JP4815733B2 - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP4815733B2
JP4815733B2 JP2003080219A JP2003080219A JP4815733B2 JP 4815733 B2 JP4815733 B2 JP 4815733B2 JP 2003080219 A JP2003080219 A JP 2003080219A JP 2003080219 A JP2003080219 A JP 2003080219A JP 4815733 B2 JP4815733 B2 JP 4815733B2
Authority
JP
Japan
Prior art keywords
stack
temperature
fuel cell
cooling water
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003080219A
Other languages
English (en)
Other versions
JP2004288509A (ja
Inventor
秀剛 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003080219A priority Critical patent/JP4815733B2/ja
Priority to US10/550,609 priority patent/US7556873B2/en
Priority to PCT/JP2004/003146 priority patent/WO2004086546A2/en
Priority to EP04719103A priority patent/EP1606850B1/en
Priority to DE602004027608T priority patent/DE602004027608D1/de
Publication of JP2004288509A publication Critical patent/JP2004288509A/ja
Application granted granted Critical
Publication of JP4815733B2 publication Critical patent/JP4815733B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0263Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant having meandering or serpentine paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • H01M8/04074Heat exchange unit structures specially adapted for fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、燃料電池システムに関する。特に、低温環境下における暖機を効率的に行うことができる燃料電池スタックを備える燃料電池システムに関する。
【0002】
【従来の技術】
従来の燃料電池として、固体高分子電解質膜の両側にアノード側電極とカソード側電極を設けた単位燃料電池セル(以下、単位セル)を、セパレータを介して水平方向に積層し、各電極に対する水素ガス、空気、冷却水の給排用に、各電極等を貫通する連通孔を備えたものが知られている。燃料電池には、さらに、最も外側に位置する単位セルの端部を構成する導電プレートの外側に、周囲を絶縁部材で囲んだ導電性の平板を設け、この平板から略垂直方向に向かって外周を絶縁した導電性材料から成る突起部を設けている。この突起部を電力取り出し用のターミナルとして使用することにより、積層方向及び高さ方向の占有スペースをできるかぎり少なくし、かつ、効率よく電力を取り出すことができる燃料電池を構成している(例えば、特許文献1、参照。)。
【0003】
【特許文献1】
特開2002−100392号公報
【0004】
【発明が解決しようとしている問題点】
しかしながら、このような燃料電池においては、低温起動時に積層方向についての温度分布が生じるという問題があった。低温起動時には、燃料電池の積層方向中央周辺は温度が上昇し易い。これに比べて、積層方向端部の単位セルは雰囲気温度に左右されやすく、温度が上昇し難い。このため、積層方向中央部周辺の暖機が終了しても端部の暖機が終了するまで燃料電池全体の暖機が終了しないので、暖機終了までの時間が長くなるという問題がある。
【0005】
そこで本発明は、上記の問題を鑑みて、暖機時の燃料電池の温度を均一化することにより暖機時間を短縮することができる燃料電池システムを提供することを目的とする。
【0006】
【問題点を解決するための手段】
冷媒流路を有した単位セルを水平方向に複数積層してなる燃料電池スタックを備えた燃料電池システムにおいて、前記単位セルの積層方向に設けられ、前記冷媒流路に冷媒を分配する供給マニホールドと、前記単位セルを挟んで前記供給マニホールドと反対側に設けられ、前記冷媒流路から冷媒を回収する排出マニホールドを備える。また、前記供給マニホールドへの供給または、前記排出マニホールドからの排出のうち少なくとも一方を選択的に遮断する遮断手段を備える。さらに、前記単位セルのうち、少なくとも一方の積層方向端部に配置した単位セルのさらに積層方向外側に構成した平板と、前記平板の内部に設けられ、前記供給マニホールと前記排出マニホールドとを連通し、前記冷媒流路よりも圧力損失が小さいバイパス流路を備える。
【0007】
【作用及び効果】
供給マニホールドへの供給または、排出マニホールドからの排出のうち少なくとも一方を選択的に遮断する遮断手段と、単位セルのうち、少なくとも一方の積層方向端部に配置した単位セルのさらに積層方向外側に構成した外板の内部に、供給マニホールドと排出マニホールドとを連通し、冷媒流路よりも圧力損失が小さいバイパス流路を備える。これにより、燃料電池スタック内への冷却水の流入または流出が遮断可能なので、冷却水が燃料電池スタック内を循環することにより、燃料電池スタックの温度を均一化することができる。また、積層方向端部の単位セルのさらに積層方向外側にバイパス流路を備え、冷媒がこのバイパス流路を流通することで、積層方向端部の単位セルが有する冷媒流路内を流れる冷媒に外気が与える影響を抑制することができるので、暖機時間を短縮することができる。
【0008】
【発明の実施の形態】
第1実施形態に用いる燃料電池スタック(以下、スタック1)の概略構成を図1に示す。ここでは、駆動源として車輌に搭載する燃料電池システムについて説明する。
【0009】
スタック1を、単位セル17を水平方向に複数積層することにより構成する。スタック1の冷却水経路10を、単位セル17のセル面に沿って形成した冷却水流路11(図2、参照)、積層方向に沿って形成した供給マニホールド12および排出マニホールド13、供給マニホールド12と排出マニホールド13を連通するバイパス流路14、とから構成する。
【0010】
ここでは、供給マニホールド12、排出マニホールド13(以下、マニホールド12、13)は、電極を積層方向に貫通する連通孔により構成した内部マニホールドとする。セル面の鉛直方向上方に排出マニホールド13を、下方に供給マニホールド12を配置する。外部からスタック1に供給された冷却水は、供給マニホールド12を通って、各単位セル17に分配され、後述するように構成した冷却水流路11内をセル面に沿って流れてから、排出マニホールド13に回収され、スタック1の外部に排出される。スタック1へ供給される冷却水は、図示しないポンプや、圧力調整弁、流量調整弁、熱交換器により、圧力、流量、温度を制御可能としている。
【0011】
ここで、セル面に構成した冷却水流路11の構成を、図2を用いて説明する。図2(b)には、中央部近傍に配置した中央部セル17bのセル面に形成した冷却水流路11bの構成を示す。図2(a)には、積層方向端部に配置した端部セル17aを含む、中央部セル17b以外の単位セル17のセル面に形成した冷却水流路11aを示す。なお、中央部セル17bおよび端部セル17aは、それぞれ一つの単位セル17を指すものとしてもよいが、ここでは複数の単位セル17を指すものとする。各セル面を略四角形状に形成し、その対角線上にマニホールド12、13を構成する。
【0012】
図2(a)に示すように、端部セル17aを含む中央部セル17b以外の単位セル17のセル面には、面内を蛇行する一本の冷却水流路11aを形成する。これに対して、図2(b)に示すように、中央部セル17bには、流路断面積が冷却水流路11aより大きな冷却水流路11bを形成する。また、冷却水流路11bそれぞれの流路長を、冷却水流路11aより短く形成する。ここでは、冷却水流路11bを3本の流路から形成する。冷却水流路11bをセル面の対角線上に伸びる流路と、セル面の周囲に沿って形成された流路とから構成する。
【0013】
このように冷却水流路11bを形成することで、中央部セル17bに供給された冷却水は熱交換を十分に行うことができると共に、流路を流れる際の圧力損失を低減することができる。そのため、後述するように、冷却水の温度差により生じる循環といったように循環圧力が小さい場合には、端部に比べて中央部に優先的に冷却水を流すことができる。
【0014】
また、図1に示すように、スタック1の積層方向両端部には、平板2を設置する。ここでは、平板2を導電性の材料により構成した集電板とするが、この限りではない。例えば、エンドプレートとしてもよい。平板2内部には、それぞれマニホールド12、13をバイパスするバイパス流路14a、14b(以下、バイパス流路14)を構成する。ここでは、バイパス流路14は、マニホールド12、13の端部を結ぶことにより、各セルの冷却水流路11をバイパスするように構成する。また、バイパス流路14はセル面に沿って略並行に構成する。さらに、バイパス流路14の流路断面積は、冷却水流路11の流路断面積より大きくなるように構成する。バイパス流路14に冷却水が流通することにより、スタック1の端部への外部温度の影響を抑制することができる。
【0015】
さらに、供給マニホールド12への冷却水の入口部分12aには、供給バルブ3を備える。また、排出マニホールド13の冷却水の出口部分13aには、排出バルブ14を備える。供給バルブ3、排出バルブ4(以下、バルブ3、4)を閉じることで、外部システムを経ることなくスタック1内部のみを冷却水が循環する。なお、バルブ3、4は、どちらか一方だけを配置してもよい。また、供給バルブ3を、入口部分12aのさらに上流側に設けてもよく、冷却水の供給を遮断できればよい。同様に、排出バルブ4を、出口部分13aのさらに下流側に設けてもよく、冷却水の排出を遮断できればよい。
【0016】
次に、このように構成したスタック1の低温起動時における起動制御の概略を説明する。
【0017】
冷却水として、冷却水経路10に不凍液を供給する。または、冷却水として水を用い、解凍手段を備えてもよい。冷却水は、スタック1に燃料の供給を開始する時点で、冷却水経路10内を冷却水が流通可能なものを用いる。
【0018】
ここでは、低温起動時には、スタック1の自己発熱による暖機運転を行う。スタック1に燃料ガスと酸化剤ガスを供給する。このとき、スタック1が低温のため十分な発電は望めないが、一部の燃料ガスと酸化剤ガスとが反応することによりスタック1で発電に伴う自己発熱が開始される。特に、スタック1の中央部セル17bでは、近傍の単位セル17も発熱しているので温度が上昇し易い。反対に端部セル17aでは、隣接する平板2には発熱がなく、また、外部の低温環境の影響を受け易いので、温度が上昇し難い。
【0019】
そこで、冷却水経路10に冷却水が満たされた状態で、バルブ3、4を閉じる。これにより、冷却水経路10は、スタック1内で閉流路となる。中央部セル17b内の冷却水の温度は上昇し、バイパス流路14および端部セル17a内の冷却水温度は上昇し難いので、冷却水経路10内に温度差が生じてスタック1内で冷却水の循環が生じる。
【0020】
中央部セル17bで冷却水の温度が上昇することにより、冷却水の体積膨張が生じ、冷却水流路11b内を略上方に向かって流れる。この温度上昇した冷却水は、排出マニホールド13に沿って流れてバイパス流路14a、14bに供給される。このとき、排出マニホールド13から冷却水流路11aに一部の冷却水が流れ込むこともあるが、冷却水流路11aに比べてバイパス流路14での圧力損失が小さいため、冷却水はバイパス流路14に優先して流れる。冷却水は、バイパス流路14内を重力により下に向かって流れる。このとき冷却水は周囲に熱を供給し、端部セル17aの温度を上昇させる。バイパス流路14を流れる際に温度低下した冷却水は、供給マニホールド12に沿って流れ、再び中央部に循環する。このとき、中央部セル17bの冷却水流路11bを、冷却水流路11aに比べて流路断面積が大きく、また圧力損失が小さくなるように形成したため、冷却水は優先的に冷却水流路11bを流れる。このように、冷却水は中央部セル17bとバイパス流路14の間を循環する。
【0021】
このとき、スタック1の自己発熱による中央部セル17bの温度上昇に比較して、端部セル17aの温度上昇は小さくなるので、積層方向に温度差が生じる。この温度差を抑制するように働く伝熱作用によって、冷却水内を熱が中央部から端部に向かって移動する。特に、熱は上方に向かって流れる性質があることから、中央部セル17b内を熱が上方に向かって流れる。このように、冷却水の循環方向と同方向に熱の伝達が行われるので、伝熱作用を向上することができる。
【0022】
これにより、中央部近傍から両端部に向かって熱および冷却水が循環する。その結果、スタック1の中央近傍の熱を端部に効率的に移動させることができ、積層方向の温度分布を抑制することができる。このように、スタック1の温度を均一化しながら暖機運転を行うことで、スタック1の暖機時間を短縮することができる。スタック1の温度が通常運転可能な程度に上昇したら、バルブ3、4を開き、スタック1の外部に備えた図示しないポンプを駆動させることにより、外部の冷却システムを含めた冷却水の循環を開始する。
【0023】
次に、本実施形態の効果について説明する。
【0024】
冷却水流路11を有した単位セル17を積層してなるスタック1を備えた燃料電池システムにおいて、冷却水流路11に冷却水を分配する供給マニホールド12と、冷却水流路11から冷却水を回収する排出マニホールド13を備える。また、供給マニホールド12への供給または、排出マニホールド13からの排出のうち少なくとも一方を選択的に遮断するバルブ3、4を備える。さらに、単位セル17のうち、少なくとも一方の積層方向端部に配置した端部セル17aのさらに積層方向外側に構成した、供給マニホールド12と排出マニホールド13とを連通するバイパス流路14を備える。バルブ3、4により、スタック1内への冷却水の流入または流出が遮断可能なので、スタック1内で発生した熱がスタック1外に持ち出され難く、スタック1自身の発熱量を有効に活用して暖機することができる。このとき、スタック1内で冷却水の循環及び伝熱が生じるために、スタック1の温度を均一化することができ、暖機時間を短縮することができる。また、積層方向端部の端部セル17aのさらに積層方向外側にバイパス流路14を備え、冷却水がこのバイパス流路14を流通することで、暖機時に冷却水流路11a内を流れる冷却水に外気が与える影響を抑制することができる。
【0025】
また、単位セル17のうち積層方向中央近辺に配置した中央部セル17b内の冷却水流路11bを、積層方向端部近辺に配置した端部セル17a内の冷却水流路11aに比較して、流路断面積が大きくなるように構成した。これにより、冷却水流路11bを流れる冷却水の流速が小さくなるので、流路抵抗を小さくして冷却水流量を多くすることができる。つまり、暖機時に、冷却水流路11bに優先的に冷却水を循環させることができる。
【0026】
さらに、中央部セル17bの冷却水流路11bを、端部セル17aの冷却水流路11aに比較して、流路長が短くなるように構成する。これにより、冷却水流路11bを流れる冷却水の圧力損失を小さくすることができるので、冷媒流量を多くすることができる。つまり、暖機時に、冷却水流路11bに優先的に冷却水を循環させることができる。
【0027】
また、バイパス流路14を端部セル17bの積層方向外側に配置した集電板内に構成する。これにより、流路制約の大きい単位セル17のセル面よりも、流路設計の自由度を増すことができるので、設計の最適化を図ることができる。
【0028】
次に、第2実施形態について説明する。スタック1の概略を、図3に示す。以下、第1実施形態と異なる部分を中心に説明する。
【0029】
スタック1を、積層方向中央部と端部でV字を描くように構成する。つまり、中央部を、端部に比較して、鉛直方向下側に構成する。ここでは、端部と中央部との間を、傾斜角が一定の斜面となるように構成するが、このかぎりではない。
【0030】
また、スタック1からの冷却水の排出を遮断するために、排出マニホールド13の出口部分13aに排出バルブ4を構成する。ここでは、供給バルブ3を省略するが、第1実施形態と同様に入口部分12aに配置してもよい。
【0031】
低温起動時にスタック1を暖機する必要があると判断された場合には、排出バルブ4を閉じる。自己発熱により中央部セル17bでは、冷却水温度が上昇する。このとき、熱は上方に伝わり易いので、排出マニホールド13内を一番低い中央部から高い端部に向かって熱が移動する。また、冷却水の温度上昇による体積膨張が生じ、温度上昇した冷却水が上方に向かって移動する。そのため、中央セル17bで暖められた冷却水は、斜め上方の端部に向かって排出マニホールド13内を移動する。
【0032】
このようにバイパス流路14近傍に移動した熱は、スタック1の端部の昇温を行う。また、中央部から循環した温度の高い冷却水は、端部に熱を供給しながら、重力によりバイパス流路14内を下に向かって流れる。
【0033】
このように、伝熱作用により、また、端部に設けたバイパス流路14内を温度上昇した冷却水が流れることにより、スタック1の端部が暖機される。バイパス流路14の下方部分では、熱の移動により冷却水温度が低下しているので、冷却水の体積が収縮し、また、重力により、冷却水は供給マニホールド12内を斜め下方の中央部に向かって流れる。
【0034】
次に、本実施形態の効果を説明する。以下、第1実施形態の効果と異なる効果について説明する。
【0035】
スタック1を、端部に比べて中央部が鉛直方向下側に位置するように構成する。排出マニホールド13をV字形状に構成する。これにより、排出マニホールド13内では、熱が上方に伝わり易い特性により、一番低い中央から高い端部へ移動する。このとき、伝熱作用により冷却水自身の移動がなくても端部の昇温を行うことができるが、ここでは、冷却水が循環するので、より伝熱効率を向上することができる。また、供給マニホールド12をV字形状に構成する。これにより、低温での粘度の高い冷却水を移動させるために、重力の効果を積極的に利用することができる。通常の一直線のマニホールド形状に構成した場合、積層方向が水平であると重力による冷却水への影響は、冷却水自身の水頭圧で広がる程度である。これに対して、V字形状に供給マニホールド13を用いた場合には、重力により冷却水の循環を促進することができる。
【0036】
次に、第3実施形態について説明する。スタック1の概略構成を図4に示す。以下、第2実施形態と異なる部分を中心に説明する。
【0037】
平板2に構成したバイパス流路14にポンプ5を備える。ここでは、スタック1の一端に、冷却水の入口部分12aと出口部分13aの両方を設け、これらと反対側の端部に備えたバイパス流路14bにポンプ5を備える。ポンプ5の設置位置は、流路の圧力損失が最も小さくなる位置とするのが好ましい。
【0038】
低温起動時にスタック1を暖機する必要があると判断された場合には、排出バルブ4を閉じる。また、ポンプ5を駆動することにより、冷却水の循環を促進させる。これにより、昇温した中央部分の冷却水を端部に積極的に循環させてスタック1全体を均一に暖機することで、スタック1の暖機時間を短縮する。
【0039】
また、中央部セル17bの近傍に加熱手段26を配置する。加熱手段26としては、例えば改質器や燃焼器、ヒータ等を用いる。ここでは、加熱手段26を中央部セル17b近傍に配置する。また、下側、ここでは供給マニホールド12側に配置する。暖機時に、加熱手段26から冷却水に熱を供給することにより、中央近傍の冷却水温度が上昇されることにより、暖機が促進される。また、冷却水流路11bの下方部分の冷却水が温められるので、さらに循環が促進されてスタック1内の温度均一化を促進することができる。特に、中央部セル17bの鉛直方向下側に配置することで、冷却水流路11b内を冷却水が下から上に向かって流れる循環を促進することができる。
【0040】
このようなスタック1の冷却水システムを制御するために、コントローラ7を備える。また、スタック1内の温度を検出する温度センサ21を備える。ここでは、二つの温度センサを備え、温度センサ21bをスタック1の中央部に、温度センサ21aを端部に設置する。温度センサ21としては、温度計、熱電対等を用いる。また、車輌の外気温度を検出する外気温度センサ22を備える。さらに、車輌の速度を検出する車速センサ23を備える。これらの検出手段の検出結果はコントローラ7に入力され、冷却システムの制御に用いられる。
【0041】
次に、本実施形態の制御方法について説明する。まず、停止時の冷却水の制御方法を図5に示したフローチャートを用いて説明する。
【0042】
通常運転時には、スタック1への冷却水の圧力、流量、温度を、図示しない外部のポンプや圧力調整弁、流量調整弁、熱交換器といった外部冷却システムにより制御する。そのため、冷却水のスタック1への入口部分12a、スタック1からの出口部13aは開となる。つまり、排出バルブ4は開となっている。また、スタック1内の温度を均一化するためのポンプ5は作動していない。このように、停止時の初期には、排出バルブ4が開、ポンプ5が停止した状態とする。イグニッションがOFFとなり、停止指令を検知したら本フローを開始する。
【0043】
ステップS1において、温度センサ21a、21bを用いてスタック1の温度を検出する。ステップS2において、停止時に、スタック1が低温環境下に晒されるか否かを判断する。ここでは、スタック温度が所定温度以下であるか否かを判断する。ここで所定温度は、スタック1が低温環境下に晒される可能性があるか否かの判断値である。例えば、端部に備えた温度センサ21aを用いてスタック1端部の所定時間の温度変化を検出する。外気温度の影響を受け易い端部の温度低下の勾配より、スタック1が低温環境下に晒されているか否かを推定する。スタック1の温度低下率が所定より大きい場合には、外気温度が低く、スタック1が低温環境下に晒される可能性が高いと判断する。ここで所定の温度低下率は、実験等により予め求めた、スタック1の暖機が必要となるような低温環境下での温度低下率のことである。なお、ここでは放熱により温度低下しやすい端部の時系列変化により判断するが、温度センサ21a、21bを用いて、スタック1の中央部に対して端部の温度がどれだけ低下したかを検出することにより判断することもできる。または、ステップS1において、外気温度センサ22を用いて外部温度を検出し、スタック1が低温環境下に晒されるかどうか判断してもよい。
【0044】
スタック1が低温環境下に晒される可能性があると判断された場合には、ステップS3において排出バルブ4を閉じる。これにより、外部の冷却システムへの冷却水の排出を遮断する。低温環境下では、バルブの凍結等が生じる可能性がある。そこで、予め車輌停止時に、再始動時の暖機運転が予測される場合には、冷却水をスタック1内で循環させる暖機制御に備えて排出バルブ4を閉じておくことで、排出バルブ4の凍結により暖機制御が妨げられるのを避けることができる。
【0045】
ステップS4において、スタック1内の温度分布の判定を行う。ステップS1で検出した中央部と端部の温度の差を算出し、これが所定値より大きいかどうかを判断する。所定値より大きい場合には、ステップS5に進み、ポンプ5を作動させて冷却水をスタック1内で循環させてスタック1の温度の均一化を図る。
【0046】
ステップS4、S5を繰り返し、スタック1の中央部と端部との温度差が所定値以下となったら、ステップS6に進み、ポンプ5を停止して停止動作を終了する。このとき、排出バルブ4は閉じた状態となっている。
【0047】
一方、ステップS2において、スタック1が低温環境下には晒されないと予測される場合には、ステップS7に進み、ステップS4と同様にスタック1内の温度分布を判定する。中央部と端部の温度差が所定値より大きい場合いはステップS8に進む。ステップS8において、排出バルブ4を閉じてポンプ5を作動させることにより、スタック1内に冷却水を循環させる。このように、低温環境下に晒されないと予測される場合にも、スタック1内の温度分布が大きいと判断された場合には、温度の均一化を図るためにポンプ5を作動させる。このとき、スタック1の温度が全体的に高い場合などには、排出バルブ4を開いて図示しない外部に配置したポンプを駆動することにより、外部の冷却システムから冷却水を循環させて、スタック1の温度低下を図ってもよい。ステップS7、S8を繰り返してスタック1の温度差が所定値内となったら、ステップS9に進み、排出バルブ4を開き、ポンプ5を停止して、停止動作を終了する。
【0048】
このように、停止時に一時的にポンプ5を作動させる。これにより、スタック1の運転を停止した際に、比較的温度が高く放熱性の悪い中央部の冷却を促進するとともに、スタック1内の温度の均一化を図ることができる。その結果、熱ひずみ等の影響を抑制することができ、スタック1の破損を抑制することができる。
【0049】
次に、起動時の冷却水の制御方法を図6のフローチャートを用いて説明する。車輌のドアの開錠、または、イグニッションがONとなったのを検知したら、本フローを開始する。
【0050】
ステップS11において、スタック1の温度を検出する。ここでは、温度センサ21bを用いてスタック1の中央部の温度を検出する。
【0051】
次に、ステップS12において、排出バルブ4の開閉判定を行う。つまり、冷却水を用いた暖機を行うかどうかを判断する。ここで、停止時にも暖機運転を行うかどうかの予測を行ったが(S2)、起動時にも行うことで、制御の確実性を増すことができる。ステップS11で検出したスタック1の温度が暖機を必要とする温度範囲であるか否かを判断する。なお、暖機が必要であるか否かの判断は、温度センサ21aの出力や、温度センサ21a、21bの平均出力を用いて行うこともできる。または、車輌が長期間停止していた場合には、スタック1の温度は外気温度をほぼ等しいと推定される。よって、スタック1内に冷却水を循環させる暖機制御を行うか否かを、外気温度センサ22の出力により判断してもよい。
【0052】
ステップS12において冷却水を用いた暖機が必要であると判断されたら、ステップS13において、排出バルブ4を閉じてスタック1内の冷却水経路10を閉流路とする。次にステップS14に進み、後述するような冷却水経路10の短絡制御を行うことにより、冷却水を用いたスタック1の暖機運転を行う。一方、ステップS12において、冷却水を用いた暖機は必要ないと判断された場合には、外部の冷却システムによりスタック1内の温度制御を行う。そこで、ステップS15に進み、排出バルブ4を開とすることにより、外部からの冷却水の供給を行える状態にしたら、起動制御を終了する。起動制御終了後には、外部の冷却システムを制御して通常の冷却水循環を行う。
【0053】
次に、ステップS14における冷却水経路10の短絡制御について、図7のフローチャートを用いて説明する。ここでは、スタック1内に冷却水を循環させることにより、スタック1を均一に暖機する。
【0054】
ステップS21において、ポンプ5を起動する。ステップS22において、スタック1の中央部の温度を温度センサ21bにより検出する。ここでは、中央部の温度を所定時間検知することにより、温度上昇率を検出する。ステップS23において、スタック1の中央部の温度上昇率が十分か否かを判断する。十分な温度上昇が生じていない場合には、ステップS24に進み、ポンプ5の流量を抑制する。なお、ポンプ5の流量が最小の場合には現状を維持する。これにより、スタック1の冷却効率が抑制されるので、スタック1の昇温が促進される。
【0055】
このようにステップS22〜24を繰り返して、ステップS23においてスタック1の暖機を行うのに十分な温度上昇が生じていると判断されたら、ステップS25に進む。ステップS25では、ポンプ5により循環する冷却水流量を増大する。ステップS26において、ポンプ流量が所定量α以上であるか否かを判断する。ポンプ流量が所定量αに満たなかったら、ステップS22に戻り、ステップS22〜S26を繰り返す。つまり、ステップS22〜S26では、スタック1の暖機を維持しつつ、ポンプ流量を所定量αまで増量する制御を行う。このように、スタック1の温度に応じてポンプ5の流量を調整することで、スタック1の暖機を維持しつつ、スタック1内の冷却水の循環を確保している。
【0056】
ステップS26において、ポンプ流量がα以上であると判断されたら、ステップS27に進む。ステップS27において、スタック1の温度差を検出する。ここでは、温度差として、温度センサ21a、21bを用いてスタック1の端部と中央部の温度差を検出する。つまり、スタック1内部の温度分布検出する。ステップS28において、この温度差が所定値以下であるかどうかを判断する。ここで、所定値は、例えば端部と中央部で暖機終了時間に所定以上の時間差が生じる可能性がある温度差であり、予め実験等により設定しておく。
【0057】
ステップS28において、温度差が所定値より大きいと判断された場合には、スタック1内の温度均一化が必要であると判断する。スタック1内の冷却水循環量を維持してスタック1の温度の均一化を進めるため、排出バルブ4の開度を維持したままステップS30に進む。一方、ステップS28において、温度差が所定値以下と判断された場合には、スタック1は略均一に暖機されていると判断してステップS29に進み、排出バルブ4の開度を大きくする。例えば、開度を所定値+A%だけ調整する。これにより、スタック1の外部を含む冷却水システムを循環する冷却水流量を増大することができる。つまり、ステップS28、S29においては、スタック1内の温度分布が大きい場合にはスタック1内の循環を維持して温度の均一化を促進し、温度分布が小さい場合には外部システムを循環する冷却水流量を増大することで、外部システムの暖機を促進する。ここでは、温度差の最も大きいと推定される中央部と端部の温度差に応じて排出バルブ4の開度を調整するので、暖機の最適化を行うことができる。
【0058】
ステップS28、S29において排出バルブ4の開度を設定したら、ステップS30において、スタック1の温度を検出する。ここでは、温度センサ21bを用いて中央部セル17bの温度を検出する。次にステップS31において、スタック1の温度が、負荷に対する所定温度範囲内であるか否かを判断する。ここで、暖機時には、スタック1の温度が過剰に高くなる可能性は低く、スタック1の温度が所定温度範囲内にないと判断された場合には、スタック1が所定温度範囲以下になっていると予測される。この場合には、スタック1の出力が低下する可能性があるので、これを防ぐために、外部を含めて循環する冷却水流量を抑制することによりスタック1の温度を回復する。つまり、ステップS32において、排出バルブ4を閉方向に調整する。例えば、開度を所定値―B%だけ調整してから、ステップS27に戻る。
【0059】
一方、ステップS31においてスタック1が所定温度範囲であれば、ステップS33に進み、排出バルブ4の開度が全開であるか否かを判断する。ここで、排出バルブ4の開度が全開ではない場合には、ステップS27に戻り、排出バルブ4が全開となるまで本制御を繰り返す。排出バルブ4の開度が全開である場合には、外部の冷却システムも含めて所定流量の冷却水を循環させる通常運転を行うことが可能であるので、ステップS34において、ポンプ5を停止してから冷却水を用いた暖機を終了し、通常の冷却水制御に移行する。
【0060】
このように、ステップS28、S29、S32において、スタック1の温度に応じて排出バルブ4の開度を制御することで、暖機の最適化を図ることができる。
【0061】
次に、車輌運転中におけるスタック1の温度分布を均一化するための運転時制御を図8に示したフローチャートを用いて説明する。本フローは、例えば一定時間毎に繰り返す。または、温度センサ21a、21bによりスタック1の温度差を検出し、スタック1内の温度差が所定値より大きくなった場合に行う。
【0062】
ステップS41において、スタック1の温度と車輌の走行速度を検出する。ここでは、温度センサ21bを用いてスタック1の中央部の温度を、車速センサ23を用いて車速を検出する。ステップS42において、スタック1の温度が所定温度より高いか否かを判断する。ここで、所定温度を、負荷に対するスタック1の最適温度または最適温度範囲とする。
【0063】
ステップS42において、スタック1の温度が所定温度より高い場合には、本制御を終了して通常の冷却循環を行う。ここで、排出バルブ4が全開でない場合があるときには、排出バルブ4を全開にしてから通常の冷却水制御に移行する。
【0064】
一方、ステップS42において、スタック1の温度が所定温度以下の場合には、スタック1の温度を均一化するための冷却水経路10の短絡制御を行うことができるかどうかを判断する。なお、ここで、スタック1が所定温度以下の場合のみに冷却水経路10の短絡を行うか否かを判断するのは、冷却水経路10の短絡時には、外部から供給される冷却水流量が抑制されてスタック1の冷却性能が低下するためである。
【0065】
ステップS44において、車速が十分に大きいかどうかを判断する。例えば、所定値を10km/hr等に設定し、これより大きい場合に車速が十分に大きいと判断する。車速が十分に大きい場合には、ステップS45に進む。ステップS45において、車速の変化方向が減速方向であるかどうかを判断する。つまり、ステップS44、S45において、車速が大きく、また減速方向に変化していると判断された場合には、スタック1に対する負荷の減少が予測されるため、スタック1からの発熱量の減少が予測される。そのため、スタック1の冷却性能が低下してもスタック1の温度を適温に維持できると予測される。そこで、ステップS46に進み、排出バルブ4を閉じることにより外部からの冷却水循環を遮断してから、ステップS47において、スタック1の温度均一化を行う冷却水経路10の短絡制御(図7)を行う。ただし、このときには図7に示したフローのステップS21、S27〜34のみを実行する。さらに、ステップS31において、スタック1が所定温度範囲内であるかどうかを判断する場合には、スタック温度が所定温度範囲より高いか否かを判断する。所定温度範囲より高いと判断された場合には、ステップS32ではなく、ステップS34に進んでポンプ5を停止してから冷却水経路10の短絡制御を終了する。なお、このとき排出バルブ4が全開ではない場合には、排出バルブ4を全開にしてから終了する。スタック1の温度が所定温度以下の場合には、ステップS33に進む。これにより、過剰な温度上昇によりスタック1が劣化するのを防ぐことができる。
【0066】
また、ステップS46において排出バルブ4を完全に閉じるのではなく、所定量だけ閉じてもよい。これにより、冷却性能の低下を抑制することができる。
【0067】
一方、ステップS44において、車速が十分に大きいと判断された場合でも、ステップS45において車速の変化方向が加速方向であれば、スタック1における発熱が増大するので本制御を終了して通常の冷却水循環を行う。
【0068】
また、ステップS44において、車速が十分に大きいと判断されなかった場合には、ステップS49に進み、車速変化が所定の範囲以内であるかどうかを判断する。車速変化が所定の範囲以内になかったら、ステップS52に進み、低車速状態の継続時間を示すカウントをリセットしてから、ステップS44に戻る。ステップS49において、車速変化が所定の範囲以内であったら、ステップS50に進み、低車速状態の継続時間を示すカウントを加算する。ステップS51において、このカウント数が、所定値より大きいかどうかを判断する。例えばカウント数が5分を示す値の場合を所定値とする。
【0069】
ここで、ステップS49〜S51においては、低車速状態が過渡的なものか継続的なものかを判断している。例えば、車速が10km/hrの状態が5分以上続いた場合に低車速状態が継続していると判断する。これは、渋滞中などの車輌状態を示している。このような場合には、スタック1の負荷が急激に増加する可能性が低いので、冷却水経路10の短絡制御を行うことができる。よって、ステップS46に進み排出バルブ4を閉じてから、ステップS47において冷却水経路10の短絡制御(図7)を開始する。
【0070】
このように、運転中には、スタック1の負荷の低減が予測される場合に冷却水経路10の短絡制御を行うことで、必要な冷却性能を維持しつつ、スタック1の温度差を低減することができる。
【0071】
次に、本実施形態の効果について説明する。以下、第2実施形態と異なる効果のみを説明する。
【0072】
供給マニホールド12と、排出マニホールド13と、バイパス流路14とを含んで形成される循環流路に、冷却水を循環させるポンプ5を備える。ポンプ5を用いて冷却水を循環させることで、温度上昇が比較的速い中央部から端部に冷却水を循環することができ、スタック1の温度を均一化することができる。
【0073】
スタック1の温度を検出する温度センサ21を備え、遮断手段として、流路断面を可変とする排出バルブ4を備える。なお、供給バルブ3を備えても良い。スタック1の温度に基づいて、排出バルブ4の開度を制御する。これにより、スタック1内の温度上昇を維持しつつ、外部の冷却システムに冷却水を循環させることができるので、燃料電池システムを効率良く暖機することができる。また、スタック1の温度が過度に上昇するのを防ぐため、高温による劣化を避けることができる。
【0074】
また、スタック1の温度に基づいて、ポンプ5により循環させる冷却水流量を制御することにより、スタック1の温度上昇を維持しつつ、冷却水流量を確保することができるので、スタック1の暖機と温度均一化を同時に行うことができる。
【0075】
さらに、温度センサ21bにより、スタック1の積層方向中央近辺の温度を検出する。このように、温度の上昇し易い中央部の温度に応じて排出バルブ4やポンプ5を制御することで、暖機の最適化を行うことができる。
【0076】
または、温度センサ21a、21bにより、スタック1の積層方向中央近辺と、積層方向端部近辺の温度差を検出する。このように、スタック1の積層方向中央近辺と、積層方向端部近辺の温度差に応じて、排出バルブ4やポンプ5を制御することで、スタック1内の温度分布を考慮して暖機を行うので、偏りなく、早期に暖機を行うことができる。ここでは、温度差が最も大きいと推定される端部と中央部の温度を直接検出することにより、確実にスタック1の温度を均一化することができ、暖機時間を短縮することができる。
【0077】
なお、本実施形態では、車輌運転中には車速を検知することにより、スタック1の温度均一化の制御を行うことが可能な状態か否かを判断しているが、この限りではない。例えば、アクセルペダルと車速等から推定される要求負荷を検出することによりスタック1の温度均一化の制御を行うことが可能か否かを判断してもよい。このときは、高負荷から低負荷へ変更する場合、低負荷状態か継続されている場合に冷却水経路10の短絡制御を実行する。このように、スタック1に要求される負荷に応じて判断するので、要求される冷却性能に応じて判断することができ、冷却水経路10の短絡制御時に冷却不足となるのを抑制することができる。または、外部からの交通情報によりスタック1の温度均一化の制御を行うことが可能な状態か否かを判断することもできる。外部からの交通情報から、要求負荷を推定することができるので、応答性のよい制御を行うことができる。
【0078】
また、車輌運転時に、車速が所定以下の状態が所定時間継続した場合、つまり、スタック1の要求負荷が比較的低く冷却要求が高くない場合には、スタック1内の冷却水のみを循環させて放熱冷却を図ることもできる。これにより、スタック1に冷却水を供給するための、外部に設けた図示しないポンプに比較して、小型のポンプ5のみを駆動するだけで冷却を行うことができるので、冷却を行うために消費されるエネルギー量を抑制することができる。
【0079】
さらに、第1実施形態のように直線的なマニホールド12、13を用いたスタック1に対しても、本実施形態を適用することができる。
【0080】
次に、第4実施形態について説明する。ここで用いるスタック1の概略構成を図9に示す。以下、第1実施形態と異なる部分を中心に説明する。
【0081】
マニホールド12、13の、セル積層方向中央部にポンプ5を備える。ここでは、鉛直方向上側に配置したマニホールド、つまり排出マニホールド13の中央部分にポンプ5を備える。ポンプ5は、鉛直方向下方から積層方向両端方向に向かって冷却水を循環させる。つまり、中央部セル17bの冷却水流路11bで昇温した冷却水を、ポンプ5によって積極的に積層方向端部に送る。これにより、スタック1の温度を均一化することができる。また、冷却水を中央部から両端部に対称的に循環させるので、両端部の温度を均一化することができる。
【0082】
本実施形態における冷却システムの制御は、第3実施形態と同様とする。ただし、供給バルブ3は、排出バルブ4の開度の制御と同様に制御する。なお、第2、3実施形態と同様に、排出バルブ4のみを備えても良い。また、供給バルブ3のみを備えても良い。また、第3実施形態同様に、マニホールド12、13をV字形状に構成しても良い。
【0083】
次に、第5実施形態について説明する。ここで用いるスタック1の概略構成を図10に示す。以下、第1実施形態と異なる部分を中心に説明する。
【0084】
平板2に構成したバイパス流路14にポンプ5を備える。ここでは、スタック1の一端に冷却水の入口部分12aと出口部分13aを設け、これらと同じ側の端部に備えたバイパス流路14aに第1ポンプ5aを、反対側の端部に備えたバイパス流路14bに第2ポンプ5bを備える。第2ポンプ5bとしては、逆転可能なポンプを用いる。第1ポンプ5aおよび第2ポンプ5b(以下、ポンプ5a、5b)の設置位置は、流路の圧力損失が最も小さくなる位置とするのが好ましい。
【0085】
低温起動時にスタック1を暖機する必要があると判断された場合には、バルブ3、4を閉じ、ポンプ5a、5bを駆動することにより、スタック1内に冷却水を循環させる。これにより、昇温した中央部分の冷却水を端部に積極的に循環させることができるので、スタック1全体を均一に暖機することができ、暖機時間を短縮することができる。
【0086】
また、スタック1の内部温度検出手段として、温度センサ21a、21bの替わりに、スタック1内全体の温度分布を検出する温度センサ21cを備える。例えば、スタック1内に積層方向に複数の温度センサを備え、これらの検出結果からスタック1内の温度分布を検出するようにしてもよい。
【0087】
次に、本実施形態の制御について説明する。停止時および通常時の制御は、第3実施形態に示したフローに従って行う。なお、供給バルブ3の開度を、排出バルブ4の開度と同様に制御する。また、ポンプ5a、5bの駆動はポンプ5の駆動と同様に制御する。このときの第2ポンプ5bは正転運転を行う。ここで、ポンプ5a、5bは、それぞれバイパス流路14a、14b内を、排出マニホールド13から供給マニホールド12に向かって冷却水を送る運転を正転運転とする。つまり、冷却水を鉛直下方に向かって流す回転を正方向の回転とする。停止時および通常運転時の制御では、ポンプ5a、5bを正転運転により駆動する。
【0088】
一方、起動時には、第3実施形態と同様に、図6のフローを実行する。このとき、ステップS14における冷却水経路10の短絡制御を、図11に示すようなフローに従って行う。
【0089】
ステップS61において、ポンプ5a、5bを起動する。第1ポンプ5aを正転運転、第2ポンプ5bを逆転運転とする。第1ポンプ5aを正転運転、第2ポンプ5bを逆転運転とすることで、冷却水は排出マニホールド13→バイパス流路14a→供給マニホールド12→バイパス流路14bの順に循環する。低温環境下での起動時には、起動直後には冷却水の粘性も高く循環し難いため、冷却水流路11に比較して流路抵抗の小さなマニホールド12、13およびバイパス流路14に冷却水を循環させる。
【0090】
次に、ステップS62〜S66においては、ステップS22〜26と同様に、スタック1の暖機状態を維持しつつ、ポンプ5の流量をαまで増大させる。ステップS66において、ポンプ流量がα以上であると判断されたら、ステップS67に進む。ステップS67では、第2ポンプ5bを正転運転に切り替える。なお、このとき第1ポンプ5aと第2ポンプ5bの負荷は同じとする。これにより、排出マニホールド13の中央部で、各ポンプ5a、5bから流れ出した冷却水が衝突して圧力が高くなる。また、中央部は、端部を含めるその他の部分より高温となっているので、中央部セル17bの冷却水流路11b内の冷却水粘性抵抗は、その他の冷却水流路11aの冷却水粘性抵抗より小さくなっている。さらに冷却水流路11bの流路抵抗は、冷却水流路11aの流路抵抗より小さい。これにより中央部セル17bの冷却水流路11bに冷却水が流れる。その結果、中央部セル17bを通って両端に向かう、冷却水の二つの循環ループが形成される。
【0091】
次に、ステップS68に進み、熱を取り出す部分(以下、熱源)の温度変化を検出する。温度センサ21cにより熱源の温度を検出する。ここで、熱源は、冷却水流路11を流れる際に冷却水温度が上昇する部分である。言い換えれば、ポンプ5a、5bにより送り出された冷却水が衝突して流れ込む冷却水流路11を備えた単位セル17のことである。なお、後述するステップS70における熱源移動を行っていない場合には、熱源は中央部となる。
【0092】
ステップS69において、熱源の温度低下の程度を判断する。例えば、熱源の所定時間の温度低下量を検出する。この温度低下量が所定より大きい場合には、ステップS70に進み、熱源移動を行う。
【0093】
ここで、スタック1の運転中に特定の部分、例えば中央部のみを熱源とした場合、中央部で温度低下を招いて出力が低下する可能性がある。そこで、温度低下量が許容範囲より大きくなった場合には、熱を取り出す位置をずらすことにより、特定の部分の温度が過剰に低下するのを避ける。
【0094】
ステップS70では、ポンプ5a、5bの出力の変更を行う。第1ポンプ5aの出力と、第2ポンプ5bの出力の大きさを変えることで、熱源位置を移動させる。ここでは、スタック1内の温度分布を検出する温度センサ21cにより、スタック1内で温度の高い箇所を検出し、その位置が熱源となるようにポンプ5a、5bを制御する。このように熱源を移動したら、ステップS71に進む。一方、ステップS69において、熱源の温度低下率が許容範囲内である場合には、ステップS70の熱源移動の動作を省略し、ステップS71に進む。
【0095】
ステップS71〜S78では、第3実施形態における図7のフローのステップS27〜S34と同様の制御を行う。なお、ステップS76でバルブ3、4の開度を調整した後。また、ステップS77でバルブ3、4が全開ではないと判断された場合には、ステップS68に戻り、熱源移動の制御を行う。また、ステップS71で検出する端部と中央部の温度差は、温度センサ21cにより検出することができる。このとき、温度差をスタック1の最高温度と最低温度との差としてもよい。
【0096】
なお、ここではステップS69において、熱源移動を行うか否かは、スタック1の熱源温度の時系列変化に従って判断している。これに対して、スタック1の温度分布の変化に応じて行っても良い。この場合には、温度センサ21cを用いて、熱源と端部との温度差を求める。この温度差の時系列変化を検出することで、所定時間内に熱源から端部に移動した熱量を算出することができる。この熱量が過剰に大きい場合には熱源温度が過度に低下する恐れがあると判断して、熱源の移動を行うためにステップS70に進む。移動した熱量が許容範囲内の場合には、熱源移動を行わずに、ステップS71に進む。なお、この移動する熱量の許容範囲は、熱移動と暖機速度とのバランスであり、例えば熱移動量が熱源部の発熱量以上とならない範囲とする。
【0097】
なお、通常時の冷却水経路10の短絡制御は、図7に示したフローに従って行う。または、図11に示したフローのステップS67〜S78に従っても良い。ただし、ステップS75においては、スタック1の温度が所定温度範囲より高いか否かを判断する。高いと判断された場合にはステップS78に進み、ポンプ5を停止し、バルブ3、4が全開でなければ全開にしてから通常の冷却水制御を行う。スタック1の温度が所定温度以下の場合には、ステップS77に進む。
【0098】
次に、本実施形態の効果について説明する。以下、第1実施形態と異なる効果のみを説明する。
【0099】
バイパス流路14a、14bを、端部セル17bのさらに積層方向外側にそれぞれ配置し、バイパス流路14a、14bそれぞれに、ポンプ5a、5bを備える。これにより、ポンプ5a、5bの駆動によるポンプ自身の発熱により、温度の上昇しにくい端部の暖機を促進することができる。また、ポンプ5a、5bにより、冷却水を中央部から両方の端部に向かって循環させることができるので、両端部の暖機を同様に行うことができ、暖機時間を短縮することができる。
【0100】
また、ポンプ5のうち少なくとも一方、ここでは第2ポンプ5bに、冷却水の循環方向を正逆転できるポンプを用いる。これにより、冷却水温度が低い時点では、流路面積の大きいマニホールド12、13及びバイパス流路14を流れる一つの循環ループを構成することができる。その結果、粘性の高い状態でも、ポンプ5の負荷を大きくすることなく冷却水流量を維持できる。また、スタック1の温度分布を抑制しながら暖機する場合には、積層方向中央部で冷却水がぶつかる二つの循環ループを形成するようにポンプ5a、5bを制御することができ、スタック1全体を均一に暖機することができる。
【0101】
スタック1の温度を検出する温度センサ21を備え、スタック1の温度に基づいて、ポンプ5により循環させる冷却水流量を制御する。ここでは、スタック1の温度に応じて熱源移動を行う。例えば、スタック1内の温度が高い部分を熱源とするように、ポンプ5a、5bを制御する。これにより、さらにスタック1全体の温度を均一化すると共に、部分的に反応に適した温度範囲から外れるのを防ぐことができるので、高出力を維持することができる。ここでは、温度センサ21cにより、スタック1の熱源の温度変化を検出することにより、熱源移動を行うか否かを判断する。これにより、熱源温度が過剰に低下するのを防ぐことができる。また、温度センサ21cにより、スタック1の熱源と、積層方向端部近辺の温度差を検出することにより、熱源移動を行うか否かを判断してもよい。熱源から端部へ移動した熱量が過剰に大きい場合には、熱源を移動することにより、熱源温度の過度の低下を防ぐことができる。
【0102】
なお、図11においては、スタック1の温度に応じてポンプ5を制御することにより温度に応じて熱源を設定してから(S68〜70)、スタック1の温度に応じてバルブ3、4を制御することにより温度の均一化を維持しつつ、外部を循環する冷却水流量を調整している(S61〜S63、S66)。つまり、ポンプ5a、5bの制御とバルブ3、4の制御の直列制御を行っている。これに対して、コントローラ7を複数のコントローラから構成する場合等には、図12に示すような並列制御が可能となる。つまり、ステップS68〜S70における熱源移動を行うためのポンプ5a、5bの制御と、ステップS71〜S73におけるバルブ3、4の開度制御を並列して行う。ステップS67において、ポンプ5a、5bを正転運転に設定したら、ポンプ5a、5bおよびバルブ3、4の調整を平行して行い、ステップS74でスタック1の温度の検討を行う。これにより、図11と同様の制御を短時間で行うことができる。
【0103】
次に、第6実施形態について説明する。ここで用いるスタック1の概略構成を図13に示す。以下、第5実施形態と異なる部分を中心に説明する。
【0104】
バイパス流路14を迂回するバイパス流路15を備える。ここでは、バイパス流路14bを迂回するバイパス流路15を備える。バイパス流路15は、マニホールド12、13の端部を連結する流路である。平板2のさらに積層方向外側に構成する。
【0105】
バイパス流路15には感温弁16を備える。感温弁16を、熱膨張係数の高い素材、または高温時の形状を記憶する形状記憶合金を用いて形成する。これにより、高温時にはバイパス流路15は閉となり、低温時にはバイパス流路15は開となる。よって、感温弁16により、通常時にはバイパス流路15は閉となるため、冷却水は流れない。これにより、通常時に余計な冷却水流量を増大することにより燃費が悪化するのを防ぐことができる。
【0106】
暖機運転時には、冷却水は端部の冷却水流路11aに流れ難く、冷却水経路10の平均流路断面が通常運転時より小さくなるため、スタック1内の冷却水圧力が増大する。そこで、通常時には冷却水が循環しないバイパス流路15を設け、暖機運転時にこのバイパス流路15に冷却水を循環させる。これにより、暖機時にスタック1内の冷却水経路10の圧力が上昇するのを抑えることができる。
【0107】
このとき、バイパス流路14内の冷却水圧力が小さくなるため、ポンプ5a、5bを高速に運転することができる。その結果、ポンプ5a、5bで生じる発熱量を増大することができ、冷却水温度をさらに上昇させて、スタック1の暖機時間を短縮することができる。また、ポンプ5a、5bを備えたバイパス流路14に平行にバイパス流路15を備えることで、低温時のバイパス流路14の冷却水圧力を抑制することができる。その結果、低温で粘度が高くなりやすい冷却水の循環流量を達成するために、ポンプ5a、5bに過負荷がかかるのを防ぐことができる。
【0108】
なお、バイパス流路15の構成はこのかぎりではない。例えば、図14に示すように、平板2内に構成してもよい。図14では、バイパス流路14をセル面の対角線に沿って構成し、これに沿ってさらにバイパス流路15を構成する。このように、バイパス流路15を平板12内に構成することで、スタック1の積層方向のサイズが大きくなるのを防ぐことができる。
【0109】
次に、第7実施形態について説明する。ここで用いるスタック1の概略構成を図15に示す。以下、第5実施形態と異なる部分を中心に説明する。
【0110】
ここでは、温度センサ21a、21bの替わりに、出力検出手段としての電圧センサ24を備える。電圧センサ24として、スタック1からの出力を検出する電圧センサ24a、単位セル17のセル電圧を検出する電圧センサ24bを備える。ここで、電圧センサ24bは、端部セル17a、中央部セル17bを含めた数箇所のセル電圧を検出することにより、セル電圧分布を検出するものでもいいし、隣接する複数の単位セル17のセル電圧を検出するものでもよい。
【0111】
本実施形態では、スタック1自身の発電により発生する熱量に応じて、バルブ3、4およびポンプ5を制御する。ここでは、スタック1の出力に応じて、スタック1で生じる熱量を推定し、温度上昇率を推定する。
【0112】
まず、電圧からスタック1の熱量を算出する方法について説明する。
【0113】
電圧センサ24aにより、実際のスタック1の出力を算出する。この実際の出力を、燃料利用率、運転温度(例えば、80℃)、運転圧力から算出される理論出力と比較する。次に、その差から冷却量を差し引いた値が発熱により消費された量となる。なお、冷却量は、スタック1内を循環する冷却流量と、冷却水の温度とから算出することができる。発熱により消費された量から発熱量を算出し、これとスタック1の熱容量を用いてスタック1の温度変化に換算する。これにより、スタック1の温度上昇率を推定することができる。
【0114】
また、電圧センサ24bを用いて検出した単位セル17のセル電圧から、発熱量を推定し、単位セル17の温度上昇率を推定することができる。ただし、この場合には各単位セル17への燃料の分配割合等を考慮して理論セル電圧を算出する必要がある。
【0115】
このように電圧からスタック1で生じる熱量を推定することができる。そこで、起動時の冷却システムの制御を図16に示すフローチャートに従って行う。以下、図6に示したフローと異なる部分を説明する。
【0116】
ステップS11、S12においては、スタック1の温度を検知してバルブ3、4の開閉判定を行ったのに対して、本実施形態では、ステップS81、S82では、スタック1の出力を検知して排出バルブ4の開閉判定行う。ステップS81で、電圧センサ24aを用いてスタック1の出力電圧を検出する。ステップS82において、スタック1の出力電圧から、スタック1に暖機を行う必要があるか否かを判断する。低温時にスタック1に燃料を供給しても、スタック1の電圧は上がり難いため、電圧の上昇率を検出することで、暖機が必要であるか否かを判断することができる。暖機が必要であると判断された場合には、ステップS83においてバルブ3、4を閉じ、ステップS84において冷却水経路10の短絡制御を行う。一方、暖機が必要ないと判断された場合には、ステップS85でバルブ3、4を開としてから、本制御を終了して通常の冷却水制御を行う。
【0117】
次に、暖機時の冷却水経路10の短絡制御を、図17のフローチャートを用いて説明する。以下、図11のフローと異なる部分を中心に説明する。
【0118】
ステップS91においてポンプ5を起動する。ステップS92において、電圧センサ24bを用いて、スタック1の中央部セル17bのセル電圧を検出する。これにより、中央部セル17bの温度上昇率を算出する。ステップS93において、この温度上昇率から、スタック1が暖機され昇温している状態を維持しているか否かを判断する。ステップS94〜S96においてステップS64〜S66と同様に、ポンプ流量をαまで増大するようにポンプ流量を制御する。
【0119】
つまり、ここでは、スタック1の発熱量、言い換えればスタック1の電圧に応じて、ポンプ5により送られる冷却水流量を制御する。スタック1の中央部と端部とで熱交換を行うためのポンプ5による循環により、中央部近傍の出力が低下しない場合には、さらにポンプ5による循環量を増加させることが可能である、逆に、出力低下が発生する場合には、ポンプ5により循環する冷却水流量を抑制する必要がある。
【0120】
次に、ステップS97において、ポンプ5a、5bを正転に変更したら、ステップS98において熱源のセル電圧を検出する。セル電圧の所定時間の変化を検出することにより、所定時間のセル温度変化を算出する。ステップS99において、熱源の温度が過剰に低下しているか否かを判断し、過剰に低下していると判断された場合に、ステップS100において熱源移動の制御を行う。例えば、セル温度が低下していると判断される場合には、熱源のセル電圧が低下する可能性があるので、ステップS100において熱源移動の制御を行う。
【0121】
なお、ここでは中央部セル17bのセル電圧が低下した際に、熱源を移動させると判断するがこの限りではない。例えば、熱源と端部セル17aのセル電圧を検出し、この電圧差を算出する。所定時間でこの電圧差が急激に小さくなった場合には、熱源から端部セル17aに急激に熱が移動して、熱源の出力が低下している可能性がある。よって、熱源と端部の電圧差の変化率に応じて、熱源を移動するか否かを判断することもできる。
【0122】
次に、ステップS101において、中央部セル17bと端部セル17aのセル電圧差を検出する。ステップS102において、セル電圧差が所定より大きいか否かを判断する。セル電圧差が大きい場合には、中央部と端部に温度差が生じている可能性があるので、バルブ3、4の開度を維持する。一方、セル電圧差が所定以下の場合には、中央部と端部の温度差はないと判断して、ステップS103において、バルブ3、4の開度を大きくする(例えば、+A%)ことにより、外部の冷却システムを含めた冷却水の循環を促進する。
【0123】
ステップS104において、電圧センサ24aを用いてスタック1の出力を検出する。ステップS105においてスタック1の出力が所定範囲であるか否かを判断する。スタック1の出力が所定範囲に満たない場合には、スタック1の冷却が過剰であると判断して、ステップS106においてバルブ3、4を閉じる方向に作動させてステップS98に戻る。なお、スタック1の出力低下の原因は、冷却過剰によるスタック1の温度低下のほか、冷却不足によるスタック1の温度が過剰に上昇した場合も考えられるが、暖機時の冷却水経路10の短絡制御ではスタック1の温度が過剰になる可能性が低いためこれを無視することができる。
【0124】
一方、スタック1の出力が適切である場合には、ステップS107において、バルブ3、4の開度が全開であるか否かを判断する。全開ではない場合には、ステップS98に戻り、本制御を繰り返す。一方、バルブ3、4が全開の場合には、通常の冷却水の流通状態となっているので、ステップS108においてポンプ5a、5bを停止してから、通常の冷却制御に移行する。
【0125】
なお、ここでは暖機時の冷却水経路10の短絡制御を説明した。これに対して、運転時には、ステップS105において、スタック1の出力が所定範囲ではないと判断されたら、ステップS108に進み、ポンプ5a、5bを停止して通常の冷却制御に戻る。スタック1の出力が所定範囲の場合には、ステップS107に進み、バルブ3、4が全開か否かの判断を行う。これにより、スタック1の出力低下を抑制することができる。
【0126】
また、本実施形態では、電圧に応じてスタック1の温度変化を推定したが、電流値に応じて推定することもできる。スタック1に電流センサ25を備え、温度推定手段が電流から温度を推定するためには、図18に記載したような電流密度に対する電圧効率(実効率)がスタック1ごとに運転圧力や温度、ガスの利用率により一定の関係を示すという特性を利用する。図18から電流を電圧に換算し、前述した電圧から温度を算出する方法で電流から温度に換算可能である。
【0127】
なお、本実施形態は、第3実施形態に対しても同様に適用することができる。つまり、第3実施形態において、スタック1の温度に応じてポンプ5、排出バルブ4を制御するのに対して、電圧や電流に応じた制御を行うことができる。
【0128】
次に、本実施形態の効果を説明する。以下、第5実施形態の効果とは異なる効果のみを説明する。
【0129】
スタック1の発熱量に応じて、ポンプ5a、5bとバルブ3、4の少なくとも一方を制御する。発熱量よりスタック1の温度上昇率を推定することができるので、第1〜6実施形態と同様の制御を行うことができる。
【0130】
スタック1の出力電圧またはセル電圧または出力電流を検出する出力検出手段(電圧センサ24、電流センサ25)を備える。これにより、スタック1の出力電圧またはセル電圧または出力電流から発熱量を推定することができるので、第1〜6実施形態と同様の制御を行うことができる。
【0131】
スタック1の積層方向中央近辺のセル電圧に基づいて、スタック1の発熱量を推定する。上昇率が一番大きいと推定される部分の電圧に応じて冷却システムを制御するので、暖機を効率的に行うことができる。または、積層方向中央近辺のセル電圧と積層方向端部近辺のセル電圧との差に基づいて、スタック1の発熱量を推定する。これにより、電圧差が最も大きいと推定される部分の電圧差に応じてスタック1の暖機を行うので、効率的にスタック1の温度を均一化しつつ、暖機を行うことができる。
【0132】
なお、ここではバイパス流路14を平板2に形成したが、この限りではない。例えば、スタック1の端部のバイパス流路14を図示しない電極板内に構成してもよい。これにより、燃料電池端部の冷却水の流路が電極板内にあるので、流路制約の大きいセル面よりも流路設計やポンプレイアウトの自由度を増すことができ、設計の最適化を図ることができる。
【0133】
このように、本発明は、上記実施の形態に限定されるわけではなく、特許請求の範囲に記載の技術思想の範囲内で様々な変更が為し得ることは言うまでもない。
【図面の簡単な説明】
【図1】第1実施形態に用いるスタックの概略構成図である。
【図2】第1実施形態に用いる単位セルに形成する冷却水流路の概略図である。
【図3】第2実施形態に用いるスタックの概略構成図である。
【図4】第3実施形態に用いるスタックの概略構成図である。
【図5】第3実施形態におけるシステム停止時のフローチャートである。
【図6】第3実施形態におけるシステム起動時のフローチャートである。
【図7】第3実施形態における冷却水経路の短絡制御のフローチャートである。
【図8】第3実施形態における車輌運転時のフローチャートである。
【図9】第4実施形態に用いるスタックの概略構成図である。
【図10】第5実施形態に用いるスタックの概略構成図である。
【図11】第5実施形態における冷却水経路の短絡制御のフローチャートである。
【図12】第5実施形態における冷却水経路の短絡制御の別例のフローチャートである。
【図13】第6実施形態に用いるスタックの概略構成図である。
【図14】第6実施形態に用いるスタックの別例の概略構成図である。
【図15】第7実施形態に用いるスタックの概略構成図である。
【図16】第7実施形態におけるシステム起動のフローチャートである。
【図17】第7実施形態における冷却水経路の短絡制御のフローチャートである。
【図18】電流−電圧特性を示す図である。
【符号の説明】
1 スタック
3 供給バルブ(遮断手段、調整弁)
4 排出バルブ(遮断手段、調整弁)
5 ポンプ
11 冷却水流路(冷媒流路)
12 供給マニホールド
13 排出マニホールド
14 バイパス流路
17 単位セル
17a 端部セル
17b 中央部セル
21 温度センサ
24 電圧センサ
25 電流センサ

Claims (13)

  1. 冷媒流路を有した単位セルを水平方向に複数積層してなる燃料電池スタックを備えた燃料電池システムにおいて、
    前記単位セルの積層方向に設けられ、前記冷媒流路に冷媒を分配する供給マニホールドと、
    前記単位セルを挟んで前記供給マニホールドと反対側に設けられ、前記冷媒流路から冷媒を回収する排出マニホールドと、
    前記供給マニホールドへの供給または、前記排出マニホールドからの排出のうち少なくとも一方を選択的に遮断する遮断手段と、
    前記単位セルのうち、少なくとも一方の積層方向端部に配置した単位セルのさらに積層方向外側に構成した平板と、
    前記平板の内部に設けられ、前記供給マニホールと前記排出マニホールドとを連通し、前記冷媒流路よりも圧力損失が小さいバイパス流路と、を備えることを特徴とする燃料電池システム。
  2. 前記供給マニホールドと、前記排出マニホールドと、前記バイパス流路とを含んで形成させる循環流路に少なくともひとつ設けられ、冷媒を循環させるポンプを備える請求項1に記載の燃料電池システム。
  3. 前記ポンプのうち少なくともひとつは、冷媒の循環方向を正逆転できるポンプである請求項2に記載の燃料電池システム。
  4. 前記単位セルのうち積層方向中央近辺に配置した単位セル内の冷媒流路を、積層方向端部近辺に配置した単位セル内の冷媒流路に比較して、流路断面積が大きくなるように構成した請求項1からのいずれか一つに記載の燃料電池システム。
  5. 前記単位セルのうち積層方向中央近辺に配置した単位セル内の冷媒流路を、積層方向端部近辺に配置した単位セル内の冷媒流路に比較して、流路長が短くなるように構成した請求項1からのいずれか一つに記載の燃料電池システム。
  6. 前記燃料電池スタックの温度を検出する温度検出手段を備え、
    前記遮断手段として、流路断面を可変とする調整弁を備え、
    前記燃料電池スタックの温度に基づいて、前記調整弁の開度を制御する請求項1からのいずれか一つに記載の燃料電池システム。
  7. 前記燃料電池スタックの温度を検出する温度検出手段を備え、
    前記燃料電池スタックの温度に基づいて、前記ポンプにより循環させる冷媒流量を制御する請求項2または3に記載の燃料電池システム。
  8. 前記温度検出手段により、前記燃料電池スタックの積層方向中央近辺の温度を検出する請求項またはに記載の燃料電池システム。
  9. 前記温度検出手段により、前記燃料電池スタックの積層方向中央近辺と、積層方向端部近辺の温度差を検出する請求項またはに記載の燃料電池システム。
  10. 前記燃料電池スタックの発熱量に応じて、前記ポンプと前記遮断手段の少なくともひとつを制御する請求項2または3に記載の燃料電池システム。
  11. 前記燃料電池スタックの出力電圧またはセル電圧または出力電流を検出する出力検出手段を備え、
    前記燃料電池スタックの出力電圧またはセル電圧または出力電流から発熱量を推定する請求項10に記載の燃料電池システム。
  12. 前記燃料電池スタックの積層方向中央近辺のセル電圧に基づいて、前記燃料電池スタックの発熱量を推定する請求項11に記載の燃料電池システム。
  13. 積層方向中央近辺のセル電圧と積層方向端部近辺のセル電圧との差に基づいて、前記燃料電池スタックの発熱量を推定する請求項11に記載の燃料電池システム。
JP2003080219A 2003-03-24 2003-03-24 燃料電池システム Expired - Fee Related JP4815733B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003080219A JP4815733B2 (ja) 2003-03-24 2003-03-24 燃料電池システム
US10/550,609 US7556873B2 (en) 2003-03-24 2004-03-10 Fuel cell system
PCT/JP2004/003146 WO2004086546A2 (en) 2003-03-24 2004-03-10 Fuel cell cooling system
EP04719103A EP1606850B1 (en) 2003-03-24 2004-03-10 Fuel cell cooling system
DE602004027608T DE602004027608D1 (de) 2003-03-24 2004-03-10 Kühlsystem für eine brennstoffzelle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003080219A JP4815733B2 (ja) 2003-03-24 2003-03-24 燃料電池システム

Publications (2)

Publication Number Publication Date
JP2004288509A JP2004288509A (ja) 2004-10-14
JP4815733B2 true JP4815733B2 (ja) 2011-11-16

Family

ID=33094863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003080219A Expired - Fee Related JP4815733B2 (ja) 2003-03-24 2003-03-24 燃料電池システム

Country Status (5)

Country Link
US (1) US7556873B2 (ja)
EP (1) EP1606850B1 (ja)
JP (1) JP4815733B2 (ja)
DE (1) DE602004027608D1 (ja)
WO (1) WO2004086546A2 (ja)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4854237B2 (ja) 2004-10-22 2012-01-18 日産自動車株式会社 固体電解質型燃料電池及びスタック構造体
JP4726186B2 (ja) * 2004-11-25 2011-07-20 本田技研工業株式会社 燃料電池スタック
WO2006067971A2 (en) 2004-12-21 2006-06-29 Nissan Motor Co., Ltd. Startup method for fuel cell stack structure, temperature control method for fuel cell stack structure, and fuel cell stack structure
JP4924787B2 (ja) * 2005-04-26 2012-04-25 日産自動車株式会社 燃料電池スタック構造体
JP5162808B2 (ja) * 2005-01-12 2013-03-13 トヨタ自動車株式会社 燃料電池システム
JP2006228632A (ja) * 2005-02-18 2006-08-31 Nissan Motor Co Ltd 燃料電池スタックの配管構造
US7393602B2 (en) * 2005-04-14 2008-07-01 Gm Global Technology Operations, Inc. Method to begin coolant circulation to prevent MEA overheating during cold start
TW200719512A (en) * 2005-11-09 2007-05-16 Syspotek Corp Feedback type fuel cell
JP2007280827A (ja) * 2006-04-10 2007-10-25 Toyota Motor Corp 燃料電池用の温度制御システム
DE102006039106A1 (de) * 2006-08-19 2008-02-21 Daimler Ag Vorrichtung zum Antreiben eines Brennstoffzellen-Fahrzeuges
JP5290514B2 (ja) * 2006-09-06 2013-09-18 本田技研工業株式会社 燃料電池制御システム及びその冷却媒体制御方法
JP5103851B2 (ja) * 2006-09-29 2012-12-19 トヨタ自動車株式会社 燃料電池システム
JP5024863B2 (ja) * 2006-10-24 2012-09-12 株式会社日本自動車部品総合研究所 燃料電池
KR100813274B1 (ko) 2007-01-23 2008-03-13 삼성전자주식회사 연료전지 스택의 기동방법
FR2945377B1 (fr) 2009-05-11 2011-07-22 Commissariat Energie Atomique Pile a combustible a encombrement reduit.
KR101093700B1 (ko) 2009-06-25 2011-12-15 삼성에스디아이 주식회사 연료전지 시스템 및 그 스택
CN102187508B (zh) * 2009-12-16 2013-08-14 丰田自动车株式会社 燃料电池
JP5765518B2 (ja) * 2010-07-27 2015-08-19 日産自動車株式会社 燃料電池システム
KR101173057B1 (ko) 2010-09-29 2012-08-13 현대자동차주식회사 온도 균일성이 향상되는 연료전지 스택
KR101219342B1 (ko) 2010-10-25 2013-01-08 현대자동차주식회사 연료전지 스택의 엔드플레이트 가열 장치
WO2012166040A1 (en) * 2011-05-30 2012-12-06 Metacon Ab Energy generation using a stack of fuel cells
FI125987B (fi) * 2011-06-30 2016-05-13 Convion Oy Menetelmä ja järjestely suojakaasujen tarpeen minimoimiseksi
JP5437446B2 (ja) * 2012-07-03 2014-03-12 本田技研工業株式会社 車両用燃料電池システムの氷点下起動方法と、車両用燃料電池システムの氷点下起動システム
KR101372203B1 (ko) 2012-12-24 2014-03-07 현대자동차주식회사 연료전지 스택의 능동형 열관리 시스템
JP5942960B2 (ja) * 2013-06-04 2016-06-29 株式会社デンソー 発熱量制御装置
KR101724883B1 (ko) * 2015-07-29 2017-04-07 현대자동차주식회사 연료전지 시동 제어 방법 및 시스템
WO2017110303A1 (ja) * 2015-12-25 2017-06-29 日産自動車株式会社 燃料電池システム及びその制御方法
JP2017183061A (ja) * 2016-03-30 2017-10-05 トヨタ自動車株式会社 燃料電池
EP3543376A1 (en) 2018-03-22 2019-09-25 Hymeth ApS Cooling plate assembly and an electrolyser stack comprising the same
JP7329556B2 (ja) * 2021-03-29 2023-08-18 本田技研工業株式会社 燃料電池システム

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59184467A (ja) * 1983-04-01 1984-10-19 Hitachi Ltd 燃料電池
JPS63248073A (ja) * 1987-04-01 1988-10-14 Fuji Electric Co Ltd 積層形燃料電池
US5085949A (en) * 1991-02-05 1992-02-04 Kabushiki Kaisha Toshiba Fuel cell generation system
US5366821A (en) 1992-03-13 1994-11-22 Ballard Power Systems Inc. Constant voltage fuel cell with improved reactant supply and control system
JP3564742B2 (ja) * 1994-07-13 2004-09-15 トヨタ自動車株式会社 燃料電池発電装置
JPH08111231A (ja) 1994-10-12 1996-04-30 Kansai Electric Power Co Inc:The 固体高分子電解質型燃料電池
JPH1064575A (ja) * 1996-08-21 1998-03-06 Honda Motor Co Ltd 燃料電池
GB2370407B (en) * 1998-12-01 2003-05-14 Ballard Power Systems Method and apparatus for controlling the temperature within an electrochemical fuel cell
JP4809519B2 (ja) * 1999-09-10 2011-11-09 本田技研工業株式会社 燃料電池
US6860349B2 (en) 2000-05-26 2005-03-01 Honda Giken Kogyo Kabushiki Kaisha Cooling system for fuel cell powered vehicle and fuel cell powered vehicle employing the same
JP2002100392A (ja) 2000-09-22 2002-04-05 Honda Motor Co Ltd 燃料電池スタック
US6596426B2 (en) * 2001-04-05 2003-07-22 Utc Fuel Cells, Llc Method and apparatus for the operation of a cell stack assembly during subfreezing temperatures
JP2002313386A (ja) * 2001-04-06 2002-10-25 Matsushita Electric Ind Co Ltd 高分子電解質型燃料電池
JP2002319425A (ja) * 2001-04-23 2002-10-31 Honda Motor Co Ltd 燃料電池の状態検出装置
US20020160239A1 (en) * 2001-04-27 2002-10-31 Plug Power Inc. Integrated high temperature PEM fuel cell system
US6764782B2 (en) 2001-06-14 2004-07-20 General Motors Corporation Electrical isolation system for a fuel cell stack and method of operating a fuel cell stack
US7179554B2 (en) * 2001-06-29 2007-02-20 Plug Power Inc. Fuel cell systems

Also Published As

Publication number Publication date
EP1606850B1 (en) 2010-06-09
WO2004086546A2 (en) 2004-10-07
DE602004027608D1 (de) 2010-07-22
US7556873B2 (en) 2009-07-07
WO2004086546A3 (en) 2006-02-16
JP2004288509A (ja) 2004-10-14
US20060246332A1 (en) 2006-11-02
EP1606850A2 (en) 2005-12-21

Similar Documents

Publication Publication Date Title
JP4815733B2 (ja) 燃料電池システム
US9908381B2 (en) Vehicle control apparatus and vehicle control method
CN106941183B (zh) 燃料电池系统和燃料电池车辆
US6673481B1 (en) Initiating operation of an electric vehicle or other load powered by a fuel cell at sub-freezing temperature
US7223490B2 (en) Fuel cell employing local power generation when starting at low temperature
TWI674694B (zh) 車載電池的溫度調節方法、溫度調節系統與非臨時性電腦可讀儲存媒體
JP5106867B2 (ja) 燃料電池システム
JP2007294305A (ja) 燃料電池の冷却システム
JP2004185968A (ja) 燃料電池システム
CN116666838B (zh) 一种液冷式储能系统的热管理方法
CN113725460A (zh) 一种大功率燃料电池发动机温度管理系统及其控制方法
JP3979582B2 (ja) 燃料電池用の冷却水循環供給システム
JP5290514B2 (ja) 燃料電池制御システム及びその冷却媒体制御方法
JP2008210646A (ja) 燃料電池システム
JP2005322527A (ja) 燃料電池システム
JP2002319425A (ja) 燃料電池の状態検出装置
CN212323044U (zh) 一种大功率燃料电池发动机温度管理系统
JP4322040B2 (ja) 燃料電池システムおよびその制御方法
JP4864225B2 (ja) 燃料電池
CN113381096A (zh) 基于冷却路径的实时优化电池热管理系统
KR101551034B1 (ko) 제어 밸브 개도 가변 제어 장치 및 방법
JP3912749B2 (ja) 燃料電池の冷却装置
JP2007242531A (ja) 燃料電池システム
JP4578890B2 (ja) 燃料電池システムの始動方法
JP2007103061A (ja) 燃料電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110317

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110815

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees