JP4693253B2 - 発光装置、電子機器 - Google Patents

発光装置、電子機器 Download PDF

Info

Publication number
JP4693253B2
JP4693253B2 JP2001022486A JP2001022486A JP4693253B2 JP 4693253 B2 JP4693253 B2 JP 4693253B2 JP 2001022486 A JP2001022486 A JP 2001022486A JP 2001022486 A JP2001022486 A JP 2001022486A JP 4693253 B2 JP4693253 B2 JP 4693253B2
Authority
JP
Japan
Prior art keywords
light
insulating film
light emitting
film
organic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001022486A
Other languages
English (en)
Other versions
JP2002229482A (ja
JP2002229482A5 (ja
Inventor
肇 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2001022486A priority Critical patent/JP4693253B2/ja
Priority to US10/056,382 priority patent/US6828725B2/en
Priority to TW091101392A priority patent/TW536837B/zh
Publication of JP2002229482A publication Critical patent/JP2002229482A/ja
Publication of JP2002229482A5 publication Critical patent/JP2002229482A5/ja
Application granted granted Critical
Publication of JP4693253B2 publication Critical patent/JP4693253B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/856Arrangements for extracting light from the devices comprising reflective means

Description

【0001】
【発明の属する技術分野】
本発明は、基板上に形成された発光素子を、該基板とカバー材の間に封入した発光パネルに関する。また、該発光パネルに駆動回路を実装した発光モジュールに関する。なお本明細書において、発光パネル及び発光モジュールを発光装置と総称する。具体的には、発光素子からの光の取り出し効率の向上に関する。
【0002】
【従来の技術】
近年、基板上にTFTを形成する技術が大幅に進歩し、アクティブマトリクス型表示装置(発光装置)への応用開発が進められている。特に、ポリシリコン膜を用いたTFTは、従来のアモルファスシリコン膜を用いたTFTよりも電界効果移動度(モビリティともいう)が高いので、高速動作が可能である。そのため、従来、基板外の駆動回路で行っていた画素の制御を、画素と同一の基板上に形成した駆動回路で行うことが可能となっている。
【0003】
このようなアクティブマトリクス型の発光装置は、同一基板上に様々な回路や素子を作り込むことで製造コストの低減、電気光学装置の小型化、歩留まりの上昇、スループットの低減など、様々な利点が得られる。
【0004】
そしてさらに、自発光型素子として発光素子を有したアクティブマトリクス型の発光装置の研究が活発化している。
【0005】
なお、本明細書では、発光素子は一対の電極(陽極と陰極)間に有機化合物層が挟まれた構造となっている。有機化合物層は、積層構造となっている場合もあり、一例として、正孔輸送層/有機有機化合物層/電子輸送層という積層構造が挙げられる。本明細書中では、キャリアの注入、輸送または再結合が行われる層をすべて含めて有機化合物層という。また、有機化合物層におけるルミネッセンスには、一重項励起状態から基底状態に戻る際の発光(蛍光)と三重項励起状態から基底状態に戻る際の発光(リン光)とがあるが、本発明はどちらの発光を用いた発光装置にも適用可能である。
【0006】
発光素子が有する有機化合物層は熱、光、水分、酸素等によって劣化が促進されることから、一般的にアクティブマトリクス型の発光装置の作製において、画素部に配線やTFTを形成した後に発光素子が形成される。
【0007】
そして発光素子が形成された後、発光素子が設けられた基板とカバー材とを、発光素子が外気に曝されないように貼り合わせてシール材等により封止(パッケージング)する。
【0008】
パッケージング等の処理により気密性を高めたら、基板上に形成された発光素子又は回路から引き回された端子と外部信号端子とを接続するためのコネクター(FPC、TAB等)を取り付けて、アクティブマトリクス型の発光装置が完成する。
【0009】
【発明が解決しようとする課題】
光の屈折について説明する。光の屈折の角度は、図15に示すように入射光の角度(入射角)とその媒質の屈折率により決まる。さらに、この関係は以下の数1(スネルの法則)に従う。屈折率がn1である媒質801においてθ1の角度で入射した光(入射光)が、屈折率がn2である媒質802に出射するとき、以下の数1を満たすような角度θ2の光(屈折光)となる。
【0010】
【数1】
1*sinθ1=n2*sinθ2・・・(1)
【0011】
屈折光または透過光の角度θ2が90°となるような入射角θ1を臨界角とよぶ。また、媒質802に対する入射角θ1が臨界角よりも大きくなるときに、入射光は全反射する。つまり、光が媒質801に閉じ込められることになる。
【0012】
次に媒質801がガラス(n1=1.52)であり、媒質802が空気(n2=1.00)である場合において、入射角と反射率の関係を図16に示す。
【0013】
図16から、界面への反射率が35°以上になると、反射率が急増していることが分かる。また、界面への入射角が41°以上になると、光は全反射し、媒質801のガラスの外に光が出ることは出来ない。
【0014】
なお、本明細書において、臨界角とは、光が、媒質1と媒質2の界面で全反射する角度であり、該角度以上は全て全反射してしまう角度のことを示す。勿論、臨界角は、媒質によって異なる。例えば、媒質801がガラスであり、媒質802が空気である場合は、臨界角は41°になる。また、媒質801がアクリルであり、媒質802が空気の場合は、臨界角は42.2°になる。
【0015】
図17を参照する。202は有機化合物層であり、図17に示す有機化合物層202からの矢印は、有機化合物層202から発せられた光を示している。有機化合物層202から発せられた光は、あらゆる方向に拡散し、基板208の底面と空気209との界面に入射する。光は屈折率の高い媒質に進む性質があるため、基板208と空気209の界面への入射角の小さい光のみが空気209の方へ達することができる。
【0016】
ここで、図17に示す基板208をガラス基板(屈折率を1.52)とする。図16のグラフから、入射角が35°以上41.1°以下の光は、界面での反射率が急上昇し、入射角41.1°以上の光は、界面で全反射するため、基板208の外には出られない。そのため、有機化合物層202から発光した光を取り出すときの取り出し効率は20〜50%と低い値であった。
【0017】
なお、本明細書中では、基板208の屈折率と空気209との屈折率との差が非常に大きく、また説明を簡単にするために、有機化合物層202から発せられた光が、ゲート絶縁膜や層間絶縁膜などの固体薄膜の界面で屈折したり、反射したりする光は無視することにする。実際は、透明電極と層間絶縁膜との界面や層間絶縁膜とゲート絶縁膜との界面などにおいて全反射したり、屈折したりする光は存在する。
【課題を解決するための手段】
本発明は上記課題を解決するためになされたものであり、本発明の発光装置の構造を図1(A)に示す。図1(A)に示す有機化合物層202からの矢印は、有機化合物層202から発せられた光を示している。
【0018】
図1において、201は透明電極(画素電極)、202は有機化合物層、203は陰極である。透明電極201と、有機化合物層202と、陰極203とが重なった部分が発光素子200に相当する。202は光反射物である。208は絶縁表面を有する基板であり、209は空気、205は第一層間絶縁膜、204は第二層間絶縁膜である。また、207はパッシベーション膜である。
【0019】
本発明では、図1(A)に示すように、有機化合物層202の近くに光反射物220を形成する。光反射物220は、有機化合物層202から基板208に対して垂直に発せられる光に対して傾いている。本明細書では、有機化合物層202から基板208に対して垂直に発せられる光に対しての光反射物220の角度を、光反射物220のテーパー角とよぶ。
【0020】
また、本明細書中において、光反射物とは、光を反射させる機能を有するものとする。具体的には、有機化合物層で発光して固体薄膜を透過した光を、光反射物において反射させる機能を有するものとする。
【0021】
図1(B)を参照する。図1(B)は図1(A)の点線で囲まれた部分を拡大した図である。なお、図1(B)において、説明を簡単にするために、透明電極201は省略している。有機化合物層202からの出射角θaが大きい光は、光反射物220に当たり反射される。そして、基板208と空気209との界面へ入射角θcで入射する。この際、光反射物220は基板208に対して傾いているため、入射角θcは出射角θaよりも必ず小さくなる。その結果、光反射物220に反射した光は、空気209に達することができる。
【0022】
次に、光反射物220が存在しない場合を、図1(B)において、点線の矢印で示す。有機化合物層202からの出射角θaの光は、基板208と空気209との界面において、入射角θaで入射する。この場合の入射角θaは、出射角θaと等しく、値が大きいため、基板208と空気209との界面において全反射し、空気209に達することはできない。
【0023】
また、有機化合物層202からの出射角θaが小さい光は光反射物220には当たらず、光反射物220の影響を受けることなく、空気209(外部)に達することができる。
【0024】
以上のように、有機化合物層202から発せられ、基板208と空気209との界面において全反射していた光が、光反射物220において反射し、空気209に達することができるようになった。その結果、光の取り出し効率は改善される。
【0025】
次に、本発明の発光装置に設けられる光反射物のテーパー角について、図13を用いて説明する。図13は、図1(B)において点線で示す部分を拡大した図であり、有機化合物層202から発せられた光が、光反射物220に反射し、基板208の外に取り出された場合を示している。
【0026】
図13において、θaは、有機化合物層202から発せられた光の出射角とする。θbは、光反射物220のテーパー角を示しており、テーパー角とは有機化合物層202から基板208に向かって垂直に発せられる光に対しての光反射物220の角度である。θcは、光反射物220で反射した光の基板208と空気208との界面への入射角を示している。ここで、θaからθbを引いた角をθeとおくと、式▲2▼の式が求められる。
【0027】
【数2】
θe=θa−θb・・・(2)
【0028】
また、θcは、θbからθeをひいた角となるので、式▲3▼の式が求められる。
【0029】
【数3】
θc=θb−θe・・・(3)
【0030】
上記の式(2)と式(3)の式から、θa、θb、θcの関係を表す式(4)の式が求められる。
【0031】
【数4】
θc=2θb−θa・・・(4)
【0032】
基板208をガラス基板とすると、基板208の屈折率は1.52となる。空気209の屈折率は1.0なので、図16のグラフより、基板208と空気209の界面での臨界角は41°となる。つまり、θa>41°の光は、光反射物220が無い場合、基板208の外に取り出すことは出来ない。そのため、θaは41°以上の場合について考えればよい。次にθcについて考えると、θcは、光反射物220に反射した光を基板208の外に取り出すためには、以下の式(5)を満たすことが必要となる。
【0033】
【数5】
−41°<θc<41°・・・(5)
【0034】
次に、式(5)に式(4)を代入してみると、以下の式(6)が求められる。
【0035】
【数6】
−41°<2θb−θa<41°・・・(6)
【0036】
式(6)を整理すると、以下の式(7)が求められる。
【0037】
【数7】
(−41°+θa)/2<θb<(41°+θa)/2・・・(7)
【0038】
ここで、θaは41°以上の場合について考えればよい。まず、θa=41°を式(7)に代入する。すると、以下の式(8)が求められる。
【0039】
【数8】
0°<θb<41°・・・(8)
【0040】
次に、θa=42°を式(7)に代入すると、以下の式(9)が求められる。
【0041】
【数9】
0.5°<θb<41.5°・・・(9)
【0042】
次に、θa=60°を式(7)に代入すると、以下の式(10)が求められる。
【0043】
【数10】
8.5°<θb<50.5°・・・(10)
【0044】
次に、θa=90°を式(7)に代入すると、以下の式(11)が求められる。
【0045】
【数11】
24.5°<θb<65.5°・・・(11)
【0046】
上記のとおり、θaの値によって、θbの角度範囲は異なることが分かる。しかし、式(11)より、θaの最大値(=90°)のとき、θb<65.5°であるので、θbの最大値は、65.5°であることが分かる。また、θbを65.5°よりも大きくする必要がないことが分かる。
【0047】
θbを65.5°よりも大きくする必要のない場合は、基板208がガラス基板の場合である。次に、基板208と空気209との界面での臨界角をθfとして、光反射物220のテーパー角θbの最大値を求めることにする。式(7)に、臨界角であるθfを代入すると、以下の式(12)が求められる。
【0048】
【数12】
(−θf+θa)/2<θb<(θa+θf)/2・・・(12)
【0049】
ここで、θbの最大値は、θaの最大値(=90°)を式(12)に代入し、求めることができる。
【0050】
【数13】
θb<(90°+θf)/2・・・(13)
【0051】
式(13)を整理すると、以下の式(14)を求めることができる。
【0052】
【数14】
θb<(45°+θf /2)・・・(14)
【0053】
上記のとおり、光反射物220のテーパー角は、式(14)を満たすような角度になるように形成するとよい。
【0054】
【発明の実施の形態】
(実施形態1)
本実施の形態では、TFTに接するように設けられた第一の絶縁膜に開孔(コンタクトホール)を形成し、該開孔(コンタクトホール)を覆うように光反射物を形成した例について、図2及び図3を用いて説明する。図2は、本実施の形態の断面構造を示した図であり、図3は一画素を示した上面図である。また、図2は図3のA−A`の断面図であり、図2及び図3において、適宜同じ番号を使用するので参照するとよい。
【0055】
図2において、201は透明な金属材料からなる透明電極(陽極)である。なお、透明電極(陽極)として酸化インジウム・スズ(ITO)膜や酸化インジウムに2〜20[%]の酸化亜鉛(ZnO)を混合した透明導電膜を用いると良い。さらに可視光の透過率や導電率を高めるためにガリウム(Ga)を添加した酸化亜鉛(ZnO:Ga)といった酸化物導電膜を好適に用いることができる。
【0056】
202は有機化合物層であり、203は陰極である。また、陰極203には、MgAgやLiF/Alのような公知の材料を用いることができる。発光素子200の有機化合物層202において陰極203から注入される電子と陽極から注入される正孔の再結合により発光が生じる。また、陰極203上には、保護膜として機能するパッシベーション膜207が設けられている。
【0057】
また、絶縁表面を有する基板208上には薄膜トランジスタ(TFT)が形成されている。なお、本明細書で、薄膜トランジスタ(TFT)とは、半導体膜、並びに該半導体膜に接するように形成されたゲート絶縁膜及びゲート絶縁膜に接するように形成されたゲート電極からなるものを示す。図2には、画素内部に形成された透明電極201と電気的に接続されている電流制御用TFT206が示されている。また、220は光反射物、209は空気、205は第一層間絶縁膜、204は第二層間絶縁膜、207はパッシベーション膜である。また、211は電源線、212はゲート電極、221は接続配線、213はソース線である。
【0058】
本実施の形態では、作製工程において、絶縁表面を有する基板208上に電流制御用TFT206のゲート電極212とゲート線217を同時に形成した後、電流制御用TFT206とゲート線217を覆うように第一層間絶縁膜205を形成する。そして第一層間絶縁膜205に、電源線211、接続配線221及び光反射物220を形成するための開孔(コンタクトホール)を形成する。
【0059】
電源線211は、第一層間絶縁膜205に形成された開孔(コンタクトホール)を介して電流制御用TFT206に接続するように形成する。接続配線221は、第一層間絶縁膜205に形成された開孔(コンタクトホール)を介して電流制御用TFT206に接続するように形成する。そして、電源線211および接続配線221と光反射物220を同時に形成する。そのため、電源線211および接続配線221と光反射物220の材料は同じであることが好ましい。しかし、本発明はこれに限定されず、電源線211および接続配線221と光反射物220を異なる材料で別々に形成してもよい。
【0060】
そして、透明電極201は、第一層間絶縁膜205を覆うように形成し、その際、接続配線221と透明電極201は電気的に接続されるようにする。
【0061】
次に、透明電極201と、接続配線221と、電源線211を覆うように、第一層間絶縁膜205上に第二層間絶縁膜204が形成される。その後、第二層間絶縁膜は一部エッチングされ、透明電極201は露出した状態となる。
【0062】
そして、透明電極201と第二層間絶縁膜204を覆って、有機化合物層202と、陰極203と、パッシベーション膜207とを順に積層して形成する。透明電極201と、有機化合物層202と、陰極203とが重なっている部分が発光素子200に相当する。
【0063】
なお、220に用いられる材料としては、反射率の高い材料を用いることが好ましい。具体的には、可視光領域における光の反射率が60%以上であることが好ましく、さらに好ましくは80%以上である材料のことをいう。具体的には、Ag、Al、Ta、Nb、Mo、Cu、Mg、Ni、Pbといった材料のことをいう。
【0064】
また、電流制御用TFT206の極性は、nチャネル型でもpチャネル型でもどちらでも良い。ただし、図2では、透明電極201は陽極であるため、pチャネル型であるのが望ましい。
【0065】
また、図2に示す有機化合物層202からの矢印は、有機化合物層202から発せられた光を示している。有機化合物層202から発せられた光のうち出射角の大きい光は、光反射物220に反射して、空気209に達することができる。
【0066】
なお、図2及び図3では、光反射物220を覆うように透明電極202が形成されているが、本発明はこれに限定されず、光反射物220を覆うように透明電極202が形成されなくてもよい。また、図2及び図3では、光反射物220とソース配線213及び電源線211は接続しないように形成されているが、接続されていてもよい。ただし、その場合は、画素に流れる電流がショートしないように、光反射物220と透明電極201が電気的に接続しないようにする必要がある。
【0067】
また、図3において、光反射物220は、開孔(コンタクトホール)を覆うように形成されるが、図を見やすくするため、開孔(コンタクトホール)の印は図示せずに、光反射物220が形成される箇所を点線で示すのみとした。また、画素に光反射物220が形成される場所は、特に限定されず、設計者が適宜設計することが可能である。
【0068】
図4は、図2及び図3で示した本実施の形態の一画素分の発光領域と反射領域を示した図である。ここで発光領域とは、発光素子200が形成されている領域であり、反射領域とは、光反射物220が形成されている領域を示す。図4(A)は、光反射物を設けない場合を示しており、画素は発光領域のみを有している。図4(B)は、本発明の光反射物220が設けられた場合を示しており、発光領域と反射領域を有している。
【0069】
図4(B)に示すように、有機化合物層202から発せられた光が、基板208と空気209の界面で全反射してしまい、基板208の外には取り出せなかった光を、光反射物220を設けることによって、反射領域から基板208の外に取り出すことが出来るようになった。その結果、有機化合物層202から発せられた光の取り出し効率は改善される。
【0070】
(実施形態2)
本実施の形態では、TFTに接するように設けられた第一の絶縁膜に開孔(コンタクトホール)を形成し、該開孔(コンタクトホール)を覆うように発光素子の用いられる陰極を形成した発光装置について、図5及び図6を用いて説明する。図5は、断面構造を示した図であり、図6は一画素を示した上面図である。また、図5は図6のA−A`の断面図であり、図5及び図6においては、適宜同じ番号を使用するので参照するとよい。
【0071】
図5において、201は透明電極、202は有機化合物層、203は陰極である。透明電極201と、有機化合物層202と、陰極203とが重なった部分が発光素子200に相当する。202は光反射物である。電流制御用TFT206は、絶縁表面を有する基板208に形成されており、209は空気、205は第一層間絶縁膜、204は第二層間絶縁膜、207はパッシベーション膜である。また、211は電源線、212はゲート電極、221は接続配線、213はソース線である。
【0072】
本実施の形態では、作製工程において、絶縁表面を有する基板208上に電流制御用TFT206のゲート電極212とゲート線217を同時に形成した後、電流制御用TFT206とゲート線217を覆うように第一層間絶縁膜205を形成する。そして第一層間絶縁膜205に、電源線211、接続配線221及び光反射物220を形成するための開孔(コンタクトホール)を形成する。
【0073】
電源線211は、第一層間絶縁膜205に形成された開孔(コンタクトホール)を介して電流制御用TFT206に接続するように形成する。接続配線221は、第一層間絶縁膜205に形成された開孔(コンタクトホール)を介して電流制御用TFT206に接続するように形成する。そして、電源線211および接続配線221を同時に形成する。そのため、電源線211と接続配線221の材料は同じであることが好ましい。
【0074】
そして、透明電極201は、第一層間絶縁膜205を覆うように形成し、その際、接続配線221と透明電極201は電気的に接続されるようにする。なお、透明電極201を形成する際には、光反射物220を形成するための開孔(コンタクトホール)にレジストマスクなどを形成し、開孔(コンタクトホール)上には透明電極が形成されないよう注意する。
【0075】
次に、透明電極201と、接続配線221と、電源線211を覆うように、第一層間絶縁膜205上に第二層間絶縁膜204が形成される。透明電極201は露出するように、第二層間絶縁膜204は一部エッチングされる。
【0076】
そして、透明電極201と第二層間絶縁膜204を覆って、有機化合物層202と、陰極203と、パッシベーション膜207とを順に積層して形成する。その際同時に、光反射物220を形成するための開孔(コンタクトホール)を覆うように、有機化合物層202と、陰極203と、パッシベーション膜207とを順に積層して形成する。透明電極201と、有機化合物層202と、陰極203とが重なっている部分が発光素子に相当する。
【0077】
また、電流制御用TFT206の極性は、nチャネル型でもpチャネル型でもどちらでも良い。ただし、図5では、透明電極201は陽極であるため、pチャネル型であるのが望ましい。
【0078】
図5に示す有機化合物層202からの矢印は、有機化合物層202から発せられた光を示している。光反射物220は、基板208に対して傾いているため、有機化合物層202から発せられた光のうち出射角の大きい光は、光反射物220に反射して、基板208の外に出ることができる。
【0079】
なお、図5では、光反射物220を形成するための開孔(コンタクトホール)に、第一層間絶縁膜205に接するように有機化合物層202を形成し、前記有機化合物層202上に陰極203を形成し、前記陰極203上にパッシベーション膜207を形成しているが、本発明はこれに限定されない。有機化合物層202から発せられた光は、陰極203に反射する。そのため、開孔(コンタクトホール)を覆うように陰極203のみを形成してもよい。
【0080】
また、図6において、光反射物220は、開孔(コンタクトホール)を覆うように形成されるが、図を見やすくするため、開孔(コンタクトホール)の印は図示せずに、光反射物220が形成される箇所を点線で示すのみとした。また、画素に光反射物220が形成される場所は、特に限定されず、設計者が適宜設計することが可能である。
【0081】
なお、本実施の形態は、実施の形態1と自由に組み合わせることが可能である。
【0082】
(実施形態3)
本実施の形態では、光反射物として発光素子が有する陰極を用いる例について、実施の形態2とは異なる場合を説明する。図7は、断面構造を示した図であり、図8は一画素の上面図を示した図である。また、図7は図8のA−A`の断面図であり、図7及び図8においては、適宜同じ番号を使用するので参考にするとよい。
【0083】
図7において、201は透明電極、202は有機化合物層、203は陰極である。透明電極201と、有機化合物層202と、陰極203とが重なった部分が発光素子200に相当する。202は光反射物である。電流制御用TFT206は、絶縁表面を有する基板208に形成されており、209は空気、205は第一層間絶縁膜、204は第二層間絶縁膜、215は第三層間絶縁膜、207はパッシベーション膜である。また、211は電源線、212はゲート電極、221は接続配線、213はソース線である。
【0084】
本実施の形態では、作製工程において、絶縁表面を有する基板208上に電流制御用TFT206のゲート電極212とゲート線217を同時に形成した後、電流制御用TFT206とゲート線217を覆うように第一層間絶縁膜205を形成する。そして第一層間絶縁膜205に、電源線211、接続配線221及び光反射物220のための開孔(コンタクトホール)を形成する。
【0085】
電源線211は、第一層間絶縁膜205に形成された開孔(コンタクトホール)を介して電流制御用TFT206に接続するように形成する。接続配線221は、第一層間絶縁膜205に形成された開孔(コンタクトホール)を介して電流制御用TFT206に接続するように形成する。そして、電源線211及び接続配線221とソース線213を形成する。
【0086】
そして、電源線211及び接続配線221とソース線213を覆うように第一層間絶縁膜205を形成する。そして、第一層間絶縁膜205に、透明電極201が接続配線221と電気的に接続できるように開孔(コンタクトホール)を形成する。その際、同時に光反射物220を形成するための開孔(コンタクトホール)を形成する。
【0087】
そして、透明電極201は、第2層間絶縁膜204を覆うように形成し、その際、接続配線221と透明電極201は電気的に接続されるようにする。なお、透明電極201を形成する際には、光反射物220を形成するための開孔(コンタクトホール)にレジストマスクなどを形成し、開孔(コンタクトホール)上には透明電極が形成されないようにする。
【0088】
次に、透明電極201を覆うように、第二層間絶縁膜204上に第三層間絶縁膜215が形成される。その後、第三層間絶縁膜215は一部エッチングされ、透明電極201は露出した状態となる。
【0089】
そして、透明電極201と第三層間絶縁膜215を覆って、有機化合物層202と、陰極203と、パッシベーション膜207とを順に積層して形成する。その際、同時に、光反射物220を形成するための開孔(コンタクトホール)を覆うように、有機化合物層202と、陰極203と、パッシベーション膜207とを順に積層して形成する。透明電極201と、有機化合物層202と、陰極203とが重なっている部分が発光素子に相当する。
【0090】
また、電流制御用TFT206の極性は、nチャネル型でもpチャネル型でもどちらでも良い。ただし、図5では、透明電極201は陽極であるため、pチャネル型であるのが望ましい。
【0091】
なお、光反射物220を形成するための開孔(コンタクトホール)は、第一層間絶縁膜205を形成し、第二層間絶縁膜204を形成した後に開けてもよいし、第一層間絶縁膜205を形成した後と、第二層間絶縁膜204を形成した後の複数回に分けて形成してもよい。
【0092】
また、図7に示す有機化合物層202からの矢印は、有機化合物層202から発せられた光を示している。光反射物220は、基板208に対して傾いているため、有機化合物層202から発せられた光のうち出射角の大きい光は、光反射物220に反射して、基板208の外に出ることができる。
【0093】
なお、図7では、光反射物220を形成するための開孔(コンタクトホール)に、第一層間絶縁膜205及び第二層間絶縁膜204に接するように有機化合物層202を形成し、前記有機化合物層202上に陰極203を形成し、前記陰極203上にパッシベーション膜を形成しているが、本発明はこれに限定されない。有機化合物層202から発せられた光は、陰極203に反射する。そのため、開孔(コンタクトホール)を覆うように、陰極203のみを形成してもよい。また、光反射物を形成するための開孔(コンタクトホール)に金属膜を形成し、該金属膜上に有機化合物層及び陰極を形成してもよい。
【0094】
また、図8において、光反射物220は、開孔(コンタクトホール)を覆うように形成されるが、図を見やすくするため、開孔(コンタクトホール)の印は図示せずに、光反射物220が形成される箇所を点線で示すのみとした。また、画素に光反射物220が形成される場所は、特に限定されず、設計者が適宜設計することが可能である。
【0095】
また、本実施の形態では、光反射物220を形成するための開孔(コンタクトホール)に陰極203を形成したが、本発明はそれに限定されず、電源線211、ソース線213と同じ材料を用いて形成してもよい。その場合、光反射物220とソース配線213及び電源線211は接続しないように形成してもよいし、接続するように形成してもよい。ただし、その場合は、画素に流れる電流がショートしないように、光反射物220と透明電極201が電気的に接続しないようにする必要がある。
【0096】
なお、本実施の形態は、実施の形態1及び実施の形態2と自由に組み合わせることが可能である。
【0097】
(実施形態4)
本実施の形態では、光反射物として発光素子が有する陰極を用いる例について、実施の形態2及び実施の形態3とは異なる場合を説明する。図9は、断面構造を示した図であり、図10は一画素を示した上面図である。また、図9は図10のA−A`の断面図であり、図9及び図10においては、適宜同じ番号を使用するので参考にするとよい。
【0098】
図9において、201は透明電極、202は有機化合物層、203は陰極である。透明電極201と、有機化合物層202と、陰極203とが重なった部分が発光素子200に相当する。220は光反射物である。電流制御用TFT206は、絶縁表面を有する基板208に形成されており、209は空気、205は第一層間絶縁膜、204は第二層間絶縁膜、207はパッシベーション膜、214は樹脂膜である。また、211は電源線、212はゲート電極、221は接続配線、213はソース線である。
【0099】
本実施の形態では、作製工程において、絶縁表面を有する基板208上に電流制御用TFT206のゲート電極212とゲート線217を同時に形成した後、電流制御用TFT206とゲート線217を覆うように第一層間絶縁膜205を形成する。そして第一層間絶縁膜205に、電源線211、接続配線221及び光反射物220のための開孔(コンタクトホール)を形成する。
【0100】
電源線211は、第一層間絶縁膜205に形成された開孔(コンタクトホール)を介して電流制御用TFT206に接続するように形成する。接続配線221は、第一層間絶縁膜205に形成された開孔(コンタクトホール)を介して電流制御用TFT206に接続するように形成する。そして、電源線211及び接続配線221とソース線213を同時に形成する。
【0101】
次に、第一層間絶縁膜205と、電源線211と、接続配線221と、ソース配線213とを覆うように、樹脂膜214を形成する。そして樹脂膜214のパターニングを行う。その際、樹脂膜214上に形成される透明電極202と接続配線221が電気的に接続されるようにパターニングを行う必要がある。また、樹脂膜214は電源線211を作成する前に形成してもよい。
【0102】
図9及び図10では、樹脂膜214は、透明電極201と重なるように、光反射物220を除いた箇所に形成されているが、本発明はこれに限定されない。樹脂膜214を全面に塗布し、その後パターニングをする箇所は設計者が適宜決めることができる。また、樹脂膜を、柱状となるようにパターニングしてもよい。そして、柱状の樹脂膜を画素に複数形成されるようにしてもよい。
【0103】
樹脂膜214の厚さは、2〜50μmが好ましく、前記範囲内で可能な限りなるべく高く形成するとよい。樹脂膜214の材料は、球状のSiO2(二酸化珪素)やポリスチレンや、ポリイミド、ポリアミド、アクリル、ポリビニルシンナメートのうちいずれか一つを主成分とするものを用いることが可能である。また上記以外にも、液晶表示装置などに用いられる公知のスペーサの材料を用いることができる。
【0104】
そして、透明電極201は、第1層間絶縁膜204及び樹脂膜214の大部分を覆うように形成し、その際、接続配線221と透明電極201は電気的に接続されるようにする。なお、透明電極201を形成する際には、光反射物220を形成するための開孔(コンタクトホール)にはレジストマスクなどを形成し、開孔(コンタクトホール)上には透明電極が形成されないようにする。
【0105】
次に、透明電極201を覆うように、第二層間絶縁膜204が形成される。その後、第二層間絶縁膜204は一部エッチングされ、透明電極201は露出した状態となる。
【0106】
そして、透明電極201と第二層間絶縁膜204を覆って、有機化合物層202と、陰極203と、パッシベーション膜207とを順に積層して形成する。その際、同時に、光反射物220を形成するための開孔(コンタクトホール)を覆うように、有機化合物層202と、陰極203と、パッシベーション膜207とを順に積層して形成する。透明電極201と、有機化合物層202と、陰極203とが重なっている部分が発光素子に相当する。
【0107】
また、電流制御用TFTの極性は、nチャネル型でもpチャネル型でもどちらでも良い。ただし、図5では、透明電極201は陽極であるため、pチャネル型であるのが望ましい。
【0108】
なお、光反射物220を形成するための開孔(コンタクトホール)は、第一層間絶縁膜205を形成し、第二層間絶縁膜204を形成した後に開けてもよいし、第一層間絶縁膜205を形成した後と、第二層間絶縁膜204を形成した後の複数回に分けて形成してもよい。
【0109】
図9に示す有機化合物層202からの矢印は、有機化合物層202から発せられた光を示している。光反射物220は、基板208に対して傾いているため、有機化合物層202から発せられた光のうち出射角の大きい光は、光反射物220に反射して、基板208の外に出ることができる。
【0110】
なお、図9では、光反射物220を形成するための開孔(コンタクトホール)に、第一層間絶縁膜205及び第二層間絶縁膜204に接するように有機化合物層202を形成し、前記有機化合物層202上に陰極203を形成し、前記陰極203上にパッシベーション膜を形成しているが、本発明はこれに限定されない。有機化合物層202から発せられた光は、陰極203に反射する。そのため、開孔(コンタクトホール)を覆うように陰極203のみを形成してもよい。
【0111】
また、図10において、光反射物220は、開孔(コンタクトホール)を覆うように形成されるが、図を見やすくするため、開孔(コンタクトホール)の印は図示せずに、光反射物220が形成される箇所を点線で示すのみとした。また、画素に光反射物220を形成される場所は、特に限定されず、設計者が適宜設計することが可能である。
【0112】
また、本実施の形態では、光反射物220を形成するための開孔(コンタクトホール)に陰極203を形成したが、本発明はそれに限定されない。電源線211、ソース線213等と同じ材料を用いて、光反射物220を形成するための開孔(コンタクトホール)を覆うように形成してもよい。その場合、光反射物220とソース配線213及び電源線211は接続しないように形成してもよいし、接続するように形成してもよい。ただし、その場合は、画素に流れる電流がショートしないように、光反射物220と透明電極201が電気的に接続しないようにする必要がある。
【0113】
なお、本実施の形態は、実施の形態1乃至実施の形態3と自由に組み合わせることが可能である。
【0114】
(実施形態5)
本実施の形態では、光反射物として発光素子が有する陰極を用いる例について、実施の形態2乃至実施の形態4とは異なる場合を説明する。図11は、断面構造を示した断面図であり、図12は一画素を示した上面図である。また、図11は図11のA−A`の断面図であり、図11及び図12においては、適宜同じ番号を使用するので参照するとよい。
【0115】
図11において、201は透明電極、202は有機化合物層、203は陰極である。透明電極201と、有機化合物層202と、陰極203とが重なった部分が発光素子200に相当する。220は光反射物である。209は空気、205は第一層間絶縁膜、204は第二層間絶縁膜、215は第三層間絶縁膜である。また、211は電源線、212はゲート電極、221は接続配線、213はソース線、222は接続配線、224は容量配線である。
【0116】
図11に示す206は電流制御用TFT、219はスイッチング用TFTであり、それぞれ絶縁表面を有する基板208上に形成されている。
【0117】
電流制御用TFT206とスイッチング用TFT219を覆って、第1層間絶縁膜205が形成されている。そして第1層間絶縁膜205上にはソース線213と、接続配線221、電源線211、接続配線222とが形成されている。
【0118】
ソース線213は第1層間絶縁膜205に形成された開孔(コンタクトホール)を介してスイッチング用TFT219接続されている。また接続配線221は、第1層間絶縁膜204に形成された開孔(コンタクトホール)を介して電流制御用TFT206と接続されている。
【0119】
接続配線222は、第1層間絶縁膜205に形成された開孔(コンタクトホール)を介してスイッチング用TFT219と接続されている。また、電源線211は第2層間絶縁膜117に形成された開孔(コンタクトホール)を介して電流制御用TFT206と接続されている。
【0120】
ソース線213と、接続配線221、222と、電源線211を覆うように、第1層間絶縁膜205上に第2層間絶縁膜204が形成されている。そして第2層間絶縁膜204上に透明電極201が形成されている。
【0121】
透明電極201は第2層間絶縁膜204に形成された開孔(コンタクトホール)を介して接続配線221に形成されている。
【0122】
本実施例では、接続配線222と容量配線224との間に第2層間絶縁膜204が形成されている部分において、保持容量223が形成されている。容量配線224は透明電極201と同じ導電膜から形成することができるため、工程数を増やさなくても保持容量を形成することが可能である。また、スイッチング用TFT219と重なるように保持容量223が形成されるために、保持容量を形成しても開口率の低下を抑えることができる。
【0123】
容量配線224と、透明電極201とを覆うように、第2層間絶縁膜204上に第3層間絶縁膜215が形成されている。第3層間絶縁膜215は一部エッチングされ、透明電極201が露出している。
【0124】
そして画素電極201と第3層間絶縁膜215を覆って有機化合物層202と陰極203とが順に積層されており、透明電極201と、有機化合物層202と、陰極203とが重なっている部分が、発光素子200に相当する。
【0125】
なお本実施例において、TFTは図11に示した構造に限定されない。また、本発明では、接続配線222と容量配線224を用いて形成される保持容量223に加えて、別の構成の保持容量を有していても良い。
【0126】
また、本発明では、接続配線222がスイッチング用TFT219と重なるように形成されるため、発光素子から発せられる光や、発光装置の外部から入射する光がスイッチング用TFT219にあたることで、スイッチング用TFT101にオフ電流が流れるのを防ぐことができる。
【0127】
なお本実施例では、電流制御用TFT206とスイッチング用TFT219はpチャネル型TFTでもnチャネル型TFTでもどちらでも良い。ただし、図2では透明電極201として陽極を用いているので、電流制御用TFT206はpチャネル型TFTであるのが望ましい。
【0128】
また、本実施の形態では、画素に2つTFTが設けられた例について示したが、本発明はこの構成に限定されない。
【0129】
また、本実施の形態は、実施の形態1乃至実施の形態4と自由に組み合わせることが可能である。
(実施形態6)
本実施の形態では、実施の形態1乃至実施の形態5とは異なる場合を説明する。図27は、断面構造を示した図であり、図28は一画素を示した上面図である。また、図27は図28のA−A`の断面図であり、図27及び図28においては、適宜同じ番号を使用するので参考にするとよい。
【0130】
図27において、201は透明電極、202は有機化合物層、203は陰極である。透明電極201と、有機化合物層202と、陰極203とが重なった部分が発光素子200に相当する。220は光反射物である。電流制御用TFT206は、絶縁表面を有する基板208に形成されており、209は空気、205は第一層間絶縁膜、204は第二層間絶縁膜、207はパッシベーション膜、214は樹脂膜である。また、211は電源線、212はゲート電極、221は接続配線、213はソース線である。
【0131】
本実施の形態では、作製工程において、絶縁表面を有する基板208上に電流制御用TFT206のゲート電極212とゲート線217を同時に形成した後、電流制御用TFT206とゲート線217を覆うように第一層間絶縁膜205を形成する。そして第一層間絶縁膜205に、電源線211、接続配線221及び光反射物220のための開孔(コンタクトホール)を形成する。
【0132】
電源線211は、第一層間絶縁膜205に形成された開孔(コンタクトホール)を介して電流制御用TFT206に接続するように形成する。接続配線221は、第一層間絶縁膜205に形成された開孔(コンタクトホール)を介して電流制御用TFT206に接続するように形成する。そして、電源線211及び接続配線221とソース線213を同時に形成する。
【0133】
次に、第一層間絶縁膜205と、ソース配線213とを覆うように、樹脂膜214を形成する。そして樹脂膜214のパターニングを行う。その際、樹脂膜214上に形成される透明電極202と接続配線221が電気的に接続されるようにパターニングを行う必要がある。また、樹脂膜214は電源線211を作成する前に作成してもよい。
【0134】
図27及び図28では、樹脂膜214は、透明電極201と重なるように、光反射物220を除いた箇所に形成されているが、本発明はこれに限定されない。樹脂膜214を全面に塗布し、その後パターニングをする箇所は設計者が適宜決めることができる。また、樹脂膜を、柱状となるようにパターニングしてもよい。そして、柱状の樹脂膜を画素に複数形成されるようにしてもよい。なお、本実施の形態では樹脂膜214を光反射物220で挟み、樹脂膜214上にある有機化合物層202からの光は、光反射物220で反射させるようになっている。そのため、柱状の樹脂膜214を形成する場合は、樹脂膜214上に形成された有機化合物層202からの光を光反射物220で反射出来るように、光反射物220を形成するための開孔(コンタクトホール)を、樹脂膜の周囲に形成しなければならない。
【0135】
樹脂膜214の厚さは、2〜50μmが好ましく、前記範囲内で可能な限りなるべく高く形成するとよい。樹脂膜214の材料は、球状のSiO2(二酸化珪素)やポリスチレンや、ポリイミド、ポリアミド、アクリル、ポリビニルシンナメートのうちいずれか一つを主成分とするものを用いることが可能である。また上記以外にも、液晶表示装置などに用いられる公知のスペーサの材料を用いることができる。
【0136】
そして、透明電極201は、樹脂膜214を覆うように形成し、その際、接続配線221と透明電極201は電気的に接続されるようにする。なお、透明電極201を形成する際には、光反射物220を形成するための開孔(コンタクトホール)にはレジストマスクなどを形成し、開孔(コンタクトホール)上には透明電極が形成されないようにする。
【0137】
次に、透明電極201を覆うように、第二層間絶縁膜204が形成される。その後、第二層間絶縁膜204は一部エッチングされ、透明電極201は露出した状態となる。
【0138】
そして、透明電極201と第二層間絶縁膜204を覆って、有機化合物層202と、陰極203と、パッシベーション膜207とを順に積層して形成する。その際、同時に、光反射物220を形成するための開孔(コンタクトホール)を覆うように、有機化合物層202と、陰極203と、パッシベーション膜207とを順に積層して形成する。透明電極201と、有機化合物層202と、陰極203とが重なっている部分が発光素子200に相当する。
【0139】
また、電流制御用TFT206の極性は、nチャネル型でもpチャネル型でもどちらでも良い。ただし、図5では、透明電極201は陽極であるため、pチャネル型であるのが望ましい。
【0140】
なお、光反射物220を形成するための開孔(コンタクトホール)は、第一層間絶縁膜205を形成し、第二層間絶縁膜204を形成した後に開けてもよいし、第一層間絶縁膜205を形成した後と、第二層間絶縁膜204を形成した後の複数回に分けて形成してもよい。
【0141】
図27に示す有機化合物層202からの矢印は、有機化合物層202から発せられた光を示している。光反射物220は、基板208に対して傾いているため、有機化合物層202から発せられた光のうち出射角の大きい光は、光反射物220に反射して、基板208の外に出ることができる。
【0142】
図28において、光反射物220は、開孔(コンタクトホール)を覆うように形成されるが、図を見やすくするため、開孔(コンタクトホール)の印は図示せずに、光反射物220が形成される箇所を点線で示すのみとした。また、画素に光反射物220を形成される場所は、特に限定されず、設計者が適宜設計することが可能である。また、図27及び図28において、透明電極201と光反射物220は接続されているが、本発明はこれに限定されず、接続されていなくてもよい。
【0143】
また、電源線211、ソース線213等と同じ材料を用いて、光反射物220を形成するための開孔(コンタクトホール)を覆うように形成してもよい。その場合、光反射物220とソース配線213及び電源線211は接続しないように形成してもよいし、接続するように形成してもよい。ただし、その場合は、画素に流れる電流がショートしないように、光反射物220と透明電極201が電気的に接続しないようにする必要がある。
【0144】
なお、本実施の形態は、実施の形態1乃至実施の形態5と自由に組み合わせることが可能である。
【0145】
【実施例】
(実施例1)
本実施例では、有機化合物層202と光反射物220との距離の関係を、図14を用いて求める。
【0146】
ここで、有機化合物層202から光が発せられる領域から、光反射物220までの横方向の最も長い直線距離をLとおく。また、有機化合物層202から光反射物220までの縦方向の最大厚さをDとおく。ここで、横方向とは、有機化合物層202から基板208に向かって垂直に発せられる光に対して、垂直な方向を指す。縦方向とは、前記横方向に対して垂直な方向を指す。図14に示すように、また、有機化合物層202から発せられる光の出射角をθaとすると、以下の式(15)が求められる。
【0147】
【数15】
tanθa=L/D・・・(15)
【0148】
また、基板208をガラス基板とする。そうすると、前述したように、θa>41°の光は、光反射物220に当たらないと、基板208の外に取り出すことが出来ない。そのため、θa>41°の光が、光反射物220に当たるようにす
るためには、以下の【数16】が求められる。
【0149】
【数16】
tan41°=0.869<tanθa・・・(16)
【0150】
式(16)に式(15)を代入すると、以下の式(17)が求められる。
【0151】
【数17】
0.869<L/D・・・(17)
【0152】
式(17)より、基板208がガラス基板の場合は、LはDよりも小さいことが望ましいことが分かる。また、LがDよりも小さいほど、有機化合物層202から発せられた光のうち、光反射物220に達する光が増加することが分かる。ここで、基板208と空気209との界面における臨界角をθfとすると、以下の式(18)が求められる。
【0153】
【数18】
tanθf<L/D・・・(18)
【0154】
上記のとおり、有機化合物層202と光反射物220の関係は、式(18)を満たすように形成するとよい。
【0155】
なお、本実施例は、実施の形態と自由に組み合わせることが可能である。
【0156】
(実施例2)
図18は本発明の発光装置の画素部の回路図である。101はスイッチング用TFT、102は電流制御用TFT、103は発光素子、104は保持容量である。
【0157】
画素部にはソース線S1〜Sx、電源線V1〜Vx、ゲート線G1〜Gyが形成されている。各画素はソース線S1〜Sxのいずれか1つと、電源線V1〜Vxのいずれか1つと、ゲート線G1〜Gyのいずれか1つとを有している。
【0158】
なお、本実施例は、実施の形態および実施例1と自由に組み合わせることが可能である。
【0159】
(実施例3)
図29は本発明の発光装置の画素部の回路図である。301はスイッチング用TFT、302は電流制御用TFT、303は発光素子、304は保持容量、305はリセット用TFTである。
【0160】
画素部にはソース線S1〜Sx、電源線V1〜Vx、ゲート線G1〜Gy、リセット線R1〜Rxが形成されている。各画素はソース線S1〜Sxのいずれか1つと、電源線V1〜Vxのいずれか1つと、ゲート線G1〜Gyのいずれか1つと、リセット線R1〜Rxのいずれか一つを有している。
【0161】
なお、本実施例は、実施の形態および実施例1または実施例2と自由に組み合わせることが可能である。
【0162】
(実施例4)
本発明の発光装置の作製方法の一例について、図19〜図23を用いて説明する。ここでは、光反射物として金属膜を用いる例について、工程に従って詳細に説明する。
【0163】
まず、本実施例ではコーニング社の#7059ガラスや#1737ガラスなどに代表されるバリウムホウケイ酸ガラス、またはアルミノホウケイ酸ガラスなどのガラスからなる基板2000を用いる。なお、基板2000としては、透光性を有する基板であれば良く、石英基板を用いても良い。また、本実施例の処理温度に耐えうる耐熱性を有するプラスチック基板を用いてもよい。
【0164】
次いで、図19(A)に示すように、基板2000上に酸化珪素膜、窒化珪素膜または酸化窒化珪素膜などの絶縁膜から成る下地膜2010を形成する。本実施例では下地膜2010として2層構造を用いるが、前記絶縁膜の単層膜または2層以上積層させた構造を用いても良い。下地膜2010の一層目としては、プラズマCVD法を用い、SiH4、NH3、及びN2Oを反応ガスとして成膜される酸化窒化珪素膜2010aを10〜200nm(好ましくは50〜100nm)形成する。本実施例では、膜厚50nmの酸化窒化珪素膜2010a(組成比Si=32%、O=27%、N=24%、H=17%)を形成した。次いで、下地膜2010のニ層目としては、プラズマCVD法を用い、SiH4、及びN2Oを反応ガスとして成膜される酸化窒化珪素膜2010bを50〜200nm(好ましくは100〜150nm)の厚さに積層形成する。本実施例では、膜厚100nmの酸化窒化珪素膜2010b(組成比Si=32%、O=59%、N=7%、H=2%)を形成した。
【0165】
次いで、下地膜2010上に半導体層2020〜2040を形成する。半導体層2020〜2040は、非晶質構造を有する半導体膜を公知の手段(スパッタ法、LPCVD法、またはプラズマCVD法等)により成膜した後、公知の結晶化処理(レーザー結晶化法、熱結晶化法、またはニッケルなどの触媒を用いた熱結晶化法等)を行って得られた結晶質半導体膜を所望の形状にパターニングして形成する。この半導体層2020〜2040の厚さは25〜80nm(好ましくは30〜60nm)の厚さで形成する。結晶質半導体膜の材料に限定はないが、好ましくは珪素(シリコン)またはシリコンゲルマニウム(SiXGe1-X(X=0.0001〜0.02))合金などで形成すると良い。本実施例では、プラズマCVD法を用い、55nmの非晶質珪素膜を成膜した後、ニッケルを含む溶液を非晶質珪素膜上に保持させた。この非晶質珪素膜に脱水素化(500℃、1時間)を行った後、熱結晶化(550℃、4時間)を行い、さらに結晶化を改善するためのレーザーアニ―ル処理を行って結晶質珪素膜を形成した。そして、この結晶質珪素膜をフォトリソグラフィ法を用いたパターニング処理によって、半導体層2020〜2040を形成した。
【0166】
また、半導体層2020〜2040を形成した後、TFTのしきい値を制御するために、半導体層2020〜2040に微量な不純物元素(ボロンまたはリン)をドーピングしてもよい。
【0167】
また、レーザー結晶化法で結晶質半導体膜を作製する場合には、パルス発振型または連続発光型のエキシマレーザーやYAGレーザー、YVO4レーザーを用いることができる。これらのレーザーを用いる場合には、レーザー発振器から放射されたレーザー光を光学系で線状に集光し半導体膜に照射する方法を用いると良い。結晶化の条件は実施者が適宣選択するものであるが、エキシマレーザーを用いる場合はパルス発振周波数300Hzとし、レーザーエネルギー密度を100〜400mJ/cm2(代表的には200〜300mJ/cm2)とする。また、YAGレーザーを用いる場合にはその第2高調波を用いパルス発振周波数30〜300kHzとし、レーザーエネルギー密度を300〜600mJ/cm2(代表的には350〜500mJ/cm2)とすると良い。そして幅100〜1000μm、例えば400μmで線状に集光したレーザー光を基板全面に渡って照射し、この時の線状レーザー光の重ね合わせ率(オーバーラップ率)を50〜98%として行えばよい。
【0168】
次いで、半導体層2020〜2040を覆うゲート絶縁膜2050を形成する。ゲート絶縁膜2050はプラズマCVD法またはスパッタ法を用い、厚さを40〜150nmとして珪素を含む絶縁膜で形成する。本実施例では、プラズマCVD法により110nmの厚さで酸化窒化珪素膜(組成比Si=32%、O=59%、N=7%、H=2%)で形成した。勿論、ゲート絶縁膜は酸化窒化珪素膜に限定されるものでなく、他の珪素を含む絶縁膜を単層または積層構造として用いても良い。
【0169】
また、酸化珪素膜を用いる場合には、プラズマCVD法でTEOS(Tetraethyl Orthosilicate)とO2とを混合し、反応圧力40Pa、基板温度300〜400℃とし、高周波(13.56MHz)電力密度0.5〜0.8W/cm2で放電させて形成することができる。このようにして作製される酸化珪素膜は、その後400〜500℃の熱アニールによりゲート絶縁膜として良好な特性を得ることができる。ここまでの工程によって、図19(A)に示す断面図が完成する。
【0170】
次いで、レジストからなるマスク2060を形成し、n型不純物元素(本実施例では、リン)を添加して、高濃度にリンを含む不純物領域2070〜2090を形成する。この領域には、リンが1×1020〜5×1021atoms/cm3、代表的には2×1020〜1×1022atoms/cm3の濃度が含まれるようにする。(図19(B))
【0171】
そして、ゲート絶縁膜2050上にゲート電極を形成するための耐熱性導電層を形成する(図19(C))。耐熱性導電層2100は単層で形成しても良いし、必要に応じて二層あるいは三層といった複数の層から成る積層構造としても良い。本実施例では、導電膜(A)2100aおよび導電膜(B)2100bでなる積層膜を形成する。耐熱性導電層にはタンタル(Ta)、チタン(Ti)、モリブデン(Mo)、タングステン(W)、クロム(Cr)、シリコン(Si)から選ばれた元素、または前記元素を主成分とする導電膜(代表的には、窒化タンタル膜、窒化タングステン膜、窒化チタン膜等)、または前記元素を組み合わせた合金膜(代表的にはMo−W合金膜、Mo−Ta合金膜、タングステンシリサイド膜等)を用いることができる。が含まれる。本実施例では、導電膜(A)2100aとしてTaN膜、導電膜(B)2100bとしてW膜を用いる。これらの耐熱性導電層はスパッタ法やCVD法で形成されるものであり、低抵抗化を図るために含有する不純物濃度を低減させることが好ましく、特に酸素濃度に関しては30ppm以下とすると良い。W膜はWをターゲットとしてスパッタ法で形成しても良いし、6フッ化タングステン(WF6)を用いて熱CVD法で形成することもできる。いずれにしてもゲート電極として使用するためには低抵抗化を図る必要があり、W膜の抵抗率は20μΩcm以下にすることが望ましい。W膜は結晶粒を大きくすることで低抵抗率化を図ることができるが、W中に酸素などの不純物元素が多い場合には結晶化が阻害され高抵抗化する。このことより、スパッタ法による場合、純度99.99%または純度99.9999%のWターゲットを用い、さらに成膜時に気相中からの不純物の混入がないように十分配慮してW膜を形成することにより、抵抗率9〜20μΩcmを実現することができる。
【0172】
一方、耐熱性導電層2100にTa膜を用いる場合には、同様にスパッタ法で形成することが可能である。Ta膜はスパッタガスにArを用いる。また、スパッタ時のガス中に適量のXeやKrを加えておくと、形成する膜の内部応力を緩和して膜の剥離を防止することができる。α相のTa膜の抵抗率は20μΩcm程度でありゲート電極に使用することができるが、β相のTa膜の抵抗率は180μΩcm程度でありゲート電極とするには不向きであった。TaN膜はα相に近い結晶構造を持つので、Ta膜の下地にTaN膜を形成すればα相のTa膜が容易に得られる。また、図示しないが、耐熱性導電層2100の下に2〜20nm程度の厚さでリン(P)をドープしたシリコン膜を形成しておくことは有効である。これにより、その上に形成される導電膜の密着性向上と酸化防止を図ると同時に、耐熱性導電層2100が微量に含有するアルカリ金属元素が第1の形状のゲート絶縁膜2050に拡散するのを防ぐことができる。いずれにしても、耐熱性導電層2100は抵抗率を10〜50μΩcmの範囲ですることが好ましい。
【0173】
その後、導電膜(A)2100aおよび導電膜(B)2100bを所望の形状にパターニングして、ゲート電極2110、2120及び容量電極213を形成する(図19(D))。なお図19(D)ではわからないが、容量電極213はゲート電極2120と接続されている。
【0174】
(図19(D))の工程が終了した時点における画素の上面図を図20に示す。(図19(D))は図20に示す画素の、A−A’における断面図に相当する。なお、図を分かり易くするために、ゲート絶縁膜2050は省略している。また、2500はゲート線に相当し、ゲート電極2110と接続されている。
【0175】
次いで、ゲート電極2110をマスクとして用いて、n型を付与する不純物元素(以下、n型不純物元素とする)を後のTFTの活性層となる半導体層2020、2030に添加する。n型不純物元素としては、周期表の15族に属する元素、典型的にはリンまたはヒ素を用いることができる。この工程により、第1不純物領域2150〜2170、2200、2210、第2不純物領域2180、チャネル形成領域2190、2220が形成される。第1不純物領域2150と2170は、一方がソース領域、もう一方がドレイン領域として機能する。また第2不純物領域2180はLDD領域として機能させるための低濃度不純物領域であり、n型不純物元素が1×1016〜5×1018atoms/cm3(代表的には、1×1017〜5×1018atoms/cm3)の濃度で含まれている(図21(A))。
【0176】
次いで、後のnチャネル型TFTとなる領域をマスク2230で覆い、後のpチャネル型TFTの活性層となる半導体層2030にp型不純物元素としてボロンを3×1020〜3×1021atoms/cm3、代表的には5×1020〜1×1021atoms/cm3の濃度が含まれるように添加する(図21(B))。この工程によって、半導体層2030に第3不純物領域2240、2250が形成される。
【0177】
次に、ゲート電極2110、2120、容量電極2130およびゲート絶縁膜2050上に第1層間絶縁膜2260を形成する。第1層間絶縁膜2260は酸化シリコン膜、酸化窒化シリコン膜、窒化シリコン膜、またはこれらを組み合わせた積層膜で形成すれば良い。いずれにしても第1層間絶縁膜2260は無機絶縁物材料から形成する。第1層間絶縁膜2260の膜厚は100〜200nmとする。第1層間絶縁膜2260として酸化シリコン膜を用いる場合には、プラズマCVD法でTEOSとO2とを混合し、反応圧力40Pa、基板温度300〜400℃とし、高周波(13.56MHz)電力密度0.5〜0.8W/cm2で放電させて形成することができる。また、第1層間絶縁膜2260として酸化窒化シリコン膜を用いる場合には、プラズマCVD法でSiH4、N2O、NH3から作製される酸化窒化シリコン膜、またはSiH4、N2Oから作製される酸化窒化シリコン膜で形成すれば良い。この場合の作製条件は反応圧力20〜200Pa、基板温度300〜400℃とし、高周波(60MHz)電力密度0.1〜1.0W/cm2で形成することができる。また、第1層間絶縁膜2260としてSiH4、N2O、H2から作製される酸化窒化水素化シリコン膜を適用しても良い。窒化シリコン膜も同様にプラズマCVD法でSiH4、NH3から作製することが可能である。
【0178】
そして、それぞれの濃度で添加されたn型またはp型を付与する不純物元素を活性化する工程を行う(図21(C))。なお、本実施例でゲート電極として用いている導電膜は、非常に酸化されやすく、酸化すると抵抗率が上がってしまうという問題があった。そこで、本実施例における活性化のための加熱処理は、ロータリーポンプおよびメカニカルブースターポンプにより排気を行って雰囲気中の酸素濃度を低減し、減圧の雰囲気下で加熱処理を行うことが好ましい。
【0179】
次いで、熱的に励起された水素により活性層中のダングリングボンドを終端する水素化のため、水素雰囲気中で、410℃で1時間の加熱処理を行う。水素化の他の手段として、プラズマにより励起された水素を用いるプラズマ水素化を行ってもよい。
【0180】
次いで、第2層間絶縁膜2270を膜厚500〜1000nm(本実施例では800nm)に形成する。第2層間絶縁膜2270としては、アクリル、ポリイミド、ポリアミド、BCB(ベンゾシクロブテン)といった有機絶縁膜、もしくは、酸化窒化シリコン膜もしくは窒化酸化シリコン膜といった無機絶縁膜を用いればよい。
【0181】
その後、所定のパターンのレジストマスクを形成し、第1不純物領域2150、2170、第3不純物領域2240、2250、不純物領域2090に達する開孔(コンタクトホール)を形成する。ただし、図21(D)では不純物領域2090に達する開孔(コンタクトホール)は省略している。開孔(コンタクトホール)はドライエッチング法で形成する。この場合、エッチングガスにCF4、O2、Heの混合ガスを用い有機樹脂材料から成る第2層間絶縁膜2270をまずエッチングし、その後、続いてエッチングガスをCF4、O2として第1層間絶縁膜2260をエッチングする。さらに、半導体層との選択比を高めるために、エッチングガスをCHF3に切り替えてゲート絶縁膜2050をエッチングすることにより開孔(コンタクトホール)を形成することができる。
【0182】
そして、導電性の金属膜をスパッタ法や真空蒸着法で形成し、マスクでパターニングし、その後エッチングすることで、ソース線2280、接続配線2290、2300、電源線2310、光反射物2600を形成する。ソース線2280は第1不純物領域2150に、接続配線2290は第1不純物領域2170に、接続配線2300は第3不純物領域2200に、電源線2310は第3不純物領域2210に接続されている。また(図21(D))では図示していないが、接続配線2290は、ゲート電極2120と接続されている。また(図21(D))では図示していないが、電源線2310は不純物領域2090に接続されている。
【0183】
図示していないが、本実施例ではこの配線を、膜厚50nmのTi膜と、膜厚500nmの合金膜(AlとTiとの合金膜)との積層膜で形成した(図21(D))。
【0184】
(図21(D))の工程が終了した時点における画素の上面図を図22に示す。(図21(D))は図22に示す画素の、A−A’における断面図に相当する。なお、図を分かり易くするために、ゲート絶縁膜2050及び第1及び第2層間絶縁膜2260、2270は省略している。また、2500はゲート線である。
【0185】
接続配線2290とゲート電極2120とが接続されている様子を、図20(A)に示す。なお図20(A)は図22に示す画素の、B−B’における断面図に相当する。接続配線2290は第2層間絶縁膜2270及び第1層間絶縁膜2260に形成された開孔(コンタクトホール)を介して、ゲート電極2120に接続されている。
【0186】
電源線2310と不純物領域2090とが接続されている様子を、図20(B)に示す。なお図20(B)は図22に示す画素の、C−C’における断面図に相当する。電源線2310は第2層間絶縁膜2270及び第1層間絶縁膜2260に形成された開孔(コンタクトホール)を介して、不純物領域2090に接続されている。
【0187】
次いで、第3層間絶縁膜2330を形成する。第3層間絶縁膜2330は、平坦化する必要があるため、ポリイミド、アクリルといった有機絶縁膜を用いて膜厚1.5μmに形成する。そして、第3層間絶縁膜2330に接続配線2300に達する開孔(コンタクトホール)を形成し、次いで、第3層間絶縁膜2330上に透明導電膜を80〜120nmの厚さで形成し、パターニングすることによって画素電極2340及び容量配線2350を形成する(図23(A))。なお、本実施例では、透明導電膜として酸化インジウム・スズ(ITO)膜や酸化インジウムに2〜20[%]の酸化亜鉛(ZnO)を混合した透明導電膜を用いる。
【0188】
容量配線2350は、第3層間絶縁膜2330を間に介して接続配線2290と重なっている。本発明では、容量配線2350と、第3層間絶縁膜2330と、接続配線2290とによって、保持容量2360が形成されている。
【0189】
図23(A)の工程が終了した時点における画素の上面図を図24に示す。図23(A)は図24に示す画素の、A−A’における断面図に相当する。なお、図を分かり易くするために、第3層間絶縁膜2330は省略している。
【0190】
なお、図23(A)では図示していないが、保持容量2360を形成している容量配線2350は、隣り合う画素間で互いに接続している。
【0191】
2280はソース線、2310は電源線である。そして接続配線2290は図9に示すとおり、隣接する画素間において接続または共有されており、全ての接続配線2290には一定の電位が与えられている。なお、2500はゲート線に相当し、ゲート電極2110と接続されている。
【0192】
次に、図23(B)に示すように、画素電極234に対応する位置に開口部を有する第4層間絶縁膜2370を形成する。第4層間絶縁膜2370は絶縁性を有していて、バンクとして機能し、隣接する画素の有機化合物層を分離する役割を有している。本実施例ではレジストを用いて第4層間絶縁膜2370を形成する。
【0193】
次に、有機化合物層2380を蒸着法により形成し、更に蒸着法により陰極(MgAg電極)2390および保護電極2400を形成する。このとき有機化合物層2380及び陰極2390を形成するに先立って画素電極2340に対して熱処理を施し、水分を完全に除去しておくことが望ましい。なお、本実施例では発光素子の陰極としてMgAg電極を用いるが、公知の他の材料であっても良い。
【0194】
なお、有機化合物層2380としては、公知の材料を用いることができる。本実施例では正孔輸送層(Hole transporting layer)及び有機化合物層(Emitting layer)でなる2層構造を有機化合物層とするが、正孔注入層、電子注入層若しくは電子輸送層のいずれかを設ける場合もある。このように組み合わせは既に様々な例が報告されており、そのいずれの構成を用いても構わない。
【0195】
本実施例では正孔輸送層としてポリフェニレンビニレンを蒸着法により形成する。また、有機化合物層としては、ポリビニルカルバゾールに1,3,4−オキサジアゾール誘導体のPBDを30〜40%分子分散させたものを蒸着法により形成し、緑色の発光中心としてクマリン6を約1%添加している。
【0196】
また、保護電極2400でも有機化合物層2380を水分や酸素から保護することは可能であるが、さらに好ましくは保護膜2410を設けると良い。本実施例では保護膜2410として300nm厚の窒化珪素膜を設ける。この保護膜も保護電極2400の後に大気解放しないで連続的に形成しても構わない。
【0197】
また、保護電極2400は陰極2390の劣化を防ぐために設けられ、アルミニウムを主成分とする金属膜が代表的である。勿論、他の材料でも良い。また、有機化合物層2380、陰極2390は非常に水分に弱いので、保護電極2400までを大気解放しないで連続的に形成し、外気から有機化合物層を保護することが望ましい。
【0198】
なお、有機化合物層2380の膜厚は10〜400[nm](典型的には60〜150[nm])、陰極2390の厚さは80〜200[nm](典型的には100〜150[nm])とすれば良い。
【0199】
こうして図23(B)に示すような構造の発光装置が完成する。なお、画素電極234、有機化合物層2380、陰極2390の重なっている部分2420が発光素子に相当する。
【0200】
本実施例では、不純物領域2090と、ゲート絶縁膜2050と、容量電極2130とで、保持容量2430が形成される。また、容量電極2130と、第2層間絶縁膜2270と、電源線2310とで保持容量2440が形成される。不純物領域2090と容量電極2130とは電源線2130と重なっているので、保持容量2430、2440は開口率を下げることなく形成することができる。
【0201】
なお、2450はスイッチング用TFTであり、2460は駆動用TFTである。
【0202】
なお、実際には図23(B)まで完成したら、さらに外気に曝されないように気密性が高く、脱ガスの少ない保護フィルム(ラミネートフィルム、紫外線硬化樹脂フィルム等)や透光性のシーリング材でパッケージング(封入)することが好ましい。その際、シーリング材の内部を不活性雰囲気にしたり、内部に吸湿性材料(例えば酸化バリウム)を配置したりすると発光素子の信頼性が向上する。
【0203】
本発明の発光装置の作製方法は、本実施例において説明した作製方法に限定されない。本発明の発光装置は公知の方法を用いて作成することが可能である。
【0204】
なお、本実施例は、実施の形態および実施例1乃至実施例4と自由に組み合わせることが可能である。
【0205】
(実施例5)
本実施例では、本発明を用いて発光装置を作製した例について、図25を用いて説明する。
【0206】
図25(A)は、発光素子が形成された基板をシーリング材によって封止することによって形成された発光装置の上面図であり、図25(B)は、図25(A)のA−A’における断面図、図25(C)は図25(A)のB−B’における断面図である。
【0207】
基板4001上に設けられた画素部4002と、ソース線駆動回路4003と、第1及び第2のゲート線駆動回路4004a、bとを囲むようにして、シール材4009が設けられている。また画素部4002と、ソース線駆動回路4003と、第1及び第2のゲート線駆動回路4004a、bとの上にシーリング材4008が設けられている。よって画素部4002と、ソース線駆動回路4003と、第1及び第2のゲート線駆動回路4004a、bとは、基板4001とシール材4009とシーリング材4008とによって、充填材4210で密封されている。
【0208】
また基板4001上に設けられた画素部4002と、ソース線駆動回路4003と、第1及び第2のゲート線駆動回路4004a、bとは、複数のTFTを有している。ソース線駆動回路4003はソース線にビデオ信号を入力する回路であり、第1及び第2のゲート線駆動回路4004a、bは、選択信号によってゲート線を選択する回路である。
【0209】
図25(B)では代表的に、下地膜4010上に形成された、ソース線駆動回路4003に含まれる駆動回路用TFT(但し、ここではnチャネル型TFTとpチャネル型TFTを図示する)4201及び画素部4002に含まれる駆動用TFT(発光素子への電流を制御するTFT)4202を図示した。
【0210】
本実施例では、駆動回路用TFT4201には公知の方法で作製されたpチャネル型TFTまたはnチャネル型TFTが用いられ、駆動用TFT4202には公知の方法で作製されたpチャネル型TFTが用いられる。また、画素部4002には駆動用TFT4202のゲートに接続された保持容量(図示せず)が設けられる。
【0211】
駆動回路用TFT4201及び駆動用TFT4202上には層間絶縁膜(平坦化膜)4301が形成され、その上に駆動用TFT4202のドレインと電気的に接続する画素電極(陽極)4203が形成される。画素電極4203としては仕事関数の大きい透明導電膜が用いられる。透明導電膜としては、酸化インジウムと酸化スズとの化合物、酸化インジウムと酸化亜鉛との化合物、酸化亜鉛、酸化スズまたは酸化インジウムを用いることができる。また、前記透明導電膜にガリウムを添加したものを用いても良い。
【0212】
そして、画素電極4203の上には絶縁膜4302が形成され、絶縁膜4302は画素電極4203の上に開口部が形成されている。この開口部において、画素電極4203の上には有機化合物層4204が形成される。有機化合物層4204は公知の有機発光材料または無機発光材料を用いることができる。また、有機発光材料には低分子系(モノマー系)材料と高分子系(ポリマー系)材料があるがどちらを用いても良い。
【0213】
有機化合物層4204の形成方法は公知の蒸着技術もしくは塗布法技術を用いれば良い。また、有機化合物層の構造は正孔注入層、正孔輸送層、有機化合物層、電子輸送層または電子注入層を自由に組み合わせて積層構造または単層構造とすれば良い。
【0214】
有機化合物層4204の上には遮光性を有する導電膜(代表的にはアルミニウム、銅もしくは銀を主成分とする導電膜またはそれらと他の導電膜との積層膜)からなる陰極4205が形成される。また、陰極4205と有機化合物層4204の界面に存在する水分や酸素は極力排除しておくことが望ましい。従って、有機化合物層4204を窒素または希ガス雰囲気で形成し、酸素や水分に触れさせないまま陰極4205を形成するといった工夫が必要である。本実施例ではマルチチャンバー方式(クラスターツール方式)の成膜装置を用いることで上述のような成膜を可能とする。そして陰極4205は所定の電圧が与えられている。
【0215】
以上のようにして、画素電極(陽極)4203、有機化合物層4204及び陰極4205からなる発光素子4303が形成される。そして発光素子4303を覆うように、絶縁膜4302上に保護膜4303が形成されている。保護膜4303は、発光素子4303に酸素や水分等が入り込むのを防ぐのに効果的である。
【0216】
4005aは電源供給線に接続された引き回し配線であり、駆動用TFT4202のソース領域に電気的に接続されている。引き回し配線4005aはシール材4009と基板4001との間を通り、異方導電性フィルム4300を介してFPC4006が有するFPC用配線4301に電気的に接続される。
【0217】
シーリング材4008としては、ガラス材、金属材(代表的にはステンレス材)、セラミックス材、プラスチック材(プラスチックフィルムも含む)を用いることができる。プラスチック材としては、FRP(Fiberglass−Reinforced Plastics)板、PVF(ポリビニルフルオライド)フィルム、マイラーフィルム、ポリエステルフィルムまたはアクリル樹脂フィルムを用いることができる。また、アルミニウムホイルをPVFフィルムやマイラーフィルムで挟んだ構造のシートを用いることもできる。
【0218】
但し、発光素子からの光の放射方向がカバー材側に向かう場合にはカバー材は透明でなければならない。その場合には、ガラス板、プラスチック板、ポリエステルフィルムまたはアクリルフィルムのような透明物質を用いる。
【0219】
また、充填材4103としては窒素やアルゴンなどの不活性な気体の他に、紫外線硬化樹脂または熱硬化樹脂を用いることができ、PVC(ポリビニルクロライド)、アクリル、ポリイミド、エポキシ樹脂、シリコーン樹脂、PVB(ポリビニルブチラル)またはEVA(エチレンビニルアセテート)を用いることができる。本実施例では充填材として窒素を用いた。
【0220】
また充填材4103を吸湿性物質(好ましくは酸化バリウム)もしくは酸素を吸着しうる物質にさらしておくために、シーリング材4008の基板4001側の面に凹部4007を設けて吸湿性物質または酸素を吸着しうる物質4207を配置する。そして、吸湿性物質または酸素を吸着しうる物質4207が飛び散らないように、凹部カバー材4208によって吸湿性物質または酸素を吸着しうる物質4207は凹部4007に保持されている。なお凹部カバー材4208は目の細かいメッシュ状になっており、空気や水分は通し、吸湿性物質または酸素を吸着しうる物質4207は通さない構成になっている。吸湿性物質または酸素を吸着しうる物質4207を設けることで、発光素子4303の劣化を抑制できる。
【0221】
図25(C)に示すように、画素電極4203が形成されると同時に、引き回し配線4005a上に接するように導電性膜4203aが形成される。
【0222】
また、異方導電性フィルム4300は導電性フィラー4300aを有している。基板4001とFPC4006とを熱圧着することで、基板4001上の導電性膜4203aとFPC4006上のFPC用配線4301とが、導電性フィラー4300aによって電気的に接続される。
【0223】
本実施例は、実施の形態および実施例1乃至実施例5と自由に組み合わせて実施することが可能である。
【0224】
(実施例6)
発光装置は自発光型であるため、液晶ディスプレイに比べ、明るい場所での視認性に優れ、視野角が広い。従って、様々な電子機器の表示部に用いることができる。
【0225】
本発明の発光装置を用いた電子機器として、ビデオカメラ、デジタルカメラ、ゴーグル型ディスプレイ(ヘッドマウントディスプレイ)、ナビゲーションシステム、音響再生装置(カーオーディオ、オーディオコンポ等)、ノート型パーソナルコンピュータ、ゲーム機器、携帯情報端末(モバイルコンピュータ、携帯電話、携帯型ゲーム機または電子書籍等)、記録媒体を備えた画像再生装置(具体的にはデジタルビデオディスク(DVD)等の記録媒体を再生し、その画像を表示しうるディスプレイを備えた装置)などが挙げられる。特に、斜め方向から画面を見る機会が多い携帯情報端末は、視野角の広さが重要視されるため、発光装置を用いることが望ましい。それら電子機器の具体例を図26に示す。
【0226】
図26(A)は発光表示装置であり、筐体3001、支持台3002、表示部3003、スピーカー部3004、ビデオ入力端子3005等を含む。本発明の発光装置は表示部3003に用いることができる。発光装置は自発光型であるためバックライトが必要なく、液晶ディスプレイよりも薄い表示部とすることができる。なお、発光表示装置は、パソコン用、TV放送受信用、広告表示用などの全ての情報表示用表示装置が含まれる。
【0227】
図26(B)はデジタルスチルカメラであり、本体3101、表示部3102、受像部3103、操作キー3104、外部接続ポート3105、シャッター3106等を含む。本発明の発光装置は表示部3102に用いることができる。
【0228】
図26(C)はノート型パーソナルコンピュータであり、本体3201、筐体3202、表示部3203、キーボード3204、外部接続ポート3205、ポインティングマウス3206等を含む。本発明の発光装置は表示部3203に用いることができる。
【0229】
図26(D)はモバイルコンピュータであり、本体3301、表示部3302、スイッチ3303、操作キー3304、赤外線ポート3305等を含む。本発明の発光装置は表示部3302に用いることができる。
【0230】
図26(E)は記録媒体を備えた携帯型の画像再生装置(具体的にはDVD再生装置)であり、本体3401、筐体3402、表示部A3403、表示部B3404、記録媒体(DVD等)読み込み部3405、操作キー3406、スピーカー部3407等を含む。表示部A3403は主として画像情報を表示し、表示部B3404は主として文字情報を表示するが、本発明の発光装置はこれら表示部A、B3403、3404に用いることができる。なお、記録媒体を備えた画像再生装置には家庭用ゲーム機器なども含まれる。
【0231】
図26(F)はゴーグル型ディスプレイ(ヘッドマウントディスプレイ)であり、本体3501、表示部3502、アーム部3503を含む。本発明の発光装置は表示部3502に用いることができる。
【0232】
図26(G)はビデオカメラであり、本体3601、表示部3602、筐体3603、外部接続ポート3604、リモコン受信部3605、受像部3606、バッテリー3607、音声入力部3608、操作キー3609等を含む。本発明の発光装置は表示部3602に用いることができる。
【0233】
ここで図26(H)は携帯電話であり、本体3701、筐体3702、表示部3703、音声入力部3704、音声出力部3705、操作キー3706、外部接続ポート3707、アンテナ3708等を含む。本発明の発光装置は表示部3703に用いることができる。なお、表示部3703は黒色の背景に白色の文字を表示することで携帯電話の消費電力を抑えることができる。
【0234】
なお、将来的に有機発光材料の発光輝度が高くなれば、出力した画像情報を含む光をレンズ等で拡大投影してフロント型若しくはリア型のプロジェクターに用いることも可能となる。
【0235】
また、上記電子機器はインターネットやCATV(ケーブルテレビ)などの電子通信回線を通じて配信された情報を表示することが多くなり、特に動画情報を表示する機会が増してきている。有機発光材料の応答速度は非常に高いため、発光装置は動画表示に好ましい。
【0236】
また、発光装置は発光している部分が電力を消費するため、発光部分が極力少なくなるように情報を表示することが望ましい。従って、携帯情報端末、特に携帯電話や音響再生装置のような文字情報を主とする表示部に発光装置を用いる場合には、非発光部分を背景として文字情報を発光部分で形成するように駆動することが望ましい。
【0237】
以上の様に、本発明の適用範囲は極めて広く、あらゆる分野の電子機器に用いることが可能である。また、本実施例の電子機器は実施の形態および実施例1乃至実施例5に示したいずれの構成の発光装置を用いても良い。
【0238】
【発明の効果】
光反射物を発光装置に設けることにより、有機化合物層から発せられた光の取り出し効率が改善される。また、従来と同様の消費電力を用いた場合には、発光装置の輝度が向上する。また発光装置の輝度が従来と同じ場合には、消費電力を抑えることが可能となる。
【図面の簡単な説明】
【図1】本発明の発光装置の画素の断面図。
【図2】本発明の発光装置の画素の断面図。
【図3】本発明の発光装置の画素の上面図。
【図4】本発明の発光装置の構成を示す図。
【図5】本発明の発光装置の画素の断面図。
【図6】本発明の発光装置の画素の上面図。
【図7】本発明の発光装置の画素の断面図。
【図8】本発明の発光装置の画素の上面図。
【図9】本発明の発光装置の画素の断面図。
【図10】本発明の発光装置の画素の上面図。
【図11】本発明の発光装置の画素の断面図。
【図12】本発明の発光装置の画素の上面図。
【図13】本発明の光反射物のテーパー角を説明する図。
【図14】本発明の光反射物を説明する図。
【図15】スネルの法則を説明する図。
【図16】入射角と反射率の関係を示した図。
【図17】画素の断面図。
【図18】本発明の発光装置の画素部の回路図。
【図19】本発明の発光装置の作製工程を示す図。
【図20】本発明の発光装置の作製工程を示す図。
【図21】本発明の発光装置の作製工程を示す図。
【図22】本発明の発光装置の作製工程を示す図。
【図23】本発明の発光装置の作製工程を示す図。
【図24】本発明の発光装置の作製工程を示す図。
【図25】本発明の発光装置の上面図及び断面図。
【図26】本発明の発光装置を用いた電子機器の図。
【図27】本発明の発光装置の画素の断面図。
【図28】本発明の発光装置の画素の上面図。
【図29】本発明の発光装置の画素部の回路図。

Claims (12)

  1. 薄膜トランジスタと発光素子を含む画素を有する発光装置において、
    基板上の前記薄膜トランジスタと、
    前記薄膜トランジスタ上の絶縁膜と、
    前記絶縁膜上の第1の電極、前記第1の電極上の有機化合物層、及び前記有機化合物層上の第2の電極を含む前記発光素子と、
    前記絶縁膜の第1の開孔を充填するように設けられ、前記薄膜トランジスタと前記第1の電極に電気的に接続された配線と、
    前記絶縁膜の第2の開孔を充填するように設けられた金属層と、を有し、
    前記第2の開孔は、テーパーの形状を有し、
    前記画素が形成される領域は、前記発光素子が形成される第1の領域と、前記金属層が形成される第2の領域とを有し、
    前記第2の領域は前記第1の領域の周囲に設けられていることを特徴とする発光装置。
  2. 薄膜トランジスタと発光素子を含む画素を有する発光装置において、
    基板上の薄膜トランジスタと、
    前記薄膜トランジスタ上の絶縁膜と、
    前記絶縁膜上の第1の電極、前記第1の電極上の有機化合物層、及び前記有機化合物層上の第2の電極を含む発光素子と、
    前記絶縁膜の第1の開孔を充填するように設けられ、前記薄膜トランジスタに電気的に接続された配線と、
    前記絶縁膜の第2の開孔を充填するように設けられた金属層と、を有し、
    前記第2の開孔は、テーパーの形状を有し、
    前記金属層は、前記第2の電極と同じ材料で形成され、
    前記画素が形成される領域は、前記発光素子が形成される第1の領域と、前記金属層が形成される第2の領域とを有し、
    前記第2の領域は前記第1の領域の周囲に設けられていることを特徴とする発光装置。
  3. 薄膜トランジスタと発光素子を含む画素を有する発光装置において、
    基板上の薄膜トランジスタと、
    前記薄膜トランジスタ上の第1の絶縁膜と、
    前記第1の絶縁膜上の第2の絶縁膜と、
    前記第2の絶縁膜上の第1の電極、前記第1の電極上の有機化合物層、及び前記有機化合物層上の第2の電極を含む発光素子と、を有し、
    前記第1の絶縁膜の第1の開孔を充填するように設けられ、前記薄膜トランジスタに電気的に接続された配線と、
    前記第1の絶縁膜の第2の開孔と前記第2の絶縁膜の第1の開孔を充填するように設けられた金属層と、を有し、
    前記第1の電極は、前記第2の絶縁膜の第2の開孔を充填するように設けられ、かつ前記配線と電気的に接続され、
    前記第1の絶縁膜の第2の開孔と前記第2の絶縁膜の第1の開孔は、テーパーの形状を有し、
    前記金属層は、前記第2の電極と同じ材料で形成され、
    前記画素が形成される領域は、前記発光素子が形成される第1の領域と、前記金属層が形成される第2の領域とを有し、
    前記第2の領域は前記第1の領域の周囲に設けられていることを特徴とする発光装置。
  4. 請求項1において、
    前記金属層は、前記配線と同じ材料で形成されていることを特徴とする発光装置。
  5. 請求項1乃至請求項3のいずれか一項において、
    前記金属層は、光を反射する層であることを特徴とする発光装置。
  6. 請求項1乃至請求項3のいずれか一項において、
    前記金属層は、前記薄膜トランジスタと電気的に接続されていないことを特徴とする発光装置。
  7. 請求項1乃至請求項3のいずれか一項において、
    前記発光素子から発せられた光は、前記金属層に反射して外部に達することを特徴とする発光装置。
  8. 請求項1乃至請求項3のいずれか一項において、
    前記金属層のテーパー角θbと、前記基板と空気の界面の臨界角θfは、θb<(45+θf/2)を満たすことを特徴とする発光装置。
  9. 請求項1乃至請求項3のいずれか一項において、
    前記有機化合物層から前記金属層までの最長距離L、前記有機化合物層から前記金属層までの最大厚さD、及び前記基板と空気の界面の臨界角θfは、L/D<tanθfを満たすことを特徴とする発光装置。
  10. 請求項1乃至請求項3のいずれか一項において、
    前記第1の電極に重なるように設けられ、かつ前記第1の電極と前記基板の間に設けられた樹脂膜を有し、
    前記樹脂膜の厚さは2〜50μmであることを特徴とする発光装置。
  11. 請求項1乃至請求項3のいずれか一項において、
    前記第1の電極に重なるように設けられ、かつ前記第1の電極と前記基板の間に設けられた樹脂膜を有し、
    前記樹脂膜の厚さは2〜50μmであり、
    前記樹脂膜は柱状であることを特徴とする発光装置。
  12. 請求項1乃至請求項11のいずれか一項に記載の発光装置を用いた電子機器。
JP2001022486A 2001-01-30 2001-01-30 発光装置、電子機器 Expired - Fee Related JP4693253B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001022486A JP4693253B2 (ja) 2001-01-30 2001-01-30 発光装置、電子機器
US10/056,382 US6828725B2 (en) 2001-01-30 2002-01-25 Light emitting device
TW091101392A TW536837B (en) 2001-01-30 2002-01-28 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001022486A JP4693253B2 (ja) 2001-01-30 2001-01-30 発光装置、電子機器

Publications (3)

Publication Number Publication Date
JP2002229482A JP2002229482A (ja) 2002-08-14
JP2002229482A5 JP2002229482A5 (ja) 2007-12-06
JP4693253B2 true JP4693253B2 (ja) 2011-06-01

Family

ID=18887896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001022486A Expired - Fee Related JP4693253B2 (ja) 2001-01-30 2001-01-30 発光装置、電子機器

Country Status (3)

Country Link
US (1) US6828725B2 (ja)
JP (1) JP4693253B2 (ja)
TW (1) TW536837B (ja)

Families Citing this family (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW531903B (en) * 2001-06-25 2003-05-11 Koninkl Philips Electronics Nv Substrate for an electroluminescent display device and method of manufacturing the same
JP4465132B2 (ja) * 2001-07-10 2010-05-19 パイオニア株式会社 ディスプレイパネル
JP3943901B2 (ja) * 2001-11-08 2007-07-11 株式会社東芝 自己発光表示装置
KR100483988B1 (ko) * 2001-11-29 2005-04-15 삼성에스디아이 주식회사 투명도전막의 투과도 변형방법
JP4120279B2 (ja) * 2002-06-07 2008-07-16 セイコーエプソン株式会社 有機エレクトロルミネッセンス装置、有機エレクトロルミネッセンス装置の製造方法及び電子機器
JP4434563B2 (ja) * 2002-09-12 2010-03-17 パイオニア株式会社 有機el表示装置の製造方法
JP4284971B2 (ja) * 2002-11-01 2009-06-24 セイコーエプソン株式会社 有機elパネルの製造方法
JP4711595B2 (ja) * 2002-12-10 2011-06-29 株式会社半導体エネルギー研究所 Elディスプレイ及び電子機器
AU2003284470A1 (en) * 2002-12-10 2004-06-30 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and its fabricating method
JP4252297B2 (ja) 2002-12-12 2009-04-08 株式会社日立製作所 発光素子およびこの発光素子を用いた表示装置
KR100521272B1 (ko) 2002-12-20 2005-10-12 삼성에스디아이 주식회사 휘도가 개선된 유기전계 발광표시장치
US7221095B2 (en) * 2003-06-16 2007-05-22 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method for fabricating light emitting device
JP4755142B2 (ja) * 2003-06-16 2011-08-24 株式会社半導体エネルギー研究所 発光装置及び発光装置を用いた電子機器
US7224118B2 (en) * 2003-06-17 2007-05-29 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic apparatus having a wiring connected to a counter electrode via an opening portion in an insulating layer that surrounds a pixel electrode
JP4522760B2 (ja) * 2003-06-30 2010-08-11 株式会社半導体エネルギー研究所 発光装置及び発光装置の作製方法
US7126270B2 (en) 2003-06-30 2006-10-24 Semiconductor Energy Laboratory Co., Ltd. Reflector for a light emitting device
FR2858859A1 (fr) * 2003-08-14 2005-02-18 Thomson Licensing Sa Panneau electroluminescent dote d'elements d'extraction de lumiere
JP4703108B2 (ja) * 2003-09-10 2011-06-15 三星モバイルディスプレイ株式會社 発光素子基板およびそれを用いた発光素子
US7816863B2 (en) 2003-09-12 2010-10-19 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method for manufacturing the same
US7520790B2 (en) * 2003-09-19 2009-04-21 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method of display device
JP4823478B2 (ja) 2003-09-19 2011-11-24 株式会社半導体エネルギー研究所 発光装置の作製方法
CA2443206A1 (en) 2003-09-23 2005-03-23 Ignis Innovation Inc. Amoled display backplanes - pixel driver circuits, array architecture, and external compensation
KR100611147B1 (ko) * 2003-11-25 2006-08-09 삼성에스디아이 주식회사 유기전계발광표시장치
WO2005055332A1 (en) * 2003-12-03 2005-06-16 Philips Intellectual Property & Standards Gmbh Display with reflective isolating separator layer
JP4736013B2 (ja) * 2003-12-16 2011-07-27 日本電気株式会社 発光表示装置の製造方法
US7619258B2 (en) * 2004-03-16 2009-11-17 Semiconductor Energy Laboratory Co., Ltd. Display device
JP2005268046A (ja) * 2004-03-18 2005-09-29 Nec Corp 有機el素子及び有機el表示装置
KR100607520B1 (ko) * 2004-11-11 2006-08-02 엘지전자 주식회사 유기 전계발광표시소자 및 그 제조방법
KR100683711B1 (ko) * 2004-11-22 2007-02-20 삼성에스디아이 주식회사 유기전계 발광표시장치
US10012678B2 (en) 2004-12-15 2018-07-03 Ignis Innovation Inc. Method and system for programming, calibrating and/or compensating, and driving an LED display
JP5128287B2 (ja) 2004-12-15 2013-01-23 イグニス・イノベイション・インコーポレーテッド 表示アレイのためのリアルタイム校正を行う方法及びシステム
US10013907B2 (en) 2004-12-15 2018-07-03 Ignis Innovation Inc. Method and system for programming, calibrating and/or compensating, and driving an LED display
US8576217B2 (en) 2011-05-20 2013-11-05 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9799246B2 (en) 2011-05-20 2017-10-24 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
CN101147274B (zh) * 2005-03-25 2010-05-26 株式会社半导体能源研究所 发光元件、发光装置和利用它们的电器
US7852298B2 (en) 2005-06-08 2010-12-14 Ignis Innovation Inc. Method and system for driving a light emitting device display
US8149346B2 (en) 2005-10-14 2012-04-03 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method thereof
TWI358964B (en) * 2006-04-12 2012-02-21 Au Optronics Corp Electroluminescence display element and method for
WO2007118332A1 (en) 2006-04-19 2007-10-25 Ignis Innovation Inc. Stable driving scheme for active matrix displays
CA2556961A1 (en) 2006-08-15 2008-02-15 Ignis Innovation Inc. Oled compensation technique based on oled capacitance
JP4828367B2 (ja) * 2006-10-06 2011-11-30 住友化学株式会社 有機エレクトロルミネッセンス素子
JP5087927B2 (ja) * 2007-01-09 2012-12-05 大日本印刷株式会社 有機発光素子、有機発光トランジスタ及び発光表示装置
JP2008170756A (ja) * 2007-01-12 2008-07-24 Sony Corp 表示装置
KR20080067158A (ko) * 2007-01-15 2008-07-18 삼성전자주식회사 표시장치
JP2009049135A (ja) * 2007-08-17 2009-03-05 Sony Corp 表示装置
JP5470813B2 (ja) * 2008-11-20 2014-04-16 ソニー株式会社 反射板、表示装置およびその製造方法
US10319307B2 (en) 2009-06-16 2019-06-11 Ignis Innovation Inc. Display system with compensation techniques and/or shared level resources
US9311859B2 (en) 2009-11-30 2016-04-12 Ignis Innovation Inc. Resetting cycle for aging compensation in AMOLED displays
CA2669367A1 (en) 2009-06-16 2010-12-16 Ignis Innovation Inc Compensation technique for color shift in displays
US9384698B2 (en) 2009-11-30 2016-07-05 Ignis Innovation Inc. System and methods for aging compensation in AMOLED displays
KR101084176B1 (ko) 2009-11-26 2011-11-17 삼성모바일디스플레이주식회사 유기 발광 디스플레이 장치
US8803417B2 (en) 2009-12-01 2014-08-12 Ignis Innovation Inc. High resolution pixel architecture
JP4561935B2 (ja) * 2010-02-01 2010-10-13 日本電気株式会社 有機el表示装置の製造方法
CA2692097A1 (en) 2010-02-04 2011-08-04 Ignis Innovation Inc. Extracting correlation curves for light emitting device
US9881532B2 (en) 2010-02-04 2018-01-30 Ignis Innovation Inc. System and method for extracting correlation curves for an organic light emitting device
US20140313111A1 (en) 2010-02-04 2014-10-23 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10089921B2 (en) 2010-02-04 2018-10-02 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US8907991B2 (en) 2010-12-02 2014-12-09 Ignis Innovation Inc. System and methods for thermal compensation in AMOLED displays
US9530349B2 (en) 2011-05-20 2016-12-27 Ignis Innovations Inc. Charged-based compensation and parameter extraction in AMOLED displays
US9466240B2 (en) 2011-05-26 2016-10-11 Ignis Innovation Inc. Adaptive feedback system for compensating for aging pixel areas with enhanced estimation speed
CN106910464B (zh) 2011-05-27 2020-04-24 伊格尼斯创新公司 补偿显示器阵列中像素的系统和驱动发光器件的像素电路
JP2013054837A (ja) * 2011-09-01 2013-03-21 Toshiba Corp 発光装置及びその製造方法
JP2013073887A (ja) * 2011-09-29 2013-04-22 Canon Inc 表示装置
US10089924B2 (en) 2011-11-29 2018-10-02 Ignis Innovation Inc. Structural and low-frequency non-uniformity compensation
US9324268B2 (en) 2013-03-15 2016-04-26 Ignis Innovation Inc. Amoled displays with multiple readout circuits
US8937632B2 (en) 2012-02-03 2015-01-20 Ignis Innovation Inc. Driving system for active-matrix displays
US8922544B2 (en) 2012-05-23 2014-12-30 Ignis Innovation Inc. Display systems with compensation for line propagation delay
WO2013186919A1 (ja) * 2012-06-15 2013-12-19 パイオニア株式会社 有機エレクトロルミネッセンスデバイス
JP5686122B2 (ja) * 2012-08-24 2015-03-18 セイコーエプソン株式会社 電気光学装置および電子機器
JP5695620B2 (ja) * 2012-09-19 2015-04-08 株式会社東芝 表示装置
WO2014084130A1 (ja) * 2012-11-30 2014-06-05 シャープ株式会社 Tft基板
EP3043338A1 (en) 2013-03-14 2016-07-13 Ignis Innovation Inc. Re-interpolation with edge detection for extracting an aging pattern for amoled displays
CN104241535B (zh) * 2013-06-06 2017-07-25 上海和辉光电有限公司 一种有机发光结构
JP2015050011A (ja) * 2013-08-30 2015-03-16 株式会社ジャパンディスプレイ エレクトロルミネセンス装置およびその製造方法
US9761170B2 (en) 2013-12-06 2017-09-12 Ignis Innovation Inc. Correction for localized phenomena in an image array
US9502653B2 (en) 2013-12-25 2016-11-22 Ignis Innovation Inc. Electrode contacts
JP6160499B2 (ja) * 2014-02-06 2017-07-12 ソニー株式会社 表示装置および表示装置の製造方法、並びに電子機器
DE102015206281A1 (de) 2014-04-08 2015-10-08 Ignis Innovation Inc. Anzeigesystem mit gemeinsam genutzten Niveauressourcen für tragbare Vorrichtungen
KR20150145834A (ko) 2014-06-19 2015-12-31 삼성디스플레이 주식회사 유기 발광 표시 장치 및 유기 발광 표시 장치의 제조 방법
CA2879462A1 (en) 2015-01-23 2016-07-23 Ignis Innovation Inc. Compensation for color variation in emissive devices
US20160268554A1 (en) * 2015-03-11 2016-09-15 National Taiwan University Electroluminescent devices with improved optical out-coupling efficiencies
CA2889870A1 (en) 2015-05-04 2016-11-04 Ignis Innovation Inc. Optical feedback system
CA2892714A1 (en) 2015-05-27 2016-11-27 Ignis Innovation Inc Memory bandwidth reduction in compensation system
CA2900170A1 (en) 2015-08-07 2017-02-07 Gholamreza Chaji Calibration of pixel based on improved reference values
KR102573853B1 (ko) 2016-09-20 2023-09-01 삼성디스플레이 주식회사 발광 표시 장치
CN107134543B (zh) * 2017-04-24 2019-05-07 深圳市华星光电半导体显示技术有限公司 阵列基板及制造方法、显示装置
CN207116483U (zh) * 2017-09-06 2018-03-16 京东方科技集团股份有限公司 一种阵列基板及显示装置
KR102521760B1 (ko) 2017-10-31 2023-04-13 엘지디스플레이 주식회사 유기발광표시장치
JP2019114484A (ja) * 2017-12-26 2019-07-11 ソニーセミコンダクタソリューションズ株式会社 表示素子、及び電子機器
JP7245088B2 (ja) * 2019-03-20 2023-03-23 キヤノン株式会社 有機デバイス、表示装置、撮像装置、照明装置および移動体
CN110391348A (zh) * 2019-07-23 2019-10-29 武汉华星光电半导体显示技术有限公司 一种显示面板和显示装置
CN111584601B (zh) * 2020-05-27 2023-05-23 京东方科技集团股份有限公司 显示用基板及其制备方法、显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10189251A (ja) * 1996-12-27 1998-07-21 Pioneer Electron Corp ディスプレイ装置
JPH10308286A (ja) * 1997-05-08 1998-11-17 Idemitsu Kosan Co Ltd 有機el発光装置
JPH11329726A (ja) * 1998-05-21 1999-11-30 Sharp Corp 有機el素子
JP2000077181A (ja) * 1998-09-01 2000-03-14 Denso Corp El素子
JP2002504739A (ja) * 1998-02-23 2002-02-12 ケンブリッジ ディスプレイ テクノロジー リミテッド ディスプレイデバイス
JP2002208491A (ja) * 2000-11-09 2002-07-26 Toshiba Corp 自己発光型表示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6157356A (en) * 1996-04-12 2000-12-05 International Business Machines Company Digitally driven gray scale operation of active matrix OLED displays
US6384427B1 (en) * 1999-10-29 2002-05-07 Semiconductor Energy Laboratory Co., Ltd. Electronic device
US6417521B2 (en) * 2000-01-19 2002-07-09 Semiconductor Energy Laboratory Co., Ltd. Transmission circuit and semiconductor device
JP3695308B2 (ja) 2000-10-27 2005-09-14 日本電気株式会社 アクティブマトリクス有機el表示装置及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10189251A (ja) * 1996-12-27 1998-07-21 Pioneer Electron Corp ディスプレイ装置
JPH10308286A (ja) * 1997-05-08 1998-11-17 Idemitsu Kosan Co Ltd 有機el発光装置
JP2002504739A (ja) * 1998-02-23 2002-02-12 ケンブリッジ ディスプレイ テクノロジー リミテッド ディスプレイデバイス
JPH11329726A (ja) * 1998-05-21 1999-11-30 Sharp Corp 有機el素子
JP2000077181A (ja) * 1998-09-01 2000-03-14 Denso Corp El素子
JP2002208491A (ja) * 2000-11-09 2002-07-26 Toshiba Corp 自己発光型表示装置

Also Published As

Publication number Publication date
US6828725B2 (en) 2004-12-07
JP2002229482A (ja) 2002-08-14
TW536837B (en) 2003-06-11
US20020101152A1 (en) 2002-08-01

Similar Documents

Publication Publication Date Title
JP4693253B2 (ja) 発光装置、電子機器
JP6502600B2 (ja) El表示装置
KR100688049B1 (ko) 전자 디바이스
JP4101511B2 (ja) 発光装置及びその作製方法
US7488986B2 (en) Light emitting device
KR100654927B1 (ko) 반도체 장치 및 그의 제작방법
JP4741177B2 (ja) 表示装置の作製方法
US6956240B2 (en) Light emitting device
US20020000561A1 (en) Light emitting device
JP2002083689A (ja) 発光装置
JP4974493B2 (ja) 半導体装置及び電子機器
JP4896314B2 (ja) 表示装置
JP2000223715A (ja) 薄膜トランジスタの作製方法およびアクティブマトリクス基板の作製方法
JP2004094236A (ja) 半導体装置
JP5105690B2 (ja) 半導体装置の作製方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071019

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees