JP4802360B2 - 水素ガス生成装置 - Google Patents

水素ガス生成装置 Download PDF

Info

Publication number
JP4802360B2
JP4802360B2 JP2000330028A JP2000330028A JP4802360B2 JP 4802360 B2 JP4802360 B2 JP 4802360B2 JP 2000330028 A JP2000330028 A JP 2000330028A JP 2000330028 A JP2000330028 A JP 2000330028A JP 4802360 B2 JP4802360 B2 JP 4802360B2
Authority
JP
Japan
Prior art keywords
hydrogen gas
metal hydride
water
reaction
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000330028A
Other languages
English (en)
Other versions
JP2002137903A (ja
Inventor
治通 中西
信一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2000330028A priority Critical patent/JP4802360B2/ja
Publication of JP2002137903A publication Critical patent/JP2002137903A/ja
Application granted granted Critical
Publication of JP4802360B2 publication Critical patent/JP4802360B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、金属水素化物を加水分解または熱分解して、水素ガスを生成する技術に関する。
【0002】
【従来の技術】
水素と酸素の電気化学反応により起電力を得る燃料電池では、燃料として水素ガスが必要となる。水素ガスを生するシステム例として、金属水素化物、いわゆるケミカルハイドライドを用いた構成が知られている。
【0003】
ケミカルハイドライドとは、アルカリ金属または錯金属と水素の化合物であり、加水分解または熱分解して水素を生成する性質を有する物質である。エネルギ密度が非常に高い物質として知られている。昨今の研究により、ケミカルハイドライドとして、NaH、NaBH4、NaAlH4、LiAlH4、LiBH4、LiH、CaH2、AlH3、MgH2などの金属水素化物が知られている。
【0004】
例えば、NaBH4は、加水分解では、理論的には、次式で表される反応によって、水素が生成される。
NaBH4+2H2O→NaBO2+4H2
【0005】
【発明が解決しようとする課題】
しかし、金属水素化物を加水分解する場合、反応による生成物が金属水素化物の表面を覆い、途中で反応が停止してしまう。反応率、即ち全金属水素化物中で反応した物質の割合は、通常、約50%程度しか得られないことが確認された。
【0006】
また、加水分解時に生成される生成物は、吸水性を有することが知られており、加水分解には、上述の理論的な反応式よりも多量の水が必要とされていた。例えば、NaBH4の加水分解は、実際には、次式等で表される反応となることが確認された。
NaBH4+6H2O→NaBO2・4H2O+4H2
【0007】
これらの現象により、従来は、必要な水素を得るために、多量の金属水素化物および水が要求され、水素ガスの生成装置の大型化を招いていた。本発明は、これらの課題を解決するためになされたものであり、金属水素化物を利用した水素ガス生成装置における水素生成効率の向上、必要な水の量の低減を図ることを目的とする。
【0008】
【課題を解決するための手段およびその作用・効果】
上記課題の少なくとも一部を解決するために、本発明では、第1の構成として、金属水素化物の加水分解反応によって水素を生成させる反応部に被覆抑制機構を備えるものとした。被覆抑制機構とは、未反応の前記金属水素化物の表面を被覆する反応の生成物の量を抑制する機構である。生成物とは、金属水素化物中の金属を含有する生成物を意味する。金属水素化物として、NaBH4を用いる場合には、NaBO2・4H2Oが生成物に相当する。
【0009】
金属水素化物の反応率が50%程度に留まるのは、反応の生成物が金属水素化物の表面を覆い、金属水素化物と水の接触を阻害することが原因である。特に、生成物は、吸水性を有しているため、これに表面を大部分被覆されると、金属水素化物は、ほとんど水と接触できなくなってしまう。本発明では、被覆抑制機構によって、生成物による被覆を抑制するため、反応率を向上させることができる。
【0010】
被覆抑制機構は、例えば、金属水素化物と水の相互作用によって、被覆を除去する機構とすることができる。相互作用とは、水が金属水素化物の表面に及ぼす圧力、摩擦力の作用を意味する。被覆の除去は、金属水素化物の表面をプレート等で擦ることによっても可能であるが、水の相互作用を利用すれば、比較的簡易な構成で被覆の除去を実現できる。しかも、被覆を除去しつつ、加水分解反応を生じさせることもでき、より効率的である。
【0011】
水の圧力を利用する構成として、例えば、保持された金属水素化物の表面に、水を高圧で噴射する水噴射機構を適用することができる。噴射圧力、噴射位置、および噴射角度は、金属水素化物の種類に応じて、それぞれ被覆の粘性等を考慮して適宜設定可能である。加水分解が生じる部位が金属水素化物の一部に偏らないよう、噴射位置を可変とすることが望ましい。
【0012】
水の摩擦力を利用する構成として、例えば、反応部が、加水分解用の水を貯蔵可能な構造を有している場合には、貯蔵された水に浸された金属水素化物を、水に対して相対的に移動させる機構とすることができる。相対的な移動は、金属水素化物を水に対し移動する態様、金属水素化物を流水に浸す態様、金属水素化物および水の双方を移動させる態様のいずれでも良い。金属水素化物を流水に浸す態様では、例えば、ペレット状の金属水素化物を、洗濯機で実現されるような撹拌流に浸す態様が挙げられる。
【0013】
金属水素化物を移動させる態様としては、金属水素化物の固まりを保持し、水中で振動させる振動機構を用いることができる。超音波の印加によって振動させることがより望ましい。
【0014】
本発明は、第2の構成として、加水分解を行う反応部に金属水素化物を微粉化して供給する微粉化機構と、反応部に水を供給する給水機構とを備えるものとした。微粉化とは、いわゆる粉塵爆発を生じる程度の粒径にすることを意味しており、好ましくは平均径が50μm以下、より好ましくは20μmとなることが望ましい。
【0015】
このように微細化した金属水素化物に水を供給すると、反応器では非常に激しい連鎖的な反応が生じ、粉塵爆発が起きる。かかる反応では、微細化されたそれぞれの粒子を生成物が被覆するまでなく、全金属水素化物が反応する。また、生成物が水を吸収する前に反応が進行するため、その反応は、先に示した理論的な反応式に近くなる。従って、反応率を大きく向上することができるとともに、反応に要する水の量も抑制することができる。
【0016】
なお、第2の構成において、給水機構は、水蒸気の噴霧機構とすることが望ましい。水滴で供給する場合に比較して、水蒸気は反応器中に拡散しやすいため、擬似的な気相反応を生じさせることができる。
【0017】
本発明は、先に列挙した種々の金属水素化物に適用可能であるが、特に、NaBH4に有効活用できる。
【0018】
本発明は、水素ガス生成装置の他、種々の態様で構成可能である。例えば、生成された水素の供給を受けて発電する燃料電池と組み合わせた燃料電池システムとして構成してもよい。この燃料電池システムを搭載した移動体として構成してもよい。移動体には、車両、船舶、航空機等が含まれる。また、水素ガス生成方法、燃料電池の運転方法、移動体の駆動方法などの態様で構成することもできる。
【0019】
なお、本発明は、触媒なしでも加水分解の反応率を十分に向上させることが可能であるが、触媒を利用すれば、更に効果的である。反応に利用可能な触媒は、金属水素化物の種類および加水分解、熱分解の別によって選択される。一般にルテニウム系、チタニア系、白金系などの触媒が知られている。触媒は、金属水素化物または水の少なくとも一方に予め混入させてもよいし、反応器内部に担持してもよい。
【0020】
【発明の実施の形態】
A.第1実施例:
図1は第1実施例としての水素ガス生成装置を搭載した車両の概略構成を示す説明図である。この車両は、水素ガス生成装置10で生成された水素と空気中の酸素とを用いて発電する燃料電池2を電源として、エネルギ源として走行する。燃料電池2は、本実施例では、固体高分子型を用いた。燐酸型など種々のタイプを適用可能である。なお、燃料電池2には、水素ガスの供給量、圧力を制御するためのバルブ等が設けられているが、本実施例では、これらの制御機構を含めて一つのユニットとして示した。
【0021】
駆動回路3は、トランジスタインバータであり、燃料電池2から供給される電力を三相交流に変換してモータ4に供給する。モータ4は、この三相交流を受けて回転する同期モータである。モータ4の動力は、ディファレンシャルギヤ5を介して車輪6R,6Lに伝達され、車両の駆動力となる。なお、駆動回路3は、サイリスタ型など種々のインバータを適用でき、モータ4は誘導モータなど種々のモータを適用できる。直流モータを用いても良い。
【0022】
水素ガス生成装置10、燃料電池2、駆動回路3の運転状態は、それぞれ制御ユニット1によって制御される。制御ユニット1とは、内部にCPU、RAM、ROMを備えるマイクロコンピュータであり、予め用意されたソフトウェアに従って、燃料電池2の発電状態、駆動回路3のスイッチング、水素ガス生成装置10の水素生成量などを制御する。制御を行うため、制御ユニット1には、種々のセンサ、外部信号が入力されるが、本実施例では、図示を省略した。
【0023】
水素ガス生成装置10は、金属水素化物を加水分解して水素ガスを生成するユニットである。本実施例では、金属水素化物として、NaBH4を用いた。水素ガス生成装置10は、反応器11と水を供給する機構から構成される。反応器11は、発生した水素ガスの圧力に耐える強度を有する圧力容器であり、上部に金属水素化物12の固まりを保持する保持機構を備える。保持方法は、問わない。
【0024】
保持された金属水素化物12には、水タンク15に蓄えられていた水が、ポンプ13で加圧され、ノズル14から噴射される。金属水素化物12は、この水で加水分解され、水素と生成物、本実施例の場合はNaBO2を生じる。ポンプ13の圧力は、金属水素化物12の表面に生成された生成物を水勢で除去可能な程度の高圧に調整されている。この除去を効率的に行うため、水は金属水素化物12に対して斜め方向から噴射される。水の噴射角度、圧力は、反応器11および金属水素化物12のサイズ、生成物の物性などに応じて適宜調整すればよい。
【0025】
水素は、気体であるため、反応器11の比較的上部に設けられた配管を通って、燃料電池2に供給される。生成物は、噴射された水の圧力によって、金属水素化物12の表面から剥離され、反応器11の下部に沈殿する。反応器11の底部では、水と生成物が相分離するから、上澄み部分は、水タンク15に戻され、再び加水分解に使用される。
【0026】
制御ユニット1は、ポンプ13の圧力を制御し、水素ガスの生成量を制御する。制御は、種々の態様で実現可能である。第1に要求動力に応じて定まる必要水素量に基づいて、水の噴射量を制御することができる。第1の態様では、制御が若干複雑になるものの、無駄な反応を起こさせることなく、必要な水素量を供給できる利点がある。第2に必要水素量に関わらず間欠的に一定量の金属水素化物12を反応させ、反応器11を水素タンクとして水素を貯蔵する態様をとることもできる。水素の消費により、反応器11の水素圧力が所定値よりも低くなった時点で、再び反応を行わせるのである。第2の態様によれば、生成された水素の遺漏などによって無駄が生じる可能性があるものの、簡単な制御で水素を安定して供給することができる利点がある。制御方法はいずれを選択してもよい。
【0027】
以上で説明した第1実施例の水素ガス生成装置10によれば、水勢を利用して金属水素化物12の表面から生成物を除去することができるため、生成物の被覆による反応の阻害を回避できる。従って、金属水素化物12の反応率を向上させることができ、効率的に水素ガスを生成することができる。
【0028】
また、第1実施例では、水を再利用することができるため、水タンク15の容量を抑制することができる利点もある。
【0029】
第1実施例では、ノズル14は固定としたが、反応部位が金属水素化物12の一部に偏らないよう、水の噴射位置を可変にする機構を設けても良い。かかる機構は、ノズル14を前後に移動させたり、ノズル14の噴射角度を移動させたりするアクチュエータを備えることにより実現可能である。
【0030】
B.第2実施例:
図2は第2実施例としての水素ガス生成装置を搭載した車両の概略構成を示す説明図である。第2実施例は、水素ガス生成装置の構成が第1実施例と相違する。その他の構成は、第1実施例と共通であるため、説明を省略する。
【0031】
水素ガス生成装置20は、金属水素化物の加水分解によって水素を生成するシステムである。反応器21には水が蓄えられている。反応器21の上方には、金属水素化物22を保持する機構が設けられている。この機構は、金属水素化物22を水に上下動させるアクチュエータ24および金属水素化物22に超音波を印加する超音波アクチュエータ23を備えている。超音波アクチュエータ23は、種々の電歪素子を用いて構成することができる。アクチュエータ24および超音波アクチュエータ23の動作は、制御ユニット1によって制御される。
【0032】
アクチュエータ24は、通常、水が接触しない上方位置に金属水素化物22を保持する。制御ユニット1からの指示により、アクチュエータ24が金属水素化物22を下方位置に移動させると、金属水素化物22は水に浸させ、加水分解が生じる。超音波アクチュエータ23は、アクチュエータ24と連動して作動し、金属水素化物22に超音波を印加する。
【0033】
加水分解によって生成された水素は、反応器21の上方に設けられた配管から燃料電池2に供給される。金属水素化物22は、超音波によって振動させられているため、加水分解によって生じた生成物は、金属水素化物22の表面には付着せず反応器21の底部に沈殿する。
【0034】
アクチュエータ24の制御は、種々の態様を採りうる。水素ガスの必要量に応じて、金属水素化物22を水に浸す量を制御することができる。また、一定量ずつ水に浸し間欠的に水素を生成させてもよい。一定量ずつ生成させる場合には、アクチュエータ24を省略し、金属水素化物22を保持する位置が段階的に下がる機構、反応時に注水することで金属水素化物22を水に浸す構成などを採ることもできる。
【0035】
第2実施例の水素ガス生成装置20によれば、金属水素化物22の表面を被覆する生成物を超音波によって除去することができる。従って、金属水素化物22の反応率を向上させることができる。
【0036】
第2実施例では、超音波を用いて金属水素化物22を振動させる場合を例示した。超音波に依らず、アクチュエータ24を利用して加振させてもよい。この場合は、超音波アクチュエータ23を省略することができる。
【0037】
第2実施例では、加振によって金属水素化物22と水との間の摩擦力を利用して生成物を除去する場合を例示した。両者間に摩擦力を生じさせる方法としては、金属水素化物22を加振する他、水を金属水素化物22に対して移動させる方法を採ることもできる。例えば、洗濯機のように水を撹拌する機構を反応器21に設けてもよい。この場合、金属水素化物22の保持には、アクチュエータ24,超音波アクチュエータ23が不要となる。また、金属水素化物22は必ずしも固まりである必要はなく、ペレット状のものを水中に浸しても反応率の向上を図ることができる。
【0038】
C.第3実施例:
図3は第3実施例としての水素ガス生成装置を搭載した車両の概略構成を示す説明図である。第3実施例は、水素ガス生成装置の構成が第1実施例と相違する。その他の構成は、第1実施例と共通であるため、説明を省略する。
【0039】
水素ガス生成装置30は、金属水素化物の加水分解反応によって水素を生成する装置である。第3実施例では、金属水素化物22を粉塵爆発させる構成を例示する。
【0040】
水素ガス生成装置30は、反応器31、金属水素化物32を微粉化する機構、反応器31に水を供給する機構から構成される。反応器31は、粉塵爆発の圧力に耐えられる圧力容器であり、上部に金属水素化物32を保持する機構を備える。保持方法は問わない。
【0041】
微粉化する機構は、表面が粗面となった回転やすり34と、それを回転させるモータ33で構成される。モータ33が回転すると、回転やすり34によって、金属水素化物32の表面が微粉化される。この微粉は、反応器31内に拡散する。図中では、微粉を黒のドットで示した。微粉の径は、粉塵爆発を生じさせる程度に小さく、好ましくは約50μm以下、更に好ましくは約20μm以下である。
【0042】
加水分解に用いられる水は、水タンク35からポンプ36で抽出され、蒸発器37で加熱蒸発されて反応器31内に供給される。反応器31に水を噴霧する構成としてもよいが、拡散性の観点から水蒸気の方が好ましい。
【0043】
反応器31では、微粉化された金属水素化物と水蒸気が反応し、水素を生成する。この反応は、粉塵爆発となり、非常に激しく連鎖的に反応が生じる。生成物が微粉化された金属水素化物の表面を被覆する間もなく、反応が終了する。従って、生成物は、反応器31の底部に堆積する。生成された水素は、燃料電池2に供給される。
【0044】
第3実施例によれば、金属水素化物を微粉化することにより、反応率を向上させることができる。なお、第3実施例では、微粉化機構を設けたが、予め微粉化された金属水素化物を噴射する態様を採ることも可能である。第3実施例では、粉塵爆発を生じさせる態様を例示したが、反応率を向上する観点からは、金属水素化物の微粉化は、生成物が表面を被覆しない程度の径であれば足りる。
【0045】
以上、本発明の種々の実施例について説明したが、本発明はこれらの実施例に限定されず、その趣旨を逸脱しない範囲で種々の構成を採ることができることはいうまでもない。例えば、実施例では、生成された水素を燃料電池に供給する態様、さらに車両に搭載する態様を例示した。本発明の水素ガス生成装置で生成された水素ガスは、燃料電池に限らず、また車両その他の移動体への搭載用に限らず種々の用途に使用可能である。
【図面の簡単な説明】
【図1】第1実施例としての水素ガス生成装置を搭載した車両の概略構成を示す説明図である。
【図2】第2実施例としての水素ガス生成装置を搭載した車両の概略構成を示す説明図である。
【図3】第3実施例としての水素ガス生成装置を搭載した車両の概略構成を示す説明図である。
【符号の説明】
1…制御ユニット
2…燃料電池
3…駆動回路
4…モータ
5…ディファレンシャルギヤ
6R,6L…車輪
10…水素ガス生成装置
11…反応器
12…金属水素化物
13…ポンプ
14…ノズル
15…水タンク
20…水素ガス生成装置
21…反応器
22…金属水素化物
23…超音波アクチュエータ
24…アクチュエータ
30…水素ガス生成装置
31…反応器
32…金属水素化物
33…モータ
34…回転やすり
35…水タンク
36…ポンプ
37…蒸発器

Claims (14)

  1. 金属水素化物の加水分解反応によって水素を生成させる反応部と、
    該反応部において、未反応の前記金属水素化物の表面を被覆する前記反応の生成物の量を抑制することにより前記生成物の前記金属水素化物の表面での吸水量を抑制する被覆抑制機構と、
    前記反応部に前記反応に必要な量の水を供給する給水機構と、を備え
    前記給水機構は、水を高圧で噴射する水噴射機構と水蒸気の噴霧機構との少なくとも一方である、水素ガス生成装置。
  2. 請求項1記載の水素ガス生成装置であって、
    前記被覆抑制機構は、前記金属水素化物と水の相互作用によって、前記被覆を除去する機構である水素ガス生成装置。
  3. 請求項2記載の水素ガス生成装置であって、
    前記被覆抑制機構は、
    前記金属水素化物を保持する保持機構と、
    前記保持機構に保持された前記金属水素化物の表面に、前記給水機構としての前記水噴射機構とを有する水素ガス生成装置。
  4. 請求項2記載の水素ガス生成装置であって、
    前記反応部は、加水分解用の水を貯蔵可能な構造を有しており、
    前記被覆抑制機構は、該貯蔵された水に浸された前記金属水素化物を、該水に対して相対的に移動させる水洗機構である水素ガス生成装置。
  5. 請求項4記載の水素ガス生成装置であって、
    前記水洗機構は、前記金属水素化物の固まりを保持するとともに前記水中で振動させる振動機構である水素ガス生成装置。
  6. 請求項5記載の水素ガス生成装置であって、
    前記振動機構は、超音波の印加によって前記保持された金属水素化物を振動させる水素ガス生成装置。
  7. 請求項1記載の水素ガス生成装置であって、
    前記被覆抑制機構は、
    前記反応部に前記金属水素化物を微粉化して供給する微粉化機構を備える水素ガス生成装置。
  8. 請求項7記載の水素ガス生成装置であって、
    前記微粉化された金属水素化物の平均径が50μm以下である水素ガス生成装置。
  9. 請求項7記載の水素ガス生成装置であって、
    前記給水機構は、前記噴霧機構である水素ガス生成装置。
  10. 請求項1〜請求項9いずれか記載の水素ガス生成装置であって、
    前記金属水素化物は、NaBH である水素ガス生成装置。
  11. 請求項1〜請求項10いずれか記載の水素ガス生成装置と、
    生成された水素の供給を受けて発電する燃料電池とを備える燃料電池システム。
  12. 請求項1〜請求項10いずれか記載の水素ガス生成装置と、
    生成された水素の供給を受けて発電する燃料電池と、
    発電された電力によって駆動する電動機とを備える移動体。
  13. 水素ガス生成方法であって、
    金属水素化物の加水分解反応によって水素を生成させる工程と、
    金属水素化物の加水分解時に、未反応の前記金属水素化物の表面を被覆する生成物の量を抑制することにより前記生成物の前記金属水素化物の表面での吸水量を抑制する工程と、
    水を高圧で噴射する水噴射機構と水蒸気の噴霧機構との少なくとも一方により、前記反応に必要な量の水を供給する工程と、を備える水素ガス生成方法。
  14. 請求項13記載の水素ガス生成方法であって、さらに、
    前記金属水素化物を微粉化し、該微粉化された金属水素化物を供給する工程を備える水素ガス生成方法。
JP2000330028A 2000-10-30 2000-10-30 水素ガス生成装置 Expired - Fee Related JP4802360B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000330028A JP4802360B2 (ja) 2000-10-30 2000-10-30 水素ガス生成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000330028A JP4802360B2 (ja) 2000-10-30 2000-10-30 水素ガス生成装置

Publications (2)

Publication Number Publication Date
JP2002137903A JP2002137903A (ja) 2002-05-14
JP4802360B2 true JP4802360B2 (ja) 2011-10-26

Family

ID=18806611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000330028A Expired - Fee Related JP4802360B2 (ja) 2000-10-30 2000-10-30 水素ガス生成装置

Country Status (1)

Country Link
JP (1) JP4802360B2 (ja)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1599927B1 (en) * 2003-02-19 2019-04-10 Honeywell International Inc. Electrical power generator
JP5142176B2 (ja) * 2004-09-16 2013-02-13 セイコーインスツル株式会社 固体高分子型燃料電池システム
JP4813790B2 (ja) * 2004-12-03 2011-11-09 セイコーインスツル株式会社 水素発生装置及び燃料電池システム
JP2006298670A (ja) * 2005-04-18 2006-11-02 Sony Corp 水素発生方法及びその装置、並びに電気化学エネルギー生成方法及びそのシステム
JP4918716B2 (ja) * 2005-08-03 2012-04-18 セイコーインスツル株式会社 水素発生設備及び燃料電池システム
JP4899474B2 (ja) * 2005-08-03 2012-03-21 セイコーインスツル株式会社 燃料電池システム
JP2007122888A (ja) * 2005-10-25 2007-05-17 Atsuhiro Yoshizaki 燃料電池システム
US7901816B2 (en) * 2005-11-09 2011-03-08 Honeywell International Inc. Water reclamation in a micropower generator
JP2007161520A (ja) * 2005-12-13 2007-06-28 Nitto Denko Corp 水素発生装置及び燃料電池システム
WO2007097243A1 (ja) 2006-02-24 2007-08-30 Seiko Instruments Inc. 圧力調整弁並びにこれを用いた燃料電池システム及び水素発生設備
BRPI0709387A2 (pt) * 2006-03-15 2011-07-05 Bic Soc composição de combustìvel capaz de produzir hidrogênio através de reação quìmica para uso em célula de combustìvel e gerador de gás adaptado para uso com a mesma
JP5135527B2 (ja) * 2007-02-16 2013-02-06 セイコーインスツル株式会社 水素発生装置及び燃料電池システム
KR100803074B1 (ko) * 2007-03-20 2008-02-18 박정태 수소발생용 조성물 및 이를 이용한 고순도 수소발생 장치
KR101387734B1 (ko) 2007-07-03 2014-04-21 삼성에스디아이 주식회사 수소 발생 장치 및 이를 포함하는 연료 전지 시스템
JP5135627B2 (ja) * 2007-08-07 2013-02-06 セイコーインスツル株式会社 水素発生装置及び燃料電池設備
JP2009062215A (ja) * 2007-09-05 2009-03-26 Nissan Motor Co Ltd 水素発生材料、水素発生材料の製造方法、水素発生材料の容器、水素燃料車両、及び携帯用機器
JP4659075B2 (ja) * 2007-09-28 2011-03-30 バイオコーク技研株式会社 発電装置
JP5117827B2 (ja) * 2007-11-21 2013-01-16 セイコーインスツル株式会社 水素発生装置及び燃料電池システム
JP5103166B2 (ja) * 2007-12-28 2012-12-19 アクアフェアリー株式会社 水素発生装置及び水素発生方法
TWI384679B (zh) * 2009-12-14 2013-02-01 Ind Tech Res Inst 電源供應裝置
JP5640231B2 (ja) * 2010-10-13 2014-12-17 バイオコーク技研株式会社 水素生成装置
WO2013150946A1 (ja) * 2012-04-03 2013-10-10 コニカミノルタ株式会社 燃料電池システム
CN107746038A (zh) 2012-06-19 2018-03-02 生物焦炭技术研究株式会社 氢产生装置
JP6085759B2 (ja) * 2012-10-15 2017-03-01 アクアフェアリー株式会社 発電装置
KR102614404B1 (ko) * 2016-07-21 2023-12-14 한화오션 주식회사 수중함용 수소 공급 장치
KR102614409B1 (ko) * 2016-07-26 2023-12-14 한화오션 주식회사 수중함용 수소 공급 장치
FR3072303B1 (fr) * 2017-10-18 2019-11-01 Commissariat A L'energie Atomique Et Aux Energies Alternatives Appareil pour generer un gaz
CN113716523A (zh) * 2021-08-16 2021-11-30 广东省科学院资源利用与稀土开发研究所 可见光在促进金属及其氢化物水解制氢中的应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54121292A (en) * 1978-03-14 1979-09-20 Fuji Electric Co Ltd Hydrogen geneator
JP2791182B2 (ja) * 1990-05-21 1998-08-27 バブコツク日立株式会社 水素ガス発生剤
JPH07300301A (ja) * 1994-05-10 1995-11-14 Hitachi Ltd 水素ガス製造装置
JPH0866622A (ja) * 1994-08-30 1996-03-12 Nachi Fujikoshi Corp 燃焼ガスの処理方法及び装置
US5882623A (en) * 1996-05-13 1999-03-16 Hydro Quebec Method for inducing hydrogen desorption from a metal hydride
JP3702121B2 (ja) * 1999-03-23 2005-10-05 三菱重工業株式会社 発電装置
CA2301252A1 (en) * 2000-03-17 2001-09-17 Hydro-Quebec Method for producing gaseous hydrogen by chemical reaction of metals or metal hydrides subjected to intense mechanical deformations

Also Published As

Publication number Publication date
JP2002137903A (ja) 2002-05-14

Similar Documents

Publication Publication Date Title
JP4802360B2 (ja) 水素ガス生成装置
US6093501A (en) Fuel cell using an aqueous hydrogen-generating process
US7001681B2 (en) Water vapor transport power generator
CN1274585C (zh) 用于燃料电池装置的氢生成方法以及氢发生系统
AU2008227365B2 (en) Apparatus for generating hydrogen gas using composition for generating hydrogen gas and composition for generating hydrogen gas
JP4792632B2 (ja) 水素ガス生成装置
CN101428756A (zh) 利用硼氢化物组合物自发制氢的方法
CN109824013A (zh) 氢化镁制氢助剂的应用、氢化镁制氢混合试剂以及氢化镁制氢方法
EP1993950A1 (en) A system for hydrogen storage and generation
US5629102A (en) Electrical automobile having a fuel cell, and method of powering an electrical automobile with a fuel cell system
JP2006056753A (ja) 水素発生方法、水素発生装置及び燃料電池システム
JP2013010687A (ja) 固体水素燃料並びにその製造方法及びその使用方法
JP5297251B2 (ja) 水素供給方法及び水素供給装置
JP5034567B2 (ja) 水素発生装置およびこれを搭載した燃料電池自動車
KR102589454B1 (ko) 수소 생산을 위한 금속 분말 공급 장치 및 공급 방법
JP2012046103A (ja) 水素エネルギー車両
CN105903472A (zh) 一种合成气制乙醇和高级醇的均匀分布的CoCu催化剂
CN215777796U (zh) 一种带蒸汽发生组件的清洁装置
JP2003206101A (ja) 水素発生装置およびそれを用いた燃料電池システム
JP2006069869A (ja) 水素発生方法、水素発生装置及び燃料電池システム
TW201225405A (en) Dual chamber fuel cell power supply
JP2009159802A (ja) 自動車および燃料ステーション
JP5285037B2 (ja) 水素生成システム、固体水素燃料を用いた水素生成方法、及び固体水素燃料を用いて燃料電池に水素を供給する方法
CN212199157U (zh) 一种制备水合物用的超声波雾化注水口
CA2902060A1 (en) Methods and systems for making metal hydride slurries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110725

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees