nec Corporation Constant voltage circuit formed of FETs and reference voltage generating circuit to be used therefor
JP2000047740A (ja) 1998-07-29 2000-02-18 Mitsubishi Electric Corp 電圧補助回路および半導体集積回路装置
JP2000284843A (ja) * 1999-03-31 2000-10-13 Fuji Electric Co Ltd シリーズレギュレータ電源回路
JP4050567B2 (ja) * 2002-07-25 2008-02-20 株式会社リコー 定電圧電源装置
JP4341882B2 (ja) 2002-09-20 2009-10-14 株式会社リコー 定電圧回路
JP3944605B2 (ja) * 2002-09-30 2007-07-11 ローム株式会社 スイッチング電源装置
JP4029812B2 (ja) * 2003-09-08 2008-01-09 ソニー株式会社 定電圧電源回路
CN100367142C (zh) * 2003-10-21 2008-02-06 联发科技股份有限公司 可快速终止工作的低噪声稳压电路
US6995548B2 (en) * 2003-10-29 2006-02-07 Intersil Americas Inc. Asymmetrical multiphase DC-to-DC power converter
JP4176002B2 (ja) 2003-12-15 2008-11-05 株式会社リコー 定電圧電源装置
JP4402465B2 (ja) * 2004-01-05 2010-01-20 株式会社リコー 電源回路
US7368896B2 (en) * 2004-03-29 2008-05-06 Ricoh Company, Ltd. Voltage regulator with plural error amplifiers
JP4688528B2 (ja) 2004-05-10 2011-05-25 株式会社リコー 定電圧回路
JP2006018774A (ja) 2004-07-05 2006-01-19 Seiko Instruments Inc ボルテージレギュレータ
JP4523473B2 (ja) * 2005-04-04 2010-08-11 株式会社リコー 定電圧回路
JP4745734B2 (ja) * 2005-06-30 2011-08-10 株式会社リコー システム電源装置及びその動作制御方法
JP2007151340A (ja) * 2005-11-29 2007-06-14 Ricoh Co Ltd 昇降圧型スイッチングレギュレータ
JP4127559B2 (ja) * 2006-05-15 2008-07-30 シャープ株式会社 電源回路装置及びこの電源回路装置を備えた電子機器

Also Published As

Publication number Publication date
CN102004514A (zh) 2011-04-06
TW200825655A (en) 2008-06-16
JP2007304716A (ja) 2007-11-22
KR20080016732A (ko) 2008-02-21
KR100957062B1 (ko) 2010-05-13
CN102004515A (zh) 2011-04-06
CN101341452A (zh) 2009-01-07
TWI334521B (en) 2010-12-11
CN101341452B (zh) 2011-06-01
US7705573B2 (en) 2010-04-27
WO2007129765A1 (en) 2007-11-15
US20090121693A1 (en) 2009-05-14

Similar Documents

Publication Publication Date Title
JP4847207B2 (ja) 定電圧回路
JP4523473B2 (ja) 定電圧回路
JP4667883B2 (ja) 定電圧回路及びその定電圧回路を有する半導体装置
JP4653046B2 (ja) 差動増幅回路、差動増幅回路を使用したボルテージレギュレータ及び差動増幅回路の動作制御方法
US7538537B2 (en) Constant-voltage circuit and controlling method thereof
JP4217497B2 (ja) 定電圧回路
US20080218139A1 (en) Voltage regulator circuit and control method therefor
JP4688528B2 (ja) 定電圧回路
JP4527592B2 (ja) 定電圧電源回路
JP4781831B2 (ja) 定電圧回路
JP4402465B2 (ja) 電源回路
JP2007310521A (ja) 定電圧回路および該定電圧回路を内蔵した電子機器
JP5402530B2 (ja) 電源回路
JP4667914B2 (ja) 定電圧回路
JP4688581B2 (ja) 定電圧回路
US11835977B2 (en) Constant voltage circuit for improvement of load transient response with stable operation in high frequency, and electronic device therewith
JP2001022455A (ja) レギュレータ回路
JP5068631B2 (ja) 定電圧回路
JP4050567B2 (ja) 定電圧電源装置
JP4642827B2 (ja) 定電圧電源装置
JP2006277229A (ja) 定電圧回路

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080131

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111011

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111013

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4847207

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250