JP4656156B2 - 光通信装置 - Google Patents

光通信装置 Download PDF

Info

Publication number
JP4656156B2
JP4656156B2 JP2008011812A JP2008011812A JP4656156B2 JP 4656156 B2 JP4656156 B2 JP 4656156B2 JP 2008011812 A JP2008011812 A JP 2008011812A JP 2008011812 A JP2008011812 A JP 2008011812A JP 4656156 B2 JP4656156 B2 JP 4656156B2
Authority
JP
Japan
Prior art keywords
chip
optical
wireless
semiconductor chip
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008011812A
Other languages
English (en)
Other versions
JP2009177337A (ja
Inventor
公一朗 木島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2008011812A priority Critical patent/JP4656156B2/ja
Priority to US12/337,486 priority patent/US20090185808A1/en
Priority to CN200910005258XA priority patent/CN101493556B/zh
Priority to EP09000801A priority patent/EP2083609A3/en
Publication of JP2009177337A publication Critical patent/JP2009177337A/ja
Application granted granted Critical
Publication of JP4656156B2 publication Critical patent/JP4656156B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0274Optical details, e.g. printed circuits comprising integral optical means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/181Printed circuits structurally associated with non-printed electric components associated with surface mounted components
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10098Components for radio transmission, e.g. radio frequency identification [RFID] tag, printed or non-printed antennas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10121Optical component, e.g. opto-electronic component
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10431Details of mounted components
    • H05K2201/10507Involving several components
    • H05K2201/10515Stacked components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)
  • Light Receiving Elements (AREA)
  • Optical Communication System (AREA)
  • Optical Integrated Circuits (AREA)
  • Transceivers (AREA)

Description

本発明は、半導体チップ−無線光学チップ間で高速に電気信号−光の送受信処理する高速光インターフェース装置に適用可能な光通信装置及びその製造方法に関するものである。詳しくは、半導体チップのアンテナ素子と光ファイバを接続した無線光学チップ基板のアンテナ素子とが対峙するように、当該半導体チップを無線光学チップ基板上に実装して、半導体チップの直下でその回路素子から無線受信処理された高速の送信信号を光に変換して光ファイバ等に出射したり、外部から入射した光を半導体チップの直下で受信信号に変換してその回路素子へ無線送信処理できるようにすると共に、既存のアンテナ素子内蔵型の半導体チップの直下で容易に無線光学チップ基板の光ファイバに接続できるようにした。
近年、Blu-ray Disc(登録商標)などの次世代大容量光ディスクやハイビジョン放送などにより、高解像度の映像を取り扱う場合が多くなっている。この場合、半導体チップ−半導体チップ間を銅(Cu)配線パターンにより接続して高速のランバス(rambus)構成とする方法が採られる。この接続方法において、定在波及び反射波のために、配線パターンの長さやその配置角度、半導体チップの位置等を詳細に規定その反射を防止している。例えば、高速な情報処理装置において、CPUを構成する半導体チップから斜め45°の方向にRAMメモリチップを配置し、この半導体チップ−メモリチップ間をCu配線パターンで平面直角に折り曲げて接続する方法が採られる。
この種の半導体チップ−半導体チップ間を高速のランバスで接続する方法に関連して、特許文献1には導波管−プリント基板(PWB)相互接続(方法)が開示されている。この導波管−プリント基板相互接続方法によれば、無線通信機能を備えた第1のRF−プリント基板と、無線通信機能を備えた第2のRF−プリント基板との間を導波管で接続している。
導波管の一端の空間領域には第1のRF−プリント基板の送信用のアンテナ及び受信用のアンテナを配設し、導波管の他端の空間領域には第2のRF−プリント基板の送信用のアンテナ及び受信用のアンテナを配設して第1のRF−プリント基板と、第2のRF−プリント基板との間で無線通信処理を実行するようになされる。このようにRF−プリント基板間を導波管で接続する構成を採ると、部品数を増やすことなく、かつ、組立てコストを上昇させることなく、RF−プリント基板間に高信頼度のRF伝送経路を構成でき、高信頼度のRF信号を伝送できるというものである。
また、半導体(光学)チップ−半導体(光学)チップ間を光ファイバで接続する方法に関連して、技術文献1には「Chip-to-Chip optical interconnects」が開示されている。この接続方法によれば、光学チップ−光学体チップ間を光導波路アレイにより接続してテラバス構成となされる。このテラバス構成では光学カード基板上に送信側の光学チップ及び受信側の光学チップが設けられる。送信側の光学チップは、レーザドライバIC及びVCELアレイから構成され、レーザドライバIC(Integrated Circuit)の直下にVCELアレイが配置される。VCELアレイは電気信号を光に変換する複数の発光ユニットから構成される。VCELアレイの直下には光導波路が設けられ、この光導波路の所定の位置には1対のミラーが設けられている。
受信側の光学チップは、PDアレイ及びレシーバICから構成されている。PDアレイは、光を電気信号に変換する複数の受光ユニットから構成されている。光導波路の他方のミラーの直上にはPDアレイが設けられ、このPDアレイの直上にはレシーバICが配置されている。VCELアレイの光出射口は一方のミラーを介して光導波路の一端に結合されている。光導波路の他端は他方のミラーを介してPDアレイに結合されている。このような構成を採ると、半導体(光学)チップ−半導体(光学)チップ間を高速のテラバス(Terabus)で接続することができ、20Gb/sのデータ転送レートを確保できるというものである。
特開2006−191077号公報(第4頁 第1図) IBM技術論文「Chip-to-Chip optical interconnects」:OFA3.pdf
ところで、従来例に係る半導体チップ−半導体チップ間を高速信号で伝送する方法によれば、次のような問題がある。
i.ランバス構成の半導体チップ−半導体チップ間を接続する方法であると、配線パターンの長さやその配置角度、半導体チップの相対位置を変更することが困難となる。従って、プリント基板の大きさが規定されることとなり、当該プリント基板を搭載する製品の設計デザインの変更許容度を大幅に狭める原因となっている。因みに、特許文献1に見られるような導波管−プリント基板(PWB)相互接続によれば、導波管の断面積が多く製品の小型化の妨げとなる。
ii.技術文献1に見られるような「Chip-to-Chip optical interconnects」によれば、光学チップ−光学チップ間を光ファイバで接続して直接、光信号を伝送できるが、この場合、CPUなどの高付加価値な半導体チップに光ファイバを接続する必要がある。従って、光ファイバをCPUに接続する工程が加わるので、その工程での歩留まりの低下が懸念される。
そこで、本発明はこのような課題を解決したものであって、半導体チップと光ファイバとの接続を工夫して、当該半導体チップの直下で半導体チップと光ファイバ間で高速に電気信号を光に変換したり、入射した光を電気信号に変換できるようにした光通信装を提供することを目的とする。
本発明によれば、無線光学チップ基板と、無線光学チップと、半導体チップと、レンズとを具備する光通信装置であって、
前記無線光学チップ基板は、絶縁性の基板材料で形成されており、当該無線光学チップ基板の表面の近傍に、高い屈折率材料の層を挟んで屈折率材料の層を積層して形成した、板状で細長い光ファイバが形成されており、当該無線光学チップ基板の表面に、前記光ファイバに光学的に結合する前記レンズおよび前記無線光学チップが埋め込まれる凹部が形成されており、
前記半導体チップは、当該半導体チップが前記無線光学チップ基板に実装されたとき、当該半導体チップの下部領域に平行に隣接して配設され、それぞれ板状で細長い形状の、第1送信アンテナ素子および第1受信アンテナ素子と、前記第1送信アンテナ素子および前記第1受信アンテナ素子に接続されて信号を送信および受信する、無線通信用の第1回路素子と、当該第1回路素子に接続され、信号処理を行う信号処理部とを有し、
前記無線光学チップは、当該無線光学チップが前記無線光学チップ基板の前記凹部に埋め込まれたとき、当該無線光学チップの上部領域に、前記第1送信アンテナ素子と前記第1受信アンテナ素子と同じ間隔で平行に隣接して配設され、それぞれ板状で細長い形状の、第2受信アンテナ素子および第2送信アンテナ素子と、前記第2受信アンテナ素子および前記第2送信アンテナ素子に接続されて信号を送信および受信する、無線通信用の第2回路素子と、前記無線光学チップ基板の前記凹部に埋め込まれる前記レンズを介して前記光ファイバと接続され、前記光ファイバからの光信号を電気信号に変換して前記第2回路素子に入力し、前記第2回路素子からの電気信号を光信号に変換して前記光ファイバに送出する、光通信用変換部とを有し、
前記無線光学チップ基板の前記凹部に前記レンズが埋め込まれ、光学接着剤が充填され、前記無線光学チップ基板の前記凹部に前記無線光学チップが埋め込まれ、前記半導体チップが前記無線光学チップ基板に実装されたとき、
前記半導体チップの前記第1送信アンテナ素子と前記無線光学チップ基板の前記第2受信アンテナ素子が無線通信可能に対峙して配置され、かつ、前記半導体チップの前記第1受信アンテナ素子と前記無線光学チップの前記第2送信アンテナ素子が無線通信可能に対峙して配置され、
前記光ファイバから送信された光信号が前記光通信用変換部において電気信号に変換されて前記第2送信アンテナ素子および前記第1受信アンテナ素子を介して前記半導体チップ前記信号処理部に導かれ、
前記半導体チップ前記信号処理部からの電気信号が前記第1送信アンテナ素子および前記第2受信アンテナ素子を介して送信され、前記光通信用変換部において光信号に変換されて前記光ファイバに送出される、
光通信装置が提供される。
好ましくは、光通信装置において、前記無線光学チップ基板には、前記光ファイバを挟んで、その両側に、当該無線光学チップ基板の表面に、前記光ファイバの一端に接続される第1レンズおよび第1無線光学チップが埋め込まれる第1凹部と、当該無線光学チップ基板の表面に、前記光ファイバの他端に接続される第2レンズおよび第2無線光学チップが埋め込まれる第2凹部とが形成されており、
前記1凹部に前記第1レンズおよび第1無線光学チップが埋め込まれ、前記2凹部に前記第2レンズおよび第2無線光学チップが埋め込まれ、
前記半導体チップと同等の第1半導体チップが前記第1無線光学チップの上部に位置し、前記半導体チップと同等の第2半導体チップが前記第2無線光学チップの上部に位置するように、前記無線光学チップ基板に実装されており、
前記光ファイバを介して授受される信号が、前記第1半導体チップに内蔵された第1信号処理部と前記第2半導体チップに内蔵された第2信号処理部とにおいて処理される
本発明に係る光通信装置によれば、半導体チップのアンテナ素子と光ファイバを接続した無線光学チップ基板のアンテナ素子とが対峙するように、当該半導体チップが無線光学チップ基板上に実装されて成るものである。
この構成によって、半導体チップの直下でその回路素子から無線受信処理された高速の送信信号を光に変換して光ファイバ等に出射したり、外部から入射した光を半導体チップの直下で受信信号に変換してその回路素子へ無線送信処理できるようになる。従って、既存のアンテナ素子内蔵型の半導体チップの直下で容易に無線光学チップ基板の光ファイバに接続できるようになる。これにより、半導体チップ−無線光学チップ基板間で高速に電気信号−光の送受が可能な高速光インターフェース付きの光通信装置を提供できるようになる。
以下、図面を参照しながら、本発明に係る実施形態としての光通信装置及びその製造方法について、その実施例を説明する。
図1は、本発明に係る第1の実施例としての光通信装置100の構成例(その1)を示す斜視図であり、図2は、その構成例(その2)を示す断面図である。図1に示す光通信装置100は半導体チップ−無線光学チップ基板間で高速に電気信号−光の送受信処理が可能な高速光インターフェース装置に適用可能なものである。
光通信装置100は無線通信機能付きの半導体チップ10及び無線光学チップ基板20を有して構成される。半導体チップ10は、無線光学チップ基板20上に実装され、映像信号や音声信号等を高速動作周波数のクロック信号に基づいて信号入出力を実行する。半導体チップ10は数GHzの動作周波数のクロック信号に基づいてデータを処理するCPU(中央演算処理装置)や記憶装置である。
半導体チップ10は、送信用のアンテナ素子(単にアンテナ12という)及び受信用のアンテナ13を有している。アンテナ12,13は図1中には示していない半導体チップ10の無線通信用の回路素子に接続される(図9参照)。
無線光学チップ基板20には無線光学チップの一例を構成するRF−OPTチップ21が埋め込まれている。RF−OPTチップ21は、RF信号の入出力機能とRF信号−光信号変換機能を有している。RF信号とは半導体チップ10から無線受信した電気信号をいう。RF−OPTチップ21は、例えば、RF信号を光に変換してコリメート光を出射したり、入射したコリメート光をRF信号に変換して半導体チップ10へ無線送信するようになされる。RF−OPTチップ21は、受信用のアンテナ22及び送信用のアンテナ27を有している。アンテナ22,27は図1中には示していないRF−OPTチップ21の無線通信用の回路素子に接続される(図9参照)。
半導体チップ10は、図2に示す半導体チップ10の直下のRF−OPTチップ21に、アンテナ12,22,13,27を介して無線で結合されている。RF−OPTチップ21は、無線光学チップ基板20に設けられている。この例で、半導体チップ10のアンテナ12とRF−OPTチップ21のアンテナ22とが対峙し、そのアンテナ13とRF−OPTチップ21のアンテナ27とが対峙するように、当該半導体チップ10が無線光学チップ基板20上に実装されて構成される。
例えば、半導体チップ10は、図中、黒ドットで示すバンプ電極1a,1b,1c,1d・・・等を有しており、フリップチップ法による半田ボンディングにより無線光学チップ基板20上に実装される。無線光学チップ基板20は、やや厚めのプリント配線基板にRF−OPTチップ21及び光導波路29b’が埋め込まれる。無線光学チップ基板20の上面には配線パターンが配設され、当該配線パターンが半導体チップ10に接続されている。
RF−OPTチップ21には、レンズ28が接続(接合)され、RF−OPTチップ21から出射されるビーム光をコリメート光に整形する。レンズ28には2つのセルフォックレンズ28a,28bが使用される。セルフォックレンズ28aはRF−OPTチップ21に接合され、セルフォックレンズ28bは、光導波路29b’に接合される。
光導波路29b’は低屈折率の材料により被覆されることで、光ファイバ29を構成し、光通信先の半導体チップに接続される。光通信先の半導体チップの配置位置は同一基板内であっても、他の基板であってもどちらでもよい。なお、セルフォックレンズ28a,28bの間の部分は光学接着剤が充填され、湿気や塵埃等が進入しないように保護されている。このような光学的結合構造を採ると、レーザ光束が一度コリメートされているので、位置ずれに対する結合効率マージンを高くできるようになる。
続いて、本発明に係る光通信装置100の製造方法について説明する。図3〜図8は光通信装置100の形成例(その1〜6)を示す工程図である。図3A〜図7Aは、その平面図であり、及び、図3B〜図7BはそのX1−X1矢視断面図である。図8はその実装例を示す断面図である。
この例では、アンテナ12,13に接続された無線通信用の回路素子を有する半導体チップ10を光ファイバ29に接続して光通信するための光通信装置100を製造する場合を前提とする。半導体チップ10には、アンテナ12,13が無線通信用の回路素子に接続された既存のものを使用する場合を例に挙げる。
これらを形成条件にして、まず、プリント配線基板を構成するようになる図3Aに示すような大きさの絶縁性の基板材料20’を準備する。基板材料20’は縦の長さがWで横の長さがLである。そして、図3Bに示す基板材料20’上に低屈折率の材料29a及び高屈折率の材料29bを積層する。材料29a及び材料29bには、ポリマー系の光導波路材料を使用する。例えば、日立化成製の光学用のポリイミドインク(OPI)を基板材料20’上に塗布して所定の厚みの材料29a及び材料29bを得る。
次に、図3Bに示した材料29上の高屈折率の材料29bをパターニングして図4Aに示す幅w及び長さlを成す光導波路29b’を形成する。例えば、材料29bの全面にフォトレジストを塗布し、乾板(レチクル)を使用してフォトレジスト上に光導波路パターンを焼き付けた後、当該フォトレジストを感光して現像し、このレジスト膜をマスクにして材料29a上の不要部分の材料29bをドライエッチング(異方性エッチング)等により除去する。これにより、図4Bに示すような光導波路29b’を得ることができる。光導波路29b’は低屈折率の材料29aと共に基板内で光ファイバ29を構成し、基板外の他の光ファイバに接続される。
次に、図4に示した幅wで長さlの光導波路29b’上に、低屈折率の材料29aを形成する。材料29a上は、図5Aに示すように平坦化する。この平坦化は材料29aの上面をプリント配線基板として使用するためである。プリント配線基板は周知の方法により、銅箔板を接着し、銅箔の全面にフォトレジストを塗布し、乾板(レチクル)を使用してフォトレジスト上に配線パターンを焼き付けた後、当該フォトレジストを感光して現像し、このレジスト膜をマスクにして材料29a上の不要部分の銅箔をドライエッチング(異方性エッチング)等により除去する。これにより、光導波路29b’を埋め込んだプリント配線(図示せず)付きの基板材料20’を得ることができる。
次に、図5Bに示した光導波路29b’が埋め込まれ、プリント配線が施された基板材料20’の所定の位置に、RF−OPTチップ21及びレンズ28の配置スペースとなる深さdの穴部20aを形成する。穴部20aは、図6Aに示すように平面凸状に開口する。穴部20aは、例えば、材料29aの全面にフォトレジストを塗布し、乾板(レチクル)を使用してフォトレジスト上に平面凸状を有した穴部パターンを焼き付けた後、当該フォトレジストを感光して現像し、このレジスト膜をマスクにして不要部分の材料29aをドライエッチング(異方性エッチング)等により除去する。これにより、図6Bに示すような深さdで、平面凸状の穴部20aを有した基板材料20’を得ることができる。
次に、図6Bに示した穴部20aに、図7Aに示すRF−OPTチップ21及びレンズ28を埋め込んで光導波路29b’と接続する。RF−OPTチップ21は、半導体チップ10と無線通信するためのアンテナ22,27及び無線通信用の回路素子と、この回路素子と光ファイバ29との間で光通信するための光通信用の光学素子から構成したものを使用する。回路素子に関しては、図9に示すような受信部23及び送信部26が含まれ、光学素子には電気信号−光変換素子(以下E/O変換部24という)や、光−電気信号変換素子(以下O/E変換部25という)等が含まれる。
この例では、穴部20aの左側の広く大きい部分に、RF−OPTチップ21を埋設し、穴部20aの右側の狭く小さい部分にレンズ28を埋設するようになされる。レンズ28を構成する、一方のセルフォックレンズ28aはRF−OPTチップ21の光出射口及び光導波路28cに接合され、他方のセルフォックレンズ28bは、光導波路29b’に接合するようになされる。これにより、図7Bに示すRF−OPTチップ21及びレンズ28が穴部20aに埋め込まれ、レンズ28が光導波路29b’に接合された基板材料20’を得ることができる。この時点で基板材料20’が無線光学チップ基板20を構成するようになる。
次に、図7Aで得られたRF−OPTチップ21、レンズ28及び光導波路29b’付の無線光学チップ基板20に半導体チップ10を実装する。半導体チップ10の底面側には、配線パターン接続用の複数のバンプ電極1a,1b,1c,1d・・・等が設けられている。この例では、図8に示すように半導体チップ10のアンテナ12とRF−OPTチップ21のアンテナ22とが対峙し、かつ、半導体チップ10のアンテナ13とRF−OPTチップ21のアンテナ27とが対峙するように各々位置合わせして、無線光学チップ基板20上に当該半導体チップ10を実装する。
このとき、半導体チップ10のバンプ電極1a,1b,1c,1d・・・等をフリップチップ法による半田ボンディングにより無線光学チップ基板20上の配線パターンに接合する。これにより、同一基板に半導体チップ10、RF−OPTチップ21、レンズ28及び光導波路29b’を実装した、図1や図2に示したような光通信装置100が完成する。
このように、本発明に係る光通信装置100の製造方法によれば、1回の接続工程で半導体チップ10と光ファイバ29との間を無線−光学接続できるようになる。これにより、半導体チップ10とRF−OPTチップ21間で高速にRF信号−光の送受処理が可能な高速光インターフェース付きの光通信装置100を製造できるようになる。しかも、RF−OPTチップ21を予め無線光学チップ基板20に配置しておくことにより、半導体チップ10の実装は、従来の方法と変更することなく、同様の装置にて組み立て工程を行うことができる。
続いて、光通信装置100の無線結合時の動作例について説明する。図9は、光通信装置100の無線結合時の動作例を示すブロック図である。図9に示す光通信装置100は、半導体チップ10と無線光学チップ基板20とが無線結合されて構成される。
半導体チップ10は送信部11、アンテナ12,13、受信部14及び信号処理部15を有して構成される。送信部11及び受信部14は無線通信用の回路素子の一例を構成し、無線光学チップ基板20のRF−OPTチップ21と無線通信処理をするようになれる。信号処理部15は光通信先へ送信する送信データD11を作成して送信部11へ信号出力処理をする。信号処理部15には送信部11が接続され、送信データD11を所定の変調方式により変調処理したRF信号S11を出力する。送信部11にはアンテナ12が接続され、無線光学チップ基板20のアンテナ22に対峙するように配置される。アンテナ12はアンテナ22にRF信号S11に基づく電波を送信(輻射)する。
RF−OPTチップ21は、アンテナ22、受信部23、E/O変換部24、O/E変換部25、送信部26及びアンテナ27を有して構成される。受信部23及び、送信部26は無線通信用の回路素子の一例を構成し、半導体チップ10と無線通信処理をするようになれる。アンテナ22は半導体チップ10のアンテナ12に対峙するように配置され、半導体チップ10のアンテナ12からRF信号S11に基づく電波を受信(入射)する。アンテナ22には受信部23が接続され、半導体チップ10からのRF信号S11を受信して復調処理する。受信部23には光通信用のE/O変換部24が接続され、復調後のRF信号S11をコリメート光(下り光)に変換するように動作する。E/O変換部24には光ファイバ29が接続され、コリメート光を光通信先の半導体チップに導くようになる。
光通信先の半導体チップからのコリメート光(上り光)は、光ファイバ29からO/E変換部25に導かれる。O/E変換部25は、コリメート光をRF信号S12に変換するように動作する。O/E変換部25には送信部26が接続される。送信部26は、電気信号を所定の変調方式により変調処理してRF信号S12を出力する。送信部26にはアンテナ27が接続され、半導体チップ10のアンテナ13に対峙するように配置される。アンテナ27はアンテナ13にRF信号S12に基づく電波を送信(輻射)する。
半導体チップ10のアンテナ13には受信部14が接続され、RF−OPTチップ21からのRF信号S12を受信して復調処理する。復調後の受信データD12は信号処理部15へ出力される。信号処理部15は光通信先から受信した受信データD12を信号入力処理をする。これにより、当該光通信装置100と光通信先の光通信装置との間で光通信処理を実行できるようになる。光通信装置100の動作例によれば、下り光通信処理において、信号処理部15から出力される送信データD11が変調され、変調後の下りRF信号S11が半導体チップ10の無線通信用の送信部11→アンテナ12→無線光学チップ基板20のアンテナ22→無線通信用の受信部23→E/O変換部24→光ファイバ29の伝送経路により下り光となされる。
また、光通信装置100における上り光通信処理によれば、光通信先の光通信装置からの上り光は、光ファイバ29→無線光学チップ基板20のO/E変換部25→送信部26→ アンテナ27→半導体チップ10のアンテナ13→無線通信用の受信部14の受信経路により上りRF信号S12となされ、当該上りRF信号S12が復調され、復調後の受信データD12が信号処理部15に入力される。
このように第1の実施例としての光通信装置100によれば、半導体チップ10の直下で、無線光学チップ基板20のアンテナ22及びそのRF−OPTチップ21の受信部23により無線受信処理された高速のRF信号S11をE/O変換部24でコリメート光に変換して光ファイバ29に出射したり、光通信先の光通信装置から光ファイバ29を介して入射したコリメート光を半導体チップ10の直下でRF−OPTチップ21のO/E変換部25でRF信号S12に変換してその送信部26及び無線光学チップ基板20のアンテナ27により無線送信処理できるようになる。
従って、既存のアンテナ内蔵型の半導体チップ10の直下で容易に無線光学チップ基板20の光ファイバ29に接続できるようになる。これにより、半導体チップ10とRF−OPTチップ21間で高速にRF信号−光の送受処理が可能な高速光インターフェース付きの光通信装置100を提供できるようになる。
図10は第2の実施例としての光通信装置200の構成例を示す平面図である。図10に示す光通信装置200は、無線光学チップ基板201に2つの半導体チップ101,102が実装され、この2つの半導体チップ101,102間が無線光学チップ基板201内の光ファイバ29で接続されるものである。半導体チップ101,102には、第1の実施例で説明した半導体チップ10が使用される。
半導体チップ101の直下には、RF−OPTチップ21a、アンテナ22,27及びレンズ28を備え、半導体チップ102の直下には、RF−OPTチップ21b、アンテナ22,27及びレンズ28を備えている。半導体チップ102は半導体チップ101の光通信先であり、他の高速のRF信号S11,S12の入出力を行うものである。
図11A〜Cは光通信装置200の形成例を示す工程図である。まず、図11Aに示す2つの半導体チップ101,102を準備する。半導体チップ101,102には、第1の実施例で説明した半導体チップ10の他に、既存の高速のRF信号S11,S12の入出力を行う無線通信機能付きの半導体チップが使用できる。半導体チップ101,102は、底面側に各々アンテナ12,13を有している。また、半導体チップ101,102の各々の底面側には、配線パターン接続用のバンプ電極が設けられている。
次に、図11Bに示す無線光学チップ基板201を準備する。無線光学チップ基板201には、第1の実施例で説明した無線光学チップ基板20の構造であって、1対(組)のRF−OPTチップ21a,21b、アンテナ22,27、レンズ28を備え、レンズ28間に光ファイバ29が接合されたものを使用する。無線光学チップ基板201も第1の実施例と同様にしてプリント配線基板を構成する。無線光学チップ基板201については第1の実施例の無線光学チップ基板20と同様な形成方法が採れるので、その説明を省略する。
次に、図11Cに示す2つの半導体チップ101,102を無線光学チップ基板201に実装する。この例では、無線光学チップ基板201の一方の側で、図11Cに示すように第1の半導体チップ101のアンテナ12とRF−OPTチップ21aのアンテナ22とが対峙し、かつ、半導体チップ101のアンテナ13とRF−OPTチップ21aのアンテナ27とが対峙するように各々位置合わせして、無線光学チップ基板201上に半導体チップ101を実装する。
他方の側では、第2の半導体チップ102のアンテナ12とRF−OPTチップ21bのアンテナ22とが対峙し、かつ、半導体チップ102のアンテナ13とRF−OPTチップ21bのアンテナ27とが対峙するように各々位置合わせして、無線光学チップ基板201上に半導体チップ102を実装する。このとき、半導体チップ101,102のバンプ電極は、フリップチップ法による半田ボンディングにより無線光学チップ基板201上の配線パターンに接合する。これにより、同一の無線光学チップ基板20に2つの半導体チップ101,102、RF−OPTチップ21a,21b、レンズ28及び光ファイバ29を実装した、図10に示したような光通信装置200が完成する。
この例で、光通信装置200の動作例によれば、下り光通信処理において、半導体チップ101から高速の下りRF信号S11がアンテナ12→無線光学チップ基板201のアンテナ22→RF−OPTチップ21aに無線送信され、RF−OPTチップ21aでRF信号S11がコリメート光(下り光)に変換され、下り光が光ファイバ29を介してRF−OPTチップ21bに伝送される。RF−OPTチップ21bでは、下り光がRF信号S11に変換される。
変換後のRF信号S11がアンテナ27→半導体チップ102のアンテナ13→半導体チップ102の受信経路により高速の下りRF信号S11となされる。これにより、半導体チップ101から半導体チップ102へ無線光学チップ基板201内の光ファイバ29を介して下り光通信処理できるようになる。
また、光通信装置00における上り光通信処理によれば、光通信先の半導体チップ102から高速の上りRF信号S12がアンテナ12→無線光学チップ基板201のアンテナ22→RF−OPTチップ21bに無線送信され、RF−OPTチップ21bでRF信号S12がコリメート光(上り光)に変換され、変換後の上り光が光ファイバ29を介してRF−OPTチップ21aに伝送される。
RF−OPTチップ21aでは、上り光が高速のRF信号S12に変換される。変換後のRF信号S12がアンテナ27→半導体チップ101のアンテナ13→半導体チップ101の受信経路により上りRF信号S12となされる。これにより、半導体チップ102から半導体チップ101へ無線光学チップ基板201内の光ファイバ29を介して上り光通信処理できるようになる。
このように第2の実施例としての光通信装置及びその製造方法によれば、無線光学チップ基板201に、2つの半導体チップ101,102を実装し、この2つの半導体チップ101,102間が無線光学チップ基板201内の光ファイバ29で接続されるものである。従って、図10に示したように直線状に配置された2つの半導体チップ101,102間で光通信処理を実行できるようになった。
図12は第3の実施例としての光通信装置300の構成例を示す平面図である。図12に示す光通信装置300は、無線光学チップ基板301に2つの半導体チップ101,102が実装され、この2つの半導体チップ101,102間が無線光学チップ基板301内のL形状に屈曲された光ファイバ29’で接続されるものである。半導体チップ101,102には、第1の実施例で説明した半導体チップ10が使用される。
この例で、半導体チップ101の直下には、第2の実施例と同様にしてRF−OPTチップ21a、アンテナ22,27及びレンズ28を備え、半導体チップ102の直下にも第2の実施例と同様にして、RF−OPTチップ21b、アンテナ22,27及びレンズ28を備えている。半導体チップ102は半導体チップ101の光通信先であり、他の高速のRF信号S11,S12の入出力を行うものである。なお、光通信装置300の形成例については、L形状に屈曲した光ファイバ29’を無線光学チップ基板301内に形成する他、第2の実施例で説明した形成方法が採られるので、その説明を省略する。
このように、第3の実施例としての光通信装置300によれば、半導体チップ101の実装位置に対して直線状ではなく、L形状に屈曲した位置に半導体チップ102を配置できるので、第2の実施例に比べて、半導体チップ101,102のレイアウト設計における自由度を高めることができる。
図13は第4の実施例としての光通信装置400の構成例を示す断面図である。この実施例では送信データD11をRF信号S11に変換し、及び、RF信号S12を受信データD12に変換するRF専用チップ105を備え、無線通信機能を有さない半導体チップ104においても、無線光学チップ基板401を介して光ファイバに接合して光通信処理をできるようにした。
図13に示す光通信装置400は、無線光学チップ基板401に半導体チップ104及びRF専用チップ105が実装され、この半導体チップ104とRF専用チップ105とが配線パターン106により接続され、このRF専用チップ105と無線光学チップ基板401内のRF−OPTチップ21とが無線結合され、光通信先の半導体チップに光ファイバ29を介して接続される。半導体チップ104は、第1の実施例で説明したような無線通信機能付きの半導体チップ10ではなく、無線通信機能を有さない通常の半導体チップが使用される。
RF専用チップ105は、アンテナ12,13、及び、図13には示していないが、図9に示したような送信部11及び受信部14を有して構成される。RF専用チップ105は無線光学チップ基板401のRF−OPTチップ21と無線通信処理をするようになれる。アンテナ12は、無線光学チップ基板401のアンテナ22に対峙するように配置される。アンテナ12はアンテナ22にRF信号S11に基づく電波を送信(輻射)する。
RF専用チップ105の直下には、無線光学チップ基板401のRF−OPTチップ21、アンテナ22,27及びレンズ28が備えられている。RF−OPTチップ21は図示しない光ファイバ29を介して、半導体チップ104の光通信先となる他の高速のRF信号S11,S12の入出力を行う半導体チップに接続される。これにより、無線通信機能を有さない半導体チップ104においても、無線光学チップ基板401を介して他の半導体チップと光通信処理できるようになる。
続いて、光通信装置400の形成例について説明する。図14及び図15は光通信装置400の形成例(その1,2)を示す工程図である。まず、図14Aに示す半導体チップ104及びRF専用チップ105を準備する。半導体チップ104には、第1の実施例で説明したような無線通信機能付きの半導体チップではなく、無線通信機能を有さない半導体チップが使用できる。RF専用チップ105は、底面側にアンテナ12,13を有している。また、RF専用チップ105の底面又は側面側には、配線パターン接続用のバンプ電極又は引出し電極が設けられている。
次に、図14Bに示す無線光学チップ基板401を準備する。無線光学チップ基板401には、第1の実施例で説明した無線光学チップ基板20の構造であって、RF−OPTチップ21、アンテナ22,27及びレンズ28を備え、レンズ28の先に光ファイバが接合されたものを使用する。無線光学チップ基板401も第1の実施例と同様にしてプリント配線基板を構成する。無線光学チップ基板401には半導体チップ104とRF専用チップ105とを接続するための配線パターン106を形成する。配線パターン106は、半導体チップ104の接続用の配線パターンと同様に形成する。無線光学チップ基板401については第1の実施例の無線光学チップ基板20と同様な形成方法が採れるので、その説明を省略する。
次に、図15に示す半導体チップ104及びRF専用チップ105を無線光学チップ基板401に実装する。この例では、無線光学チップ基板401の一方の側で、図15に示す半導体チップ104を当該基板401上に実装すると共に、配線パターン106に接続する。他方の側では、RF専用チップ105のアンテナ12とRF−OPTチップ21のアンテナ22とが対峙し、かつ、RF専用チップ105のアンテナ13とRF−OPTチップ21のアンテナ27とが対峙するように各々位置合わせして、無線光学チップ基板401上にRF専用チップ105を実装する。
このとき、半導体チップ104の例えば、バンプ電極をフリップチップ法による半田ボンディングにより無線光学チップ基板401上の配線パターンに接合し、同様にしてRF専用チップ105のバンプ電極を無線光学チップ基板401上の配線パターンに接合する。これにより、同一の無線光学チップ基板401に半導体チップ104及びRF専用チップ105を実装した、図13に示したような光通信装置400が完成する。
この例で、光通信装置400の動作例によれば、下り光通信処理において、半導体チップ104からRF専用チップ105に送信データD11が出力される。RF専用チップ105では送信データD11が変調される。変調後の高速の下りRF信号S11がアンテナ12→無線光学チップ基板401のアンテナ22→RF−OPTチップ21に無線送信され、RF−OPTチップ21でRF信号S11がコリメート光(下り光)に変換され、下り光が光ファイバ29を介して光通信先の半導体チップに伝送される。これにより、半導体チップ104は、RF専用チップ105を介して無線光学チップ基板401内の光ファイバ29を介して下り光通信処理できるようになる。
また、光通信装置400における上り光通信処理によれば、光通信先の半導体チップからの上り光が光ファイバ29を介して無線光学チップ基板401内のRF−OPTチップ21に伝送される。RF−OPTチップ21では、上り光が高速の電気(RF)信号S12に変換される。変換後のRF信号S12がアンテナ27→RF専用チップ105のアンテナ13の受信経路により上りRF信号S12となされる。復調後の上りRF信号S12はデジタルの受信データD12に変換され、配線パターン106を介して半導体チップ104に伝送される。これにより、半導体チップ104は、RF専用チップ105を介して無線光学チップ基板401内の光ファイバ29を介して上り光通信処理できるようになる。
このように第4の実施例としての光通信装置及びその製造方法によれば、無線光学チップ基板401に、半導体チップ104及びRF専用チップ105を実装し、この半導体チップ104及びRF専用チップ105間が配線パターン106で接続され、かつ、RF専用チップ105と無線光学チップ基板401内のRF−OPTチップ21とが無線結合され、RF−OPTチップ21が光ファイバ29を介して光通信先の半導体チップに接続されるものである。
従って、RF専用チップ105が送信データD11をRF信号S11に変換し、変換後のRF信号S11をRF−OPTチップ21に伝送するので、無線通信機能を有さない半導体チップ104においても、第1〜第3の実施例と同様にして、無線光学チップ基板401の光ファイバ29に接合され、高速のRF信号S11,S12の入出力を行う他の半導体チップと光通信処理できるようになった。
図16は第5の実施例としての光通信装置500の構成例を示す平面図である。図16に示す光通信装置500は、無線光学チップ基板501に無線通信機能を有さない2つの半導体チップ104,108が実装され、この2つの半導体チップ104,108間が無線光学チップ基板501上のRF専用チップ105,107及び、無線光学チップ基板501内の直線状に配置された光ファイバ29を介して接続されるものである。半導体チップ104,108には、第1の実施例で説明したような無線通信機能付きの半導体チップではなく、無線通信機能を有さない半導体チップが使用される。
この例で、半導体チップ104とRF専用チップ105とが配線パターン106により接続され、このRF専用チップ105と無線光学チップ基板501内のRF−OPTチップ21とが無線結合され、光通信先の半導体チップに光ファイバ29を介して接続される。RF専用チップ105の直下には、第4の実施例と同様にしてRF−OPTチップ21a、アンテナ22,27及びレンズ28を備えている。RF専用チップ107の直下にも、第4の実施例と同様にして、RF−OPTチップ21b、アンテナ22,27及びレンズ28を備えている(図9参照)。
半導体チップ108とRF専用チップ107とが配線パターン109により接続され、このRF専用チップ107と無線光学チップ基板501内のRF−OPTチップ21とが無線結合される。半導体チップ108は半導体チップ104の光通信先であり、他の高速のRF信号S11,S12の入出力を行うものである。なお、光通信装置500の形成例については、直線状の光ファイバ29の左右上部にRF専用チップ105,107及び配線パターン106,109を形成する他、第4の実施例で説明した形成方法が採られるので、その説明を省略する。
このように、第5の実施例としての光通信装置500によれば、無線光学チップ基板501に無線通信機能を有さない2つの半導体チップ104,108が実装され、この半導体チップ104及びRF専用チップ105間が無線光学チップ基板501上の配線パターン106を介して有線接続され、RF専用チップ105とその直下のRF−OPTチップ21とが無線結合され、無線光学チップ基板501内のRF−OPTチップ21間が直線状に配置された光ファイバ29で光学接続され、RF専用チップ107とその直下のRF−OPTチップ21とが無線結合され、RF専用チップ107及び半導体チップ108間が無線光学チップ基板501上の配線パターン109を介して有線接続されるものである。
従って、2つの半導体チップ104,108間においても、無線光学チップ基板501上のRF専用チップ105,107及び、無線光学チップ基板501内の直線状に配置された光ファイバ29を介して接続できるので、無線通信機能を有さない半導体チップ104,108の設計デザインの制約を格段に低減できるようになり、これら半導体チップ104,108と、無線通信機能を有した半導体チップ102との間におけるレイアウト設計における自由度を高めることができる。
なお、第1〜第5の実施例においては、RF−OPTチップ2121a,21b及び光ファイバ29,29’のいずれも、無線光学チップ基板20,201,301,401,501内に埋め込む場合について説明したが、これに限られることはなく、図17に示すようにRF−OPTチップ21等を無線光学チップ基板601の溝部内に配設する方法をとってもよい。
図17は第6の実施例としての光通信装置600の構成例を示す断面図である。この実施例では、無線光学チップ基板601でRF信号S11,S12を送受信可能な位置に穴部62が設けられ、及び、当該穴部62に至る溝部61が設けられ、RF−OPTチップ21及び光ファイバ29を当該穴部62及び溝部61に配設するトレンチ構造を有するものである。
図17に示す光通信装置600は半導体チップ−無線光学チップ間で高速に電気信号−光の送受信処理が可能な高速光インターフェース装置に適用可能なものである。光通信装置600は無線通信機能付きの半導体チップ10及び無線光学チップ基板601を有して構成される。半導体チップ10は、無線光学チップ基板601上に実装され、映像信号や音声信号等を高速動作周波数のクロック信号に基づいて信号入出力を実行する。半導体チップ10は、第1の実施例で説明したようなアンテナ12及びアンテナ13を有している。
この例で、無線光学チップ基板601には、やや厚めのプリント配線基板にRF−OPTチップ配設用の穴部62及び、光ファイバ配設用の溝部61が形成され、RF−OPTチップ21及び光ファイバ29が配設されている。溝部61は穴部62に連設されている。この穴部62及び溝部61には、第1の実施例で説明したRF−OPTチップ21、レンズ28及び光ファイバ29を接合して構成された光モジュールが配設されている。
RF−OPTチップ21は、RF信号S11,S12の入出力機能とRF信号−光信号変換機能を有している。RF−OPTチップ21は、RF信号S11を光に変換してコリメート光を出射したり、入射したコリメート光をRF信号S12に変換して半導体チップ10へ無線送信するようになされる。RF−OPTチップ21は、アンテナ22及びアンテナ27を有している。アンテナ22,27は図1中には示していないRF−OPTチップ21の無線通信用の回路素子に接続される(図9参照)。
半導体チップ10は、第1の実施例で説明したように、当該半導体チップ10の直下のRF−OPTチップ21に、アンテナ12,22,13,27を介して無線で結合されている。この例で、半導体チップ10のアンテナ12とRF−OPTチップ21のアンテナ22とが対峙し、そのアンテナ13とRF−OPTチップ21のアンテナ27とが対峙するように、当該半導体チップ10が無線光学チップ基板601上に実装されて構成される。
例えば、無線光学チップ基板601の上面には配線パターンが配設され、当該配線パターンが半導体チップ10に接続される。半導体チップ10は、第1の実施例と同様にして、半田ボンディングにより無線光学チップ基板601上に実装される。これにより、トレンチ構造を有した光通信装置600を構成する。
続いて、本発明に係る光通信装置600の製造方法について説明する。図18及び図19は光通信装置600の形成例(その1,2)を示す工程図である。
この例では、アンテナ12,13に接続された無線通信用の回路素子を有する半導体チップ10を無線光学チップ基板601上に実装して光通信するための光通信装置600を製造する場合を前提とする。また、RF−OPTチップ21、レンズ28及び光ファイバ29を接合して形成された光学モジュール202を適用する場合を例に挙げる。
これを形成条件にして、まず、図18Aに示す半導体チップ10を準備する。半導体チップ10には、第1の実施例で説明したアンテナ素子内蔵型のものを使用する。次に、図18Bに示すトレンチ構造の無線光学チップ基板601を準備する。無線光学チップ基板601には、第1の実施例で説明したプリント配線基板を構成する大きさの絶縁性の基板材料20’を使用する。
次に、図18Bにおいて、基板材料20’をパターニングして深さd1の溝部61と、深さd2の穴部62を既存の溝及び穴堀り加工技術を利用して形成する。例えば、基板材料20’の全面にフォトレジストを塗布し、穴部62及び溝部61の形状を象った乾板(レチクル)を使用してフォトレジスト上に穴部62及び溝部61の開口パターンを焼き付けた後、当該フォトレジストを感光して現像し、このレジスト膜をマスクにして不要部分の基板材料20’をドライエッチング(異方性エッチング)等により除去する。このドライエッチングによって深さd1の溝部61及び穴部62が形成できる。
更に、全面のレジスト膜に加えて、溝部61内にも上述の方法でレジスト膜を形成し、当該レジスト膜をマスクして、穴部62内の不要部分の基板材料20’をドライエッチング等により除去する。このドライエッチングによって深さd2の穴部62が形成できる。これにより、図18Bに示したような深さが異なるd1の溝部61と、d2の穴部62とを有した無線光学チップ基板601を得ることができる。
次に、図18Cに示す光学モジュール202を準備する。この光学モジュール202はRF−OPTチップ21、レンズ28及び光ファイバ29を接合して形成する。RF−OPTチップ21には、半導体チップ10と無線通信するためのアンテナ22,27及び無線通信用の回路素子と、この回路素子と光ファイバ29との間で光通信するための光通信用の光学素子から構成したものを使用する。回路素子に関しては、図9に示すような受信部23及び送信部26が含まれ、光学素子には電気信号−光変換素子(以下E/O変換部24という)や、光−電気信号変換素子(以下O/E変換部25という)等が含まれる。
この例で、光学モジュール202の光学素子にレンズ28を接合する。レンズ28にはセルフォックレンズ28a,28bを使用する。例えば、一方のセルフォックレンズ28aをRF−OPTチップ21の光出射口又は図示しない光導波路に接合し、他方のセルフォックレンズ28bを光ファイバ29の光導波路29b’に接合する。光ファイバ29には光導波路29b’の外周部を低屈折率の材料29aで被覆されたものを使用する。光ファイバ29は、例えば、当該基板601の外部の光通信装置に接続される。
次に、図18Bに示した穴部62に、図18Cに示した光学モジュール202を配設する。例えば、図19に示すように、穴部62に、RF−OPTチップ21及びレンズ28を配設し、溝部61に光ファイバ29を配設する。このとき、RF−OPTチップ21及びレンズ28を穴部62内に接着剤を介して固定し、光ファイバ29を溝部61内に接着剤を介して固定するようになされる。接着剤にはホットメルト系の樹脂性の接着剤を使用するとよい。これにより、図19Bに示すRF−OPTチップ21及びレンズ28が穴部62に配設され、光ファイバ29が溝部61に配設された基板材料20’を得ることができる。この時点で基板材料20’が無線光学チップ基板601を構成するようになる。
次に、図19Bで得られたRF−OPTチップ21、レンズ28及び光ファイバ29を有した無線光学チップ基板601に図19Aに示す半導体チップ10を位置合わせして実装する。半導体チップ10の底面側には、配線パターン接続用のバンプ電極が設けられている。この例では、図19Aに示すように半導体チップ10のアンテナ12と図19Bに示すRF−OPTチップ21のアンテナ22とが対峙し、かつ、半導体チップ10のアンテナ13とRF−OPTチップ21のアンテナ27とが対峙するように各々位置合わせして、無線光学チップ基板601上に当該半導体チップ10を実装する。
このとき、半導体チップ10のバンプ電極を半田ボンディングにより無線光学チップ基板601上の配線パターンに接合する。これにより、同一基板に半導体チップ10、RF−OPTチップ21、レンズ28及び光ファイバ29を実装した、図17に示したような光通信装置600が完成する。
このように、第6の実施例としての光通信装置600及びその製造方法によれば、1回の接続工程で半導体チップ10と光学モジュール202の間を無線−光学接続できるようになる。従って、既存のアンテナ内蔵型の半導体チップ10の直下で容易に無線光学チップ基板601の光ファイバ29に接続できるようになる。
これにより、半導体チップ10とRF−OPTチップ21間で高速にRF信号−光の送受処理が可能な高速光インターフェース付きの光通信装置600を製造及び提供できるようになる。しかも、RF−OPTチップ21を予め無線光学チップ基板601に配置しておくことにより、半導体チップ10の実装は、従来の方法と変更することなく、同様の装置にて組み立て工程を行うことができる。なお、光通信装置600の無線結合時の動作例については、図9に示した光通信装置100の無線結合時の動作例と同様となるので、その説明を省略する。
図20及び図21は、第7の実施例としての光通信装置700,700’の構成例を示す斜視図である。この実施例では、2つの無線光学チップ基板701,702が備えられ、これらの基板701,702間が光ファイバ29により接続されるものである。
図20に示す光通信装置700によれば、2つの無線光学チップ基板701,702を有しており、パーソナルコンピュータのマザーボードに適用して好適な装置である。無線光学チップ基板701,702は隣接して設けられ、その側面が全面に向けられて基板本体が縦状に立設して使用される。無線光学チップ基板701,702には、第1〜第6の実施例で説明したような半導体チップ101,102や、図示しないRF−OPTチップ21,21a,21b、レンズ28等が備えられている。各々の無線光学チップ基板701,702には光ファイバ29の接続端子又はファイバ取り出し口71,72が設けられている。
2つの無線光学チップ基板701,702間は、光ファイバ29により接続されている。半導体チップ101から半導体チップ102へRF信号S11を転送する場合、RF信号S11は、無線光学チップ基板701でコリメート光に変換されて、光ファイバ29により無線光学チップ基板702に伝送される。無線光学チップ基板702では光ファイバ29により受光したコリメート光が電気(RF)信号S11に変換される。変換後のRF信号S11は、半導体チップ102へ無線送信処理される。これにより、半導体チップ102は半導体チップ101からのRF信号S11を受信できるようになる。
この例では、第2及び第5の実施例で説明した同一の無線光学チップ基板201,501内で光通信処理する場合に限定されることはなく、上述したように、2つの無線光学チップ基板701,702に光ファイバ29を介して接続し、当該2つの無線光学チップ基板701,702で光通信処理を実行できるようになった。なお、光通信先の無線光学チップ基板701,702は、必ずしも”隣り合っている”という配置条件は必要なく、図21に示すように離れていても構わない。
図21に示す光通信装置700’によれば、3つの無線光学チップ基板701,702,703を有しており、パーソナルコンピュータの拡張用ボード等に適用して好適な装置である。無線光学チップ基板701,702,703は連設されており、この例でも、各々の側面が全面に向けられて基板本体が縦状に立設して使用される。無線光学チップ基板70170には、第1〜第6の実施例で説明したような半導体チップ101,102,103や、図示しないRF−OPTチップ21,21a,21b、レンズ28等が備えられている。各々の無線光学チップ基板701,702,703には光ファイバ29の接続端子又はファイバ取り出し口が設けられている。
この例では、2つの無線光学チップ基板701,703間が光ファイバ29により接続されている。つまり、無線光学チップ基板701,703の間に無線光学チップ基板702を置いた状態である。半導体チップ101から半導体チップ103へRF信号S11を転送する場合、RF信号S11は、無線光学チップ基板701でコリメート光に変換されて、光ファイバ29により無線光学チップ基板703に伝送される。無線光学チップ基板703では光ファイバ29により受光したコリメート光が電気(RF)信号S11に変換される。変換後のRF信号S11は、半導体チップ103へ無線送信処理される。これにより、半導体チップ103は半導体チップ101からのRF信号S11を受信できるようになる。
このように、第7の実施例としての光通信装置700,700’によれば、2つの無線光学チップ基板701,702に光ファイバ29を介して接続し、当該2つの無線光学チップ基板701,702で光通信処理を実行したり、3つの無線光学チップ基板701,702,703から2つの無線光学チップ基板701,703を選択して、この2つの間に光ファイバ29を介して接続し、当該2つの無線光学チップ基板701,703で光通信処理を実行できるようになった。
従って、半導体チップ101,102間や、半導体チップ101,103間のRF信号S11,S12の伝送処理を光ファイバ29を用いることにより行うことができるので、無線光学チップ基板701の設計デザイン時の許容度が拡張され、多様な設計デザインに対応できるようになった。また、多様な設計デザインに対応できることにより、設計変更を必要せずに多くのモデルを発売することができるので、半導体チップ101,102,103等の量産性が高められる。
図22は第8の実施例としての光通信装置800の正面の構成例を示す断面図である。この実施例では冷却機能を有した光通信装置800を提供するようにした。図22に示す光通信装置800は、半導体チップ10、無線光学チップ基板801、ヒートシンク81、冷却ファン用の架台82及び冷却ファン83a,83bを有して構成される。無線光学チップ基板801には第6の実施例で説明したトレンチ構造のものが使用される。もちろん、無線光学チップ基板801にはトレンチ構造を有した無線光学チップ基板601に限られることはなく、第1〜第5の実施例で説明した無線光学チップ基板20,201,301,401,501を使用してもよい。
この例で半導体チップ10の上部にはヒートシンク81が設けられ、当該チップ内で発生した熱を放射するようになされる。ヒートシンク81には放熱性がよいアルミニウムを襞状に加工した冷却ブロック部材が使用される。このヒートシンク81及び半導体チップ10の上部を取り囲む領域には、冷却ファン用の架台82が配設されている。この例で、架台82の上部内側には、2台の冷却ファン83a,83bが取り付けられている。冷却ファン83aは、例えば、排気用であり、ヒートシンク81から放射された熱を外部へ排気するようになされる。冷却ファン83bは、吸気用であり、外部から取り込んだ空気をヒートシンク81へ吹き出し、当該ヒートシンク81から放射された熱を拡散するようになされる。冷却ファン83a,83bは図示しないモータにより駆動される。
このように、第8の実施例としての光通信装置800によれば、ヒートシンク81、冷却ファン用の架台82及び冷却ファン83a,83bを含む冷却機能が備えられるので、半導体チップ10で発生した熱を当該冷却機能を利用して効率良く放射及び拡散できるようになる。これにより、熱対策に優れた半導体チップ10を無線光学チップ基板801上に実装した光通信装置を提供できるようになる。
本発明は、半導体チップ−無線光学チップ間で高速に電気信号−光の送受が可能な高速光インターフェース装置に適用して極めて好適である。
本発明に係る第1の実施例としての光通信装置100の構成例(その1)を示す斜視図である。 光通信装置100の構成例(その2)を示す断面図である。 光通信装置100の形成例(その1)を示す工程図である。 光通信装置100の形成例(その2)を示す工程図である。 光通信装置100の形成例(その3)を示す工程図である。 光通信装置100の形成例(その4)を示す工程図である。 光通信装置100の形成例(その5)を示す工程図である。 光通信装置100の形成例(その6)を示す工程図である。 光通信装置100の無線結合時の動作例を示すブロック図である。 第2の実施例としての光通信装置200の構成例を示す平面図である。 (A)〜(C)は光通信装置200の形成例を示す工程図である。 第3の実施例としての光通信装置300の構成例を示す平面図である。 第4の実施例としての光通信装置400の構成例を示す断面図である。 光通信装置400の形成例(その1)を示す工程図である。 光通信装置400の形成例(その2)を示す工程図である。 第5の実施例としての光通信装置500の構成例を示す平面図である。 第6の実施例としての光通信装置600の構成例を示す断面図である。 光通信装置600の形成例(その1)を示す工程図である。 光通信装置600の形成例(その2)を示す工程図である。 第7の実施例としての光通信装置700の構成例を示す斜視図である。 その光通信装置700’の構成例を示す斜視図である。 第8の実施例としての光通信装置800の正面の構成例を示す断面図である。
符号の説明
10,101,102,103,104,108・・・半導体チップ、11,26・・・送信部(回路素子)、12,13,22,27・・・アンテナ、14,23・・・受信部(回路素子)、15・・・信号処理部、20,201,301,401,501,601,701,702,703・・・無線光学チップ基板、21・・・RF−OPTチップ(無線光学チップ)、24・・・E/O変換部(電気信号−光変換素子)、25・・・O/E変換部(光−電気信号変換素子)、28・・・レンズ、29・・・光ファイバ、29a・・・光導波路、61・・・溝部、62・・・穴部、71,72,73・・・ファイバ取り出し口、81・・・ヒートシンク部、82・・・架台、83a,83b・・・冷却ファン、100,200,300,400,500,600,700,700’,800・・・光通信装置、105・・・RF専用チップ、106,109・・・配線パターン、202・・・光学モジュール

Claims (2)

  1. 無線光学チップ基板と、無線光学チップと半導体チップと、レンズとを具備する光通信装置であって、
    前記無線光学チップ基板は、
    絶縁性の基板材料で形成されており、
    当該無線光学チップ基板の表面の近傍に、高い屈折率材料の層を挟んで屈折率材料の層を積層して形成した、板状で細長い光ファイバが形成されており、
    当該無線光学チップ基板の表面に、前記光ファイバに光学的に結合する前記レンズおよび前記無線光学チップが埋め込まれる凹部が形成されており、
    前記半導体チップは、
    当該半導体チップが前記無線光学チップ基板に実装されたとき、当該半導体チップの下部領域に平行に隣接して配設され、それぞれ板状で細長い形状の、第1送信アンテナ素子および第1受信アンテナ素子と、
    前記第1送信アンテナ素子および前記第1受信アンテナ素子に接続されて信号を送信および受信する、無線通信用の第1回路素子と、
    当該第1回路素子に接続され、信号処理を行う信号処理部と
    を有し、
    前記無線光学チップは、
    当該無線光学チップが前記無線光学チップ基板の前記凹部に埋め込まれたとき、当該無線光学チップの上部領域に、前記第1送信アンテナ素子と前記第1受信アンテナ素子と同じ間隔で平行に隣接して配設され、それぞれ板状で細長い形状の、第2受信アンテナ素子および第2送信アンテナ素子と、
    前記第2受信アンテナ素子および前記第2送信アンテナ素子に接続されて信号を送信および受信する、無線通信用の第2回路素子と、
    前記無線光学チップ基板の前記凹部に埋め込まれる前記レンズを介して前記光ファイバと接続され、前記光ファイバからの光信号を電気信号に変換して前記第2回路素子に入力し、前記第2回路素子からの電気信号を光信号に変換して前記光ファイバに送出する、光通信用変換部と
    を有し、
    前記無線光学チップ基板の前記凹部に前記レンズが埋め込まれ、光学接着剤が充填され、前記無線光学チップ基板の前記凹部に前記無線光学チップが埋め込まれ、前記半導体チップが前記無線光学チップ基板に実装されたとき、
    前記半導体チップの前記第1送信アンテナ素子と前記無線光学チップ基板の前記第2受信アンテナ素子が無線通信可能に対峙して配置され、かつ、前記半導体チップの前記第1受信アンテナ素子と前記無線光学チップの前記第2送信アンテナ素子が無線通信可能に対峙して配置され、
    前記光ファイバから送信された光信号が前記光通信用変換部において電気信号に変換されて前記第2送信アンテナ素子および前記第1受信アンテナ素子を介して前記半導体チップ前記信号処理部に導かれ、
    前記半導体チップ前記信号処理部からの電気信号が前記第1送信アンテナ素子および前記第2受信アンテナ素子を介して送信され、前記光通信用変換部において光信号に変換されて前記光ファイバに送出される、
    光通信装置。
  2. 前記無線光学チップ基板には、前記光ファイバを挟んで、その両側に、当該無線光学チップ基板の表面に、前記光ファイバの一端に接続される第1レンズおよび第1無線光学チップが埋め込まれる第1凹部と、当該無線光学チップ基板の表面に、前記光ファイバの他端に接続される第2レンズおよび第2無線光学チップが埋め込まれる第2凹部とが形成されており、
    前記1凹部に前記第1レンズおよび第1無線光学チップが埋め込まれ、
    前記2凹部に前記第2レンズおよび第2無線光学チップが埋め込まれ、
    前記半導体チップと同等の第1半導体チップが前記第1無線光学チップの上部に位置し、前記半導体チップと同等の第2半導体チップが前記第2無線光学チップの上部に位置するように、前記無線光学チップ基板に実装されており、
    前記光ファイバを介して授受される信号が、前記第1半導体チップに内蔵された第1信号処理部と、前記第2半導体チップに内蔵された第2信号処理部とにおいて処理される、
    請求項1に記載の光通信装置。
JP2008011812A 2008-01-22 2008-01-22 光通信装置 Expired - Fee Related JP4656156B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008011812A JP4656156B2 (ja) 2008-01-22 2008-01-22 光通信装置
US12/337,486 US20090185808A1 (en) 2008-01-22 2008-12-17 Optical communication device and method of manufacturing the same
CN200910005258XA CN101493556B (zh) 2008-01-22 2009-01-21 光通信装置及其制造方法
EP09000801A EP2083609A3 (en) 2008-01-22 2009-01-21 Optical communication device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008011812A JP4656156B2 (ja) 2008-01-22 2008-01-22 光通信装置

Publications (2)

Publication Number Publication Date
JP2009177337A JP2009177337A (ja) 2009-08-06
JP4656156B2 true JP4656156B2 (ja) 2011-03-23

Family

ID=40404922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008011812A Expired - Fee Related JP4656156B2 (ja) 2008-01-22 2008-01-22 光通信装置

Country Status (4)

Country Link
US (1) US20090185808A1 (ja)
EP (1) EP2083609A3 (ja)
JP (1) JP4656156B2 (ja)
CN (1) CN101493556B (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5730057B2 (ja) * 2011-02-16 2015-06-03 三菱重工業株式会社 炭素繊維強化プラスチック構造体
KR20150005113A (ko) * 2013-07-04 2015-01-14 에스케이하이닉스 주식회사 광학 신호 경로를 포함하는 반도체 패키지
US9325420B2 (en) * 2014-05-16 2016-04-26 Qualcomm Incorporated Electro-optical transceiver device to enable chip-to-chip interconnection
JP6126149B2 (ja) * 2015-02-26 2017-05-10 ファナック株式会社 放熱フィンを有する熱伝導部材を備えた空冷式レーザ装置
US10665560B2 (en) * 2017-10-27 2020-05-26 Taiwan Semiconductor Manufacturing Company Ltd. Optical semiconductor package and method for manufacturing the same
CN114077016B (zh) * 2020-08-11 2023-09-01 美国莫列斯有限公司 具有光子集成电路的封装结构

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07221260A (ja) * 1994-02-02 1995-08-18 Fujitsu Ltd 集積回路装置とその製造方法
JPH1168033A (ja) * 1997-08-15 1999-03-09 Matsushita Electric Ind Co Ltd マルチチップモジュール
JP2004163722A (ja) * 2002-11-14 2004-06-10 Fujitsu Ltd 部品内蔵基板
JP2004233991A (ja) * 1997-10-01 2004-08-19 Hitachi Chem Co Ltd 光情報処理装置
JP2004327568A (ja) * 2003-04-23 2004-11-18 Japan Science & Technology Agency 半導体装置
JP2005203657A (ja) * 2004-01-19 2005-07-28 Atsushi Iwata 半導体装置
JP2006053472A (ja) * 2004-08-16 2006-02-23 Sony Corp 光導波モジュール及び光情報処理装置
JP2006059883A (ja) * 2004-08-17 2006-03-02 Toshiba Corp インターフェイスモジュール付lsiパッケージ

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2096401B (en) * 1981-04-04 1984-10-31 Int Computers Ltd Improvements in or relating to electrooptical systems
US4941205A (en) * 1984-06-06 1990-07-10 Ncr Corporation Bidirectional optical data communications system
US5521992A (en) * 1994-08-01 1996-05-28 Motorola, Inc. Molded optical interconnect
JPH08293836A (ja) * 1995-04-21 1996-11-05 Hitachi Ltd 二次元自由空間双方向光接続装置
JP2000199827A (ja) * 1998-10-27 2000-07-18 Sony Corp 光導波装置およびその製造方法
JP3518434B2 (ja) * 1999-08-11 2004-04-12 株式会社日立製作所 マルチチップモジュールの冷却装置
JP2003218272A (ja) * 2002-01-25 2003-07-31 Sony Corp 高周波モジュール及びその製造方法
JP4095404B2 (ja) * 2002-10-25 2008-06-04 キヤノン株式会社 光接続装置、光電気混載装置、及びこれを用いた電子機器
JP3927913B2 (ja) * 2003-03-05 2007-06-13 キヤノン株式会社 光電気混載装置、及びその駆動方法
JP2004320666A (ja) * 2003-04-21 2004-11-11 Canon Inc 光伝送装置、電子回路と光回路が混在した光電融合回路
DE602004030914D1 (de) * 2003-07-14 2011-02-17 Photonicsystems Inc Bidirektionale signalschnittstelle
US7218850B2 (en) * 2003-08-07 2007-05-15 Lucent Technologies Inc. Apparatus and method for monitoring signal-to-noise ratio in optical transmission systems
US20050075080A1 (en) * 2003-10-03 2005-04-07 Nanyang Technological University Inter-chip and intra-chip wireless communications systems
TW200520201A (en) * 2003-10-08 2005-06-16 Kyocera Corp High-frequency module and communication apparatus
US7343059B2 (en) * 2003-10-11 2008-03-11 Hewlett-Packard Development Company, L.P. Photonic interconnect system
US8204381B2 (en) * 2003-12-30 2012-06-19 Intel Corporation Broadband radio transceiver with optical transform
GB0409855D0 (en) * 2004-05-01 2004-06-09 Univ Bristol A low cost wireless optical transceiver module
JP4210240B2 (ja) * 2004-06-03 2009-01-14 ローム株式会社 光通信モジュール
KR100646599B1 (ko) * 2004-06-24 2006-11-23 포테나 옵틱스 코포레이션 단일 광케이블을 이용한 양방향 광 송수신 모듈
TWI278075B (en) * 2004-08-17 2007-04-01 Toshiba Corp LSI package with interface module, transmission line package, and ribbon optical transmission line
US7680464B2 (en) 2004-12-30 2010-03-16 Valeo Radar Systems, Inc. Waveguide—printed wiring board (PWB) interconnection
US7387451B2 (en) * 2005-10-13 2008-06-17 University Of Delaware Composites for wireless optical communication
JP4876263B2 (ja) * 2006-04-03 2012-02-15 国立大学法人 東京大学 信号伝送機器
US8674888B2 (en) * 2006-06-21 2014-03-18 Broadcom Corporation Integrated circuit with power supply line antenna structure and methods for use therewith
JP2008011812A (ja) 2006-07-07 2008-01-24 Daiwa Seiko Inc 魚釣用リール
JP4923975B2 (ja) * 2006-11-21 2012-04-25 ソニー株式会社 通信システム並びに通信装置
US7329054B1 (en) * 2007-03-05 2008-02-12 Aprius, Inc. Optical transceiver for computing applications
US7928525B2 (en) * 2008-04-25 2011-04-19 Qimonda Ag Integrated circuit with wireless connection

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07221260A (ja) * 1994-02-02 1995-08-18 Fujitsu Ltd 集積回路装置とその製造方法
JPH1168033A (ja) * 1997-08-15 1999-03-09 Matsushita Electric Ind Co Ltd マルチチップモジュール
JP2004233991A (ja) * 1997-10-01 2004-08-19 Hitachi Chem Co Ltd 光情報処理装置
JP2004163722A (ja) * 2002-11-14 2004-06-10 Fujitsu Ltd 部品内蔵基板
JP2004327568A (ja) * 2003-04-23 2004-11-18 Japan Science & Technology Agency 半導体装置
JP2005203657A (ja) * 2004-01-19 2005-07-28 Atsushi Iwata 半導体装置
JP2006053472A (ja) * 2004-08-16 2006-02-23 Sony Corp 光導波モジュール及び光情報処理装置
JP2006059883A (ja) * 2004-08-17 2006-03-02 Toshiba Corp インターフェイスモジュール付lsiパッケージ

Also Published As

Publication number Publication date
CN101493556B (zh) 2012-02-01
JP2009177337A (ja) 2009-08-06
EP2083609A3 (en) 2009-08-26
CN101493556A (zh) 2009-07-29
US20090185808A1 (en) 2009-07-23
EP2083609A2 (en) 2009-07-29

Similar Documents

Publication Publication Date Title
US8774576B2 (en) Optical module and method for manufacturing the same
US6877912B2 (en) Electro-optical circuit board having optical transmit/receive module and optical waveguide
US7923273B2 (en) Stackable optoelectronics chip-to-chip interconnects and method of manufacturing
JP4653190B2 (ja) 発光素子アレイと光導波路アレイとが直接的に光接続可能な光電変換モジュールおよびその光電変換モジュールの製造方法
JP4656156B2 (ja) 光通信装置
JP3807385B2 (ja) 光モジュール及びその製造方法、光通信装置、電子機器
JP2001036197A (ja) 光電子集積素子、その駆動方法、該素子を用いた光配線方式、該素子を有する演算処理装置
CN103837946A (zh) 光模块和制造方法
KR20090032623A (ko) 광 도파로가 적층된 광 인쇄회로기판을 이용한 광연결시스템
KR100734906B1 (ko) 연성 광 pcb를 이용한 광연결 장치
JP2006147878A (ja) 光モジュール
JP2008158090A (ja) 光配線基板
JP2006258835A (ja) 光導波モジュール、並びに、光電変換装置及び光導波部材
TW201506481A (zh) 光模組用構件、光模組及電子機器
US6879423B2 (en) Printed circuit board assembly with multi-channel block-type optical devices packaged therein
US20080080807A1 (en) Opto-electronic connector module and opto-electronic communication module having the same
JP2007079283A (ja) 光集積回路
JP2005292739A (ja) 光モジュール
JP2003227951A (ja) 光導波装置、その製造方法、およびそれを用いた光電気混載基板
JP2012013726A (ja) 光インターコネクションモジュールおよびそれを用いた光電気混載回路ボード
US8571361B2 (en) Combined optical and electrical flexible wiring and production method therefor
JP2010192883A (ja) 光電気混載基板および光電気混載基板の製造方法
JP5983200B2 (ja) 光モジュール
JPWO2009001822A1 (ja) 光モジュール
WO2014141458A1 (ja) 光モジュールおよび伝送装置

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees