JP2006228632A - 燃料電池スタックの配管構造 - Google Patents
燃料電池スタックの配管構造 Download PDFInfo
- Publication number
- JP2006228632A JP2006228632A JP2005043119A JP2005043119A JP2006228632A JP 2006228632 A JP2006228632 A JP 2006228632A JP 2005043119 A JP2005043119 A JP 2005043119A JP 2005043119 A JP2005043119 A JP 2005043119A JP 2006228632 A JP2006228632 A JP 2006228632A
- Authority
- JP
- Japan
- Prior art keywords
- fuel cell
- cell stack
- fuel
- cooling water
- oxidant gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
- H01M8/04029—Heat exchange using liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
- H01M8/04044—Purification of heat exchange media
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04223—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
- H01M8/04253—Means for solving freezing problems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/241—Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/241—Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
- H01M8/2418—Grouping by arranging unit cells in a plane
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2465—Details of groupings of fuel cells
- H01M8/2484—Details of groupings of fuel cells characterised by external manifolds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M2008/1095—Fuel cells with polymeric electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/4935—Heat exchanger or boiler making
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
【課題】燃料電池スタックの配管構造において、配管中に混入したガスや水を滞留させることなく排出できるようにする。
【解決手段】本発明の燃料電池スタックの配管構造1は、燃料電池スタック2から冷却水を排出する冷却水出口配管6と燃料電池スタック2とを接続する冷却水出口接続部24を、燃料電池スタック内の冷却水流路よりも高い位置に設置するとともに、燃料ガスを排出する燃料ガス出口配管5と燃料電池スタック2とを接続する燃料ガス出口接続部64を燃料電池スタック内の燃料ガス流路よりも低い位置に設置し、さらに酸化剤ガスを排出する酸化剤ガス出口配管8と燃料電池スタック2とを接続する酸化剤ガス出口接続部44を燃料電池スタック内の酸化剤ガス流路よりも低い位置に設置したことを特徴とする。
【選択図】 図1
【解決手段】本発明の燃料電池スタックの配管構造1は、燃料電池スタック2から冷却水を排出する冷却水出口配管6と燃料電池スタック2とを接続する冷却水出口接続部24を、燃料電池スタック内の冷却水流路よりも高い位置に設置するとともに、燃料ガスを排出する燃料ガス出口配管5と燃料電池スタック2とを接続する燃料ガス出口接続部64を燃料電池スタック内の燃料ガス流路よりも低い位置に設置し、さらに酸化剤ガスを排出する酸化剤ガス出口配管8と燃料電池スタック2とを接続する酸化剤ガス出口接続部44を燃料電池スタック内の酸化剤ガス流路よりも低い位置に設置したことを特徴とする。
【選択図】 図1
Description
本発明は、燃料電池スタックの配管構造に係り、特に冷却水中に混入したガスを滞留させることなく排出するように構成された燃料電池スタックの配管構造に関する。
固体高分子電解質型燃料電池は、イオン交換膜からなる電解質膜と、この電解質膜の一方の面に配置された燃料極と、電解質膜のもう一方の面に配置された空気極とから構成された膜−電極アセンブリを備え、この膜−電極アセンブリの燃料極及び空気極にそれぞれ燃料ガス及び酸化剤ガスを供給するための流路となるセパレータを設置することによって単位燃料電池セルを形成する。この単位燃料電池セルの発電電力は、1V以下と低いため通常は単位燃料電池セルを複数積層させることによって、燃料電池スタックを形成し、例えば車両などに搭載して利用されている。
固体高分子電解質型燃料電池においては、燃料極側では水素が水素イオンと電子になる反応(H2 →2H+ +2e- )が起こり、空気極側では酸素と電解質膜を透過してくる水素イオンと外部回路を回ってきた電子とによって水を生成する反応(2H+ +2e- +(1/2)O2 →H2 O)が起きている。
