JP4796361B2 - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP4796361B2
JP4796361B2 JP2005259975A JP2005259975A JP4796361B2 JP 4796361 B2 JP4796361 B2 JP 4796361B2 JP 2005259975 A JP2005259975 A JP 2005259975A JP 2005259975 A JP2005259975 A JP 2005259975A JP 4796361 B2 JP4796361 B2 JP 4796361B2
Authority
JP
Japan
Prior art keywords
fuel cell
refrigerant
flow path
amount
refrigerant supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005259975A
Other languages
English (en)
Other versions
JP2007073378A (ja
Inventor
幸一郎 宮田
千大 和氣
純平 小河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2005259975A priority Critical patent/JP4796361B2/ja
Priority to CNB2006101281436A priority patent/CN100461515C/zh
Priority to US11/516,855 priority patent/US7892686B2/en
Publication of JP2007073378A publication Critical patent/JP2007073378A/ja
Application granted granted Critical
Publication of JP4796361B2 publication Critical patent/JP4796361B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1919Control of temperature characterised by the use of electric means characterised by the type of controller
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04268Heating of fuel cells during the start-up of the fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04358Temperature; Ambient temperature of the coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04559Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04574Current
    • H01M8/04589Current of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • H01M8/04619Power, energy, capacity or load of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04768Pressure; Flow of the coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、燃料電池システムに関する。
近年、水素がアノードに、酸素がカソードに、それぞれ供給されることで、電気化学反応が生じ発電する固体高分子型燃料電池(Polymer Electrolyte Fuel Cell:PEFC、以下「燃料電池」)の開発が盛んである。燃料電池は、その発電電力によって走行する燃料電池自動車や、家庭用電源など広範囲で適用されつつあり、今後もその適用範囲の拡大が期待されている。
このような燃料電池は発電すると、電気化学反応により自己発熱する。そこで、燃料電池を経由するように冷媒(冷却水)を循環させて、燃料電池を適宜に冷却する方法が一般に採用されている(特許文献1参照)。
特開2004−234902号公報(段落番号0022〜0025、図1)
一方、システムの小型化を図るために、冷媒を供給するためのポンプと、カソードに空気を供給するためのコンプレッサとを一体に構成し、1つの駆動装置(例えばモータ)で一体に駆動させる技術が提案されている。
しかしながら、このようにポンプとコンプレッサとが、1つの駆動装置を共有し、一体に駆動すると、例えば、燃料電池の起動時において、空気が送られると共に、冷媒が送られてしまい、自己発熱により発生した熱が冷媒に放熱されてしまい、その結果、燃料電池の暖機が遅れてしまう場合があった。さらに、氷点下で燃料電池を起動させた場合、冷媒によって、発電により生成した水や凝縮した水が、燃料電池内で凍結してしまう虞もある。
そこで、本発明は、小型化を図りつつ、好適に暖機可能な燃料電池システムを提供することを課題とする。
前記課題を解決するための手段として、本発明は、反応ガスが流通する反応ガス流路を有し当該反応ガス流路に反応ガスが供給されることにより発電し、冷媒が流通する冷媒流路を有し当該冷媒流路に冷媒が供給されることで冷却される燃料電池と、前記反応ガス流路に反応ガスを供給する反応ガス供給手段と、前記冷媒流路に冷媒を供給する冷媒供給手段と、前記冷媒流路への冷媒の供給量を制限する冷媒供給制限手段と、前記冷媒流路への冷媒の供給量を積算し積算冷媒供給量を算出する冷媒供給量積算手段と、前記燃料電池の電力を積算して積算電力を算出し、前記積算電力に基づいて前記燃料電池の積算発熱量を算出する発熱量検出手段と、前記冷媒供給制限手段を、冷媒を通常に供給する通常モード又は冷媒を制限し供給量を減らす制限モードで制御する制御手段と、前記燃料電池の暖機が完了したか否か判定する暖機判定手段と、を備え、前記反応ガス供給手段と前記冷媒供給手段とは、1つの駆動装置を共有し一体となって駆動し、システム停止中に前記燃料電池が低温を経験している場合、システム起動時、前記駆動装置の回転速度前記燃料電池が低温を経験していない通常よりも高く制御して前記反応ガス供給手段による前記燃料電池への反応ガスの供給量を増加し、発電する前記燃料電池の自己発熱量を高めることで当該燃料電池の暖機を促進し、前記暖機判定手段が前記燃料電池の暖機は完了したと判定するまで、前記制御手段が通常モードと制限モードとを交互に繰り返して実行する燃料電池システムであって、制限モードの実行中、前記発熱量検出手段は、当該制限モードにおける前記燃料電池の積算発熱量と所定積算発熱量とを比較し、前記制御手段は、前記積算発熱量が前記所定積算発熱量以上である場合、通常モードに移行し、前記積算発熱量が前記所定積算発熱量以上でない場合、制限モードを継続し、前記所定積算発熱量は、制限モードの実行により前記燃料電池内に温度分布が発生することで形成される高温部分の温度が、前記燃料電池の耐え得る限界温度に到達したと判断される発熱量であり、通常モードの実行中、前記冷媒供給量算出手段は、当該通常モードにおける積算冷媒供給量と所定積算冷媒供給量とを比較し、前記制御手段は、前記積算冷媒供給量が前記所定積算冷媒供給量以上である場合、制限モードに移行し、前記積算冷媒供給量が前記所定積算冷媒供給量以上でない場合、通常モードを継続し、前記所定積算冷媒供給量は、通常モードの実行により、前記高温部分の温度がその後に制限モードに移行した場合において制限される冷媒供給に耐え得る温度に低下したと判断される量であることを特徴とする燃料電池システムである。
このような燃料電池システムによれば、反応ガス供給手段と冷媒供給手段とが、1つの駆動装置を共有することによって、システムの小型化が図られる。そして、燃料電池を暖機する場合、反応ガス供給手段と冷媒供給手段とを1つの駆動装置によって一体に駆動させつつ、冷媒供給制限手段によって冷媒流路への冷媒の供給量を減らすことにより、燃料電池を好適に暖機することができる。
また、このような燃料電池システムによれば、発熱量検出手段が検出した発熱量に基づいて、冷媒供給制限手段を制御することができる。
また、前記課題を解決するための手段として、本発明は、反応ガスが流通する反応ガス流路を有し当該反応ガス流路に反応ガスが供給されることにより発電し、冷媒が流通する冷媒流路を有し当該冷媒流路に冷媒が供給されることで冷却される燃料電池と、前記反応ガス流路に反応ガスを供給する反応ガス供給手段と、前記冷媒流路に冷媒を供給する冷媒供給手段と、前記冷媒流路への冷媒の供給量を制限する冷媒供給制限手段と、発電開始から現在における前記燃料電池の電力を積算して積算電力を算出する積算電力算出手段と、前記積算電力算出手段の算出した積算電力と運転マップとに基づいて、前記冷媒供給制限手段を、冷媒を通常に供給する通常モード又は冷媒を制限し供給量を減らす制限モードで制御する制御手段と、前記燃料電池の暖機が完了したか否か判定する暖機判定手段と、を備え、前記反応ガス供給手段と前記冷媒供給手段とは、1つの駆動装置を共有し一体となって駆動し、システム停止中に前記燃料電池が低温を経験している場合、システム起動時、前記駆動装置の回転速度前記燃料電池が低温を経験していない通常よりも高く制御して前記反応ガス供給手段による前記燃料電池への反応ガスの供給量を増加し、発電する前記燃料電池の自己発熱量を高めることで当該燃料電池の暖機を促進し、前記暖機判定手段が前記燃料電池の暖機は完了したと判定するまで、前記制御手段が通常モードと制限モードとを交互に繰り返して実行する燃料電池システムであって、前記運転マップは、複数の積算電力範囲に分けられ、前記各積算電力範囲において通常モードの実行時間及び制限モードの実行時間が設定されており、積算電力が大きくなるにつれて、通常モードの実行時間は長くなり、制限モードの実行時間は短くなるように設定されていることを特徴とする燃料電池システムである。
また、前記燃料電池システムにおいて、前記暖機完了判定手段は、前記燃料電池の温度が暖機完了温度に到達した場合、前記燃料電池の暖機は完了したと判定し、前記暖機完了温度は、その後に通常モードで冷媒の供給を継続しても、冷媒が発電する前記燃料電池の自己発熱を過度に奪わず、冷媒により当該燃料電池が過冷却されない温度であることが好ましい。
また、前記燃料電池システムにおいて、前記冷媒供給制限手段は、前記冷媒流路を迂回させる迂回流路を備えることが好ましい。
このような燃料電池システムによれば、冷媒を迂回流路に送ることによって、燃料電池の冷媒流路への冷媒供給量を減らすことができる。
また、前記燃料電池システムにおいて、前記冷媒供給制限手段は、前記冷媒流路に供給される冷媒に、圧力損失を付加する圧力損失付加手段を備えることが好ましい。
このような燃料電池システムによれば、圧力損失付加手段によって冷媒に圧力損失を付加することにより、冷媒流路への冷媒の供給量を減らすことができる。
本発明によれば、小型化を図りつつ、好適に暖機可能な燃料電池システムを提供することができる。
以下、本発明の実施形態について、図面を適宜参照して説明する。なお、各実施形態の説明において、同一の構成要素に関しては同一の符号を付し、重複した説明は省略するものとする。
≪第1実施形態、燃料電池システムの構成≫
第1実施形態に係る燃料電池システムについて、図1から図3を参照して説明する。
図1に示すように、第1実施形態に係る燃料電池システム1Aは、燃料電池自動車に搭載されたシステムであり、この燃料電池自動車は燃料電池2の発電電力によって電動の走行モータ31を駆動し走行するようになっている。燃料電池システム1Aは、燃料電池2と、燃料電池2に対して水素(燃料ガス、反応ガス)を供給・排出するアノード系10と、燃料電池2に対して酸素を含む空気(酸化剤ガス、反応ガス)を供給・排出するカソード系20と、燃料電池2の出力端子に接続し電力を消費する電力消費系30と、燃料電池2を適宜に冷却する冷却系40と、燃料電池2への冷媒供給量を適宜に制限する冷媒供給制限手段50Aと、燃料電池システム1Aの起動スイッチであるIG61(イグニッション)と、これらを電子制御するECU70A(Electronic Control Unit、電子制御装置)と、を主に備えている。
<燃料電池>
燃料電池2(燃料電池スタック)は、単セルが複数積層されることによって構成された固体高分子型燃料電池である。単セルは、電解質膜(固体高分子膜)の両面をアノード(燃料極)およびカソード(空気極)で挟んでなるMEA(Membrane Electrode Assembly:膜電極接合体)と、MEAを挟む一対のセパレータと、で構成されている。セパレータには、各単セルを構成するMEAの全面に反応ガスを供給するための溝や、全単セルに水素、酸素を導くための貫通孔などが形成されており、これら溝などがアノード側流路3、カソード側流路4(反応ガス流路)となっている。すなわち、アノード側流路3には燃料ガスとしての水素が流通し、この流通する水素が各アノードに供給されるようになっている。一方、カソード側流路4には、酸化剤ガスとして酸素を含む空気が流通し、この流通する空気が各カソードに供給されるようになっている。
そして、燃料電池2のアノードに水素が、カソードに酸素を含む空気が、それぞれ供給されると、アノード、カソードに含まれる触媒(Ptなど)上で電気化学反応が起こり、その結果、各単セルで電位差が発生するようになっている。そして、このように各単セルで電位差が発生した燃料電池2に対して、走行モータ31などの外部負荷から発電要求があると、燃料電池2が発電するようになっている。なお、このように発電すると、燃料電池2は自己発熱する。
また、前記したセパレータには、冷媒が流通する冷媒流路5が形成されており、この冷媒流路5に冷媒が流通することで、燃料電池2が適宜に冷却されるようになっている。
<アノード系>
アノード系10は、水素が貯蔵された水素タンク11と、遮断弁12とを主に備えている。水素タンク11は配管11aを介して遮断弁12に接続しており、遮断弁12は配管12aを介してアノード側流路3に接続している。また、遮断弁12は、ECU70Aの運転制御部71と接続しており、運転制御部71により適宜に制御され、遮断弁12が開かれると水素が水素タンク11からアノード側流路3に供給されるようになっている。なお、配管12aには減圧弁(図示しない)が設けられており、水素が所定圧力に減圧される。
一方、アノード側流路3の下流側は、配管13aを介して、外気に開放されている。そして、燃料電池2から排出されたアノードオフガス(水素オフガス)が、配管13aを通って外部に排気されるようになっている。
<カソード系>
カソード系20は、反応ガス供給装置であるコンプレッサ21(スーパーチャージャ、反応ガス供給手段)を主に備えている。コンプレッサ21は配管21aを介してカソード側流路4に接続しており、コンプレッサ21が作動すると、外部の空気が取り込まれ、カソード側流路4に送られるようになっている。さらに、配管21aには、加湿器(図示しない)が設けられており、カソード側流路4に供給される空気が加湿されるようになっている。
一方、カソード側流路4の下流側は、配管22aを介して、外気に開放されている。そして、この配管22a内は、カソード側流路4から排出されたカソードオフガス(空気オフガス)が流通し、その下流側で排気されるようになっている。
また、コンプレッサ21は、冷却系40のポンプ41(冷媒供給装置)と、1つのモータM(駆動装置)を共有している。すなわち、モータMの駆動軸A周りに、例えばコンプレッサ21の羽根車(図示しない)と、ポンプ41の羽根車(図示しない)とが固定されており、モータMが駆動すると、両羽根車が一体となって回転するようになっている。つまり、コンプレッサ21とポンプ41とは、モータMを共有し、一体となって駆動する設計となっている。そして、このようにモータMを共有することで、システムの小型化、部品点数の削減、コスト削減が図られている。
<電力消費系>
電力消費系30は、燃料電池2の出力端子(図示しない)に接続しており、燃料電池2で発生した電力を消費する系である。電力消費系30は、燃料電池自動車を走行させる走行モータ31(外部負荷)と、VCU32(Voltage Control Unit)と、蓄電装置33と、電流計34(発熱量検出手段)と、電圧計35(発熱量検出手段)と、を主に備えている。
走行モータ31は、VCU32を介して燃料電池2の出力端子に接続している。蓄電装置33は、VCU32と走行モータ31との間で、走行モータ31と並列に接続されており、蓄えた電力を走行モータ31に供給して燃料電池2を補助したり、燃料電池2の余剰電力を蓄えるようになっている。このような蓄電装置33としては、例えば、キャパシタ(電気二重層コンデンサ)や、バッテリなどが挙げられる。
VCU32は、燃料電池2の出力電流や出力電圧を制御する電流電圧機器である。言い換えると、VCU32は、電流を適宜に取り出すことによって燃料電池2を発電させる機器である。このようなVCU32は、例えば、コンタクタ(リレー)、DC−DCコンバータなどを備えている。そして、VCU32は、運転制御部71と接続しており、運転制御部71によって出力電流および出力電圧が制御される。すなわち、例えば、運転制御部71が出力電流を0にすれば、燃料電池2は発電しない設定となっている。
電流計34は、燃料電池2とVCU32との間で、燃料電池2(スタック全体)の出力電流を検出可能なように適所に設けられている。そして、電流計34は、ECU70Aの電力積算部73Aと接続しており、電力積算部73Aは燃料電池2の実際の出力電流を監視するようになっている。
電圧計35は、燃料電池2とVCU32との間で、燃料電池2(スタック全体)の出力電圧を検知可能なように適所に設けられている。そして、電圧計35はECU70Aの電力積算部73Aと接続しており、電力積算部73Aは実際の出力電圧を監視するようになっている。この他、電流計34および電圧計35を、燃料電池2を構成する単セル毎に設けてもよい。
<冷却系>
冷却系40は、燃料電池2が過剰に昇温しないように適宜に冷却する系であり、冷媒供給装置であるポンプ41(冷媒供給手段)と、ラジエータ42(放熱器)と、温度センサ43とを主に備えている。そして、ポンプ41から下流側に向かって、配管41a、燃料電池2の冷媒流路5、配管42a、ラジエータ42、配管42b、ポンプ41の順に接続しており、冷媒が循環するようになっている。なお、冷媒は、例えばエチレングリコールなどを主成分とするラジエータ液から構成される。また、前記したように、ポンプ41と、カソード系20のコンプレッサ21とは、モータMを共有しており、一体となって駆動するようになっている。
温度センサ43は、後記する配管51aの合流点より燃料電池2側(上流側)の配管42aに設けられており、燃料電池2から排出された冷媒の温度を、燃料電池システム1Aのシステム温度として検出するようになっている。そして、温度センサ43はECU70Aの暖機判定部72と接続しており、暖機判定部72はシステム温度を監視するようになっている。
<冷媒供給制限手段>
冷媒供給制限手段50Aは、分配バルブ51(三方バルブなど)と、配管51a(迂回流路)とを備えている。
分配バルブ51は、配管41a上に設けられている。また、分配バルブ51は運転制御部71と接続しており、運転制御部71によって適宜に制御される。配管51aは、分配バルブ51と、温度センサ43の下流側の配管42aとを接続している。そして、運転制御部71が、分配バルブ51を適宜に制御することで、ポンプ41から送られる冷媒が、燃料電池2側と配管51a側とに、ゼロを含めて適宜に分配されるようになっている。すなわち、分配バルブ51が制御され、冷媒が配管51a側に送られると、冷媒が燃料電池2の冷媒流路5を迂回し、冷媒流路5への冷媒供給量が減らされ、制限されるようになっている。ここで、配管51a内が、特許請求範囲における迂回流路に相当している。
<IG>
IG61は、燃料電池システム1A(燃料電池自動車)の起動スイッチであり、運転席周りに配設されている。そして、IG61は、ECU70Aの運転制御部71と接続しており、運転制御部71はIG63のON/OFF信号を検知するようになっている。
<ECU>
ECU70Aは、CPU、ROM、RAM、各種インタフェイス、電子回路などから構成されている。このようなECU70Aは、運転制御部71(制御手段)と、暖機判定部72(暖機判定手段)と、電力積算部73A(発熱量検出手段)と、冷媒供給量積算部74と、を備えている。
[運転制御部]
運転制御部71は、コンプレッサ21およびポンプ41の駆動装置であるモータMと接続しており、モータMを適宜に駆動させるようになっている。また、運転制御部71は、暖機判定部72、電力積算部73Aまたは冷媒供給量積算部74からの判定結果に基づいて、分配バルブ51を「制限モード」または「通常モード」で制御すると共に、モードに対応したFlagAを有しており(制限モード:FlagA=0、通常モード:FlagA=1)、さらに、この判定機能を有している(図2、S102)。ここで、「通常モード」とは、冷媒流路5への冷媒の供給を制限しないモードである。一方、「制限モード」とは、冷媒の一部を配管51a側に供給することで冷媒流路5を迂回させ、冷媒供給量を減らし制限するモードである。
さらに、運転制御部71は、その他に、遮断弁12およびVCU32と接続しており、これらを適宜に制御するようになっている。
[暖機判定部]
暖機判定部72は、温度センサ43と接続しており、温度センサ43が検出するシステム温度を監視するようになっている。そして、暖機判定部72は、その内部に記憶された暖機完了温度と、システム温度とを比較し、燃料電池システム1Aの起動時に燃料電池2の暖機が必要であるか否かを判定し、その判定結果を運転制御部71に送るようになっている。
ここで、暖機完了温度とは、燃料電池2の暖機が阻害されない温度である。さらに説明すると、暖機完了温度は、冷媒の温度がこれに到達すれば、燃料電池2および冷媒が好適に暖まり、冷媒が発電により発生した燃料電池2の自己発熱を過度に奪わない、つまり、燃料電池2が冷媒により過度に冷却されない程度の温度に設定される。すなわち、暖機完了温度は、燃料電池システム1Aの安定動作が確保される温度に設定される。
[電力積算部]
電力積算部73Aは、電流計34と接続しており、燃料電池2の出力電流を監視している。また、電力積算部73Aは、電圧計35と接続しており、燃料電池2の出力電圧を監視している。そして、電力積算部73Aは、出力電流と出力電圧とに基づいて、燃料電池2の電力を算出すると共に、これを積算するようになっている(図2、S103)。
また、電力積算部73Aには、積算した電力(以下、積算電力)と、燃料電池2の積算した発熱量(以下、積算発熱量)とが関連付けられた発熱量マップが記憶されており、電力積算部73Aは、積算電力と発熱量マップとに基づいて、燃料電池2の積算発熱量を算出するようになっている(図2、S103)。
さらに、電力積算部73Aには、制限モードでの制御中に、通常モードに移行するか否かの判定基準となる所定積算発熱量が記憶されており、電力積算部73Aは、積算発熱量と所定積算発熱量とを比較することで判定し(図2、S104)、判定結果を運転制御部71に送るようになっている。なお、所定積算発熱量は、冷媒供給が制限されたことにより、燃料電池2に温度分布が発生し、燃料電池2内のホットスポット温度(局所的な温度)が、燃料電池2の耐え得る限界温度に到達したと推定される発熱量である。つまり、このようにホットスポット温度が高くなる場合は、燃料電池2が均一に自己発熱せず、自己発熱によってホットスポット(局所的に高温の部分)が発生した場合である。
[冷媒供給量積算部]
冷媒供給量積算部74は、運転制御部71が通常モードを選択したこと検知すると、分配バルブ51の燃料電池2側の開度およびモータMの回転速度と、内蔵するクロックとに基づいて、通常モードの間に、燃料電池2に送り込まれた冷媒供給量を積算する機能を有している(図2、S108)。なお、通常モードにおける目標冷媒供給量に対応する分配バルブ51の開度およびモータMの回転速度は、予め冷媒供給量積算部74に記憶されている。
そして、冷媒供給量積算部74は、積算した冷媒供給量(以下、積算冷媒供給量)と、その内部に記憶された所定積算冷媒供給量とを比較し、通常モードから制限モードに移行するか否かを判定する機能を有している(図2、S109)。所定積算冷媒供給量は、通常モードで燃料電池2に冷媒を供給することにより、前記したホットスポットの温度が制限モードでの制限された冷媒供給に耐え得る程度に低下した、つまり、ホットスポットが解消したか否かを判定する機能を有している(図2、S109)。
≪燃料電池システムの動作≫
次に、第1実施形態に係る燃料電池システム1Aの動作について、図2を主に参照して説明する。
図2に示すように、例えば、燃料電池自動車(燃料電池システム1A)を始動(起動)させるために、IG61がONされると(スタート)、運転制御部71はIG61のON信号を受けた後、遮断弁12を開きアノード側流路3に水素を供給する。これに並行して、運転制御部71は、モータMを回転させ、コンプレッサ21とポンプ41とを一体に駆動させて、カソード側流路4に空気を、冷媒流路5に冷媒を供給する。続いて、運転制御部71は、VCU32を制御して燃料電池2から電流を取り出し、燃料電池2を発電させる。
なお、燃料電池システム1Aの起動時において、FlagAはリセットされている(FlagA=0)。
<暖機判定>
ステップS101において、暖機判定部72は、温度センサ43を介して検出されるシステム温度と、その内部に記憶された暖機完了温度とを比較し、燃料電池2の暖機が必要であるか否かを判定する。そして、「システム温度<暖機完了温度」の場合、暖機は必要であると判定され(S101・Yes)、ステップS102に進む。一方、「システム温度≧暖機完了温度」の場合、暖機は必要ないと判定され(S101・No)、ステップS113に進む。
<モード判定>
ステップS102において、運転制御部71は、燃料電池2への冷媒供給が制限モードであるか否かを判定する。FlagAが0である場合、制限モードであると判定し(S102・Yes)、ステップS103に進む。FlagAが0でない場合、制限モードでないと判定し(S102・No)、ステップS108に進む。
<制限モード>
まず、燃料電池2への冷媒供給量を制限する制限モードについて説明する。なお、制限モードに入ると、燃料電池2への冷媒供給量が少なくなるため、その自己発熱による燃料電池2の暖機は促進される。
ステップS103において、電力積算部73Aは、電流計34および電圧計35を介して出力電流および出力電圧を検出し、これらに基づいて電力を算出し、さらに電力を積算し、積算電力の算出を開始する。なお、既に積算電力の算出が行われている場合、積算電力を算出を継続して行う。次いで、電力積算部73Aは、積算電力と、その内部に記憶された発熱量マップとに基づいて、燃料電池2の積算発熱量を算出する。
ステップS104において、電力積算部73Aは、通常モードに移行するか否かを判定する。具体的には、電力積算部73Aは、積算発熱量とその内部に記憶された所定積算発熱量とを比較して判定する。
「積算発熱量≧所定積算発熱量」の場合、電力積算部73Aは通常モードに移行すると判定し(S104・Yes)、判定結果を運転制御部71に送る。運転制御部71は、通常モードに対応して分配バルブ51を制御し、冷媒流路5側への冷媒流量を増量し、冷媒供給制限を解除する(S106)。これと共に、運転制御部71は、FlagAを立てる(FlagA←1)。これにより、ホットスポット温度は徐々に下がり、燃料電池2は保護される。そして、電力積算部73Aは、積算電力をリセットする(S107)。その後、リターンに進み、スタートに戻る。
「積算発熱量<所定積算発熱量」の場合、電力積算部73Aは通常モードに移行しない、つまり、制限モードを継続すると判定し(S104・No)、判定結果を運転制御部71に送る。運転制御部71は、制限モードでの分配バルブ51の制御を維持し、冷媒供給制限を継続する(S105)。その後、リターンに進み、スタートに戻る。
<通常モード>
次に、燃料電池2に通常に冷媒を供給する通常モードについて説明する。
ステップS108において、冷媒供給量積算部74は、分配バルブ51の燃料電池2側の開度およびモータMの回転速度と、内蔵するクロックとによって、燃料電池2に送り込まれた積算冷媒供給量の算出を開始する。なお、既に積算冷媒供給量の算出が行われている場合、積算冷媒供給量の算出を継続して行う。
ステップS109において、冷媒供給量積算部74は、制限モードに移行するか否かを判定する。具体的には、冷媒供給量積算部74は、積算冷媒供給量と所定積算冷媒供給量とを比較して判定する。
「積算冷媒供給量≧所定積算冷媒供給量」の場合、冷媒供給量積算部74は制限モードに移行すると判定し(S109・Yes)、判定結果を運転制御部71に送り、積算冷媒供給量をリセットする(S111)。そして、運転制御部71は、制限モードに対応して分配バルブ51を制御し、燃料電池2側への冷媒供給量を制限し、冷媒供給制限を開始する(S112)。これと共に、運転制御部71はFlagAをリセットする(FlagA←0)。これにより、通常モードによる燃料電池2の過冷却、つまり、暖機の遅れが防止される。その後、リターンに進み、スタートに戻る。
「積算冷媒供給量<所定積算冷媒供給量」の場合、冷媒供給量積算部74は制限モードに移行しない、つまり、通常モードを継続すると判定し(S109・No)、判定結果を運転制御部71に送る。そして、運転制御部71は、通常モードでの分配バルブ51の制御を維持し、そのまま冷媒供給を継続する(S110)。その後、リターンに進み、スタートに戻る。
<暖機完了>
次に、燃料電池2の暖機が不要、つまり、暖機が完了し(S101・No)、ステップS113に進んだ場合について説明する。
ステップS113において、電力積算部73Aは積算電力をリセット、冷媒供給量積算部74は積算冷媒供給量をリセット、運転制御部71はFlagAをリセットする(FlagA←0)。これにより、次回起動時に備えることができる。その後、エンドに進み、燃料電池システム1Aの起動時における冷媒供給の制御を終了する。
このように、第1実施形態に係る燃料電池システム1Aによれば、コンプレッサ21とポンプ41とでモータMを共有し、システムの小型化を図りつつ、運転制御部71が分配バルブ51を制御することによって、冷媒流路5への冷媒供給量を適宜に制限し、燃料電池2を保護しながら、その暖機を促進することができる。
≪燃料電池システムの一動作例≫
次に、第1実施形態に係る燃料電池システム1Aの一動作例を、図3を主に参照して説明する。なお、初期状態において、FlagAはリセットされており(FlagA=0)、積算電力および積算冷媒供給量は共にリセットされている。
図3に示すように、時間t1で燃料電池自動車(燃料電池システム1A)を始動(起動)させるため、IG61がONされると、水素が供給されると共に、モータMが回転することによりコンプレッサ21とポンプ41とを一体に駆動し、空気および冷媒がそれぞれ供給される。そして、VCU32が制御され、燃料電池2が発電する。
<制限モードと通常モードの繰り返し>
ここで、「システム温度<暖機完了温度」であり(S101・Yes)、FlagAが0であるため、冷媒供給を制限する制限モードに入り(S102・Yes)、ステップS103、S104・No、S105、S101・Yes、S102・Yesのルートを進む。その後、積算電力の増加に対応して積算発熱量が増加し、時間t2において、「積算発熱量≧所定積算発熱量」になると(S104・Yes)、冷媒供給を制限しない通常モードに移行し(S106)、FlagAが立てられ(FlagA←1)、積算電力はリセットされる(S107)。
通常モードに移行した後(S102・No)、燃料電池2への冷媒供給量の積算が開始される(S108)。その後、ステップS109・No、S110、S101・Yes、S102・No、S108のルートを進み、ホットスポット温度は徐々に低下する。そして、時間t3において、「積算冷媒供給量≧所定積算冷媒供給量」になると(S109・Yes)、積算冷媒供給量はリセットされ(S111)、制限モードに移行し(S112)、FlagAはリセットされる(FlagA←0)。
その後、制限モードでの制御となり、ステップS101・Yes、S102・Yes、S103、S104・No、S105のルートを進む。そして、時間t4において、「積算発熱量≧所定積算発熱量」になると(S104・Yes)、通常モードに移行し(S106)、積算電力がリセットされる(S107)。
次いで、通常モードでの制御となり、ステップS102・No、S108、S109・No、S110のルートを進む。そして、時間t5において、「積算冷媒供給量≧所定積算冷媒供給量」になると(S109・Yes)、積算冷媒供給量はリセットされ(S111)、制限モードに移行する(S112)。
<制限モード−暖機完了>
その後、制限モードでの制御となり、ステップS101・Yes、S102・Yes、S103、S104・No、S105のルートを進み、時間t6において、「積算発熱量≧所定積算発熱量」になると(S104・Yes)、通常モードに移行し(S106)、積算電力がリセットされる(S107)。
ここで、第1実施形態では、この通常モードへの移行と同時にシステム温度が暖機完了温度に到達した場合を想定している。これにより、燃料電池2の暖機は不必要(つまり暖機完了)と判定される(S101・No)。そして、運転制御部71は、通常モードで分配バルブ51を制御し、その後、暖機が完了した燃料電池2は、好適に継続して発電する。
≪第2実施形態、燃料電池システムの構成≫
次に、第2実施形態に係る燃料電池システムについて、図4から図6を参照して説明する。なお、第2実施形態に係る燃料電池システムは、第1実施形態に係る燃料電池システムの一部を変更したものであるため、変更した部分についてのみ説明する。
図4に示すように、第2実施形態に係る燃料電池システム1Bは、冷媒供給制限手段50A(図1参照)に代えて冷媒供給制限手段50Bを、ECU70A(図1参照)に代えて、ECU70Bを備えている。
<冷媒供給制限手段>
冷媒供給制限手段50Bは、分配バルブ51と、オリフィス52(圧力損失付加手段)と、配管52aを備えている。配管52aは、分配バルブ51と、分配バルブ51と燃料電池2との間の配管41aとを接続している。そして、オリフィス52は、配管41a上に設けられている。なお、オリフィス52の流路断面積は、分配バルブ51と燃料電池2との間の配管41aの流路断面積よりも小さく設定されている。これにより、分配バルブ51から配管52aに送られる冷媒には、オリフィス52によって、配管41aを流れる冷媒よりも高い圧力損失が付加される。したがって、分配バルブ51によって、配管52aへの分配量を高めれば、冷媒流路5への冷媒供給量が減らされ、制限されるようになっている。
<ECU>
ECU70Bは、運転制御部71と、暖機判定部72と、電力積算部73B(発熱量検出手段)と、運転マップ記憶部75(発熱量検出手段)とを備えている。
[電力積算部]
電力積算部73Bは、第1実施形態に係る電力積算部73Aと同様に、燃料電池2の積算電力を算出する機能を有している(図5、S202)。その他に、電力積算部73Bは、この算出した積算電力と、運転マップ記憶部75に記憶された運転マップとに基づいて、分配バルブ51の運転条件を決定する機能を有している(図5、S203)。そして、電力積算部73Bは、決定した運転条件を運転制御部71に送り、運転制御部71は決定された運転条件に従って分配バルブ51を制御するようになっている(図5、S204)。
[運転マップ記憶部]
運転マップ記憶部75には、例えば表1に示すような運転マップが記憶されている。運転マップは、燃料電池2の積算電力と、分配バルブ51の運転条件とが関連付けられたマップであり、各積算電力範囲に、分配バルブ51の運転条件(冷媒供給制限あり/冷媒供給制限なし)が割り振られている。運転マップは、各種予備試験やシミュレーションなどによって、積算電力値に基づく燃料電池2の発熱量を考慮して求められる。また、表1に示すように、積算電力(発熱量)が大きくなると、つまり、燃料電池2の発電が進むと、制限ありの時間が短くなり、制限なしの時間が長くなるように設定されている。
Figure 0004796361
≪燃料電池システムの動作≫
次に、第1実施形態に係る燃料電池システム1Bの動作について、図5を主に参照して説明する。第1実施形態と同様に、IG61がONされると(スタート)、運転制御部71は燃料電池2を発電させる。その後、暖機判定部72は、燃料電池2の暖機が必要であるか否かを判定する(S101)。そして、暖機が必要な場合(S101・Yes)、ステップS202に進み、暖機が不要な場合(S101・No)、ステップS205に進む。
ステップS202において、電力積算部73Bは、IG61のON後の燃料電池2の積算電力を算出する。次いで、電力積算部73Bは、この算出した積算電力と運転マップとに基づいて、分配バルブ51の運転条件を決定し(S203)、決定した運転条件を運転制御部71に送る。
ステップS204において、運転制御部71は、電力積算部73Bから送られた運転条件(冷媒供給制限あり/冷媒供給制限なし)に従って、分配バルブ51を切り替えて制御する。これにより、燃料電池2の過昇温を防止しつつ、燃料電池2を速やかに暖機することができる。そして、リターンに進み、スタートに戻る。
ステップS205において、電力積算部73Bは積算電力をリセットする。なお、このように燃料電池2の暖機が不要と判定された場合、運転制御部71は、分配バルブ51による冷媒供給制限を実施しない。そして、リターンに進み、スタートに戻る。
≪燃料電池システムの一動作例≫
次に、燃料電池システム1Bの一動作例について、図6を主に参照して説明する。
図6に示すように、時間t1で燃料電池自動車(燃料電池システム1B)を始動(起動)させるために、IG63がONされると燃料電池2が発電する。そして、燃料電池2の暖機が必要と判定された後(S101・Yes)、電力積算部73Bは、燃料電池2の電力を積算し(S202)、積算電力と運転マップとに基づいて分配バルブ51の運転条件を決定する(S203)。次いで、運転制御部71は、決定された運転条件に従って分配バルブ51を制御する(S204)。
この後、ステップS101・Yes、S202、S203、S204の処理を繰り返す。このように繰り返す間、積算電力は徐々に大きくなるため、冷媒供給を制限しない時間が徐々に長くなる(時間t2−t3間<t4−t5間<t6−t7間<t8−t9間)。
そして、時間t10において、システム温度が暖機完了温度以上になると(S101・No)、積算電力がリセットされ(S205)、冷媒は制限されず通常に供給される。そして、燃料電池2は継続して発電する。
以上、本発明の好適な実施形態について説明したが、本発明は前記各実施形態に限定されず、本発明の趣旨を逸脱しない範囲で、各実施形態に係る構成を組み合わせてよいし、例えば次のように変更することもできる。
前記した第1実施形態に係るECU70Aに代えて、図7に示すECU70Cを備える燃料電池システム1Cであってもよい。ECU70は、ECU70Aの構成に加えて、制限モードにおいて冷媒流路5に供給する冷媒制限供給量を算出する冷媒制限供給量算出部76を備えている。冷媒制限供給量算出部76は、温度センサ43と接続しており、システム温度を監視するようになっている。また、冷媒制限供給量算出部76は、システム温度と冷媒制限供給量(分配バルブ51の運転条件)とが関連付けられた冷媒制限供給量マップを有している。なお、冷媒制限供給量マップは、システム温度が高くなると、冷媒流路5への冷媒制限供給量が多くなる(冷媒流路5への冷媒を減らす量は小さくなる)という関係を有している。
そして、冷媒制限供給量算出部76は、通常モードから制限モードに移行する際、例えば図2のステップS111とS112の間で、システム温度と冷媒制限供給量マップとに基づいて暖機状態に対応した冷媒制限供給量を算出して運転制御部71に送る。次いで、運転制御部71は、この冷媒制限供給量に対応した運転条件に従って、分配バルブ51を制御する。これにより、燃料電池システム1Cの暖機状態に対応した冷媒制限供給量で、冷媒を冷媒流路5に供給することができ、さらに速やかに暖機することができる。
この他、冷媒制限供給量算出部76と、電流計34および電圧計35とを接続し、冷媒制限供給量算出部76が燃料電池2の発電電力に対応して、制限モードにおいて冷媒流路5に供給する冷媒制限供給量を算出する構成としてもよい。この場合、発電電力が高くなると、冷媒流路5への冷媒制限供給量が多くなる(冷媒流路5への冷媒を減らす量は小さくなる)設定となる。
前記した第2実施形態に係る冷媒供給制限手段50Bに代えて、図8に示す冷媒供給制限手段50Dを備える燃料電池システム1Dであってもよい。冷媒供給制限手段50Dは、可変オリフィス53(圧力損失付加手段)を備えて構成され、この可変オリフィス53は、配管41a上に設けられている。そして、可変オリフィス53は、ECU70Bの運転制御部71と接続しており、運転制御部71は可変オリフィス53の絞り、つまり、ポンプ41から送られる冷媒に付加する圧力損失を、冷媒供給制限あり/冷媒供給制限なしに対応して制御するようになっている。すなわち、冷媒供給制限ありの場合、可変オリフィス53を絞って、冷媒に高い圧力損失を付加し、冷媒流路5への冷媒供給量を減らして制限する。
前記した各実施形態では、燃料電池システム1A、1Bが燃料電池自動車に搭載された場合について例示したが、燃料電池システムの使用態様はこれに限定されず、その他の移動体(船など)や、家庭用の据え置き型の燃料電池システムであってもよい。
前記した各実施形態では、燃料電池2の暖機判定をするため、燃料電池システム1A、1Bのシステム温度を検出する温度検出手段として、燃料電池2から排出された冷媒の温度を検出する温度センサ43を採用したが、温度検出手段はこれに限定されず、その他に例えば、燃料電池2の筺体に取り付けられた温度センサや、アノード系10の配管13aまたはカソード系20の配管22aに設けられた温度センサや、外気温度を検出する温度センサであってもよく、これらから検出される温度に基づいて、燃料電池システム1Aのシステム温度を予測してもよい。
また、このような温度センサを複数使用してもよく、複数の温度センサを使用した場合、例えば検出された少なくとも2つの温度が暖機完了温度以上となった場合、暖機が完了したと判定するように設定すれば、誤判定を防止できる。
前記した各実施形態では、空気(反応ガス)を送るコンプレッサ21と冷媒を送るポンプ41とが、モータMを共有し一体となって駆動する燃料電池システム1A、1Bに本発明を適用した場合について説明したが、これに限定されず、水素(反応ガス)を送るコンプレッサ(例えば、水素循環ラインに設けられたコンプレッサ)と、ポンプ41とがモータMを共有し、一体となって駆動する燃料電池システムに適用してもよい。
前記した各実施形態では、IG61のON後、モータMを一定の回転速度で駆動し、暖機完了後も前記一定の回転速度である場合について説明したが、例えば、停止時に低温(例えば5℃以下)を経験した場合、次回起動時に、モータMの回転速度を通常より高め、空気を多量に供給することで燃料電池2の自己発熱量を高め、暖機を促進させる燃料電池システムに本発明を適用してもよい。このように、起動時に反応ガス供給量を高めることで、暖機を促進する燃料電池システムの場合、燃料電池2内の温度分布はばらつきやすくなり、ホットスポットが発生しやすくなるが、本発明を適用することにより、ホットスポットの発生を抑えつつ、燃料電池2の暖機を促進することができる。
前記した第1実施形態では、図1に示すステップS104において、制限モードから通常モードに移行するか否かについて、積算発熱量と所定積算発熱量とを比較して判定したが、その他に例えば、(1)積算電力を所定積算電力とを比較して、積算電力が所定積算電力以上である場合、通常モードに移行する構成としてもよい。また、(2)タイマーを使用して、制限モードの時間が予め記憶された所定時間以上となった場合、通常モードに移行する構成としてもよい。(3)さらに、燃料電池2のI−V特性が一定であれば、電流値を積算し、積算電流値が所定積算電流値以上となった場合、通常モードに移行する構成としてもよい。
前記した第1実施形態では、図1に示すステップS108において、通常モードから制限モードに移行するか否かの判定基準となる所定積算冷媒供給量は、固定値である場合を例示したが、その他に例えば、所定積算冷媒供給量を、システム温度と内部に記憶されたマップとに基づいて、適宜に算出する構成としてもよい。この場合、システム温度が高くなると、所定積算冷媒供給量は大きくなる設定となる。
また、所定積算冷媒供給量を、燃料電池2の発電電力と内部に記憶されたマップとに基づいて、適宜に算出する構成としてもよい。この場合、発電電力が大きくなると、所定積算冷媒供給量は大きくなる設定となる。
第1実施形態に係る燃料電池システムの構成を示す図である。 第1実施形態に係る燃料電池システムの起動時の動作を示すフローチャートである。 第1実施形態に係る燃料電池システムの一動作例を示すタイムチャートである。 第2実施形態に係る燃料電池システムの構成を示す図である。 第2実施形態に係る燃料電池システムの起動時の動作を示すフローチャートである。 第2実施形態に係る燃料電池システムの一動作例を示すタイムチャートである。 変形例に係る燃料電池システムの構成を示す図である。 変形例に係る燃料電池システムの構成を示す図である。
符号の説明
1A、1B、1C、1D 燃料電池システム
2 燃料電池
3 アノード側流路(反応ガス流路)
4 カソード側流路(反応ガス流路)
5 コンプレッサ(反応ガス供給手段)
34 電流計(発熱量検出手段)
35 電圧計(発熱量検出手段)
41 ポンプ(冷媒供給手段)
50A、50B、50D 冷媒供給制限手段
51 分配バルブ
52 オリフィス(圧力損失付加手段)
52a 配管(迂回流路)
53 可変オリフィス(圧力損失付加手段)
61 IG(起動スイッチ)
70A、70B、70C ECU
71 運転制御部(制御手段)
72 暖機判定部(暖機判定手段)
73 電力積算部(発熱量検出手段)
M モータ(駆動装置)
A 駆動軸



Claims (5)

  1. 反応ガスが流通する反応ガス流路を有し当該反応ガス流路に反応ガスが供給されることにより発電し、冷媒が流通する冷媒流路を有し当該冷媒流路に冷媒が供給されることで冷却される燃料電池と、
    前記反応ガス流路に反応ガスを供給する反応ガス供給手段と、
    前記冷媒流路に冷媒を供給する冷媒供給手段と、
    前記冷媒流路への冷媒の供給量を制限する冷媒供給制限手段と、
    前記冷媒流路への冷媒の供給量を積算し積算冷媒供給量を算出する冷媒供給量積算手段と、
    前記燃料電池の電力を積算して積算電力を算出し、前記積算電力に基づいて前記燃料電池の積算発熱量を算出する発熱量検出手段と、
    前記冷媒供給制限手段を、冷媒を通常に供給する通常モード又は冷媒を制限し供給量を減らす制限モードで制御する制御手段と、
    前記燃料電池の暖機が完了したか否か判定する暖機判定手段と、
    を備え、
    前記反応ガス供給手段と前記冷媒供給手段とは、1つの駆動装置を共有し一体となって駆動し、
    システム停止中に前記燃料電池が低温を経験している場合、システム起動時、前記駆動装置の回転速度前記燃料電池が低温を経験していない通常よりも高く制御して前記反応ガス供給手段による前記燃料電池への反応ガスの供給量を増加し、発電する前記燃料電池の自己発熱量を高めることで当該燃料電池の暖機を促進し、前記暖機判定手段が前記燃料電池の暖機は完了したと判定するまで、前記制御手段が通常モードと制限モードとを交互に繰り返して実行する燃料電池システムであって、
    制限モードの実行中、
    前記発熱量検出手段は、当該制限モードにおける前記燃料電池の積算発熱量と所定積算発熱量とを比較し、
    前記制御手段は、前記積算発熱量が前記所定積算発熱量以上である場合、通常モードに移行し、前記積算発熱量が前記所定積算発熱量以上でない場合、制限モードを継続し、
    前記所定積算発熱量は、制限モードの実行により前記燃料電池内に温度分布が発生することで形成される高温部分の温度が、前記燃料電池の耐え得る限界温度に到達したと判断される発熱量であり、
    通常モードの実行中、
    前記冷媒供給量算出手段は、当該通常モードにおける積算冷媒供給量と所定積算冷媒供給量とを比較し、
    前記制御手段は、前記積算冷媒供給量が前記所定積算冷媒供給量以上である場合、制限モードに移行し、前記積算冷媒供給量が前記所定積算冷媒供給量以上でない場合、通常モードを継続し、
    前記所定積算冷媒供給量は、通常モードの実行により、前記高温部分の温度がその後に制限モードに移行した場合において制限される冷媒供給に耐え得る温度に低下したと判断される量である
    ことを特徴とする燃料電池システム。
  2. 反応ガスが流通する反応ガス流路を有し当該反応ガス流路に反応ガスが供給されることにより発電し、冷媒が流通する冷媒流路を有し当該冷媒流路に冷媒が供給されることで冷却される燃料電池と、
    前記反応ガス流路に反応ガスを供給する反応ガス供給手段と、
    前記冷媒流路に冷媒を供給する冷媒供給手段と、
    前記冷媒流路への冷媒の供給量を制限する冷媒供給制限手段と、
    発電開始から現在における前記燃料電池の電力を積算して積算電力を算出する積算電力算出手段と、
    前記積算電力算出手段の算出した積算電力と運転マップとに基づいて、前記冷媒供給制限手段を、冷媒を通常に供給する通常モード又は冷媒を制限し供給量を減らす制限モードで制御する制御手段と、
    前記燃料電池の暖機が完了したか否か判定する暖機判定手段と、
    を備え、
    前記反応ガス供給手段と前記冷媒供給手段とは、1つの駆動装置を共有し一体となって駆動し、
    システム停止中に前記燃料電池が低温を経験している場合、システム起動時、前記駆動装置の回転速度前記燃料電池が低温を経験していない通常よりも高く制御して前記反応ガス供給手段による前記燃料電池への反応ガスの供給量を増加し、発電する前記燃料電池の自己発熱量を高めることで当該燃料電池の暖機を促進し、前記暖機判定手段が前記燃料電池の暖機は完了したと判定するまで、前記制御手段が通常モードと制限モードとを交互に繰り返して実行する燃料電池システムであって、
    前記運転マップは、複数の積算電力範囲に分けられ、前記各積算電力範囲において通常モードの実行時間及び制限モードの実行時間が設定されており、積算電力が大きくなるにつれて、通常モードの実行時間は長くなり、制限モードの実行時間は短くなるように設定されている
    ことを特徴とする燃料電池システム。
  3. 前記暖機完了判定手段は、前記燃料電池の温度が暖機完了温度に到達した場合、前記燃料電池の暖機は完了したと判定し、
    前記暖機完了温度は、その後に通常モードで冷媒の供給を継続しても、冷媒が発電する前記燃料電池の自己発熱を過度に奪わず、冷媒により当該燃料電池が過冷却されない温度である
    ことを特徴とする請求項1又は請求項2に記載の燃料電池システム。
  4. 前記冷媒供給制限手段は、前記冷媒流路を迂回させる迂回流路を備えることを特徴とする請求項1から請求項3のいずれか1項に記載の燃料電池システム。
  5. 前記冷媒供給制限手段は、前記冷媒流路に供給される冷媒に、圧力損失を付加する圧力損失付加手段を備えることを特徴とする請求項1から請求項3のいずれか1項に記載の燃料電池システム。
JP2005259975A 2005-09-07 2005-09-07 燃料電池システム Expired - Fee Related JP4796361B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005259975A JP4796361B2 (ja) 2005-09-07 2005-09-07 燃料電池システム
CNB2006101281436A CN100461515C (zh) 2005-09-07 2006-09-05 燃料电池系统
US11/516,855 US7892686B2 (en) 2005-09-07 2006-09-07 Fuel cell system with integral gas and refrigerant drive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005259975A JP4796361B2 (ja) 2005-09-07 2005-09-07 燃料電池システム

Publications (2)

Publication Number Publication Date
JP2007073378A JP2007073378A (ja) 2007-03-22
JP4796361B2 true JP4796361B2 (ja) 2011-10-19

Family

ID=37855553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005259975A Expired - Fee Related JP4796361B2 (ja) 2005-09-07 2005-09-07 燃料電池システム

Country Status (3)

Country Link
US (1) US7892686B2 (ja)
JP (1) JP4796361B2 (ja)
CN (1) CN100461515C (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5086740B2 (ja) * 2007-08-28 2012-11-28 本田技研工業株式会社 燃料電池システム
JP5416362B2 (ja) * 2008-04-23 2014-02-12 本田技研工業株式会社 燃料電池車両
JP5166972B2 (ja) * 2008-05-20 2013-03-21 本田技研工業株式会社 燃料電池システムとその制御方法
JP5113634B2 (ja) * 2008-06-06 2013-01-09 本田技研工業株式会社 燃料電池システム
JP2010080270A (ja) * 2008-09-26 2010-04-08 Aisin Seiki Co Ltd 燃料電池システム
JP5434054B2 (ja) * 2008-11-21 2014-03-05 日産自動車株式会社 燃料電池システム
WO2011151863A1 (ja) * 2010-06-03 2011-12-08 トヨタ自動車株式会社 ガス消費システムと燃料電池システムおよび車両
JP2012003890A (ja) * 2010-06-15 2012-01-05 Honda Motor Co Ltd 燃料電池システム
JP6049275B2 (ja) * 2012-03-07 2016-12-21 キヤノン株式会社 画像処理システム、画像処理装置、画像処理装置の制御方法、及びプログラム
DE102012005837A1 (de) * 2012-03-23 2013-09-26 Daimler Ag Verfahren zum Betreiben eines Brennstoffzellenstapels für ein Brennstoffzellensystem und Brennstoffzellensystem
JP5790705B2 (ja) 2013-05-17 2015-10-07 トヨタ自動車株式会社 燃料電池システムおよびその制御方法
KR101724883B1 (ko) * 2015-07-29 2017-04-07 현대자동차주식회사 연료전지 시동 제어 방법 및 시스템
US20210175807A1 (en) * 2019-12-05 2021-06-10 Jiangsu Horizon New Energy Technologies Co. Ltd. Partial dc/dc boost system and method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4738903A (en) * 1986-12-03 1988-04-19 International Fuel Cells Corporation Pressurized fuel cell system
JPH10144331A (ja) * 1996-11-13 1998-05-29 Ishikawajima Harima Heavy Ind Co Ltd 燃料電池の連結構造
US6365289B1 (en) * 1999-12-22 2002-04-02 General Motors Corporation Cogeneration system for a fuel cell
JP3840956B2 (ja) * 2001-11-08 2006-11-01 日産自動車株式会社 燃料電池システム
JP3999498B2 (ja) * 2001-11-13 2007-10-31 日産自動車株式会社 燃料電池システム及びその停止方法
JP3998991B2 (ja) * 2002-02-05 2007-10-31 本田技研工業株式会社 電動モータ搭載型車両
TW553500U (en) * 2002-04-24 2003-09-11 Asia Pacific Fuel Cell Tech Liquid cooling type fuel battery device
CN1234187C (zh) * 2002-08-19 2005-12-28 乐金电子(天津)电器有限公司 燃料电池的冷却系统
JP4114459B2 (ja) * 2002-10-31 2008-07-09 日産自動車株式会社 燃料電池システム
JP4403702B2 (ja) * 2003-01-28 2010-01-27 日産自動車株式会社 燃料電池システムの制御装置
JP4701600B2 (ja) * 2003-10-27 2011-06-15 日産自動車株式会社 燃料電池システム
JP4677715B2 (ja) * 2003-12-04 2011-04-27 日産自動車株式会社 燃料電池冷却システム

Also Published As

Publication number Publication date
US7892686B2 (en) 2011-02-22
JP2007073378A (ja) 2007-03-22
CN1929175A (zh) 2007-03-14
CN100461515C (zh) 2009-02-11
US20070059570A1 (en) 2007-03-15

Similar Documents

Publication Publication Date Title
JP4796361B2 (ja) 燃料電池システム
EP1444745B1 (en) Fuel cell system and method of stopping the system
EP1632005B1 (en) Control device of vehicular fuel cell system and related method
US20080145714A1 (en) Fuel Cell System and Related Method
JP5038646B2 (ja) 燃料電池自動車
JP5636905B2 (ja) 燃料電池システム
JP2005150024A (ja) 燃料電池システム
JP2009205967A (ja) 燃料電池システム
JP5002955B2 (ja) 燃料電池システムとその運転停止方法
JP2007305412A (ja) 燃料電池システムのアイドル制御装置及び制御方法
JP2007305334A (ja) 燃料電池システム
JP2004055379A (ja) 燃料電池システム
JP2009054427A (ja) 燃料電池システム
JP4739938B2 (ja) 燃料電池システム
JP2008210646A (ja) 燃料電池システム
JP2010061960A (ja) 燃料電池システムおよび燃料電池制御方法
JP2006140044A (ja) 燃料電池システム
JP4764109B2 (ja) 燃料電池システム
JP2007012565A (ja) 燃料電池システム
JP2009099393A (ja) 燃料電池搭載車両、燃料電池の制御装置、制御方法
JP2008123930A (ja) 燃料電池システム
JP2007149511A (ja) 燃料電池システム及びその起動方法
JP5262520B2 (ja) 加熱制御装置
JP4956110B2 (ja) 燃料電池システム
JP2009054432A (ja) 燃料電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110729

R150 Certificate of patent or registration of utility model

Ref document number: 4796361

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees