JP4580959B2 - 放射源、リソグラフィ投影装置及びデバイス製造方法 - Google Patents

放射源、リソグラフィ投影装置及びデバイス製造方法 Download PDF

Info

Publication number
JP4580959B2
JP4580959B2 JP2007120962A JP2007120962A JP4580959B2 JP 4580959 B2 JP4580959 B2 JP 4580959B2 JP 2007120962 A JP2007120962 A JP 2007120962A JP 2007120962 A JP2007120962 A JP 2007120962A JP 4580959 B2 JP4580959 B2 JP 4580959B2
Authority
JP
Japan
Prior art keywords
discharge
radiation
cathode
radiation source
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2007120962A
Other languages
English (en)
Other versions
JP2007305992A (ja
Inventor
ニコラエヴィッチ コシェレフ コンスタンティン
イェフゲニーウィチ バニネ ファディム
ヴィタレヴィッチ イヴァノフ ウラディミール
レネ キエフト エリク
ローロフ ロープストラ エリク
ヘンリクス ヨハンネス ステフェンス ルーカス
ヴィクトロヴィッチ シデルコフ ユーリ
グリゴレヴィッチ コロシュニコフ ウゼヴォロド
ミハイロヴィッチ クリフトスン ウラディミール
ラフィレヴィッチ ガヤゾフ ロベルト
ワルデマール ウラディミール フリユンス オラフ
Original Assignee
エーエスエムエル ネザーランズ ビー.ブイ.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エーエスエムエル ネザーランズ ビー.ブイ. filed Critical エーエスエムエル ネザーランズ ビー.ブイ.
Publication of JP2007305992A publication Critical patent/JP2007305992A/ja
Application granted granted Critical
Publication of JP4580959B2 publication Critical patent/JP4580959B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/003X-ray radiation generated from plasma being produced from a liquid or gas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70033Production of exposure light, i.e. light sources by plasma extreme ultraviolet [EUV] sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/7015Details of optical elements
    • G03F7/70166Capillary or channel elements, e.g. nested extreme ultraviolet [EUV] mirrors or shells, optical fibers or light guides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
    • G03F7/70916Pollution mitigation, i.e. mitigating effect of contamination or debris, e.g. foil traps
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/003X-ray radiation generated from plasma being produced from a liquid or gas
    • H05G2/005X-ray radiation generated from plasma being produced from a liquid or gas containing a metal as principal radiation generating component

Description

本発明は、プラズマを形成して電磁放射を生成するために、アノードとカソード間の空間内の物質中で放電を起こすように構成され配置されたアノードおよびカソードを備える放射源に関する。さらに本発明は、こうした放射源を有し、
放射の投影ビームを提供するための放射システムと、
パターン形成手段を支持するための支持構造であって、パターン形成手段が所望のパターンに従って投影ビームをパターン形成する働きをする支持構造と、
基板を保持するための基板テーブルと、
パターン形成されたビームを基板のターゲット部分の上に投影するための投影システムとを備えるリソグラフィ投影装置に関する。
本明細書で使用する「パターン形成手段」という用語は、基板のターゲット部分に作成すべきパターンに対応するパターン形成された断面を、入射する放射ビームに付与するために用いることができる手段を指すものと広く解釈すべきであり、「ライトバルブ」という用語もこの意味で用いることができる。一般に、前記パターンは、集積回路や他のデバイス(以下参照)など、ターゲット部分に作成されるデバイス内の特定の機能層に対応する。こうしたパターン形成手段の例には以下のものが含まれる。
マスク。マスクの概念はリソグラフィでは周知であり、それにはバイナリ・マスク、交番位相シフト・マスクおよび減衰位相シフト・マスクなどのマスクタイプ、ならびに様々なハイブリッド型のマスクタイプが含まれる。こうしたマスクを放射ビーム中に配置すると、マスクのパターンに従って、マスク上に衝突する放射の選択的透過(透過性マスクの場合)または反射(反射性マスクの場合)が起こる。マスクの場合、支持構造は一般に、マスクを入射する放射ビーム中の所望の位置に保持することができるように、また所望する場合にはマスクをビームに対して移動させることができるようにするマスク・テーブルである。
プログラマブル・ミラー・アレイ。このようなデバイスの例は、粘弾性制御層および反射性表面を有する、マトリクス状のアドレス指定可能な表面である。こうした装置の背景となる基本原理は、(例えば)反射表面のアドレス指定された領域は入射光を回折光として反射し、アドレス指定されていない領域は入射光を非回折光として反射するというものである。適切なフィルタを用いると、前記非回折光を反射ビームから取り除き、後に回折光のみを残すことができる。このようにして、ビームは、マトリクス状のアドレス指定可能な表面のアドレス指定されたパターンに従ってパターン形成される。必要なマトリクスのアドレス指定は、適切な電子光学的手段を用いて実施することができる。こうしたミラー・アレイに関するさらなる情報は、例えば米国特許第5,296,891号および第5,523,193号から得られ、これらは参照によってここに援用される。プログラマブル・ミラー・アレイの場合、前記支持構造は、例えば、必要に応じて固定することも移動させることも可能なフレームまたはテーブルとして実施することができる。
プログラマブルLCDアレイ。このような構成の例は、米国特許第5,229,872号に示されており、これは参照によってここに援用される。上述のように、この場合の支持構造は、例えば、必要に応じて固定することも移動させることも可能なフレームまたはテーブルとして実施することができる。
簡単にするために、本明細書の他の部分では、特定の箇所でマスクおよびマスク・テーブルに関する例について言及するが、こうした例の中で論じる一般原理は、先に述べたように、パターン形成手段のより広い意味において理解すべきである。
リソグラフィ投影装置は、例えば集積回路(IC)の製造に用いることができる。このような場合、パターン形成手段はICの個々の層に対応する回路パターンを生成することが可能であり、このパターンを、放射感応性材料(レジスト)の層で被覆した基板(ウェハ)上の(例えば、1つまたは複数のダイを含む)ターゲット部分の上に結像させることができる。一般に、シングル・ウェハは、投影システムによって1つずつ連続的に照射される、隣接するターゲット部分の全体的なネットワークを含む。マスク・テーブル上のマスクによるパターン形成を用いる現在の装置では、異なる2つのタイプの機械を区別することができる。一方のタイプのリソグラフィ投影装置では、マスク・パターン全体をターゲット部分の上に一度に露光することによって各ターゲット部分を照射し、こうした装置は、一般にウェハ・ステッパと呼ばれる。一般にステップ・アンド・スキャン装置と呼ばれるもう一方の装置では、投影ビームの下のマスク・パターンを所与の基準方向(「走査」方向)に漸次走査することによってターゲット部分を照射し、それと同時にこの方向に対して平行または逆平行に基板テーブルを同期して走査する。一般に、投影システムは倍率M(一般に<1)を有するため、基板を走査する速度Vはマスク・テーブルを走査する速度のM倍になる。本明細書に記載するリソグラフィ装置に関するさらなる情報は、例えば米国特許第6,046,792号から得られ、これは参照によってここに援用される。
リソグラフィ投影装置を用いる製造工程では、少なくとも一部を放射感応性材料(レジスト)の層で被覆した基板の上に、(例えば、マスクの)パターンを結像させる。結像させるステップの前に、基板を、下塗り、レジスト塗布およびソフト・ベークなど様々な処理にかけてもよい。露光後、基板を、露光後ベーク(PEB)、現像、ハード・ベークおよび結像したフィーチャの測定/検査など他の処理にかけてもよい。一連の処理は、例えばICなど個々のデバイスの層をパターン形成するためのベースとして用いられる。次いで、こうしたパターン形成された層を、エッチング、イオン注入(ドーピング)、メタライゼーション、酸化、化学的機械研磨などの様々な処理にかけてもよく、これらは全て、個々の層を仕上げることを目的としている。いくつかの層が必要な場合には、全ての処理またはその変形を新しい層ごとに繰り返さなければならない。最終的には、一連のデバイスが基板(ウェハ)上に載ることになる。次いで、これらのデバイスをダイシングやソーイングなどの技術によって互いに分離し、それによって個々のデバイスをキャリアに載せたり、ピンに接続したりすることができるようになる。こうした工程に関するさらなる情報は、例えばPeter van Zantの著書「Microchip Fabrication:A Practical Guide to Semiconductor Processing」第3版(McGraw Hill Publishing Co.、1997、ISBN 0−07−067250−4)から得られ、これは参照によってここに援用される。
簡単にするために、以下では投影システムを「レンズ」と呼ぶが、この用語は、例えば屈折性光学部品、反射性光学部品および反射屈折光学系を含めて様々なタイプの投影システムを包含するものと広く解釈すべきである。放射システムはまた、放射の投影ビームの方向付け、成形または制御のために、これらの設計タイプの任意のものに従って動作する構成要素を含むことも可能であり、こうした構成成分も以下では、まとめて、または単独で「レンズ」と呼ぶことがある。さらにリソグラフィ装置は、2つ以上の基板テーブル(および/または2つ以上のマスク・テーブル)を有するタイプのものでもよい。こうした「多段」デバイスでは、追加のテーブルを平行に用いてもよく、あるいは1つまたは複数のテーブル上で予備ステップを実施し、それと同時に1つまたは複数の他のテーブルを露光に用いてもよい。2段のリソグラフィ装置は、例えば米国特許第5,969,441号および国際特許公開WO98/40791号に記載されており、これらは参照によってここに援用される。
リソグラフィ装置では、基板上に結像させることができるフィーチャの大きさは、投影する放射の波長によって制限される。より高いデバイス密度を有し、それにより動作速度が高まる集積回路を製造するには、より小さいフィーチャの結像が可能であることが望ましい。現在のリソグラフ投影装置のほとんどは、水銀ランプやエキシマ・レーザによって生成される紫外線を用いるが、より短い約13nmの波長の放射を用いることが提唱されてきた。こうした放射は極紫外線放射、あるいはXUV放射またはEUV放射と呼ばれる。「XUV」という略称は一般に、軟X線および真空紫外線の範囲を合わせて、10分の数ナノメートルから数十ナノメートルの波長の範囲を指し、「EUV」という用語は通常、リソグラフィと組み合わせて用い(EUVL)、約5〜20nmの放射帯域、すなわちXUVの範囲の一部を指す。
XUV放射の放射源は、アノードとカソードの間の物質(例えば、ガスまたは蒸気)中で放電することによってプラズマを発生させ、プラズマを流れる(パルス状の)電流によるオーム加熱によって高温の放電プラズマを生成することができる、放電プラズマ放射源とすることができる。さらに、プラズマを流れる電流によって生じる磁界によるプラズマの圧縮を用いて、放電軸上に高温高密度のプラズマを生成することができる(ピンチ効果)。蓄積された電気エネルギーはプラズマの温度に直接変換され、そのため短波長の放射に変換される。ピンチにより、プラズマを放電軸上でかなりの高温高密度にすることが可能になり、蓄積された電気エネルギーから熱プラズマ・エネルギーへの変換、したがってXUV放射への変換は、非常に高い変換効率を示す。プラズマ・フォーカス、Zピンチ、ホロー・カソード、およびキャピラリ放電の放射源など、装置の形状は様々でよいが、これらのいずれのタイプでも、放電の電流によって生じる磁界は圧縮を促す。
図5Aから図5Eは、こうした放電プラズマ放射源の構成および動作についての背景知識を提供する目的で記載したものである。図5Aから図5Eは、Zピンチ・ホロー・カソード・タイプの単一の放電要素540を備えた、従来技術による放電プラズマ放射源を概略的に示している。放電要素540は円筒対称であり、電気絶縁性の円筒壁525によって接続されたアノード520およびカソード510を備えている。放電要素540からの電磁放射を通すために、アノード520内の中心軸B上に開口530が設けられている。ホロー・カソード510は中心軸Bの回りに環状の開口511を備え、さらに開口511の後ろに大きいキャビティ512を備えている。キャビティ512も、中心軸Bを中心とする環状の形状を有し、キャビティの壁はカソード510の一部になっている。放電要素540内部でアノード−カソードのギャップの両端にパルス状電圧Vを供給するために、放電電源(図示せず)がアノード520およびカソード510に接続されている。さらに、放電材料供給源(図示せず)により、ガスまたは蒸気が一定の圧力pでアノードとカソードの間に供給される。適切な物質の例は、キセノン、リチウム、スズおよびインジウムである。
放電は、低い初期圧力(p<0.5Torr)および高い電圧(V<10kV)の条件で行うことが可能であり、その場合、電子の平均自由行程はアノード−カソードのギャップに比べて大きく、したがってタウンゼントのイオン化(Townsend ionization)は無効である。これらの条件は、ガスまたは蒸気の密度に対する電界強度の比、E/Nが大きいことが特徴である。図5Aに示すように、この段階はかなり等間隔に近い等ポテンシャル線EPを示し、一定したポテンシャル差を有する。
イオン化成長は、最初のうちは、かなり低いE/Nで動作するホロー・カソード510内部の事象によって支配され、そのため電子の平均自由行程は小さくなる。ホロー・カソード510からの電子e、およびキャビティ512内でガスまたは蒸気から誘導された電子eは、アノード−カソードのギャップ内に注入され、イオン化の進行に伴い実質上のアノードが形成される。この実質上のアノードは、図5Bに不規則に分布した等ポテンシャル線EPで示されるように、アノード520からホロー・カソード510に向かって広がり、アノードのポテンシャル全体がカソードに近づく。カソード510のホロー・キャビティ512内部の電界は、ここではかなり高くなっている。
次の段階では、イオン化が継続し、それにより、ホロー・カソード510内部のカソードの開口511のすぐ後ろに、高密度のプラズマ領域が急速に発達する。最終的には、図5Bにも示すように、この領域から非常に強い電子eのビームをアノード−カソードのギャップ内に注入することにより、最終的なブレークダウン・チャネルが形成される。この構成により、放電量における均一な予備のイオン化およびブレークダウンが可能になる。
図5Cは、放電が開始され、ガスまたは蒸気の低温プラズマ535がアノード−カソードのギャップ内に生成されたことを示している。電流はプラズマ内をカソード510からアノード520へ流れ、この電流が放電要素540内に磁界強度Hを有する方位(azimuthal)磁界を誘導する。図5Cに概略的に示すように、この方位磁界によってプラズマ535は円筒壁525から引き離され圧縮される。
方位磁界の圧力が熱プラズマの圧力よりもずっと高く、H2/8π>>nkT(ただし、nはプラズマ粒子の密度、kはボルツマン定数、Tはプラズマの絶対温度を表す)であるため、さらに図5Dに示すように、プラズマの動的圧縮が起こる。プラズマ圧縮の間は常に、アノード520およびカソード510に接続されたコンデンサ・バンク(放電電源の一部、図示せず)内に蓄積された電気エネルギーは、最も効率よく動的崩壊エネルギーに変換される。高い空間安定性を有する、均一に充填された収縮(プラズマ・ピンチ)550が生じる。
プラズマ圧縮の最終段階、すなわち中心または放電軸B上でのプラズマ・スタグネーションでは、プラズマの運動エネルギーはプラズマの熱エネルギーに完全に変換され、最終的には、(図5Eに示すように)XUVおよびEUVの範囲内できわめて大きく寄与する電磁放射560に変換される。
一般に、ガス放電プラズマによるEUVの生成を、例えば集積回路などのデバイスの大規模生産に適している(生産に値する)とみなせるようなるまでには、いくつかの改善が必要であることが知られている。それには以下のものが含まれる。
より高い変換効率。電流源は一般に、約0.5%の変換効率(必要とされる波長における出力と入力の割合)を示し、このため入力の大部分が熱に変換される。
効率的な熱の除去(冷却)。放電中のプラズマ・ジェットからのピーク熱負荷と、繰り返される放電による平均熱負荷の2つの成分を区別することができる。熱が拡散できる領域は一般に限られており、熱の除去は、出力レベルおよび繰返し速度が高まり生産に値する放射源が実現されたときに重要となる。電極の形状が変化(変形)すると、1つまたは複数の電極表面の過熱が起こり、ピンチの大きさまたは位置に影響を及ぼすことがある。
安定したパルス・タイミングおよびエネルギー。投影リソグラフィ装置を用いる場合、投影中、放射源は安定した出力を生み出すべきである。これは、例えばEUVパルス・タイミングの変動(ジッタ)、ピンチ位置の変動、およびEUVパルス・エネルギーの変動などによって悪い影響を受ける可能性がある。
本発明の一目的は、過熱の危険がなく、生産に適した出力レベルおよび繰返し速度を実現する放射源を提供することである。
本発明の他の目的は、生成されたXUV放射のパルス(ショット)の明確なパルス・タイミングおよび明確なエネルギーを有する放射源を提供することである。
本発明の他の目的は、電気エネルギーの放射への変換効率が高められた、改善された放射源を提供することである。
一態様では、プラズマを形成して電磁放射を生成するために、放電要素内部においてアノードとカソード間の空間内の物質中で放電を起こすように構成され配置されたアノードおよびカソードを備える放射源が提供され、前記放射源は複数の放電要素を含む。ガスまたは蒸気であるこの物質には、例えば、キセノン、インジウム、リチウム、スズ、または他の任意の適切な材料を含むことができる。熱の損失を改善するために、各放電要素を短い時間だけ用いてもよく、その後、他の放電要素の1つを選択する。
他の態様では、プラズマを形成して電磁放射を生成するために、アノードとカソード間の放電空間内の物質中で放電を起こすように構成され配置されたアノードおよびカソードを備える放射源が提供され、前記放射源は、前記放電空間に最も近い表面をエネルギー・ビームで照射することによって前記放電を開始するトリガ装置を備える。これは、キャビティ内の電界を乱す、電極間の材料の導電率を変化させる、アブレーションにより材料を供給する、および/または光イオン化を起こすなど、1つまたは複数の適切なメカニズムによってプラズマ・ピンチ形成を促進する。表面を照射、例えばカソード上、はプラズマ・ピンチ形成のタイミングを改善し、したがってXUVパルスのタイミングを改善する。
さらに他の態様では、インダクタンスが低くなるように構成されており、プラズマを形成して電磁放射を生成するために、アノードとカソード間の放電空間内の物質中で放電を起こすように構成され配置されたアノードおよびカソードを備える放射源を提供し、前記方法は一般に、前記放射源内で実質的に自己調節される振動によって連続的な放電を起こすことが可能になるように、初期放電に続いて前記放電源を動作させるステップを含む。寸法が小さいことおよび複数のプラズマ・ピンチを持続的(permanent)放電の上に重ね合わせることにより、誘導エネルギーを複数のプラズマ・ピンチ上に分割することが可能になり、変換効率が改善される。
さらに他の態様によれば、
放射の投影ビームを提供するための放射システムと、
パターン形成手段を支持するための支持構造であって、パターン形成手段が所望のパターンに従って投影ビームをパターン形成する働きをする支持構造と、
基板を保持するための基板テーブルと、
パターン形成されたビームを基板のターゲット部分の上に投影するための投影システムとを備えるリソグラフィ投影装置が提供され、前記放射システムは上述のような放射源を備える。
本発明の他の態様によれば、
少なくとも一部が放射感応性材料の層で被覆された基板を提供するステップと、
上述の放射システムを用いて放射の投影ビームを提供するステップと、
パターン形成手段を用いて、投影ビームに対してその断面内にパターンを付与するステップと、
パターン形成された放射ビームを放射感応性材料の層からなるターゲット部分に投影するステップとを含むデバイス製造方法が提供される。
本明細書では、本発明に従った装置をICの製造に用いることについて特に言及しているが、こうした装置は他にも多くの可能な用途を有することを明確に理解すべきである。例えば、一体型の光学システム、磁気バブル・メモリ(magnetic domain memory)用の誘導および検出パターン、液晶ディスプレイ・パネル、薄膜磁気ヘッドなどの製造に使用することができる。こうした別の用途に関する文脈では、本明細書中の「レチクル」、「ウェハ」または「ダイ」という用語の使用はいずれも、それぞれ「マスク」、「基板」および「ターゲット部分」というより一般的な用語に置き換えて考えるべきであることが、当業者には理解されよう。
本明細書では、「放射」および「ビーム」という用語を用いて、(例えば、365、248、193、157、または126nmの波長を用いた)紫外線(UV)放射、および(例えば、5〜20nmの範囲の波長を有する)極紫外線(EUV)放射を含めた、あらゆるタイプの電磁放射を包含している。
次に本発明の実施例を、添付の概略図を参照して例示のみの目的で記載する。図の中では、同じ参照記号は同じ部品を指す。
図中の要素は簡単に理解しやすいように示されており、必ずしも一定の比率で描かれていないことが、当業者には理解されよう。例えば、本発明の実施例の理解を助けるために、図中のいくつかの要素の寸法が他の要素に対して誇張されていることがある。
図1は、本発明の特定の実施例によるリソグラフィ投影装置を概略的に示している。この装置は、
例えば5〜20nmの範囲内の波長を有するEUV放射などの投影ビームPBを供給する放射装置LA、ILと、この特定の場合には、放射システムも放射源LAを備え、
マスクMA(例えばレチクル)を保持するためのマスク・ホルダを備え、部材PLに対して正確に位置決めするための第1の位置決め手段PMに接続された、第1のオブジェクト・テーブル(マスク・テーブル)MTと、
基板W(例えば、レジストで被覆されたシリコン・ウェハ)を保持するための基板ホルダを備え、部材PLに対して正確に位置決めするための第2の位置決め手段PWに接続された、第2のオブジェクト・テーブル(マスク・テーブル)WTと、
マスクMAの照射された部分を基板Wの(例えば、1つまたは複数のダイを含む)ターゲット部分Cに結像させるための投影システム(「レンズ」)PLとを備えている。
ここに示すように、この装置は反射タイプである(すなわち、反射性マスクを有する)。しかし一般に、例えば(透過性マスクを有する)透過タイプのものでもよい。あるいは、この装置は、先に言及したタイプのプログラマブル・ミラー・アレイなど、他の種類のパターン形成手段を使用してもよい。
図1を参照すると、レーザ生成プラズマまたは放電プラズマの照射源LAは、一般に放射ビームを、リソグラフィ投影装置の動作に同期した一連のパルスとして生成する。このビームは、直接、または例えば分光フィルタなどの調節手段を通過した後、照明系(照明器)ILに送られる。照明器ILは、ビーム中の強度分布の外側および/または内側の放射範囲(一般に、それぞれσ−アウター、σ−インナーと呼ばれる)を設定するための調整手段を含むことができる。さらに、一般には積分器やコンデンサなど他の様々な構成要素を含む。この方法では、マスクMA上に衝突するビームPBは、その断面内に所望される均一性および強度分布を有している。
図1に関して、放射源LAはリソグラフィ投影装置のハウジング内にあってもよいが、リソグラフィ投影装置から離し、それが生成する放射ビームを、例えば指向ミラー(directing mirror)など適切な光学部品を使って装置内に導くこともできることに留意すべきである。本発明および特許請求の範囲は、これらのケースの両方を包含する。
ビームPBはその後、マスク・テーブルMT上に保持されるマスクMAに遮断される。マスクMAによって選択的に反射されたビームPBはレンズPLを通過し、このレンズはビームPBを基板Wのターゲット部分Cの上に集束させる。第2の位置決め手段PW(および干渉測定手段IF)を用いて、基板テーブルWTを、例えばビームPBの経路内に異なるターゲット部分Cを位置決めするように、正確に移動させることができる。同様に、例えばマスク・ライブラリからマスクMAを機械的に戻した後、または走査中に、第1の位置決め手段PMを用いて、ビームPBの経路に対してマスクMAを正確に位置決めすることができる。一般に、オブジェクト・テーブルMT、WTの移動は、長いストロークのモジュール(粗い位置決め)および短いストロークのモジュール(細かい位置決め)を用いて実現されるが、これらは図1に明示されていない。しかし、(ステップ・アンド・スキャン式装置ではなく)ウェハ・ステッパの場合には、マスク・テーブルMTを、短いストロークのアクチュエータに接続するだけでもよいし、または固定してもよい。
図示した装置は、異なる2つのモードで使用することができる。
1.ステップ・モードでは、マスク・テーブルMTを本質的に静止状態に保ち、マスクの像全体を1回(すなわち、1回だけの「フラッシュ」)でターゲット部分Cの上に結像させる。次いで、異なるターゲット部分CをビームPBで照射することができるように、基板テーブルWTをxおよび/またはy方向にずらす。
2.走査モードでは本質的に同じ方法が適用されるが、所与のターゲット部分Cを1回だけの「フラッシュ」で露光することはない。その代わり、速度vで所与の方向(例えばy方向など、いわゆる「走査方向」)に移動可能であり、したがってマスク・テーブルMTは投影ビームPBをマスクの像全体を走査する。それと同時に、基板テーブルWTを、速度V=Mv(ただし、MはレンズPLの倍率であり、一般にM=1/4または1/5)で同じ方向または反対方向に同時に移動させる。この方法では、解像度を損なうことなく、比較的大きいターゲット部分Cを露光することができる。
図2Aは、本発明による放射源LAを示している。放射源LAは、複数のプラズマ放電要素240、アノード板220、およびカソード板210を備えている。アノード板220およびカソード板210は、電気的に互いに分離されている。各放電要素240のカソードがカソード板210に電気的に接続され、各放電要素240のアノードがアノード板220に電気的に接続されるように、放電要素240は、アノード板220とカソード板210の間の回転軸線Aの回りに、ほぼ対称に配置されている。放射源LAは、所定の方向に軸線Aの回りを回転することができるように、適切な支持フレーム(図示せず)に取り付けられている。放電要素240の1つが所定の発射位置255にあるとき、放射60が、軸線Bに沿ってアノード板220内の対応する放出口230を通って放出される。あるいは、放射がカソード板210内の放出口を通って放出されるように、放射源LAを構成してもよい。各放電要素240は回転して発射位置255に入る。前記発射位置255はリソグラフィ投影装置に対してほぼ一定である。各放電要素240内部のアノード−カソードのギャップの両端にパルス電圧Vを供給するため、アノード板220およびカソード板210に放電電源(図示せず)が接続されている。さらに、ガスまたは蒸気の形の適切な物質を、放電材料供給源(図示せず)によってアノードとカソードの間に一定濃度で供給する。適切な物質の例は、キセノン、リチウム、スズおよびインジウムである。
図2Bは、リソグラフィ投影装置から見たアノード板220の平面図を示している。円形の放出口230が示されているが、例えば多角形など、どんな形状のものでも使用することができる。同様に、アノード板220およびカソード板210は、同じ円形ディスクとして示されているが、放電要素240を発射位置255に繰り返し配置することができるなら、どんな形状または構成のものを使用してもよい。例えば、冷却を改善する、大きさを縮小する、および/または構成の容易さを改善する目的で、形状を変更することができる。あるいは、材料が放出された放射60に対して透過性である場合には、放出口230なしで材料を使用することができる。
放射源LAの動作は、ガトリング銃の動作と同様である。発射位置255にある放電要素240をプラズマ・ピンチが生成されるように動作させ、次に放射60のパルスを発生させる。放射パルスの放出後、異なる放電要素240が発射位置255に配置されるように放射源LAを回転させる。発射位置255にある放電要素240が動作して、サイクルを繰り返す。各放電要素240は、1回転につき1度使用されるだけで、要素には回復のための時間が与えられる。一般に、回復には冷却および放電状態の復元が含まれる。
あるいは、回転前に複数のプラズマ・ピンチを得るために、各放電要素240を発射位置255で動作させることができる。プラズマ・ピンチの数は、熱負荷、および放電要素240内の放電状態が復元するのに必要な時間を含めたファクターと関係している。
さらに、各放電要素240が回転して発射位置255に入るたびに動作しないように、放電要素240を非連続的に動作させると有利である。換言すれば、放電要素240をスキップさせてもよく、例えば、奇数の放電要素240を用いて、放電を実施する間に放射源が2ピッチ分回転すると、各放電要素は2回転するごとに1度だけ動作することになる。
8個の放電要素240を有する放射源LAが示されているが、当業者には、任意の数の放電要素240を用いることが可能であることが理解されよう。例えば、各放電要素240が1回発射されて5kHzのパルス周波数を必要とする場合、約1000個の放電要素を約5回転毎秒の回転速度で用いればよい。
さらに、制御および/または診断のために、放電要素240を一般に発射位置255で識別すると有利になることがある。測定装置を追加すると、放電要素240は回転して任意の順番で発射位置225に入ること、および/または不適切に動作する1つまたは複数の放電要素240を避けることが可能になる。
放射源LAの構成は、図2Cに示すように簡単にすることができる。ここでは、放電要素240は、個々に識別できる構造体ではなく、適切に形成されたアノード板220およびカソード板210内の対応する位置である。そして、発射位置255にある放電要素240は、アノード板220の位置とカソード板210の位置のある決まった組合せである。発射位置での放電は、本発明の他の実施例に記載するレーザ・トリガなど、任意の都合のよい手段によって誘発することができる。放射源の一部分だけが回転するように、あるいは異なる部分が異なる速度で回転するように、放射源LAをさらに変更可能であることが、当業者には明らかであろう。例えば、アノード板220が過熱する構成要素である場合、アノード板220のみを回転させる、あるいはアノード板220をカソード板210より早く回転させると有利になることがある。こうした場合には、発射位置255にある放電要素240は、アノード板220の位置とカソード板210の位置との特定の組合せである。
記載した実施例は、放出軸線Bに垂直な平面内を回転するものである。あるいは、図3に示すように、放電要素240が放出軸線Bと実質的に同じ面にある軸線Aの回りを回転するように、放射源LAの構成を変更することができる。各放電要素240のカソードが変更されたカソード板310に電気的に接続され、各放電要素240のアノードが変更されたアノード板320に電気的に接続されるように、放電要素240を、変更されたアノード板320と変更されたカソード板310の間にほぼ対称な構成に配置する。
示された実施例は、適切な位置に固定され、その寿命のうちに発射位置255で何回も使用される放電要素240の使用について記載している。放射源LAを、使い捨ての放電要素240の継続的な補給と取り外しを用いるように変更すると有利になることがあり、その場合、各放電要素240は、発射位置255で1回または複数回使用されてから交換される。
他の代替形態では、1つの放射源LA内で実質的に異なる放電要素240を用いることが可能であり、各放電要素240は、例えば波長、断面形状、放出の立体角、大きさ、および/または強度の点で実質的に異なる放射ビーム60を供給する。放射源にこの種の変形形態を提供することにより、特に反射光学系を扱う場合に、リソグラフィ投影装置内の照明器および投影レンズの複雑さを緩和することができる。
さらに、回復時間を短縮するために、
例えば、表面全体に所定の温度の空気をあてること、および/または液体金属や水など適切な液体を通す冷却チャネルを備えた放射源LAを構成することなどによって、放電要素240をさらに冷却する;
放電要素240を複数のグループに分け、1つまたは複数の放電要素240からなるそれぞれのグループが、それ自体の放電電源および/または独立した放電材料供給源をもつようにすることによって、電流および/または放電材料の供給速度を向上させる、という2つの代替形態を用いることができる。
Zピンチ、キャピラリ放電、プラズマ・フォーカス、ホロー・カソード、またはレーザ生成プラズマ装置など、任意の適切なタイプの放電要素240を使用するために、放射源LAの実施例を変更することができる。欧州特許出願第02256907.3号に記載された1つまたは複数の態様を特徴とする放電要素240を使用すると特に有利になることがあり、この特許出願は参照によってここに援用される。これらの態様は既に、パルス・タイミングの安定性の向上、電極腐食の軽減、および変換効率の向上を実現している。
さらに、欧州特許出願第02256907.3号に記載されているような放電要素240の中には、放電を促進するため、および/または放電中に電極を保護するために、キセノン、インジウム、イリジウム、スズ、リチウムなどの液体を放電空間のすぐ近くの領域に運ぶものがある。図16に示した構成を用いて、既存の液体運搬機構を補う、またはさらにそれを置き換えることにより、複数の放電要素240を使用した放射源LAの回復時間を短縮することができる。発射位置255にない放電要素240の少なくとも1つを液体82の槽80中に沈めて、液体がその放電要素240の放電空間に最も近い領域に運ばれるように、回転する放射源LAを配置する。必要な場合には、液体を適切な温度に保つために、槽80は加熱要素(または冷却要素)84を含むことができる。放射源LAが回転するにつれて、各放電要素240は発射位置255で、ゼロ、1つまたは複数のパルスに対して動作し、次いでその放電空間に最も近い領域内に液体82を再び満たすのに必要なだけ長く、一部または全体が槽80中に沈められる。
放射源LAの他の態様が、図4Aに示されている。レーザ・トリガ装置15は、それがレーザ光のビーム380を、リソグラフィ投影装置に向かう軸線Bに沿って放出される放射60の経路を邪魔することなく、放射源LA内の所定のターゲットに向けて発射することができるように配置されている。図4Bに示すように、レーザ・ビーム380を、放出される放射60の経路からずっと離れた経路に沿って放射源LA内に向けると有利になることがある。これは、例えば図2Cに示した放射源LAを用いて実施することができる。
図6Aから図6Eを用いて、レーザ光のビーム380を用いたピンチ誘発の一般原理を説明する。これらの図は、放電要素240の断面を示しており、電気的に分離されたアノード20およびカソード10を含んでいる。アセンブリは実質的に密閉され、放電材料供給源(図示せず)から、例えばキセノンやリチウムなどの低圧のガスまたは蒸気が供給される。アノード20およびカソード10は、放電電源(図示せず)に接続されている。放電場を表す線45も示されている。ピンチ形成は、例えば、波長:254〜1060nm、出力:1〜20nsで10〜100mJ、直径:0.3〜1mmの、適切なレーザ光のビーム380を用いて誘発される。
図6Aに示すように、放電電源(図示せず)および放電材料供給源(図示せず)を用いて、放電要素240をピンチが形成される直前の状態にする。例えば、アノード20を接地し、カソード10を100Hzで11kVの交流電圧に接続し、キセノンを4sccm(標準立方センチメートル毎分)の速度で供給する。放電電源(図示せず)のサイクル中の所定タイミングで、レーザ光のビーム380をアノード表面上の所定の点に向けて発射する(図6B参照)。レーザ光のビーム380は領域337を加熱し、図6Cに示すように、材料35の一部がその表面から蒸発する(アブレーション)。放出された材料35は放電領域に入り、ピンチ効果を誘発し(図6D参照)、その結果、ホット・プラズマを含む収縮(ピンチ)50が生じる(図6E参照)このプラズマは断面積が小さいために高い抵抗を有しており、放電の電気エネルギーをプラズマの温度エネルギーに効率的に変換し、最終的には軸線Bに沿って放出される放射60に変換する。ピンチの後、装置は拡散放電の状態に戻る(図6A参照)。
この方法による誘発により、例えば電極の腐食、電極の変形、放電材料の供給速度の変動、電源の変動などによって引き起こされる、放電のタイミングおよび空間的な位置における不確実な要素が除かれる。
図9Aは、他の実施例の断面を示しており、ホロー・カソード・タイプの放電要素240は、電気的に分離されたアノード20およびホロー・カソード10を備えている。開口911がカソード10内に設けられ、放出開口230がアノード20内に設けられている。アノードは、例えばタングステンなど、任意の適切な材料から構成することができる。アセンブリは実質的に密閉され、放電材料供給源(図示せず)から、例えばキセノンやリチウムなどの低圧のガスまたは蒸気が供給される。アノード20およびカソード10は、放電電源(図示せず)に接続されている。放電電源(図示せず)および放電材料供給源(図示せず)を用いて、放電要素240をピンチが形成される直前の状態にする。放電電源(図示せず)のサイクル中の所定タイミングで、レーザ光のビーム380をアノード20上の放出口230に近い領域に向けて発射する。ピンチ形成および後続の放射の放出は、図6Cから図6Eに示したものと同様の過程で起こる。
ピンチを誘発するのに期待される方法は、図9Bから図9Eに示すように、レーザ光のビーム380をカソード10上の所定のターゲットに向けて発射するものであり、そのターゲットには、
(図9Bに示した)ホロー・カソード10の後部の壁と、
(図9Cに示した)カソードの開口911と、
(図9Dに示した)カソード10とアノード20間の、カソードの開口911に近いカソード10上の点と、
(図9Eに示した)カソード10とアノード20間の放電領域に隣接する表面上の突出した構造体(トリガ・ピン)355とがある。トリガ・ピン355は、カソードと同じ材料、および/またはプラズマを形成するために用いられるガスまたは蒸気の固形物、および/またはその蒸発特性で選択された様々な材料からなっていてもよい。例えば、キセノン、スズ、リチウム、インジウムおよびイリジウムを用いることができる。
ただし、レーザ光のビーム380をアノード20の一部に照射する(図9Aに示す)実施例は、
ピンチの位置、したがって放出される放射の位置は、中心軸線Bに対して安定であり、そのため放射のパルス・エネルギーおよびタイミングが安定する;
ピンチの位置が中心軸線Bに近く、したがって電極の腐食によって引き起こされる破片の生成が少ない、という利点をもたらす。
放出口230に隣接するアノード20の表面上にあることを除いて、図9Eに示したものと類似の突出した構造体(トリガ・ピン)355を使用すると有利になることがある。他の代替形態は、放射源LA内の適切な表面から材料をアブレートすることによって放電材料の一部または全てを提供することができるように、レーザ光のビーム380の位置およびエネルギーを設定するものである。レーザ・ビーム380の代わりに、例えば電子ビームなど、他の放射源または粒子源を使用すると有利になることもある。
例えばカソードなど第1の電極上に衝突するレーザを用いて放電を誘発するとき、例えばアノードなど他の(第2の)電極付近のプラズマは密度が低く、また高い変則的な抵抗を有することがある。実験により、放電が開始可能になる前に、放電電源からのエネルギーの約25%がこの抵抗を克服するために使われ、このために放電要素の効率が低下する可能性があることが示されている。これに対する可能な解決策は、第1の電極からアブレートされた材料が第2の電極の領域内のプラズマ密度を上昇させることができるようになるまで、放電電源からの電流を遅らせる外部スイッチを使用することである。残念なことに、外部スイッチの使用により、一般に放射源の効率を低下させる外部電流のインダクタンスが増大する。特に有利な代替形態を図17Aに示す。この図は放電要素240の中心部分の断面を示しており、カソード10はカソード10から電気的に分離された、突出したトリガ・ピン355を備えている。レーザ・ビーム380がトリガ・ピン355の上に衝突すると、材料がアブレートされて放電空間に向かって広がることが可能になる。放電は、材料がアノードとカソードの両方に到達したときしか開始することができず、したがって生じる時間の遅れは、トリガ・ピン355の大きさ、トリガ・ピン355と放電空間の間の距離、およびレーザ・ビーム380が衝突するトリガ・ピン355の表面と電極(アノードおよびカソード)間の距離を変えることによる影響を受ける可能性がある。このことは、時間の遅れは、放射源の形状、したがって誘電性の影響を与えることなく選択可能であることを意味している。一般に、カソード10とアノード20の間に3.5mm〜6.5mmのギャップを有する放電要素240では、トリガ・ピン355とカソード10の間のギャップは0.3〜0.6mmであり、またカソードの表面より上にあるトリガ・ピンの突出部は0.5〜1.5mmであり、トリガ・ピンの直径は約1〜4mmである。
必要な遅れ、ならびにカソード10およびアノード20の構成に応じて、これに関する多くの変形形態が可能である。こうした変形形態には、図17Bに示すようにトリガ・ピン355の表面を引っ込んだ位置に置くことを含むものと、図17Cに示すようにアノード20の開口を通る以外の経路に沿ってレーザ・ビームを当てるものと、図17Dに示すようにトリガ・ピンをカソード10の表面の高さに保つものと、図17Eに示すようにカソード10/アノード20の非対称な構成を用いたとき、トリガ・ピン355を放電要素240の中央に配置するものとが含まれる。
これまでに記載した実施例と同様に、分離されたトリガ・ピン355はカソードではなくアノードの一部であってもよく、またトリガ・ピン355が電極の一部を形成せずに放射源LA内の独立した構造体であってもよい。さらに、放射源LAの特性をさらに改善するために、周知または新規の複数の誘導方法を組み合わせてもよいことが、当業者には明らかであろう。
また、適切な液体表面をさらに含むトリガ構造体355を使用すると有利になることもある。放電源内部においては、液体を運ぶのに都合のよい方法は、欧州特許出願第02256907.3号に記載されているようなウィック構造を用いることである。図10は、第1の末端が液体82の槽80に浸され、第2の末端が放射ビームまたは粒子ビーム380で照射することができる放電領域のすぐ近くに配置された、改善されたウィック構造70を示している。液体82は、カソードおよび/またはアノードを作成するのに用いる材料の液体、および/またはプラズマを形成するのに用いるガスまたは蒸気の液体、および/またはその蒸発特性で選択された様々な液体とすることができる。適切な物質の例は、キセノン、スズ、リチウム、インジウムおよびイリジウムである。場合によっては、ウィック構造70を通る安定した流れを確保するために、液体82を槽中およびウィック構造内で加熱要素84および184を用いた加熱が必要になることもある。図11Aは、例えば互いに接触して配置されたワイヤなど、ほぼ円筒状の構造体90を備えたウィック構造70の、図10の線XI−XIに沿って得られる断面を示している。構造体90間のギャップ95は、液体82を含むほぼ規則的なチャネルを画定し、したがってギャップ95の形状および大きさは、構造体90の大きさおよび構成による影響を受ける。図12Aは、ウィック構造70の第2の末端の、図11Aの線XII−XIIに沿った断面を示しており、円筒状の構造体90、および液体82を含むギャップ95を示している。液体82は、加熱要素84および184、放電の熱、またはこれらの組合せを用いて最適温度に保たれる。毛管効果の影響を受けて、液体82は槽80から第1の末端からの狭いチャネル95を通り、ウィック構造70の第2の末端へと流れる。図12Aに示すように、液体82は、円筒状の構造体90の構成が規則的であるため、ウィック構造70の全体にわたり均一に分布する。さらに、チャネル95の体積および形状がほぼ等しいため、各チャネル95を通る流速はほぼ同じである。図12Bおよび図12Cに示すように、ビーム380は、ウィック構造70の第2の末端の領域を加熱する。この領域は複数のチャネル95を含み、その中で液体82が加熱され、表面上に蒸気335が生じる。蒸気335は放電領域に入り、ピンチ効果を誘発する。毛管効果の影響を受けて、蒸発した液体335は槽80から補充される。
ビーム380の各パルスによって生じる蒸気335の量は、用いる液体82、ビーム380のスポット・サイズ、チャネル95の大きさ、チャネル95間の距離、およびビーム380のエネルギーなど、重要なパラメータを変化させることによって変えることができる。チャネル95の大きさは、例えば、図11Bに示すように円筒状の構造体90の相対的な配置を変える;円筒状の構造体90の直径を変え、例えば図11Cに示すように断面積を小さくする;構造体90の断面形状を変える;あるいは、異なる直径の円筒状の構造体90を同じウィック構造70にまとめることによって変えることができる。同様に、ビーム380のパルスと放電の間のタイミングは、例えば、ビーム380の各パルスによって生成される蒸気335の量、およびウィック構造70の第2の末端と放電領域の距離を変化させることによって変えることができる。放射源の回復時間(次のXUV放射パルスの誘発が可能になるまでの時間)は、チャネル95の大きさや円筒状の構造体90の粗さなど、流速に影響を与える重要なパラメータを変えることによって最適化することができる。
一般に、液体を蒸発させるのに必要なエネルギーは、実質的に固体より少ないため、ビーム380の照射による円筒状の構造体90への損傷、したがって放射源内の破片はかなり減少する。こうしたウィック構造を使用することにより、ビーム380のエネルギーを減少させることが可能になり、その結果、放射源のエネルギー変換効率が増大する。
ウィック構造70を通る液体82の流れはまた、図15に示すように、圧力をかけた状態でウィック構造70の第1の末端を槽280に連結することによって調節することができる。したがって、チャネル95を通る液体82の流れは、実質的に一定であれ、パルス状であれ、槽280内の液体の圧力を変化させることによって変えることができる。槽280内の圧力は、例えば機械的手段、液体注入、ガス注入、またはこれらの組合せによって増加させることができる。
当業者には、他の形を用いて、液体のためのチャネルの規則的なネットワークを作成可能であることが明らかであろう。図10に示した構造70と構成的に類似した、別のウィック構造170を図13に示す。ここでは、ウィック構造170は、例えば直径が0.1mmで、密に充填されたほぼ同一の球体190を含んでいる。こうした構造は、例えば、高温高圧下で球体を圧縮することによって作成することができる。ウィック構造170の断面XIV−XIVを図14に示すが、球体190が対称かつ規則的である海綿の網状組織に似たチャネルの網状構造195を形成している。動作は既に記載したウィック構造と同様であり、毛管効果を用いて、液体82を構造体170の第1の末端から第2の末端に運ぶ。
放電要素240のさらに他の実施例を、図8Aから図8Eに断面の形で概略的に示す。放電要素240は、電気的に分離されたアノード20およびカソード10を備えている。アセンブリは実質的に密閉され、例えばキセノンやリチウムなどの低温のガスまたは蒸気が放電材料供給源(図示せず)から供給される。アノード20およびカソード10は、例えば100Hzで動作することが可能な交流電圧電源(図示せず)などの放電電源(図示せず)に接続されている。放電場を表す線45も示されている。
放電要素240は、例えば約20nH未満の低いインダクタンスを有するように構成されている。これは以下のものによって実施することができる。すなわち、
例えば数ミリメートルの、カソード10とアノード20の間の最小ギャップ;
例えばアノードで直径約10mm未満の、放電要素240の最小寸法;
放電電源(図示せず)と放電要素240の間の短い接続;
例えばワイヤの代わりに金属板を用いた太い電気接続である。
放電電源のサイクルの所定タイミングで、放電電源からの電流の急速な(例えば100ナノ秒未満で)上昇を可能にして、所定の時間、例えば10マイクロ秒だけ維持することによって電気的トリガを生成する。急速な電流の増加は、システムの低いインダクタンスによって可能になる。
図8Aに示すように、放電要素240をカソード・スポット15からアノード20への拡散放電が存在する状態にする。カソード・スポットは、カソードの表面上に形成されるホット・スポットである。これらは周囲温度よりも温度が高いため、放電に電子を供給し、十分高い温度では、蒸発によって放電にカソード材料を供給する。カソード10からアノード20への電流は、放電電源(図示せず)によって制限される。図8Bに示すように、電流がシステムを流れるときに、2つの物理的効果が生じる。すなわち、低温プラズマ35の形でのカソード・スポット15から放電ギャップ内へのカソード材料の供給、およびピンチ効果によるプラズマ柱の圧縮である。図8Cに示すように、ピンチ効果によってホット・プラズマを含まない収縮(ピンチ)50が生じる。このプラズマは、その断面積が小さいために高い抵抗を有しており、放電の電気エネルギーをプラズマの温度エネルギーに効率的に変換し、最終的には軸線Bに沿って放出される放射60に変換する。圧縮体50の高い抵抗によって電流の減少が起こり、図8Dに示すように、プラズマは再びアノードの壁に向かって膨張する。このプラズマの膨張により、図8Aに示すような拡散放電が形成される。拡散放電の抵抗は低く、したがって再び電流が上昇する。カソード・スポット15が連続的に材料を供給するように放電要素240を動作させることにより、図8Aから図8Dに示されるサイクルが連続的に繰り返される。したがって、電源によって電流が維持される所定の時間、例えば10マイクロ秒だけ、放出される複数の放射パルス60を伴う自己振動(自動トリガ)の型が生成される。
図7は、自動トリガの段階中の放電要素240に関する測定値を示している。このグラフは、作業物質としてリチウム蒸気を用いたときの、出力放射強度701、電源の電流702および電圧703を示している。パルス間の時間704は、(22MHzに相当する)約45nsである。
減少したプラズマ領域の大きさは、システムに入力されたエネルギーの僅かな部分のみが、ピンチの最終段階でプラズマを加熱するために用いられたことを意味する。残りのエネルギーは、誘導エネルギーとして蓄積されるか、またはプラズマを生成するために用いられる。このように低インダクタンスの構成と放電材料の連続供給を組み合わせると、持続的な放電の上に複数のプラズマ・ピンチを重ね合わせることができる。したがって、誘導エネルギーは複数のプラズマ・ピンチに分割され、少なくとも2%の変換効率をもたらす。
あるいは、いくつかの放電材料は、放電要素240内部の適切な表面から材料をアブレートすることによって供給することができる。これは、例えばレーザや電子ビームなど、任意の適切なエネルギー・ビームを用いて実施することができる。
他の代替形態では、所定の位置でのカソード・スポット15の形成は、例えばレーザや電子ビームなど任意の適切なエネルギー・ビームを、その所定の位置に向けて発射することよって促進することができる。
この実施例は、初期のピンチ形成を促進するために電気的トリガを用い、また放電材料35を供給するためにカソード・スポット15を用いる。初期のピンチ形成を、上述の実施例に記載したレーザ・トリガ装置を用いて誘発すると有利になることがある。この場合、放電要素240内での初期のピンチ形成は、放電要素240内部の適切な表面上の所定の位置を照射することによって放電材料35を供給する、図6Aから図6Eに示したものとほぼ同様の過程で起こるはずである。加熱された領域337が連続的に材料を供給するように適切な表面を繰り返し照射することにより、自動トリガの型を維持することができる。前述の実施例に記載した照射される表面の位置についての変形形態も、この実施例に適用することができる。
したがって、本発明の範囲は、例示した実施例によって決定されるのではなく、添付の特許請求の範囲およびそれと同等のものによって決定されるべきである。
本発明による放射源を備えたリソグラフィ投影装置を示す図である。 A〜Cは本発明による複数の放電要素を備えた放射源を示す図である。 本発明による放射源の他の実施例を示す図である。 A〜Bは本発明によるレーザ・トリガ装置を備えた放射源を示す図である。 A〜Eは放電の様々な段階におけるホロー・カソード・タイプの放電を示す図である。 A〜Eは本発明による他のタイプの放電の様々な段階における本発明による放電要素を示す図である。 本発明による自動トリガを用いた放電要素の測定された特性を示す図である。 A〜Dは本発明によるさらに他のタイプの放電の様々な段階における本発明による放電要素を示す図である。 A〜Eは本発明による放電誘発のための様々な形を示す図である。 本発明によるウィック構造を備えた放電誘発のためのターゲット構造体を示す図である。 A〜Cは本発明によるウィック構造の実施可能な断面を示す図である。 A〜Cは本発明による放電誘発の様々な段階におけるウィック構造の断面を示す図である。 本発明によるウィック構造を備えた放電誘発のためのターゲット構造体を示す図である。 本発明によるウィック構造の実施可能な断面を示す図である。 本発明によるウィック構造を備えた放電誘発のためのターゲット構造体を示す図である。 本発明による液体を通る複数の放電要素を備えた放射源を示す図である。 A〜Eは本発明による放電誘発のための様々な形を示す図である。

Claims (6)

  1. 一つ以上の回転位置を有するアノード板と、
    一つ以上の回転位置を有するカソード板と、
    前記アノード板と前記カソード板の間に放電に適切な物質を供給する放電材料供給源と、
    前記アノード板と前記カソード板に接続された放電電源と、
    を有する放射源であって、
    該放射源は、該放射源を使用する装置の光軸線に沿った電磁放射を生成するように前記物質中に放電を起こしてプラズマを形成するように構成されており、
    前記アノード板の一つ以上の回転位置と前記カソード板の一つ以上の回転位置の組合せがプラズマを形成するための放電を起こす一つ以上の放電要素を形成するように、前記アノード板が前記カソード板に対して可動、又は前記カソード板が前記アノード板に対して可動であり、
    各放電要素が前記光軸線と一致するように可動である、
    放射源。
  2. 前記一つ以上の放電要素の各々が、前記カソード板に電気的に接続されたカソードと、前記アノード板に電気的に接続されたアノードとを有し、
    前記放電材料供給源が前記カソードと前記アノードの間に放電に適切な物質を供給するように構成されている、
    請求項1に記載の放射源。
  3. 前記放電要素の各々が前記放射源の回転軸線の回りに配置されている、
    請求項1又は2に記載の放射源。
  4. 前記放電要素内で放電を開始する前に、前記各放電要素の放電空間を画定する表面の少なくとも一部が前記液体中に沈められて、前記放電要素の前記表面が前記液体で覆われる、
    請求項1から3のいずれか一項に記載の放射源。
  5. 放射の投影ビームを提供するための放射システムと、
    パターン形成手段を支持するための支持構造であって、パターン形成手段が所望のパターンに従って投影ビームをパターン形成する働きをする支持構造と、
    基板を保持するための基板テーブルと、
    パターン形成されたビームを基板のターゲット部分の上に投影するための投影システムとを備え、
    前記放射システムが請求項1から請求項4までのいずれか一項に記載の放射源を備える、
    リソグラフィ投影装置。
  6. 少なくとも一部が放射感応性材料の層で被覆された基板を提供するステップと、
    請求項1から請求項4までのいずれか一項に記載の放射源を備える放射システムを用いて、放射の投影ビームを提供するステップと、
    パターン形成手段を用いて、投影ビームに対してその断面内にパターンを付与するステップと、
    パターン形成された放射ビームを放射感応性材料の層からなるターゲット部分に投影するステップと、
    を含むデバイス製造方法。
JP2007120962A 2002-09-19 2007-05-01 放射源、リソグラフィ投影装置及びデバイス製造方法 Expired - Lifetime JP4580959B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP02256486 2002-09-19
EP02256907 2002-10-03

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003363845A Division JP4381094B2 (ja) 2002-09-19 2003-09-17 放射源、リソグラフィ装置、およびデバイス製造方法

Publications (2)

Publication Number Publication Date
JP2007305992A JP2007305992A (ja) 2007-11-22
JP4580959B2 true JP4580959B2 (ja) 2010-11-17

Family

ID=32395460

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2003363845A Expired - Fee Related JP4381094B2 (ja) 2002-09-19 2003-09-17 放射源、リソグラフィ装置、およびデバイス製造方法
JP2007120962A Expired - Lifetime JP4580959B2 (ja) 2002-09-19 2007-05-01 放射源、リソグラフィ投影装置及びデバイス製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2003363845A Expired - Fee Related JP4381094B2 (ja) 2002-09-19 2003-09-17 放射源、リソグラフィ装置、およびデバイス製造方法

Country Status (6)

Country Link
US (1) US7528395B2 (ja)
JP (2) JP4381094B2 (ja)
KR (1) KR100598639B1 (ja)
CN (2) CN100594428C (ja)
SG (1) SG153664A1 (ja)
TW (1) TWI266962B (ja)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5098126B2 (ja) * 2001-08-07 2012-12-12 株式会社ニコン X線発生装置、露光装置、露光方法及びデバイス製造方法
US7154109B2 (en) * 2004-09-30 2006-12-26 Intel Corporation Method and apparatus for producing electromagnetic radiation
CN101065999B (zh) * 2004-11-29 2011-04-06 皇家飞利浦电子股份有限公司 用于产生波长范围从大约1nm至大约30nm的辐射并在光刻装置或计量学中使用的方法和设备
DE102005007884A1 (de) * 2005-02-15 2006-08-24 Xtreme Technologies Gmbh Vorrichtung und Verfahren zur Erzeugung von extrem ultravioletter (EUV-) Strahlung
KR101177707B1 (ko) * 2005-02-25 2012-08-29 사이머 인코포레이티드 Euv 광원의 타겟 물질 핸들링을 위한 방법 및 장치
DE102005023060B4 (de) * 2005-05-19 2011-01-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Gasentladungs-Strahlungsquelle, insbesondere für EUV-Strahlung
DE102005039849B4 (de) * 2005-08-19 2011-01-27 Xtreme Technologies Gmbh Vorrichtung zur Strahlungserzeugung mittels einer Gasentladung
DE102005044141B4 (de) * 2005-09-15 2008-08-14 Qimonda Ag Belichtungsgerät und Verfahren zum Betrieb eines Belichtungsgeräts
JP4429302B2 (ja) * 2005-09-23 2010-03-10 エーエスエムエル ネザーランズ ビー.ブイ. 電磁放射線源、リソグラフィ装置、デバイス製造方法、および該製造方法によって製造されたデバイス
DE102006003683B3 (de) * 2006-01-24 2007-09-13 Xtreme Technologies Gmbh Anordnung und Verfahren zur Erzeugung von EUV-Strahlung hoher Durchschnittsleistung
KR101396158B1 (ko) * 2006-05-16 2014-05-19 코닌클리케 필립스 엔.브이. Euv 램프 및 연질 x-선 램프의 전환 효율을 증가시키는 방법, 및 euv 방사선 및 연질 x-선을 생성하는 장치
US8766212B2 (en) * 2006-07-19 2014-07-01 Asml Netherlands B.V. Correction of spatial instability of an EUV source by laser beam steering
US7518134B2 (en) * 2006-12-06 2009-04-14 Asml Netherlands B.V. Plasma radiation source for a lithographic apparatus
US7759663B1 (en) * 2006-12-06 2010-07-20 Asml Netherlands B.V. Self-shading electrodes for debris suppression in an EUV source
US7838853B2 (en) 2006-12-14 2010-11-23 Asml Netherlands B.V. Plasma radiation source, method of forming plasma radiation, apparatus for projecting a pattern from a patterning device onto a substrate and device manufacturing method
US7518135B2 (en) 2006-12-20 2009-04-14 Asml Netherlands B.V. Reducing fast ions in a plasma radiation source
US20080239262A1 (en) * 2007-03-29 2008-10-02 Asml Netherlands B.V. Radiation source for generating electromagnetic radiation and method for generating electromagnetic radiation
JP2008311465A (ja) * 2007-06-15 2008-12-25 Nikon Corp Euv光源、euv露光装置および半導体デバイスの製造方法
US8227771B2 (en) * 2007-07-23 2012-07-24 Asml Netherlands B.V. Debris prevention system and lithographic apparatus
US8493548B2 (en) * 2007-08-06 2013-07-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP5191541B2 (ja) * 2007-08-23 2013-05-08 エーエスエムエル ネザーランズ ビー.ブイ. 極端紫外線を生成するモジュールおよび方法、並びにリソグラフィ投影装置
US7763871B2 (en) 2008-04-02 2010-07-27 Asml Netherlands B.V. Radiation source
US8901521B2 (en) 2007-08-23 2014-12-02 Asml Netherlands B.V. Module and method for producing extreme ultraviolet radiation
NL2002890A1 (nl) * 2008-06-16 2009-12-17 Asml Netherlands Bv Lithographic apparatus.
JP5588439B2 (ja) * 2008-07-28 2014-09-10 コーニンクレッカ フィリップス エヌ ヴェ Euv放射又は軟x線を生成する方法及び装置
DE102010055889B4 (de) * 2010-12-21 2014-04-30 Ushio Denki Kabushiki Kaisha Verfahren und Vorrichtung zur Erzeugung kurzwelliger Strahlung mittels einer gasentladungsbasierten Hochfrequenzhochstromentladung
CN105573060B (zh) * 2014-10-16 2017-12-01 中芯国际集成电路制造(上海)有限公司 Euv光源和曝光装置、校准装置和校准方法
CN111585152B (zh) * 2020-04-08 2022-02-08 中国科学院微电子研究所 用于激光器腔室的电极、激光器系统及曝光设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6348799A (ja) * 1986-08-14 1988-03-01 Nippon Telegr & Teleph Corp <Ntt> X線発生装置
JPH0278199A (ja) * 1988-09-13 1990-03-19 Toshiba Corp パルスx線源駆動装置
JPH04110800A (ja) * 1990-08-31 1992-04-13 Shimadzu Corp 標的物質の供給装置
JP2000298200A (ja) * 1999-04-13 2000-10-24 Agency Of Ind Science & Technol レーザー励起型x線源
JP2003051398A (ja) * 2001-08-07 2003-02-21 Nikon Corp X線発生装置、露光装置、露光方法及びデバイス製造方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2412869C3 (de) 1974-03-18 1980-10-30 Siemens Ag, 1000 Berlin Und 8000 Muenchen Anzeigevorrichtung mit einem Gasentladungsraum als Elektronenquelle, mit einem Elektronennachbeschleunigungsraum und mit einem Leuchtschirm und Verfahren zum Betrieb dieser Anzeigevorrichtung
CA1048182A (en) 1976-10-26 1979-02-06 Her Majesty The Queen, In Right Of Canada, As Represented By The Minister Of National Defence Laser driven plasma display
GB2101638B (en) 1981-07-16 1985-07-24 Ampex Moveable cathodes/targets for high rate sputtering system
FR2551615A1 (fr) 1983-09-02 1985-03-08 Centre Nat Rech Scient Source de rayons x mous utilisant un microcanal de plasma obtenu par photo-ionisation d'un gaz
DE3332711A1 (de) 1983-09-10 1985-03-28 Fa. Carl Zeiss, 7920 Heidenheim Vorrichtung zur erzeugung einer plasmaquelle mit hoher strahlungsintensitaet im roentgenbereich
JPH06101317B2 (ja) * 1987-08-28 1994-12-12 株式会社日立製作所 X線発生装置
US4928296A (en) 1988-04-04 1990-05-22 General Electric Company Apparatus for cooling an X-ray device
JPH03283398A (ja) * 1990-03-30 1991-12-13 Shimadzu Corp X線発生装置
JPH05190955A (ja) 1992-01-17 1993-07-30 Toshiba Corp ガスレーザ装置
US5317574A (en) 1992-12-31 1994-05-31 Hui Wang Method and apparatus for generating x-ray and/or extreme ultraviolet laser
JP2794154B2 (ja) * 1993-06-04 1998-09-03 ダイヤモンド電機 株式会社 ヒートシンク
US5499282A (en) 1994-05-02 1996-03-12 University Of Central Florida Efficient narrow spectral width soft-X-ray discharge sources
JPH09133485A (ja) * 1995-11-06 1997-05-20 Mitsubishi Materials Corp ヒートパイプ
JPH10185468A (ja) * 1996-12-20 1998-07-14 Akutoronikusu Kk 極大面積比の面間熱拡散接続用プレートヒートパイプ
US6815700B2 (en) * 1997-05-12 2004-11-09 Cymer, Inc. Plasma focus light source with improved pulse power system
DE19962160C2 (de) 1999-06-29 2003-11-13 Fraunhofer Ges Forschung Vorrichtungen zur Erzeugung von Extrem-Ultraviolett- und weicher Röntgenstrahlung aus einer Gasentladung
JP2001023796A (ja) * 1999-07-08 2001-01-26 Shimadzu Corp レーザープラズマx線源
JP2001155897A (ja) * 1999-11-25 2001-06-08 Japan Atom Energy Res Inst 短パルス硬x線発生装置
JP2001160499A (ja) 1999-12-03 2001-06-12 Japan Atom Energy Res Inst 金属プラズマ放電型x線発生装置
CN1300179A (zh) * 1999-12-16 2001-06-20 中国科学院长春光学精密机械研究所 喷气靶激光等离子体软x射线源
TWI246872B (en) * 1999-12-17 2006-01-01 Asml Netherlands Bv Radiation source for use in lithographic projection apparatus
JP2001221583A (ja) * 2000-02-03 2001-08-17 Furukawa Electric Co Ltd:The 冷熱拡散用ヒートパイプおよびその設置方法
RU2206186C2 (ru) * 2000-07-04 2003-06-10 Государственный научный центр Российской Федерации Троицкий институт инновационных и термоядерных исследований Способ получения коротковолнового излучения из газоразрядной плазмы и устройство для его реализации
WO2004023852A2 (en) 2002-09-03 2004-03-18 Parker Medical, Inc. Multiple grooved x-ray generator
SG129259A1 (en) * 2002-10-03 2007-02-26 Asml Netherlands Bv Radiation source lithographic apparatus, and device manufacturing method
US7208746B2 (en) * 2004-07-14 2007-04-24 Asml Netherlands B.V. Radiation generating device, lithographic apparatus, device manufacturing method and device manufactured thereby

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6348799A (ja) * 1986-08-14 1988-03-01 Nippon Telegr & Teleph Corp <Ntt> X線発生装置
JPH0278199A (ja) * 1988-09-13 1990-03-19 Toshiba Corp パルスx線源駆動装置
JPH04110800A (ja) * 1990-08-31 1992-04-13 Shimadzu Corp 標的物質の供給装置
JP2000298200A (ja) * 1999-04-13 2000-10-24 Agency Of Ind Science & Technol レーザー励起型x線源
JP2003051398A (ja) * 2001-08-07 2003-02-21 Nikon Corp X線発生装置、露光装置、露光方法及びデバイス製造方法

Also Published As

Publication number Publication date
JP2004165155A (ja) 2004-06-10
CN101795527A (zh) 2010-08-04
KR100598639B1 (ko) 2006-07-07
JP4381094B2 (ja) 2009-12-09
JP2007305992A (ja) 2007-11-22
US20040105082A1 (en) 2004-06-03
SG153664A1 (en) 2009-07-29
US7528395B2 (en) 2009-05-05
TWI266962B (en) 2006-11-21
TW200413860A (en) 2004-08-01
CN100594428C (zh) 2010-03-17
CN101795527B (zh) 2013-02-20
KR20040025632A (ko) 2004-03-24
CN1497349A (zh) 2004-05-19

Similar Documents

Publication Publication Date Title
JP4580959B2 (ja) 放射源、リソグラフィ投影装置及びデバイス製造方法
JP4188208B2 (ja) 放射線源、リソグラフィ装置およびデバイス製造方法
EP1109427B1 (en) Method for emitting radiation for use in lithographic projection apparatus
JP4073647B2 (ja) 放射線源、リソグラフィ装置、デバイス製造方法、およびそれによって製造したデバイス
KR100777414B1 (ko) 방사선 발생 장치, 리소그래피 장치, 디바이스 제조방법 및그에 의해 제조되는 디바이스
US6590959B2 (en) High-intensity sources of short-wavelength electromagnetic radiation for microlithography and other uses
JP4195071B2 (ja) 平版投影装置用の照射源
EP1401248B1 (en) Radiation source, lithographic apparatus, and device manufacturing method
KR101043014B1 (ko) 제 2 활성화 소스를 갖는 플라즈마 방사선 소스 내의 감소된 고속 이온들
EP1406124A1 (en) Radiation source, lithographic apparatus, and device manufacturing method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4580959

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250