これらの反応が正常に行われるためには、まず水素イオンが電解質膜中を空気極側に移動できるようにある程度加湿されている必要がある。また、空気極での反応で生成される水滴によって、酸化剤ガスの空気極への供給が阻害されないように、燃料電池スタック内のガス流路(特に酸化剤ガス流路)から生成水が適切に燃料電池外部に排出されるようにすることも必要である。さらに、空気極での反応による熱を効果的に冷却できるように燃料電池スタック内の冷却水流路に空気が滞流しないようにすることも必要である。
また、これらの各流体の圧力・温度等を計測して燃料電池へ流入するガスの状況を最適に制御し、これによって燃料電池の寿命向上や発電性能の向上を図るために、各燃料電池配管には各種センサ類を設置する必要がある。
従来においては、例えば特開2002−343400号公報(特許文献1)に開示されているように、燃料電池スタックへの接続配管構造において、冷却水配管出口位置を燃料電池の貫通マニホールドより高い位置に設定して、冷却水配管内の空気抜け性を改善するようにしている。また、酸化剤ガス及び燃料ガスの配管出口位置を燃料電池の貫通マニホールドより低い位置に設定して、水抜け性を改善するようにしている。
特開2002−343400号公報
しかしながら、上述した特許文献1に開示された従来例では、各流体の接続位置と燃料電池スタックの貫通マニホールドとの位置関係を規定しただけなので、例えば各セル内の内部流路の状況によっては、燃料電池セル内の冷却水流路に空気溜まりが発生し、空気抜け性が悪化して冷却性能が悪くなるという問題点があった。また、酸化剤ガス流路内では生成水が溜まり、排水性が悪化してフラッディングによる発電効率の低下が起こるという問題点もあった。
また、燃料電池スタックが上下方向に複数積層されている場合については、燃料電池配管の接続位置について規定していないので、その接続位置によっては同様に冷却性能の低下や発電効率の低下などの不具合が起こる可能性があった。
さらに、各流体の燃料電池配管が上下に重なっているため、燃料電池スタックへ流入、あるいは燃料電池スタックから排出されるガスの温度・圧力等を測定する各種センサを燃料電池の出入口近傍に設置することが困難であった。このため、センサの設置位置から燃料電池までの配管構造によってはセンサ読取値と燃料電池出入り口での実際値との間に誤差が生じてしまい、燃料電池の寿命を短くしたり、燃料電池を効率よく発電できないという問題点があった。
上述した課題を解決するために、本発明に係わる燃料電池スタックの配管構造は、燃料電池スタックに流体を供給する燃料電池スタックの配管構造において、燃料電池スタックから冷却水を排出する冷却水出口配管と前記燃料電池スタックとの冷却水出口接続部は、前記燃料電池スタック内の冷却水流路よりも高い位置に設置されていることを特徴とする。
本発明に係る燃料電池スタックの配管構造では、燃料電池スタックから冷却水を排出する冷却水出口配管と燃料電池スタックとを接続する冷却水出口接続部を、燃料電池スタック内の冷却水流路よりも高い位置に設置したので、燃料電池スタックから排出される冷却水の流れを常に上昇していく流れにすることができる。これによって、冷却水に混入したガスを滞留させることなく、燃料電池外部に排出することができるので、冷却水の冷却性能が向上し、燃料電池スタックの発電性能及び寿命を向上させることができる。
以下、本発明に係わる燃料電池スタックの配管構造を実施するための最良の形態となる実施例について説明する。
図1は、本実施例に係る燃料電池スタックの配管構造の構成を示す斜視図である。
図1に示すように、本実施例の燃料電池スタックの配管構造1は、燃料ガスと酸化剤ガスとを電気化学反応により反応させて発電する燃料電池スタック2と、燃料電池スタック2に酸化剤ガスを供給する酸化剤ガス入口配管3と、燃料電池スタック2に冷却水を供給する冷却水入口配管4と、燃料電池スタック2から燃料ガスを排出する燃料ガス出口配管5と、燃料電池スタック2から冷却水を排出する冷却水出口配管6と、燃料電池スタック2に燃料ガスを供給する燃料ガス入口配管7と、燃料電池スタック2から酸化剤ガスを排出する酸化剤ガス出口配管8と、各配管を燃料電池スタック2に接続する燃料電池マニホールド9と、各配管に設置された各種センサ13〜18とを備えている。
ここで、燃料電池スタック2は、単位燃料電池セルが水平方向に複数積層されることによって構成されており、各単位燃料電池セルのアノードには燃料ガスである水素ガスが供給され、カソードには酸化剤ガスである空気が供給されてアノードとカソード間に挟持された電解質膜における電極反応によって発電している。また、各単位燃料電池セルには冷却水流路が設けられ、電気化学反応によって発熱した単位燃料電池セルを冷却している。
酸化剤ガス入口配管3は、燃料電池マニホールド9の上段に接続されて燃料電池スタック2に酸化剤ガスを供給している。
冷却水入口配管4は、燃料電池マニホールド9の中段に接続され、酸化剤ガス入口配管3と上下に重ならないようにずれて配置され、燃料電池スタック2に冷却水を供給している。
燃料ガス出口配管5は、燃料電池マニホールド9の下段に接続され、酸化剤ガス入口配管3及び冷却水入口配管4と上下に重ならないようにずれて配置され、燃料電池スタック2から燃料ガスを排出している。
冷却水出口配管6は、燃料電池マニホールド9の上段に接続されて燃料電池スタック2から冷却水を排出している。
燃料ガス入口配管7は、燃料電池マニホールド9の中段に接続され、隣接する冷却水出口配管6と上下に重ならないようにずれて配置され、燃料電池スタック2へ燃料ガスを供給している。
酸化剤ガス出口配管8は、燃料電池マニホールド9の下段に接続され、隣接する燃料ガス入口配管7、および冷却水出口配管6と上下に重ならないようにずれて配置され、燃料電池スタック2から酸化剤ガスを排出している。
燃料電池マニホールド9は、燃料ガスや酸化剤ガス、冷却水の各配管が接続され、燃料電池スタック2に各流体を供給し、また排出している。
各センサ13〜18は、配管内を流れる流体の圧力や温度などを検出するための検出手段であり、各配管の上部に設置されて検知部は下向きになっている。これにより、検知部に水が溜まることを防止して、低温環境下に放置された場合の凍結やガス圧力の制御不良などを防止することができる。また、燃料電池システムが車両の床下に設置される場合には、燃料電池スタック2から排出される燃料ガス及び酸化剤ガス配管の補機類側接続位置を常に外部マニホールド側が低い位置に設定すると、燃料電池接続配管内の水の滞留がなくなり、低温環境などで凍結による配管破損を防ぐことや、燃料電池の起動時間の短縮が可能になる。このとき、燃料電池外部マニホールド出口部分に溜まる水分は、例えば、当該部に燃料ガス及び酸化剤ガス排出手段を設置して排出ガスに混ぜて排出したりできるので、当該部に水が溜まることによる燃料電池の発電への悪影響を防ぐことができる。なお、仮に車両前部のコンパートメント部空間において同様の設置方法を採っても同等の効果を狙うことは無論可能である。
次に、上述したように構成された本実施例の燃料電池スタックの配管構造1における各流体の流れ方を説明する。ただし、燃料電池スタック内に示す矢印は、複数ある流路の一つを模式的に表したものである。
まず、図2及び図3に基づいて冷却水の流れ方を説明する。図2は燃料電池スタック2における冷却水の流れを模式的に説明するための図である。冷却水入口配管4(図1)から供給された冷却水は、図2に示すように、燃料電池マニホールド9の中段に設置された冷却水入口接続部21から燃料電池マニホールド9に流入して冷却水入口流路22へ送られる。そして、冷却水入口流路22からは各単位燃料電池セルへ冷却水が供給され、単位燃料電池セル内の冷却水流路を通過して単位燃料電池セルを冷却し、冷却水出口流路23へと冷却水が排出される。
ここで、燃料電池セル内の冷却水の流れを図3に基づいて説明する。図3に示すように、中段に設置された冷却水入口流路22から供給された冷却水は、燃料電池セル31内の上下に複数設置された冷却水流路32を流れて、上段に設置された冷却水出口流路23へと排出される。
ここで、図3に示すように、冷却水出口流路23は燃料電池セル内の冷却水流路32よりも高い位置に設置されている。したがって、冷却水の流れは燃料電池セル内の冷却水流路32から冷却水出口流路23へと上昇していく流れになり、冷却水流路32に混入したガス(おもに空気)を冷却水出口流路23へと排出することができる。
さらに、図2に示すように、冷却水出口流路23に排出された冷却水は、燃料電池マニホールド9に送られて冷却水出口接続部24から冷却水出口配管6へと排出される。
このとき冷却水出口接続部24は上段に設置されているので、冷却水出口流路23よりも高い位置になっている。したがって、冷却水の流れは冷却水出口流路23から冷却水出口接続部24へと上昇していく流れになり、冷却水流路32に混入したガスを冷却水出口配管6へと排出することができる。
次に、図4及び図5に基づいて酸化剤ガスの流れ方を説明する。図4は燃料電池スタック2における酸化剤ガスの流れを模式的に説明するための図である。酸化剤ガス入口配管3(図1)から供給された酸化剤ガスは、図4に示すように、燃料電池マニホールド9の上段に設置された酸化剤ガス入口接続部41から燃料電池マニホールド9に流入して酸化剤ガス入口流路42へ送られる。そして、酸化剤ガス入口流路42からは各単位燃料電池セルへ酸化剤ガスが供給され、単位燃料電池セル内の酸化剤ガス流路を通過してカソードに供給される。カソードでは供給された酸素と、電解質膜を透過してくる水素イオンと、外部回路を回ってきた電子とによって水を生成する反応(2H+ +2e- +(1/2)O2 →H2 O)が行われる。そして、消費されずに残った酸化剤ガスや反応によって生成した水蒸気は酸化剤ガス出口流路43へと排出される。
ここで、燃料電池セル内の酸化剤ガスの流れを図5に基づいて説明する。図5に示すように、上段に設置された酸化剤ガス入口流路42から供給された酸化剤ガスは、燃料電池セル51内の上下に複数設置された酸化剤ガス流路52を流れて、下段に設置された酸化剤ガス出口流路43へと排出される。
ここで、図5に示すように、酸化剤ガス出口流路43は燃料電池セル内の酸化剤ガス流路52よりも低い位置に設置されている。したがって、酸化剤ガスの流れは燃料電池セル内の酸化剤ガス流路52から酸化剤ガス出口流路43へと下降していく流れになり、酸化剤ガス流路52に含まれる生成水などの水滴を酸化剤ガス出口流路43へと排出することができる。
さらに、図4に示すように、酸化剤ガス出口流路43に排出された水滴は、燃料電池マニホールド9に送られて酸化剤ガス出口接続部44から酸化剤ガス出口配管8へと排出される。
このとき酸化剤ガス出口接続部44は下段に設置されているので、酸化剤ガス出口流路43よりも低い位置になっている。したがって、酸化剤ガスの流れは酸化剤ガス出口流路43から酸化剤ガス出口接続部44へと下降していく流れになり、酸化剤ガス流路52に含まれる生成水などの水滴を酸化剤ガス出口配管8へと排出することができる。これによって、フラッディング(流路の水溜まり)による燃料電池の発電不良を防止することができる。
次に、図6及び図7に基づいて燃料ガスの流れ方を説明する。図6は燃料電池スタック2における燃料ガスの流れを模式的に説明するための図である。燃料ガス入口配管7(図1)から供給された燃料ガスは、図6に示すように、燃料電池マニホールド9の中段に設置された燃料ガス入口接続部61から燃料電池マニホールド9に流入して燃料ガス入口流路62へ送られる。そして、燃料ガス入口流路62からは各単位燃料電池セルへ燃料ガスが供給され、単位燃料電池セル内の燃料ガス流路を通過してアノードに供給される。アノードでは供給された水素ガスが水素イオンと電子になる反応(H2 →2H+ +2e- )が行われ、消費されずに残った燃料ガスは燃料ガス出口流路63へと排出される。
ここで、燃料電池セル内の燃料ガスの流れを図7に基づいて説明する。図7に示すように、中段に設置された燃料ガス入口流路62から供給された燃料ガスは、燃料電池セル71内の上下に複数設置された燃料ガス流路72を流れて、下段に設置された燃料ガス出口流路63へと排出される。
ここで、図7に示すように、燃料ガス出口流路63は燃料電池セル内の燃料ガス流路72よりも低い位置に設置されている。したがって、燃料ガスの流れは燃料電池セル内の燃料ガス流路72から燃料ガス出口流路63へと下降していく流れになり、燃料ガス流路72に含まれる水滴を燃料ガス出口流路63へと排出することができる。
さらに、図6に示すように、燃料ガス出口流路63に排出された水滴は、燃料電池マニホールド9に送られて燃料ガス出口接続部64から燃料ガス出口配管5へと排出される。
このとき燃料ガス出口接続部64は下段に設置されているので、燃料ガス出口流路63よりも低い位置になっている。したがって、燃料ガスの流れは燃料ガス出口流路63から燃料ガス出口接続部64へと下降していく流れになり、燃料ガス流路72に含まれる水滴を燃料ガス出口配管5へと排出することができる。これによって、フラッディングによる燃料電池の発電不良を防止することができる。
このように、本実施例の燃料電池スタックの配管構造1では、燃料電池スタックから冷却水を排出する冷却水出口配管6と燃料電池スタック2とを接続する冷却水出口接続部24が、燃料電池スタック2内の冷却水流路よりも高い位置に設置されているので、燃料電池スタックから排出される冷却水の流れを常に上昇していく流れにすることができる。これによって、冷却水流路32内に混入したガスを滞留させることなく、燃料電池外部に排出することができるので、冷却水の冷却性能が向上し、燃料電池スタックの発電性能及び寿命を向上させることができる(請求項1の効果)。
また、本実施例の燃料電池スタックの配管構造1では、燃料電池スタック2から燃料ガスを排出する燃料ガス出口配管5と燃料電池スタック2とを接続する燃料ガス出口接続部64が、燃料電池スタック2内の燃料ガス流路よりも低い位置に設置されているので、燃料電池スタック2から排出される燃料ガスの流れを常に下降していく流れにすることができる。これによって、燃料ガス流路72に含まれる水滴を滞留させることなく、燃料電池外部に排出することができる(請求項3の効果)。
さらに、本実施例の燃料電池スタックの配管構造1では、燃料電池スタック2から酸化剤ガスを排出する酸化剤ガス出口配管8と燃料電池スタック2とを接続する酸化剤ガス出口接続部44が、燃料電池スタック2内の酸化剤ガス流路よりも低い位置に設置されているので、燃料電池スタック2から排出される酸化剤ガスの流れを常に下降していく流れにすることができる。これによって、酸化剤ガス流路52に含まれる生成水などの水滴を滞留させることなく、燃料電池外部に排出することができ、これによって、フラッディングによる燃料電池の発電不良を防止することができる(請求項4の効果)。
また、本実施例の燃料電池スタックの配管構造1では、冷却水出口配管6と酸化剤ガス出口配管8を燃料電池スタック2の同一側に配置しているので、最もフラッディングが起こりやすいカソードの出口付近を通過する冷却水温度を高くすることができ、フラッディングの原因となる生成水の凝縮を防止することができる。また、燃料電池セル内を水平方向に各流体が流れる場合においては、左右両端にあるスタック出入口マニホールドと燃料電池外部マニホールドとの距離を短縮できるので、軽量化やコストを削減することができる(請求項6の効果)。
さらに、本実施例の燃料電池スタックの配管構造1では、燃料電池スタック2に接続される配管がそれぞれ上下で重ならないように配置されているので、各配管の上部にセンサ13〜18を設置するためのスペースを確保することができる。 また、隣接する配管同士が上下に重ならないように配置されているので、燃料電池ケースへの配管フランジ接続作業やホース組み付け作業などを行う場合に工具スペースやハンドスペースを確保でき、組み付け作業時間を短縮することができる(請求項7の効果)。
さらに、本実施例の燃料電池スタックの配管構造1では、燃料電池スタック2に接続される配管の接続部近傍にセンサを設置しているので、センサを補機類側に設置した場合と比較して、センサ設置部以降の配管レイアウトの変動による圧損影響などを少なくでき、センサ読取値と燃料電池へ導入される際の実際値との間で誤差が生じる可能性を減らすことができるため、センサ読取値により燃料電池スタック2内部のガス状況を的確に制御できるようになり、また燃料電池スタックの寿命や発電性能を向上させることができる。さらに、センサの検知部を下向きにしたので、検知部に水が溜まることを防止することができ、低温環境下に放置した場合の凍結防止や、さらには燃料電池スタックにおける発電のためのガス圧制御不良を防止することができる(請求項8の効果)。
図8は、実施例2に係る燃料電池スタックの配管構造の構成を示す斜視図である。図8に示すように、本実施例の燃料電池スタックの配管構造81は、複数の燃料電池スタック82a〜82cが上下方向に積層されていることが実施例1と異なっており、その他の構成は実施例1と同様なので詳しい説明は省略する。
次に、上述のように構成された本実施例の燃料電池スタックの配管構造81における各流体の流れ方を説明する。
まず、図9及び図10に基づいて冷却水の流れ方を説明する。図9は各燃料電池スタック82a〜82cにおける冷却水の流れを模式的に説明するための図である。冷却水入口配管4(図8)から供給された冷却水は、図9に示すように、燃料電池マニホールド90の中段に設置された冷却水入口接続部91から燃料電池マニホールド90へ流入し、そこから各燃料電池スタック82a〜82cの冷却水入口流路92a〜92cへ送られる。そして、冷却水入口流路92a〜92cからは各燃料電池スタック82a〜82cの単位燃料電池セルへ冷却水が供給され、単位燃料電池セル内の冷却水流路を通過して単位燃料電池セルを冷却し、冷却水出口流路93a〜93cへと冷却水を排出する。
ここで、各燃料電池スタック82a〜82cの燃料電池セル内の冷却水の流れを図10に基づいて説明する。図10に示すように、各燃料電池スタックの中段に設置された冷却水入口流路92a〜92cから供給された冷却水は、燃料電池セル101a〜101c内の上下に複数設置された冷却水流路102a〜102cを流れて、各燃料電池スタックの上段に設置された冷却水出口流路93a〜93cへと排出される。
ここで、図10に示すように、冷却水出口流路93a〜93cは各燃料電池セル内において燃料電池セル内の冷却水流路102a〜102cよりも高い位置に設置されている。したがって、冷却水の流れは燃料電池セル内の冷却水流路102a〜102cから冷却水出口流路93a〜93cへと上昇していく流れになり、冷却水流路102a〜102cに混入したガスを冷却水出口流路93a〜93cへと排出することができる。
さらに、図9に示すように、冷却水出口流路93a〜93cに排出された冷却水は、燃料電池マニホールド9に送られて冷却水出口接続部94から冷却水出口配管6へと排出される。
このとき冷却水出口接続部94は上段に設置されているので、最上部に設置された燃料電池スタック82aの冷却水出口流路93aよりも高い位置になっている。したがって、冷却水の流れは冷却水出口流路93a〜93cから冷却水出口接続部94へと上昇していく流れになり、冷却水流路102a〜102cに混入したガスを冷却水出口配管6へと排出することができる。
次に、図11及び図12に基づいて酸化剤ガスの流れ方を説明する。図11は燃料電池スタック82a〜82cにおける酸化剤ガスの流れを模式的に説明するための図である。酸化剤ガス入口配管3(図8)から供給された酸化剤ガスは、図11に示すように、燃料電池マニホールド9の上段に設置された酸化剤ガス入口接続部111から燃料電池マニホールド9に流入し、そこから各燃料電池スタック82a〜82cの酸化剤ガス入口流路112a〜112cへ送られる。そして、酸化剤ガス入口流路112a〜112cからは各燃料電池スタック82a〜82cの単位燃料電池セルへ酸化剤ガスが供給され、単位燃料電池セル内の酸化剤ガス流路を通過してカソードに酸化剤ガスが供給される。カソードでは供給された酸素と、電解質膜を透過してくる水素イオンと、外部回路を回ってきた電子とによって水を生成する反応(2H+ +2e- +(1/2)O2 →H2 O)が行われる。そして、消費されずに残った酸化剤ガスや反応によって生成した水蒸気は酸化剤ガス出口流路113a〜113cへと排出される。
ここで、各燃料電池スタック82a〜82cの燃料電池セル内の酸化剤ガスの流れを図12に基づいて説明する。図12に示すように、各燃料電池スタックの上段に設置された酸化剤ガス入口流路112a〜112cから供給された酸化剤ガスは、燃料電池セル121a〜121c内の上下に複数設置された酸化剤ガス流路122a〜122cを流れて、各燃料電池スタックの下段に設置された酸化剤ガス出口流路113a〜113cへと排出される。
ここで、図12に示すように、酸化剤ガス出口流路113a〜113cは各燃料電池セル内において燃料電池セル内の酸化剤ガス流路122a〜122cよりも低い位置に設置されている。したがって、酸化剤ガスの流れは燃料電池セル内の酸化剤ガス流路122a〜122cから酸化剤ガス出口流路113a〜113cへと下降していく流れになり、酸化剤ガス流路122a〜122cに含まれる生成水などの水滴を酸化剤ガス出口流路113a〜113cへと排出することができる。
さらに、図11に示すように、酸化剤ガス出口流路113a〜113cに排出された水滴は、燃料電池マニホールド9に送られて酸化剤ガス出口接続部114から酸化剤ガス出口配管8へと排出される。
このとき酸化剤ガス出口接続部114は下段に設置されているので、最下部の燃料電池スタック82cの酸化剤ガス出口流路113cよりも低い位置になっている。したがって、酸化剤ガスの流れは酸化剤ガス出口流路113a〜113cから酸化剤ガス出口接続部114へと下降していく流れになり、酸化剤ガス流路122a〜122cに含まれる生成水などの水滴を酸化剤ガス出口配管8へと排出することができる。これによって、フラッディングによる燃料電池の発電不良を防止することができる。
次に、図13及び図14に基づいて燃料ガスの流れ方を説明する。図13は燃料電池スタック82a〜82cにおける燃料ガスの流れを模式的に説明するための図である。燃料ガス入口配管7(図8)から供給された燃料ガスは、図13に示すように、燃料電池マニホールド9の中段に設置された燃料ガス入口接続部131から燃料電池マニホールド9に流入し、そこから各燃料電池スタック82a〜82cの燃料ガス入口流路132a〜132cへ送られる。そして、燃料ガス入口流路132a〜132cからは各燃料電池スタック82a〜82cの単位燃料電池セルへ燃料ガスが供給され、単位燃料電池セル内の燃料ガス流路を通過してアノードに供給される。アノードでは供給された水素ガスが水素イオンと電子になる反応(H2 →2H+ +2e- )が行われ、消費されずに残った燃料ガスは燃料ガス出口流路133a〜133cへと排出される。
ここで、燃料電池セル内の燃料ガスの流れを図14に基づいて説明する。図14に示すように、各燃料電池スタックの中段に設置された燃料ガス入口流路132a〜132cから供給された燃料ガスは、各燃料電池セル141a〜141c内の上下に複数設置された燃料ガス流路142a〜142cを流れて、各燃料電池スタックの下段に設置された燃料ガス出口流路133a〜133cへと排出される。
ここで、図14に示すように、燃料ガス出口流路133a〜133cは各燃料電池セル内において燃料電池セル内の燃料ガス流路142a〜142cよりも低い位置に設置されている。したがって、燃料ガスの流れは燃料電池セル内の燃料ガス流路142a〜142cから燃料ガス出口流路133a〜133cへと下降していく流れになり、燃料ガス流路142a〜142cに含まれる水滴を燃料ガス出口流路133a〜133cへと排出することができる。
さらに、図13に示すように、燃料ガス出口流路133a〜133cに排出された水滴は、燃料電池マニホールド9に送られて燃料ガス出口接続部134から燃料ガス出口配管5へと排出される。
このとき燃料ガス出口接続部134は下段に設置されているので、最下部の燃料電池スタック82cの燃料ガス出口流路133cよりも低い位置になっている。したがって、燃料ガスの流れは燃料ガス出口流路133a〜133cから燃料ガス出口接続部134へと下降していく流れになり、燃料ガスに含まれる水滴を燃料ガス出口配管5へと排出することができる。これによって、フラッディングによる燃料電池の発電不良を防止することができる。
このように、本実施例の燃料電池スタックの配管構造81では、燃料電池スタックが上下に複数積層されている場合に、冷却水出口接続部94が最上部の燃料電池スタック82a内の冷却水流路よりも高い位置に設置されているので、各燃料電池スタック82a〜82cから排出される冷却水の流れを常に上昇していく流れにすることができる。これによって、冷却水流路122a〜122cに混入したガスを滞留させることなく、燃料電池外部に排出することができるので、冷却水の冷却性能が向上し、燃料電池スタックの発電性能及び寿命を向上させることができる(請求項2の効果)。
また、本実施例の燃料電池スタックの配管構造81では、燃料電池スタックが上下に複数積層されている場合に、酸化剤ガス出口接続部114あるいは燃料ガス出口接続部134が最下部の燃料電池スタック82c内の冷却水流路よりも低い位置に設置されているので、各燃料電池スタック82a〜82cから排出される酸化剤ガス及び燃料ガスの流れを常に下降していく流れにすることができる。 これによって、酸化剤ガス流路122a〜122c及び燃料ガス流路142a〜142cに含まれる生成水などの水滴を滞留させることなく、燃料電池外部に排出することができ、これによって、フラッディングによる燃料電池の発電不良を防止することができる(請求項5の効果)。
なお、上記実施例1および実施例2では、燃料電池スタック2に接続する各配管が上下に重ならない配置として、図1や図8に示すように燃料電池スタック2の正面から見て各接続部が逆ハの字形となるようにした例について示したが、図15に示す燃料電池スタックの配管構造151のように、一つおきに上下に重なるような配置としてもよいし、またハの字形となるように配置してもよく、これらの配置とした場合についても、同等の効果を得ることができる。
1、81、151…配管構造
2、82a〜82c…燃料電池スタック
3…酸化剤ガス入口配管
4…冷却水入口配管
5…燃料ガス出口配管
6…冷却水出口配管
7…燃料ガス入口配管
8…酸化剤ガス出口配管
9、90…燃料電池マニホールド
13〜18…センサ
21、91…冷却水入口接続部
22、92a〜92c…冷却水入口流路
23、93a〜93c…冷却水出口流路
24、94…冷却水出口接続部
31、51、71、101a〜101c、121a〜121c、141a〜141c…燃料電池セル
32、102a〜102c、122a〜122c…冷却水流路
41、111…酸化剤ガス入口接続部
42、112a〜112c…酸化剤ガス入口流路
43、113a〜113c…酸化剤ガス出口流路
44、114…酸化剤ガス出口接続部
52、122a〜122c…酸化剤ガス流路
61、131…燃料ガス入口接続部
62、132a〜132c…燃料ガス入口流路
63、133a〜133c…燃料ガス出口流路
64、134…燃料ガス出口接続部
72、142a〜142c…燃料ガス流路
2、82a〜82c…燃料電池スタック
3…酸化剤ガス入口配管
4…冷却水入口配管
5…燃料ガス出口配管
6…冷却水出口配管
7…燃料ガス入口配管
8…酸化剤ガス出口配管
9、90…燃料電池マニホールド
13〜18…センサ
21、91…冷却水入口接続部
22、92a〜92c…冷却水入口流路
23、93a〜93c…冷却水出口流路
24、94…冷却水出口接続部
31、51、71、101a〜101c、121a〜121c、141a〜141c…燃料電池セル
32、102a〜102c、122a〜122c…冷却水流路
41、111…酸化剤ガス入口接続部
42、112a〜112c…酸化剤ガス入口流路
43、113a〜113c…酸化剤ガス出口流路
44、114…酸化剤ガス出口接続部
52、122a〜122c…酸化剤ガス流路
61、131…燃料ガス入口接続部
62、132a〜132c…燃料ガス入口流路
63、133a〜133c…燃料ガス出口流路
64、134…燃料ガス出口接続部
72、142a〜142c…燃料ガス流路
Claims (8)
- 燃料電池スタックに流体を供給する燃料電池スタックの配管構造において、
燃料電池スタックから冷却水を排出する冷却水出口配管と前記燃料電池スタックとの冷却水出口接続部は、前記燃料電池スタック内の冷却水流路よりも高い位置に設置されていることを特徴とする燃料電池スタックの配管構造。 - 前記燃料電池スタックが重力方向に積層された構成において、前記燃料電池スタックは、前記積層された燃料電池スタックのうちの最上部の燃料電池スタックであることを特徴とする請求項1に記載の燃料電池スタックの配管構造。
- 前記燃料電池スタックから燃料ガスを排出する燃料ガス出口配管と前記燃料電池スタックとを接続する燃料ガス出口接続部は、前記燃料電池スタック内の燃料ガス流路よりも低い位置に設置されていることを特徴とする請求項1または2のいずれかに記載の燃料電池スタックの配管構造。
- 前記燃料電池スタックから酸化剤ガスを排出する酸化剤ガス出口配管と前記燃料電池スタックとを接続する酸化剤ガス出口接続部は、前記燃料電池スタック内の酸化剤ガス流路よりも低い位置に設置されていることを特徴とする請求項1から請求項3のいずれか1項に記載の燃料電池スタックの配管構造。
- 前記燃料電池スタックが重力方向に積層された構成において、前記燃料電池スタックは、前記積層された燃料電池スタックのうちの最下部の燃料電池スタックであることを特徴とする請求項3または4のいずれかに記載の燃料電池スタックの配管構造。
- 前記冷却水出口配管と前記酸化剤ガス出口配管は、前記燃料電池スタックの同一側に配置されていることを特徴とする請求項1から請求項5のいずれか1項に記載の燃料電池スタックの配管構造。
- 前記燃料電池スタックのそれぞれの接続部は、隣接する接続部同士が上下に重複しないように配置されていることを特徴とする請求項1から請求項6のいずれか1項に記載の燃料電池スタックの配管構造。
- 前記燃料電池スタックに接続される配管には、それぞれの接続部近傍において検出部を下向きにした検出手段が設置されていることを特徴とする請求項7に記載の燃料電池スタックの配管構造。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005043119A JP2006228632A (ja) | 2005-02-18 | 2005-02-18 | 燃料電池スタックの配管構造 |
CA002596382A CA2596382A1 (en) | 2005-02-18 | 2006-02-15 | A piping structure of a fuel cell stack |
PCT/IB2006/000299 WO2006087620A1 (en) | 2005-02-18 | 2006-02-15 | A piping structure of a fuel cell stack |
US11/815,058 US20080160372A1 (en) | 2005-02-18 | 2006-02-15 | Piping Structure of a Fuel Cell Stack |
EP06710382A EP1856759A1 (en) | 2005-02-18 | 2006-02-15 | A piping structure of a fuel cell stack |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005043119A JP2006228632A (ja) | 2005-02-18 | 2005-02-18 | 燃料電池スタックの配管構造 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006228632A true JP2006228632A (ja) | 2006-08-31 |
Family
ID=36582055
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005043119A Pending JP2006228632A (ja) | 2005-02-18 | 2005-02-18 | 燃料電池スタックの配管構造 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20080160372A1 (ja) |
EP (1) | EP1856759A1 (ja) |
JP (1) | JP2006228632A (ja) |
CA (1) | CA2596382A1 (ja) |
WO (1) | WO2006087620A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014202510A1 (de) | 2013-02-18 | 2014-08-21 | Honda Motor Co., Ltd. | Brennstoffzellenstapel |
JP2014157776A (ja) * | 2013-02-18 | 2014-08-28 | Honda Motor Co Ltd | 燃料電池スタック |
JP2014157777A (ja) * | 2013-02-18 | 2014-08-28 | Honda Motor Co Ltd | 燃料電池スタック |
KR101854921B1 (ko) * | 2012-03-19 | 2018-05-04 | 국방과학연구소 | 잠수함 연료전지시스템의 더미 연결부, 더미 연결부를 포함하는 잠수함의 연료전지시스템, 및 더미 연결부를 포함하는 연료전지시스템을 구비한 잠수함 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014060499A1 (fr) | 2012-10-17 | 2014-04-24 | Agc Glass Europe | Methode de fabrication d'une feuille de verre depolie |
DE102017107479A1 (de) * | 2017-04-07 | 2018-10-11 | Proton Motor Fuel Cell Gmbh | Brennstoffzellensystem mit Medienmanagementplatte |
CN209418656U (zh) * | 2019-02-28 | 2019-09-20 | 中山大洋电机股份有限公司 | 一种电堆气液分配装置及其应用的燃料电池 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000357531A (ja) * | 1999-06-15 | 2000-12-26 | Fuji Electric Co Ltd | 固体高分子電解質型燃料電池 |
US6613470B1 (en) * | 1999-09-01 | 2003-09-02 | Honda Giken Kogyo Kabushiki Kaisha | Solid polymer electrolyte fuel cell stack |
US6596426B2 (en) * | 2001-04-05 | 2003-07-22 | Utc Fuel Cells, Llc | Method and apparatus for the operation of a cell stack assembly during subfreezing temperatures |
JP4815733B2 (ja) * | 2003-03-24 | 2011-11-16 | 日産自動車株式会社 | 燃料電池システム |
-
2005
- 2005-02-18 JP JP2005043119A patent/JP2006228632A/ja active Pending
-
2006
- 2006-02-15 WO PCT/IB2006/000299 patent/WO2006087620A1/en active Application Filing
- 2006-02-15 US US11/815,058 patent/US20080160372A1/en not_active Abandoned
- 2006-02-15 EP EP06710382A patent/EP1856759A1/en not_active Withdrawn
- 2006-02-15 CA CA002596382A patent/CA2596382A1/en not_active Abandoned
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101854921B1 (ko) * | 2012-03-19 | 2018-05-04 | 국방과학연구소 | 잠수함 연료전지시스템의 더미 연결부, 더미 연결부를 포함하는 잠수함의 연료전지시스템, 및 더미 연결부를 포함하는 연료전지시스템을 구비한 잠수함 |
DE102014202510A1 (de) | 2013-02-18 | 2014-08-21 | Honda Motor Co., Ltd. | Brennstoffzellenstapel |
JP2014157776A (ja) * | 2013-02-18 | 2014-08-28 | Honda Motor Co Ltd | 燃料電池スタック |
JP2014157777A (ja) * | 2013-02-18 | 2014-08-28 | Honda Motor Co Ltd | 燃料電池スタック |
Also Published As
Publication number | Publication date |
---|---|
EP1856759A1 (en) | 2007-11-21 |
US20080160372A1 (en) | 2008-07-03 |
CA2596382A1 (en) | 2006-08-24 |
WO2006087620A1 (en) | 2006-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3801096B2 (ja) | スタック構造を有する燃料電池 | |
JP2006228632A (ja) | 燃料電池スタックの配管構造 | |
CN102005594B (zh) | 燃料电池组 | |
WO2013179704A1 (ja) | 燃料電池システム | |
JP2006302606A (ja) | 燃料電池収納ケース | |
JP2008103241A (ja) | 燃料電池 | |
JP2011086549A (ja) | 燃料電池システム | |
JP4434279B2 (ja) | 燃料電池システム | |
JP2011054425A (ja) | 燃料電池スタック | |
JP2009151973A (ja) | 燃料電池システム | |
JP3972759B2 (ja) | 燃料電池用セパレータ | |
JP4507453B2 (ja) | 燃料電池のマニホールド | |
JP2003223922A (ja) | 固体高分子型燃料電池 | |
JP2007227398A (ja) | 燃料電池用セパレータ | |
JP2013012333A (ja) | 燃料電池スタック | |
JP4992180B2 (ja) | 燃料電池セパレータ | |
CN112838244A (zh) | 燃料电池系统 | |
JP5502547B2 (ja) | 燃料電池用液絡検出装置 | |
JP5430318B2 (ja) | 燃料電池スタック | |
JP2007227014A (ja) | 燃料電池システム | |
JP4925078B2 (ja) | 固体高分子形燃料電池 | |
KR20060130958A (ko) | 연료전지 차량의 재 순환 경로를 갖는 연료전지 스택 | |
US20070248860A1 (en) | Integrated exhaust combustor and thermal recovery for fuel cells | |
US11342575B2 (en) | Fuel cell stack | |
JP2006100016A (ja) | 燃料電池スタック |