JP4683784B2 - レーザ装置用波長制御装置及び制御方法 - Google Patents

レーザ装置用波長制御装置及び制御方法 Download PDF

Info

Publication number
JP4683784B2
JP4683784B2 JP2001238185A JP2001238185A JP4683784B2 JP 4683784 B2 JP4683784 B2 JP 4683784B2 JP 2001238185 A JP2001238185 A JP 2001238185A JP 2001238185 A JP2001238185 A JP 2001238185A JP 4683784 B2 JP4683784 B2 JP 4683784B2
Authority
JP
Japan
Prior art keywords
wavelength
drive mechanism
laser
optical component
chirping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001238185A
Other languages
English (en)
Other versions
JP2003051633A (ja
Inventor
了 仏師田
洋志 田中
毅 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gigaphoton Inc
Original Assignee
Gigaphoton Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gigaphoton Inc filed Critical Gigaphoton Inc
Priority to JP2001238185A priority Critical patent/JP4683784B2/ja
Publication of JP2003051633A publication Critical patent/JP2003051633A/ja
Application granted granted Critical
Publication of JP4683784B2 publication Critical patent/JP4683784B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Lasers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、エキシマレーザ装置又はフッ素分子レーザ装置の中心波長を所望の目標波長に制御する技術に関する。
【0002】
【従来の技術】
従来から、エキシマレーザ装置等から発振したレーザ光を狭帯域化し、その中心波長を所望の値に制御する波長制御技術が知られており、例えば特開平5−283785号公報に示されている。図7は、同公報に開示されたレーザ装置の構成図を表しており、以下図7に基づいて従来技術を説明する。
【0003】
図7において、エキシマレーザ装置11は、レーザ媒質であるレーザガスを封入し、両端部にパルスレーザ光21を透過するウィンドウ17,19を取着したレーザチャンバ12を備えている。レーザチャンバ12の内部では、図示しない放電電極間に高電圧が印加され、パルス放電によってレーザガスを励起し、パルスレーザ光21を発生させる。
発生したパルスレーザ光21は、狭帯域化ユニット30に入射し、プリズム32によって拡大され、波長選択ミラー34によって反射されて、狭帯域化光学素子であるグレーティング33に入射する。グレーティング33では、回折によって所定の中心波長λc及びその近傍の波長を有するパルスレーザ光21のみが反射される。これを、狭帯域化と言う。
【0004】
このとき、波長選択ミラー34は、ステッピングモータユニット40によって回転自在の、可動ホルダ36に搭載されている。波長選択ミラー34を紙面と平行な平面内で回転させると、グレーティング33に対するパルスレーザ光21の入射角度が変わり、グレーティング33で回折されるパルスレーザ光21の中心波長λcが変化する。即ち、波長選択ミラー34を回転させることにより、発振するパルスレーザ光21の中心波長λcを、所望する目標波長λ0に制御することが可能である。
【0005】
また、エキシマレーザ装置11は、パルスレーザ光21の一部をビームスプリッタ22で取り出し、波長モニタ37によってパルスレーザ光21の中心波長λcを波長データλmとしてモニタリングしている。レーザコントローラ29は、モニタリングした波長データλmに基づき、ステッピングモータユニット40に指令信号を出力して波長選択ミラー34を回転させ、パルスレーザ光21の中心波長λcを所望の目標波長λ0に制御している。これを、波長制御と言う。
狭帯域化されたパルスレーザ光21は、狭帯域化ユニット30内のグレーティング33と、パルスレーザ光21を部分反射するフロントミラー16との間で数回往復するうちに、レーザチャンバ12内で増幅される。そして、中心波長λcを有するパルスレーザ光21として、前方(図7中紙面の左方)へ出射し、ステッパ等の露光機25に入射する。
【0006】
【発明が解決しようとする課題】
しかしながら、前記従来技術には、次に述べるような問題がある。
図8に、エキシマレーザ装置11を、露光機25の露光用光源として用いる場合の、被露光物であるウェハ13を示す。図8に示すように、露光を行なう際には、レーザ光21を発振させ、露光する半導体チップ14Aへ、所定量だけレーザ照射を行なう。次にパルス放電を止めてレーザ光21の出射を停止し、ウェハ13を図8中矢印方向に微少距離だけ移動する。そして、移動後にレーザ光21を、隣接する半導体チップ14Bに照射する。これを繰り返すことにより、ウェハ13全体を露光している。
このように、ウェハ13を移動する際に、所定時間だけレーザ発振を停止する必要がある。このように、レーザ発振と停止とを繰り返すような発振のやり方を、バーストモードと呼び、露光時の一般的な発振モードとなっている。
【0007】
ところが、バーストモードにおいては、パルス放電を停止することにより、レーザガスの状態が変化し、停止後の再発振の際に、レーザ光21の波長が1方向に移動(シフト)してしまうことがある。この波長のシフトを、チャーピングと言う。
図9は、上方から、停止中のチャーピング補正及び発振時の波長制御をいずれも行なわない場合の中心波長λcの変動と、露光機25からの発振指令(ON/OFF)信号とを示している。
【0008】
図9に示すように、時刻t10から時刻t11までは、発振指令信号がONとなっており、レーザ発振が行なわれている。このとき、波長制御は行なわれておらず、中心波長λcはある波長λ1の近傍で微小に変動している。
時刻t11に、発振指令信号がOFFになり、発振が停止する。そして、時刻t12に再発振したときの中心波長λcは、チャーピングによってずれ量Δλだけ1方向にずれている。ここでは、波長が長波長側へシフトする場合について説明するが、短波長側へシフトする場合もある。
ところが、再発振後、数〜数十パルス発振する間に、波長制御が行なわれていないにも拘らず、中心波長λcは次第に元の波長λ1に近づく方向へシフトし、時刻t13に、波長λ1にほぼ戻る。このように、チャーピングによってずれた中心波長λcが、元の波長λ1に復帰しようとする波長の移動を、チャーピングからの回復と呼ぶ。これは、レーザガスの状態が、連続的なパルス放電によって安定するためと考えられている。
【0009】
このとき、波長制御が行なわれていたとしても、再発振が開始する時刻t12の直前にはレーザ光21が発振していないため、レーザ光21の波長データλmをモニタリングできない。その結果、再発振直後のレーザ光21の中心波長λcを、目標波長λ0に合わせることが困難であり、再発振のたびに数パルスにわたって、目標波長λ0から大きく外れた中心波長λcのレーザ光21が出射する。
【0010】
そのため、露光に不適切な中心波長λcのレーザ光21が、露光機25に入射し、露光が好適に行なわれないという問題がある。
また、中心波長λcが目標波長λ0から大きく外れているため、これを目標波長λ0に合わせるための波長制御に時間がかかり、露光機25の稼働率が低下するという問題がある。
【0011】
さらには停止中に、露光機25からレーザコントローラ29に、目標波長λ0をλnに変更するようにという波長変更指令が、出力される場合がある。このような場合には、再発振時には、中心波長λcと新たな目標波長λnとの差がさらに大きくなることがあり、中心波長λcを、露光機25が所望する新たな目標波長λnに合わせるのに、より多くの時間を要する。
その結果、露光機25の稼働率が低下するという問題がある。
【0012】
本発明は、上記の問題に着目してなされたものであり、バーストモードの停止直後にも、パルスレーザ光の中心波長を、迅速にかつ正確に目標波長に制御可能な波長制御装置及び制御方法を提供することを目的としている。
【0013】
【課題を解決するための手段、作用及び効果】
上記の目的を達成するために、本発明は、
駆動機構により光学部品を回転させてパルスレーザ光が狭帯域化光学素子に入射する入射角度を変更する光学部品回転手段と、
前記光学部品回転手段を駆動して前記入射角度を変更し、パルスレーザ光の中心波長を所定の目標波長に制御するレーザコントローラとを備えたレーザ装置用波長制御装置において、
レーザ発振の停止中に生じる中心波長のチャーピングに基づいて、中心波長が目標波長に近づくように停止中に光学部品を回転させる第1駆動機構と、
目標波長の変更を指示する波長変更指令に基づいて、中心波長が新たな目標波長に近づくように停止中に光学部品を回転させる第2の駆動機構とを備えている。
【0014】
かかる構成によれば、チャーピングの補正のためと、目標波長変更のためとの2個の駆動機構を備えている。これにより、チャーピングの補正と目標波長の変更とを、同時に互いに独立に行なうことができるので、常に制御が発散せず、好適に中心波長を変更できる。
【0015】
また本発明は、前記第1駆動機構が圧電素子ユニットであり、
前記第2駆動機構がステッピングモータユニットである。
即ち、目標波長λ0の変更をストロークの長いステッピングモータユニットによって行なうことにより、広帯域にわたっての目標波長λ0の変更が可能である。
【0016】
また本発明は、前記第1駆動機構と第2駆動機構とが直列に配されている。
これにより、第1、第2の駆動機構が、同じ光学部品の同じ場所を駆動することになるため、一方の駆動機構の駆動量に対する中心波長の変化の度合いが、他方の駆動機構の駆動の有無と無関係となり、常に一定となる。従って、2個の駆動機構を、互いに独立に制御できるので、制御が容易となる。
【0017】
【発明の実施の形態】
以下、図を参照しながら、本発明に係る実施形態を詳細に説明する。
図1は、実施形態に係るエキシマレーザ装置11の構成図を示している。図1において、エキシマレーザ装置11は、レーザ媒質であるレーザガスを封入したレーザチャンバ12を備えている。レーザチャンバ12の両端部には、パルスレーザ光21を透過するフロントウィンドウ17及びリアウィンドウ19が、図示しないホルダによってそれぞれ取着されている。
【0018】
レーザチャンバ12の内部には、一対の放電電極14,15が、図1中紙面と垂直方向に対向して設置されている。高圧電源23より、放電電極14,15間に高電圧を印加し、パルス放電を起こしてレーザガスを励起し、例えば数〜十数kHzの周波数で、パルスレーザ光21を発生させる。
発生したパルスレーザ光21は、例えば後方(図1中左方)へ進行し、パルスレーザ光21を狭帯域化する狭帯域化ユニット30に入射する。狭帯域化ユニット30は、狭帯域化ボックス31によって囲繞されており、内部に光学部品として、プリズム32,32、波長選択ミラー34、及びグレーティング33等を備えている。狭帯域化ボックス31の壁には、パージガス給気口35が付設され、清浄で乾燥した希ガスや高純度窒素などの反応性の小さなパージガス45を、狭帯域化ボックス31内部に導入している。
【0019】
狭帯域化ユニット30に入射したパルスレーザ光21は、プリズム32,32によって拡大され、波長選択ミラー34によって反射され、狭帯域化光学素子であるグレーティング33に入射する。グレーティング33では、回折によって、入射角度φによって定まる中心波長λcのパルスレーザ光21のみが反射される。
このとき、波長選択ミラー34は、水平面内(図1中紙面と平行な平面内)で回動自在の、可動ホルダ36に搭載されている。可動ホルダ36を回転させて波長選択ミラー34を回転させることにより、グレーティング33に入射するパルスレーザ光21の入射角度φが変わる。これにより、グレーティング33で回折されるパルスレーザ光21の中心波長λcが変化する。尚、図1において、20はパルスレーザ光21のレーザ光軸を表している。
【0020】
狭帯域化されたパルスレーザ光21は、狭帯域化ユニット30内のグレーティング33と、パルスレーザ光21を部分反射するフロントミラー16との間で数回往復するうちに、放電電極14,15間の放電によって増幅される。そして、フロントミラー16を部分透過し、パルスレーザ光21として前方(図1中、右方)へ出射し、露光機25に入射する。出射したパルスレーザ光21の一部は、ビームスプリッタ22で図1中下方へ取り出され、波長モニタ37によってその中心波長λcを波長データλmとしてモニタリングされる。
【0021】
以下、本実施形態に係る可動ホルダ36の構造について、詳細に説明する。
図2に、可動ホルダ36の平面断面図、図3に狭帯域化ボックス31内部のグレーティング33側からミラー側を見た、可動ホルダ36の正面図を示す。
図2、図3に示すように、可動ホルダ36は、波長選択ミラー34を固定した四角形のミラーホルダ38を備えている。ミラーホルダ38は、図示しない引きバネ及び板バネ49の付勢力によって、狭帯域化ボックス31に引きつけられている。
【0022】
また、ミラーホルダ38の第1〜第4隅部38A〜38Dのうち、第2隅部38B及び第1隅部38Aは、それぞれ支持部材39及び図2には図示しない手動マイクロメータ50によって、狭帯域化ボックス31から押圧されている。支持部材39は、例えばスクリュー47を所定長さだけ狭帯域化ボックス31から突き出させ、ナット46で固定している。また、手動マイクロメータ50は、手動で狭帯域化ボックス31からの突き出し量を変更自在である。
ミラーホルダ38の第3隅部38Cには、後述するようにピエゾ素子ユニット41が取着されている。ピエゾ素子ユニット41の先端部41Bは、図示しない引きバネ及び板バネ49の付勢力によってボールネジユニット43の先端部43Aと接し、ボールネジユニット43は、狭帯域化ボックス31に固定されている。
【0023】
図1に示すように、ステッピングモータユニット40及びピエゾ素子ユニット41は、いずれもレーザコントローラ29に電気的に接続されている。ステッピングモータユニット40は、レーザコントローラ29から受信したパルス信号のパルス数に応じて、モータ軸48(図2参照)を所定量だけ回転させる。モータ軸48の先端部48Aには、カップリング42を介して、ネジ山が精密加工されたボールネジユニット43の後端部43Bが取着されている。ボールネジユニット43は、ガイド51によって、回転しながら前後方向にスムーズに直進運動を行なう。
ボールネジユニット43の先端部43Aは、その長手方向に垂直な平面に精密加工され、この平面に、球面に精密加工されたピエゾ素子ユニット41の先端部41Bが当接している。従って、ボールネジユニットが回転しながら前後動したとき、ピエゾ素子ユニット41は回転せずに前後動する。ピエゾ素子ユニット41の後端部41Aは、ミラーホルダ38に固定された紫外線カバー44に固定されている。
【0024】
ピエゾ素子ユニット41の配線52は、紫外線カバー44の内側を通って、図示しない導入孔を介して狭帯域化ボックス31の外部に達しており、レーザコントローラ29に接続されている。ピエゾ素子ユニット41は、配線52を介して印加された、電圧Vの大きさに応じた長さだけ、前後方向に伸縮する。ピエゾ素子ユニット41は、初期位置として、フルストロークの約1/2の中立位置に保たれている。
【0025】
レーザコントローラ29は、可動ホルダ36に信号を出力してステッピングモータユニット40又はピエゾ素子ユニット41を伸縮させることにより、紫外線カバー44を介してミラーホルダ38の第3隅部38Cを押し引きする。これにより、波長選択ミラー34が回動し、前記入射角度φが変更されて、パルスレーザ光21の中心波長λcが変化する。
このときレーザコントローラ29は、波長モニタ37によってモニタリングした波長データλmに基づき、中心波長λcを目標波長λ0に合わせ、両者の差である波長偏差が所定の許容値よりも小さくなるように制御を行なっている。これを波長制御と言う。
【0026】
また、レーザコントローラ29は、高圧電源23に電圧指令を出力することにより、パルスレーザ光21のパルス出力の制御(これをパワーロック制御と言う)も行なっている。
さらにレーザコントローラ29は、露光機25と互いに通信を行なっており、露光機25からの発振指令信号に基づいてレーザ発振を行なう。また、レーザコントローラ29は、自己の判断に基づいて発振指令信号を出力し、レーザ発振を行なう場合もある。
【0027】
以下に、レーザコントローラ29がこのような可動ホルダ36を用いて、バーストモード発振時に、停止中に波長のチャーピングによってずれた中心波長λcを、再発振直後に迅速に目標波長λ0に戻すための制御手順について説明する。
これを、チャーピング補正と呼ぶ。
まず、第1の制御手順として、停止中に目標波長λ0の変更を指示する波長変更指令が来ず、チャーピング補正のみを行なう場合について、説明する。
【0028】
図4は、上から順に、露光機25からの発振指令(ON/OFF)信号、チャーピング補正を行なった場合の中心波長λcの動き、及びチャーピング補正を行なった場合の、レーザコントローラ29からピエゾ素子ユニット41に出力される指令電圧Vをそれぞれ示すタイミングチャートである。
図4に示すように、時刻t20から時刻t21までは、発振指令信号がONとなっており、レーザ発振が行なわれている。このとき、波長制御が行なわれており、中心波長λcは目標波長λ0に合っている。
時刻t21に、発振指令信号がOFFになり、発振が停止する。そして、チャーピング補正を行なわない場合、時刻t24にレーザ発振が再開されたときには、チャーピングにより、中心波長λcは、長波長側にずれ量Δλだけシフトしている。
【0029】
レーザコントローラ29は、停止中に、発振再開後のチャーピングによる中心波長λcのずれ量Δλが、どの程度であるかを、予め推定する。この推定は、例えばこれまでにレーザ発振がどのようなパターンで行なわれたかという情報や、現在の狭帯域化ボックス31内部の温度、さらには時刻t21から時刻t24までの停止時間等に基づいて行なわれる。
そしてレーザコントローラ29は、このチャーピングによるずれ量Δλに対して、例えばずれ量Δλの2分の1(Δλ/2)の補正量だけ、中心波長λcが目標波長λ0側へ近づくように、波長選択ミラー34を回転させる。この回転は、時刻t22からピエゾ素子ユニット41に電圧信号Vを出力し、ピエゾ素子ユニット41によって可動ホルダ36を駆動させることにより、行なう。回転は、時刻t23に終了する。
【0030】
時刻t24にレーザ発振が再開されるとき、上記のチャーピング補正により、レーザ光21の中心波長λcは、目標波長λ0からほぼΔλ/2だけずれている。
レーザ発振の再開後、レーザコントローラ29は、波長モニタ37によってモニタリングした波長データλmに基づき、中心波長λcを目標波長λ0に合わせるように波長制御を行なう。即ち、時刻t24から、ピエゾ素子ユニット41が可動ホルダ36を駆動して波長選択ミラー34を回転させる。その結果、中心波長λcは目標波長λ0に近づき、時刻t25には中心波長λcが目標波長λ0にほぼ一致する。
尚、上記のタイミングチャートにおいて、説明をわかりやすくするため、時刻t22を時刻t21〜t23の中間近傍にあるようにしたが、このように限られるものではない。
【0031】
以上説明したように、本実施形態の第1の制御手順によれば、停止中にチャーピングによるずれ量Δλの推定を行ない、停止中に駆動機構を駆動して中心波長λcを目標波長λ0に近づけるように補正している。これにより、レーザ発振の再開時に、中心波長λcが目標波長λ0に近い状態から波長制御を開始できるので、中心波長λcが目標波長λ0に合うまでの時間が短縮される。従って、目標波長λ0から外れた、露光に不適切な中心波長λcを有するレーザ光21が、露光機25に入射することが少ない。また、露光に適切な中心波長λcのレーザ光21を得るまでの時間が短く、露光機25の稼働率が向上する。
【0032】
また、チャーピング補正において、推定したずれ量Δλに対し、ずれ量Δλ全てを補正するのではなく、所定の割合(実施例では2分の1)だけ、補正するようにしている。
中心波長λcは、再発振の直後にチャーピングによって目標波長λ0からずれた後、チャーピングから回復して、次第に元の目標波長λ0に戻ろうとする傾向を有している。
【0033】
従って、波長制御を行なう駆動機構の応答時間に合わせて、ずれ量Δλに対する補正量を決定する。例えば、駆動機構の応答時間が長い場合には、波長のチャーピングからの回復のほうが、駆動機構による波長制御より早くなってしまうことがあるので、補正量をあまり大きくしないようにする。こうすることにより、駆動機構による波長制御が発散せず、確実に中心波長λcを目標波長λ0に合わせることが可能である。
また、実施形態のように、ピエゾ素子ユニット41のように非常に応答時間の短い駆動機構によって波長制御を行なう場合には、補正量をずれ量Δλとほぼ同じにするとよい。このようにすれば、再発振直後から、中心波長λcが目標波長λ0により近づくので、両者が略一致するまでの時間が短縮される。しかも、駆動機構の応答時間が短いので、チャーピングからの回復による中心波長λcの移動に対しても、波長選択ミラー34を充分速く駆動でき、常に中心波長λcを目標波長λ0に一致させることが可能である。
【0034】
次に、第2の制御手順として、チャーピングの補正時に、露光機25からレーザコントローラ29に対し、目標波長λ0を新たな目標波長λnに変更するように、波長変更指令が出力された場合について説明する。
図5は、上方から、露光機25からの発振指令(ON/OFF)信号、チャーピング補正を行ない、かつ、波長変更指令が来た場合の中心波長λc、その場合の、ピエゾ素子ユニット41に出力される指令電圧V、波長変更指令D、及び、ステッピングモータユニット40のストローク位置Pをそれぞれ示すタイミングチャートである。
尚、レーザ発振中は、波長制御を行なうものとする。
【0035】
図5に示すように、時刻t30からt31までは、発振指令信号がONとなっており、レーザ発振が行なわれている。レーザコントローラ29は、波長モニタ37でモニタリングした中心波長λcに基づき、ピエゾ素子ユニット41に指令電圧Vを出力して波長制御を行なっており、中心波長λcが目標波長λ0に略一致している。
時刻t31に発振指令信号がOFFになり、発振が停止する。そして、時刻t36にレーザ発振が再開されると、チャーピングにより、中心波長λcが長波長側にずれ量Δλだけシフトする。
レーザコントローラ29は、停止中に、中心波長λcが停止前の目標波長λ0からどの程度ずれるかを推定する。この推定は、例えばこれまでにレーザ発振がどのようなパターンで行なわれたかという情報や、現在の狭帯域化ボックス31内部の温度、さらには時刻t31から時刻t36までの停止時間等に基づいて行なわれる。
【0036】
そしてレーザコントローラ29は、このチャーピングによるずれ量Δλに対して、例えばずれ量Δλの約3分の2に当たる補正量だけ、中心波長λcを目標波長λ0側へ補正するように、波長選択ミラー34を回転させる。この回転は、時刻t32からピエゾ素子ユニット41に電圧信号Vを出力し、ピエゾ素子ユニット41によって可動ホルダ36を駆動させることにより、行なう。
これにより、時刻t32から、ピエゾ素子ユニット41が可動ホルダ36を駆動して、中心波長λcを目標波長λ0からΔλ/3だけずれた波長に合わせるべく、波長選択ミラー34を回転させ始める。
【0037】
一方、停止中に、時刻t33において、露光機25から、目標波長λ0を新たな目標波長λnに変更する波長変更指令Dが来るものとする。レーザコントローラ29は、ピエゾ素子ユニット41に対する電圧指令Vをそのままに、ピエゾ素子ユニット41を駆動させ続け、時刻t35において目標ストロークに達する。
一方、レーザコントローラ29は、時刻t33から時刻t34まで、ステッピングモータユニット40に対して、目標波長λ0を変更するための指令を出力する。これにより、ステッピングモータユニット40は、ストローク位置P0からPnまで移動する。
【0038】
従って時刻t35において、波長選択ミラー34は、ピエゾ素子ユニット41によるチャーピング補正と、ステッピングモータユニット40による目標波長λ0変更との、両者を合わせただけ回転したことになる。その結果、波長選択ミラー34の角度は、新たな目標波長λnから、Δλ/3だけ離れた波長に略相当する角度となっている。
尚、上記手順では、ただ1回だけピエゾ素子ユニット41を大きく動かすことにより、目標波長λ0に合わせるように説明しているが、ピエゾ素子ユニット41を何度も微小距離だけ駆動することにより、補正を行なってもよい。
【0039】
そして、時刻t36にレーザ発振が再開されたときには、レーザコントローラ29は波長モニタ37によってモニタリングした波長データλに基づき、波長制御を行なう。停止中に、ステッピングモータユニット40及びピエゾ素子ユニット41により、中心波長λcは新たな目標波長λnに対して、Δλ/3だけずれた波長となっているので、比較的短時間で(時刻t37に)中心波長λcを新たな目標波長λnに合わせることができる。
【0040】
尚、上記の手順の説明において、まずチャーピング補正を開始し、その最中に波長変更指令Dが入力されるように説明したが、これに限られるものではない。例えば、波長変更指令Dが入力され、目標波長λ0の変更を行なっているうちにチャーピング補正を開始するようにしてもよい。また、まずチャーピング補正を開始し、目標波長λ0の変更を行なっている間にチャーピング補正が終了するような場合でもよく、その逆でもよい。
【0041】
以上説明したように、本実施形態の第2制御手順によれば、レーザ発振の停止中にチャーピング補正に加え、露光機25からの波長変更指令Dに基づく目標波長λ0の変更を行なっている。これにより、停止中に中心波長λcが新たな目標波長λnに近づくので、発振再開後に波長制御が行なわれた際に、中心波長λcが迅速に新たな目標波長λnに合致する。
【0042】
また、チャーピング補正において、推定したずれ量Δλに対し、所定の割合(上記実施例では3分の2)だけ、補正するようにしている。これにより、第1の制御手順と同様に、駆動機構が駆動指令信号に対する応答時間の長いものであっても、波長制御を発散させずに中心波長λcを確実に目標波長λ0に合わせることが可能である。
【0043】
また、本実施形態によれば、チャーピング補正を行なうための第1の駆動機構(ピエゾ素子ユニット41)と、目標波長λ0の変更を行なうための第2の駆動機構(ステッピングモータユニット40)との、2個の駆動機構を備えている。
従って、チャーピング補正の途中で波長変更指令が入力されても、レーザコントローラ29はいずれの処理を優先的に行なうかを迷うことがなく、それぞれの処理を独立に行なうことができる。即ち、常に制御が発散せず、好適に行なわれる。勿論、目標波長λ0の変更を行なっている途中で、チャーピング補正を行なうような場合についても、同様である。
【0044】
尚、第1の駆動機構をピエゾ素子ユニット41とし、第2の駆動機構をステッピングモータユニット40として説明したが、これに限られるものではない。即ち、第1、第2の駆動機構のいずれもが、ステッピングモータユニットでもよく、いずれもがピエゾ素子ユニット41であってもよい。
しかしながら、実施形態に説明したように、ピエゾ素子ユニット41によってチャーピング補正を行ない、ステッピングモータユニット40によって目標波長λ0の変更を行なうのが好適である。
即ち、目標波長λ0の変更を、ストロークの長いステッピングモータユニット40によって行なうことにより、広帯域にわたっての目標波長λ0の変更が可能である。
また、チャーピング補正は、レーザ発振の停止のたびに必ず行なわなければならず、頻度が高いため、これを精度良く補正する必要がある。従って、より微小ストロークを精密に駆動できるピエゾ素子ユニット41によってチャーピング補正を行なうことにより、正確な補正が可能である。
【0045】
また、第1、第2の駆動機構を直列に配し、波長選択ミラー34の1つの隅部を押圧して回転させ、中心波長λcを制御するように説明したが、これに限られるものではない。例えば、グレーティング33やプリズム32を回転させるようにしてもよい。
【0046】
また、例えば、ステッピングモータユニット40で波長選択ミラー34を、ピエゾ素子ユニット41でプリズム32を、それぞれ回転させるように、別々の光学部品を回転させてもよい。
しかしながら、上記実施形態で説明したように、ステッピングモータユニット40及びピエゾ素子ユニット41を直列に配し、光学部品のうち、いずれか1つのみを回転させるのがよい。即ち、第1、第2の駆動機構が、同じ光学部品の同じ場所を駆動させるため、一方の駆動機構の駆動量に対する中心波長の変化量が、他方の駆動機構の駆動の有無と無関係となり、常に一定となる。従って、2個の駆動機構を、互いに独立に制御できるので、制御が容易となる。
これに対し、ステッピングモータユニット40とピエゾ素子ユニット41とを異なる場所に配置するならば、一方の駆動機構を駆動した場合、他方の駆動機構における、中心波長λcを変更するために必要な駆動量が影響を受ける。即ち、中心波長λcを変更する際に、ピエゾ素子ユニット41とステッピングモータユニット40との伸縮量を、互いの影響を考慮しながら制御を行なわなければならず、制御が困難になる。
【0047】
図6に、プリズム32を回転自在の可動ホルダ36上に搭載し、この可動ホルダ36をステッピングモータユニット40及びピエゾ素子ユニット41によって駆動する場合の例を示す。
このように、波長選択ミラー34を用いない構成にすることにより、光路長が短くなるので出力が増大し、例えばゲインが小さなArFエキシマレーザ装置などの場合にも、必要な大きさの出力での発振が可能である。
【0048】
また、本発明によれば、レーザ発振時の波長制御を、ピエゾ素子ユニット41によって行なっている。ピエゾ素子ユニット41は指令に対する反応時間が短いので、制御に対する応答性が良く、中心波長λcが迅速に目標波長λ0に合致する。
【0049】
尚、本実施形態の説明では、新たな目標波長λnを、目標波長λ0よりも長波長側にあるものとして説明しているが、これに限られるものではない。例えば、チャーピングによって中心波長λcが長波長側にずれるのに対し、新たな目標波長λnが、目標波長λ0よりも短波長となるような場合もある。このような場合には、チャーピングによるずれと、目標波長λ0の変更によるずれとが加算されるため、中心波長λcから、新たな目標波長λnまでの差が、さらに大きくなる。
従って、本発明に係る停止時間中のチャーピング補正及び目標波長λ0の変更を行なわない場合には、再発振後、中心波長λcが新たな目標波長λnに合うまでの時間が、より長くなる。これに対し、本発明によれば、停止時間中に中心波長λcを新たな目標波長λnに概略近づけているので、迅速な波長制御が可能であり、このような場合には、本発明の効果が、より大きくなる。
【0050】
また、狭帯域化光学素子として、グレーティング33を用いる場合について説明したが、エタロンを用いてもよい。
さらには、本発明は、エキシマレーザ装置について説明したが、フッ素分子レーザ装置についても、同様に応用が可能である。
【図面の簡単な説明】
【図1】実施形態に係るエキシマレーザ装置の構成図。
【図2】可動ホルダの平面断面図。
【図3】可動ホルダの正面図。
【図4】第1制御手順を説明するタイミングチャート。
【図5】第2制御手順を説明するタイミングチャート。
【図6】プリズムを駆動する場合のエキシマレーザ装置の構成例。
【図7】従来技術に係るエキシマレーザ装置の構成図。
【図8】ウェハの露光の説明図。
【図9】チャーピングの説明図。
【符号の説明】
11:エキシマレーザ装置、12:レーザチャンバ、13:ウェハ、14:半導体チップ、15:放電電極、16:フロントミラー、17:フロントウィンドウ、19:リアウィンドウ、20:レーザ光軸、21:レーザ光、22:ビームスプリッタ、25:露光機、29:レーザコントローラ、30:狭帯域化ユニット、31:狭帯域化ボックス、32:プリズム、33:グレーティング、34:波長選択ミラー、35:パージガス給気口、36:可動ホルダ、37:波長モニタ、38:ミラーホルダ、39:支持部材、40:ステッピングモータユニット、41:ピエゾ素子ユニット、42:カップリング、43:ボールネジユニット、44:紫外線カバー、45:パージガス、46:ナット、47:スクリュー、48:モータ軸、49:板バネ、50:手動マイクロメータ、51:ガイド、52:配線。

Claims (10)

  1. 駆動機構により光学部品を回転させてパルスレーザ光が狭帯域化光学素子に入射する入射角度φを変更する光学部品回転手段と、
    前記光学部品回転手段を駆動して前記入射角度φを変更し、パルスレーザ光の中心波長λcを所定の目標波長λ0に制御するレーザコントローラとを備えたレーザ装置用波長制御装置において、
    レーザ発振の停止中に生じる中心波長λcのチャーピングに基づいて、再発振直後の中心波長λcが目標波長λ0に近づくように停止中に光学部品を回転させ、チャーピングを補正する第1駆動機構と、
    目標波長λ0の変更を指示する波長変更指令に基づいて、中心波長λcが新たな目標波長λnに近づくように停止中に光学部品を回転させ、目標波長を変更する第2の駆動機構と を有し、
    前記第1駆動機構と第2駆動機構とが直列に配され、
    チャーピングの前記補正と目標波長の前記変更とを、同時に互いに独立に行う制御部と を備えたことを特徴とするレーザ装置用波長制御装置。
  2. 請求項1記載のレーザ装置用波長制御装置において、
    前記第1駆動機構が圧電素子ユニットであり、前記第2駆動機構がステッピングモータユニットであることを特徴とするレーザ装置用波長制御装置。
  3. 駆動機構により光学部品をレーザ光軸に対して回転させてパルスレーザ光(21)の狭帯域化光学素子への入射角度φを変更し、
    パルスレーザ光の中心波長λcを所定の目標波長λ0に制御するレーザ装置の波長制御方法において、
    直列に配された第1駆動機構と第2駆動機構とを用い、
    レーザ発振の停止中に生じる中心波長λcのずれに基づいて、中心波長λcが目標波長λ0に近づくように第1の駆動機構に指令を出力して停止中に光学部品を回転させ、
    目標波長λ0の変更を指示する波長変更指令に基づいて、中心波長λcが新たな目標波長λnに近づくように第2の駆動機構に指令を出力して停止中にチャーピングの補正と同時に互いに独立に目標波長の変更とを行うために光学部品を回転させることを特徴とするレーザ装置用波長制御方法。
  4. 駆動機構により光学部品を回転させてパルスレーザ光が狭帯域化光学素子に入射する入射角度φを変更する光学部品回転手段と、
    前記光学部品回転手段を駆動して前記入射角度φを変更し、パルスレーザ光の中心波長λcを所定の目標波長λ0に制御するレーザコントローラとを備えたレーザ装置用波長制御装置において、
    光学部品回転手段が、
    レーザ発振の停止中に生じる中心波長λcのチャーピングに基づいて、再発振直後の中心波長λcが目標波長λ0に近づくように停止中に光学部品を回転させてレーザ発振の停止中にチャーピング補正を行う第1駆動機構と、
    第1駆動機構と直列に配され、目標波長λ0の変更を指示する波長変更指令に基づいて、中心波長λcが新たな目標波長λnに近づくように停止中に光学部品を回転させて波長制御を行う第2駆動機構と
    を具備し、
    レーザコントローラが、目標波長λ0に対する再発振直後の中心波長λcのずれ量Δλを推定し、
    第1駆動機構がピエゾ素子ユニットである場合には、第1駆動機構の応答時間が短いものとして、補正量をずれ量Δλに近づけ、第1駆動機構の応答時間がピエゾ素子ユニットの応答時間より長い場合には、ずれ量Δλに対する補正量の割合を、ピエゾ素子ユニットの場合の補正量の割合より低くして、第1駆動機構の応答時間に応じ、光学部品の、ずれ量Δλに対する補正量を調整する
    ことを特徴とするレーザ装置用波長制御装置。
  5. 請求項4記載のレーザ装置用波長制御装置において、
    前記第1駆動機構が圧電素子ユニットであり、
    前記第2駆動機構がステッピングモータユニットであることを特徴とするレーザ装置用波長制御装置。
  6. 駆動機構により光学部品をレーザ光軸に対して回転させてパルスレーザ光の狭帯域化光学素子への入射角度φを変更し、
    パルスレーザ光の中心波長λcを所定の目標波長λ0に制御するレーザ装置の波長制御方法において、
    光学部品の駆動機構に含まれる第1駆動機構を介し、レーザ発振の停止中に生じる、目標波長λ0に対する再発振直後の中心波長λcのずれ量Δλに基づいて、チャービング補正するとき、第1駆動機構がピエゾ素子ユニットである場合には、第1駆動機構の応答時間が短いものとして、補正量をずれ量Δλに近づけ、第1駆動機構の応答時間がピエゾ素子ユニットの応答時間より長い場合には、ずれ量Δλに対する補正量の割合を、ピエゾ素子ユニットの場合の補正量の割合より低くして、第1駆動機構の応答時間に応じ、光学部品の、ずれ量Δλに対する補正量を調整してチャーピング補正を行い、
    第1駆動機構に直列に配された第2駆動機構を介し、目標波長λ0の変更を指示する波長変更指令に基づいて、レーザ発振の停止中に光学部品を回転させ、中心波長λcが新たな目標波長λnに近づくよう波長制御を行い、
    チャーピング補正及び波長制御を同時に行う場合、チャーピング補正及び波長制御を独立して行う
    ことを特徴とするレーザ装置用波長制御方法。
  7. 駆動機構により光学部品を回転させてパルスレーザ光が狭帯域化光学素子に入射する入射角度φを変更する光学部品回転手段と、
    前記光学部品回転手段を駆動して前記入射角度φを変更し、パルスレーザ光の中心波長λcを所定の目標波長λ0に制御するレーザコントローラとを備えたレーザ装置用波長制御装置において、
    光学部品回転手段が、
    レーザ発振の停止中に生じる中心波長λcのチャーピングに基づいて、再発振直後の中心波長λcが目標波長λ0に近づくように停止中に光学部品を回転させてレーザ発振の停止中にチャーピング補正を行う第1駆動機構と、
    第1駆動機構と直列に配され、目標波長λ0の変更を指示する波長変更指令に基づいて、中心波長λcが新たな目標波長λnに近づくように停止中に光学部品を回転させて波長制御を行う第2駆動機構と
    を具備し、
    チャーピング補正及び波長制御を同時に行う場合、レーザコントローラが、第1駆動機構及び第2駆動機構を独立して制御する
    ことを特徴とするレーザ装置用波長制御装置。
  8. 請求項7記載のレーザ装置用波長制御装置において、
    前記第1駆動機構が圧電素子ユニットであり、前記第2駆動機構がステッピングモータユニットであることを特徴とするレーザ装置用波長制御装置。
  9. レーザコントローラが、目標波長λ0に対する再発振直後の中心波長λcのずれ量Δλを推定し、
    第1駆動機構がピエゾ素子ユニットである場合には、第1駆動機構の応答時間が短いものとして、補正量をずれ量Δλに近づけ、第1駆動機構の応答時間がピエゾ素子ユニットの応答時間より長い場合には、ずれ量Δλに対する補正量の割合を、ピエゾ素子ユニットの場合の補正量の割合より低くして、第1駆動機構の応答時間に応じ、光学部品の、ずれ量Δλに対する補正量を調整する
    ことを特徴とする請求項7又は8に記載のレーザ装置用波長制御装置。
  10. 駆動機構により光学部品をレーザ光軸に対して回転させてパルスレーザ光の狭帯域化光学素子への入射角度φを変更し、
    パルスレーザ光の中心波長λcを所定の目標波長λ0に制御するレーザ装置の波長制御方法において、
    光学部品の駆動機構に含まれる第1駆動機構を介し、レーザ発振の停止中に生じる中心波長λcのずれ量Δλに基づいて、レーザ発振の停止中に光学部品を回転させ、中心波長λcが目標波長λ0に近づくように第1駆動機構に指令を出力して停止中に光学部品を回転させ、
    第1駆動機構に直列に配された第2駆動機構を介し、目標波長λ0の変更を指示する波長変更指令に基づいて、中心波長λcが新たな目標波長λnに近づくように第2駆動機構に指令を出力して停止中に光学部品を回転させ、
    チャーピング補正及び波長制御を同時に行う場合、チャーピング補正及び波長制御を独立して行う
    ことを特徴とするレーザ装置用波長制御方法。
JP2001238185A 2001-08-06 2001-08-06 レーザ装置用波長制御装置及び制御方法 Expired - Lifetime JP4683784B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001238185A JP4683784B2 (ja) 2001-08-06 2001-08-06 レーザ装置用波長制御装置及び制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001238185A JP4683784B2 (ja) 2001-08-06 2001-08-06 レーザ装置用波長制御装置及び制御方法

Publications (2)

Publication Number Publication Date
JP2003051633A JP2003051633A (ja) 2003-02-21
JP4683784B2 true JP4683784B2 (ja) 2011-05-18

Family

ID=19069147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001238185A Expired - Lifetime JP4683784B2 (ja) 2001-08-06 2001-08-06 レーザ装置用波長制御装置及び制御方法

Country Status (1)

Country Link
JP (1) JP4683784B2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5114767B2 (ja) * 2006-10-10 2013-01-09 株式会社小松製作所 狭帯域化レーザのスペクトル幅調整装置
WO2012158802A1 (en) 2011-05-17 2012-11-22 Redshift Systems Corporation Thermo-optically tunable laser system
JP5755068B2 (ja) * 2011-07-27 2015-07-29 株式会社小松製作所 狭帯域化レーザのスペクトル幅調整装置
WO2014192704A1 (ja) * 2013-05-27 2014-12-04 ギガフォトン株式会社 レーザ装置及びアクチュエータを制御する方法
JP5832581B2 (ja) * 2014-04-28 2015-12-16 株式会社小松製作所 狭帯域化レーザのスペクトル幅調整装置
WO2017134745A1 (ja) 2016-02-02 2017-08-10 ギガフォトン株式会社 狭帯域化レーザ装置
TWI749546B (zh) * 2019-05-14 2021-12-11 美商希瑪有限責任公司 用於調變光源波長的裝置及方法
WO2022085111A1 (ja) * 2020-10-21 2022-04-28 ギガフォトン株式会社 レーザ装置及び電子デバイスの製造方法
WO2022244237A1 (ja) * 2021-05-21 2022-11-24 ギガフォトン株式会社 レーザ装置及び電子デバイスの製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05283785A (ja) * 1992-04-02 1993-10-29 Komatsu Ltd 狭帯域レーザ装置
JPH1197768A (ja) * 1997-07-22 1999-04-09 Cymer Inc レーザに関する波長シフト補正システム及び方法
JP2001168440A (ja) * 1999-09-03 2001-06-22 Cymer Inc 精密な波長制御を備えた狭帯域レーザ
JP2001196679A (ja) * 2000-01-12 2001-07-19 Komatsu Ltd 狭帯域化レーザ装置及びその波長制御装置
JP2002043667A (ja) * 2000-02-09 2002-02-08 Cymer Inc 能動的波長チャープ補正を用いる電気放電レーザ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05283785A (ja) * 1992-04-02 1993-10-29 Komatsu Ltd 狭帯域レーザ装置
JPH1197768A (ja) * 1997-07-22 1999-04-09 Cymer Inc レーザに関する波長シフト補正システム及び方法
JP2001168440A (ja) * 1999-09-03 2001-06-22 Cymer Inc 精密な波長制御を備えた狭帯域レーザ
JP2001196679A (ja) * 2000-01-12 2001-07-19 Komatsu Ltd 狭帯域化レーザ装置及びその波長制御装置
JP2002043667A (ja) * 2000-02-09 2002-02-08 Cymer Inc 能動的波長チャープ補正を用いる電気放電レーザ

Also Published As

Publication number Publication date
JP2003051633A (ja) 2003-02-21

Similar Documents

Publication Publication Date Title
JP4683784B2 (ja) レーザ装置用波長制御装置及び制御方法
US7599407B2 (en) Laser control method, laser apparatus, laser treatment method used for the same, laser treatment apparatus
JP2003008119A (ja) 注入同期式又はmopa方式のレーザ装置
WO2006006499A1 (ja) 狭帯域化レーザ装置
JP2008103604A (ja) レーザ装置
JP4683778B2 (ja) レーザ装置用波長制御装置及び制御方法
JP3397337B2 (ja) 狭帯域レーザ装置
US6813287B2 (en) Wavelength control device for laser device
US20230229088A1 (en) Laser apparatus and method for manufacturing electronic devices
JP4664540B2 (ja) レーザ装置用波長制御装置及び制御方法
WO2022244237A1 (ja) レーザ装置及び電子デバイスの製造方法
KR20030081482A (ko) 고 반복률 유브이 엑시머 레이저
JP5599277B2 (ja) レーザ装置およびレーザ加工装置
EP1368868A2 (en) Barium fluoride high repetition rate uv excimer laser
JP3839736B2 (ja) 半導体露光光源用狭帯域エキシマレーザ装置
JP3837356B2 (ja) 狭帯域レーザ装置
JP2676386B2 (ja) 狭帯域発振エキシマレーザ装置
JP3132555B2 (ja) レーザ加工装置
JP2006073883A (ja) レーザ装置の高精度波長制御方法
JP6697108B2 (ja) レーザ装置及び極端紫外光生成システム
US11947268B2 (en) Energy correction module for an optical source apparatus
JP2939633B2 (ja) 狭帯域発振エキシマレーザの制御装置
JP3765044B2 (ja) エキシマレーザ装置のエネルギー制御装置
JP3636303B2 (ja) ガスレーザ装置及びガスレーザ装置の狭帯域化ユニットのアライメント方法
WO2023199514A1 (ja) レーザ装置及び電子デバイスの製造方法

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20030331

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20030506

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4683784

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term