JP4563504B2 - 不揮発性半導体記憶装置及びその製造方法 - Google Patents

不揮発性半導体記憶装置及びその製造方法 Download PDF

Info

Publication number
JP4563504B2
JP4563504B2 JP2009553358A JP2009553358A JP4563504B2 JP 4563504 B2 JP4563504 B2 JP 4563504B2 JP 2009553358 A JP2009553358 A JP 2009553358A JP 2009553358 A JP2009553358 A JP 2009553358A JP 4563504 B2 JP4563504 B2 JP 4563504B2
Authority
JP
Japan
Prior art keywords
wiring
layer
contact plug
resistance change
interlayer insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009553358A
Other languages
English (en)
Other versions
JPWO2009101785A1 (ja
Inventor
巧 三河
良男 川島
浩二 有田
健生 二宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Application granted granted Critical
Publication of JP4563504B2 publication Critical patent/JP4563504B2/ja
Publication of JPWO2009101785A1 publication Critical patent/JPWO2009101785A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/101Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including resistors or capacitors only
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/30Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Shaping switching materials
    • H10N70/063Shaping switching materials by etching of pre-deposited switching material layers, e.g. lithography
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8833Binary metal oxides, e.g. TaOx
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8836Complex metal oxides, e.g. perovskites, spinels

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)

Description

本発明は、電圧パルスの印加により安定に保持する抵抗値が変化する不揮発性半導体記憶装置とその製造方法に関する。
近年、デジタル技術の進展に伴い、携帯型情報機器及び情報家電などの電子機器が、より一層高機能化している。そのため、不揮発性記憶素子の大容量化、書き込み電力の低減、書き込み/読み出し時間の高速化、及び長寿命化の要求が高まっている。
こうした要求に対して、既存のフローティングゲートを用いたフラッシュメモリの微細化が進められている。他方、電圧パルスの印加により安定に保持する抵抗値が変化する抵抗変化素子を記憶部に用いた不揮発性半導体記憶素子(抵抗変化型メモリ)の場合、メモリセルが単純な構造で構成することができるため、さらなる微細化、高速化、及び低消費電力化が期待されている。
したがって、従来、1つのトランジスタと1つの記憶素子とを用いて安定したメモリ動作を行うメモリセルを構成し、このメモリセルを用いて高集積化が行われている。
例えば、1つのトランジスタと1つの抵抗変化素子とをメモリセルとする、いわゆる1T1R型のメモリセルの構成であって、上部電極直下のペロブスカイト構造を有する材料を使用した可変抵抗層の一部に抵抗変化領域を形成して抵抗変化素子としている(例えば、特許文献1参照)。なお、抵抗変化素子の下部電極と上部電極とは抵抗変化層に接する面積が相違する構造として、抵抗変化領域は面積の小さい下部電極直上に形成されている。したがって、従来よりも低い電圧の印加で、小さな接続サイズの電極近傍に確実な抵抗変化を得ることが可能であるので微細化及び消費電力の低減化を行うことができる。
また、1つのトランジスタと1つの強誘電体キャパシタとを用いた1T1C型のメモリセルの構成であって、上部電極の直下に強誘電体キャパシタからなる容量絶縁膜を構成する製造プロセスののちに容量絶縁膜及び上部電極の一部が、例えば他のプロセスにおいて露出して水素ガスなどによりダメージを受けない構成が提案されている(例えば、特許文献2参照)。
また、1つのトランジスタと1つの強誘電体キャパシタとを用いた1T1C型のメモリセルの構成であって、強誘電体キャパシタに電気的に接続される配線が、配線材料を積載後に加工することにより形成された配線構造を持つため、強誘電体キャパシタへのチャージングダメージを回避できる構成が提案されている(例えば、特許文献3参照)。
特開2006−120701号公報 特開2006−270116号公報 特開2007−95898号公報
しかしながら、上記で説明した従来の技術においては、抵抗変化素子などの記憶素子の形成や加工が難しくて微細化が十分でない。
図15に従来の一般的な不揮発性半導体記憶装置10の断面図を示す。具体的には、図15に示すように抵抗変化素子1は、下部電極2、抵抗変化層3及び上部電極4の3層からなり、トランジスタ5とは第1のコンタクトプラグ6により接続されている。また、この抵抗変化素子1とトランジスタ5とからなる1T1R型のメモリセル7は、第2のコンタクトプラグ8及び第3のコンタクトプラグ9により、それぞれ第1の配線11及び第2の配線12に接続されて周辺回路により駆動される。
ところで、この抵抗変化素子1を含むメモリセル7を隣接セル(図示せず)と分離して形成するためにはドット型の孤立パターンで形成するのが一般的である。この場合に、リソグラフィー工程において、レジストは他から孤立したドットパターンの面積のみで密着性を確保する必要があり、隣接セルとの共用できるラインパターンに比べて微細化できないという原理的な課題があった。また、抵抗変化素子1から電位を引き出すために、下部電極2及び上部電極4にそれぞれコンタクトを配する必要があった。そのため下部電極2からの引き出しコンタクト、抵抗変化素子1、上部電極4からの引き出しコンタクトの合計3枚のマスクを追加する必要があった。
より詳しく言うと、図15のような構成では、トランジスタ5のソース/ドレイン領域を形成するのに必要なマスクを除けば、メモリセルの要部である、第1のコンタクトプラグ6、抵抗変化素子1、第3のコンタクトプラグ9、ゲート電極、第2のコンタクトプラグ8、第1の配線11及び第2の配線12、のそれぞれを形成するために合計6枚のマスクを必要とする。
本発明は、上記の課題を解決するもので1つのトランジスタと1つの抵抗変化素子とを用いた1T1R型のメモリセルであって、抵抗変化素子の構造を簡素化することにより、トランジスタ及び引き出し配線などの電気的な接続用プラグを形成する工程に1マスク追加するだけで構成でき、微細化できるメモリセルを有する不揮発性半導体記憶装置及びその製造方法を提供することを目的とする。
上記目的を達成するために、本発明の不揮発性半導体記憶装置は、トランジスタが形成された基板と、この基板上にトランジスタを覆って形成された第1の層間絶縁層と、この第1の層間絶縁層に形成され、トランジスタのドレイン電極またはソース電極と電気的に接続された第1のコンタクトプラグまたは第2のコンタクトプラグと、第1のコンタクトプラグの少なくとも一部を被覆して形成された抵抗変化層と、抵抗変化層上に形成された第1の配線と、第2のコンタクトプラグの少なくとも一部を被覆して形成された第2の配線とを備え、抵抗変化層の端面と第1の配線の端面とは同一面内にある構成からなる。
あるいは本発明の不揮発性半導体記憶装置は、第1主電極と第2主電極と制御電極とを有するトランジスタが形成された基板と、基板上に前記トランジスタを覆うように形成された第1の層間絶縁層と、第1の層間絶縁層を貫通し第1主電極と電気的に接続されるように形成された第1のコンタクトプラグと、第1のコンタクトプラグの上端面の少なくとも一部を被覆するように形成された抵抗変化層と、抵抗変化層上に第1の方向に延びるように形成された第1の配線と、を備え、第1の方向を前後方向とし、第1の方向に垂直で基板の主面に平行な方向を左右方向とするとき、抵抗変化層の前後の端面は第1の配線の端面と同一面内になく、第1の配線の左側の端面と抵抗変化層の左側の端面とが同一面内にあり、第1の配線の右側の端面と抵抗変化層の右側の端面とが同一面内にある。
このような構成とすることにより、1T1R型のメモリセルを構成することができ、抵抗変化素子の下部電極は第1のコンタクトプラグと、また、上部電極は第1の配線とそれぞれ共用することができ、メモリセルの構造を簡素化することができる。抵抗変化層の端面と第1の配線の端面を共有しているので、それぞれを異なるマスクで作成した場合に必要なマスク合わせ余裕などのマージンを取る必要もなく、メモリセルを微細化することができる。また、抵抗変化層は、通常のSi半導体プロセスに1マスク追加するだけで形成できるのでプロセスでの工数が増えることなくプロセスコストも低減可能な不揮発性半導体記憶装置を実現することができる。
別の言い方をすれば、かかる構成では、トランジスタのソース/ドレイン領域を形成するのに必要なマスクを除けば、メモリセルの要部である、第1のコンタクトプラグ及び第2のコンタクトプラグ、ゲート電極、抵抗変化層、第1の配線、のそれぞれを形成するために合計4枚のマスクで足りる。よって、図15のような構成と比較して、必要なマスクの数が2枚少なくなる。
また、第1の配線は、抵抗変化層と接する面に少なくとも貴金属からなる電極層を備えた構成としてもよい。さらに、貴金属は白金からなる構成としてもよい。
このような構成とすることにより、白金などの貴金属からなる電極層を挿入しても、密着性の悪いシリコン酸化膜と接することなく、密着性の良い金属酸化物(タンタル酸化物)からなる抵抗変化層が良いので、剥離の心配がない。また、抵抗変化動作が可能な貴金属系材料からなる電極層がセルサイズを大きくすることなく集積化しやすい構造により実現することができる。
また、本発明の不揮発性半導体記憶装置は、トランジスタが形成された基板と、この基板上にトランジスタを覆って形成された第1の層間絶縁層と、この第1の層間絶縁層に形成され、トランジスタのソース電極またはドレイン電極と電気的に接続された第1のコン
タクトプラグまたは第2のコンタクトプラグと、第1のコンタクトプラグの少なくとも一部を被覆して形成された第1の配線と、第1の配線上に形成され、第1の配線と同一端面を有する第1の抵抗変化層と、第2のコンタクトプラグの少なくとも一部を被覆して形成された第2の配線と、第2の配線上に形成され、第2の配線と同一端面を有する第2の抵抗変化層と、第1の配線、第2の配線、第1の抵抗変化層及び第2の抵抗変化層を覆い第1の層間絶縁層上に形成された第2の層間絶縁層と、第2の層間絶縁層を貫通して第1の抵抗変化層上に形成された第3のコンタクトプラグと、第2の層間絶縁層及び第2の抵抗変化層を貫通して前記第2の配線上に形成された第4のコンタクトプラグと、第3のコンタクトプラグ及び第4のコンタクトプラグ上を覆い第2の層間絶縁層上に形成された第3の配線及び第4の配線とを備えた構成からなる。
このような構成とすることにより、1T1R型のメモリセルを構成することができ、抵抗変化素子の下部電極は第1の配線と、また、上部電極は第3のコンタクトプラグとそれぞれ共用することができ、メモリセルの構造を簡素化して微細化することができる。また、抵抗変化層は、通常のSi半導体プロセスにホール形成用の1マスクを追加するだけで形成できるのでプロセスでの工数が増えることなくプロセスコストも低減可能な不揮発性半導体記憶装置を実現することができる。また、第3のコンタクトホールより第4のコンタクトホールのサイズを大きく設定すれば、サイズが大きくなればエッチングレートが大きいというホールエッチの特徴を生かして、第3のコンタクトホールと第4のコンタクトホールを同時に形成することも可能である。この場合には、マスクの追加をすることがなく、よりプロセスコストが低い不揮発性半導体記憶装置を実現することができる。
また、本発明の不揮発性半導体記憶装置は、トランジスタが形成された基板と、この基板上にトランジスタを覆って形成された第1の層間絶縁層と、この第1の層間絶縁層に形成され、トランジスタのドレイン電極またはソース電極と電気的に接続された第1のコンタクトホール内に形成された第1のコンタクトプラグと、第1の層間絶縁層に形成され、トランジスタのドレイン電極またはソース電極と電気的に接続された第2のコンタクトホール内に形成された第2のコンタクトプラグと、第1のコンタクトプラグの少なくとも一部を被覆して形成された第1の配線と、第2のコンタクトプラグの少なくとも一部を被覆して形成された第2の配線と、第1のコンタクトホール内の底部及び側壁に第1のコンタクトプラグと第1の層間絶縁層とに挟まれ、かつドレイン電極またはソース電極に電気的に接続された抵抗変化層とを備えた構成からなる。
このような構成とすることにより、1T1R型のメモリセルを構成することができ、抵抗変化素子の下部電極はドレイン電極またはソース電極と、また、上部電極は第1の配線及び第1のコンタクトプラグとそれぞれ共用することができ、メモリセルの構造を簡素化して微細化することができる。また、抵抗変化層の底部は、CMPやドライエッチなどの加工に曝されることがないので、プラズマダメージ、ガスやスラリーによるダメージ、還元などの影響を確実に防止できる。また、抵抗変化層は、通常のSi半導体プロセスに1マスク追加するだけで形成できるのでプロセスでの工数が増えることなくプロセスコストも低減可能な不揮発性半導体記憶装置を実現することができる。
また、抵抗変化層は、少なくともタンタル酸化物を含む材料からなる構成としてもよい。
このような構成とすることにより、動作の高速性に加えて可逆的に安定した書き換え特性と良好な抵抗値のリテンション特性を有し、通常のSi半導体プロセスと親和性の高い製造プロセスで製造できる不揮発性半導体記憶装置を実現することができる。
また、本発明の不揮発性半導体記憶装置の製造方法は、トランジスタが形成された基板上にトランジスタを覆って第1の層間絶縁層を形成する工程と、この第1の層間絶縁層を貫通してトランジスタのドレイン電極またはソース電極上に第1のコンタクトホール及び第2のコンタクトホールを形成し、第1のコンタクトホール及び第2のコンタクトホール内に第1のコンタクトプラグ及び第2のコンタクトプラグを形成する工程と、第1のコンタクトプラグの少なくとも一部を被覆して抵抗変化層を形成する工程と、抵抗変化層の少なくとも一部を除去すると同時に、抵抗変化層の少なくとも一部を被覆した第1の配線と、第2のコンタクトプラグの少なくとも一部を被覆した第2の配線を形成する工程とを備えた方法からなる。
このような方法とすることにより、1T1R型のメモリセルを構成することができ、抵抗変化素子の下部電極は第1のコンタクトプラグと、また、上部電極は第1の配線とそれぞれ共用することができ、メモリセルの構造を簡素化することができる。抵抗変化層の端面と第1の配線の端面を共有しているので、それぞれを異なるマスクで作成した場合に必要なマスク合わせ余裕などのマージンを取る必要もなく、メモリセルを微細化することができる。また、抵抗変化層は、通常のSi半導体プロセスに1マスク追加するだけで形成できるのでプロセスでの工数が増えることなくプロセスコストも低減可能な不揮発性半導体記憶装置を実現することができる。
また、本発明の不揮発性半導体記憶装置の製造方法は、トランジスタが形成された基板上にトランジスタを覆って第1の層間絶縁層を形成する工程と、この第1の層間絶縁層を貫通してトランジスタのドレイン電極またはソース電極上に第1のコンタクトホールまたは第2のコンタクトホールを形成し、第1のコンタクトホール及び第2のコンタクトホール内に第1のコンタクトプラグ及び第2のコンタクトプラグを形成する工程と、第1のコンタクトプラグの少なくとも一部を被覆して第1の配線層及び第1の配線層と同一端面を有する第1の抵抗変化層を、第2のコンタクトプラグの少なくとも一部を被覆して第2の配線層及び第2の配線層と同一端面を有する第2の抵抗変化層を形成する工程と、第1の配線と第1の抵抗変化層及び第2の配線と第2の抵抗変化層を覆い第1の層間絶縁層上に第2の層間絶縁層を形成する工程と、第2の層間絶縁層を貫通して第1の抵抗変化層上に第3のコンタクトプラグを形成する工程と、第2の層間絶縁層及び第2の抵抗変化層を貫通して第2の配線上に第4のコンタクトプラグを形成する工程と、第3のコンタクトプラグ及び第4のコンタクトプラグ上を覆い第2の層間絶縁層上に第3の配線及び第4の配線を形成する工程とを備えた方法からなる。
このような方法とすることにより、1T1R型のメモリセルを構成することができ、抵抗変化素子の下部電極は第1の配線と、また、上部電極は第3のコンタクトプラグとそれぞれ共用することができ、メモリセルの構造を簡素化して微細化することができる。また、抵抗変化層は、通常のSi半導体プロセスにホール形成用の1マスクを追加するだけで形成できるのでプロセスでの工数が増えることなくプロセスコストも低減可能な不揮発性半導体記憶装置を実現することができる。また、第3のコンタクトホールより第4のコンタクトホールのサイズを大きく設定すれば、サイズが大きくなればエッチングレートが大きいというホールエッチの特徴を生かして、第3のコンタクトホールと第4のコンタクトホールを同時に形成することも可能である。この場合には、マスクの追加をすることがなく、よりプロセスコストが低い不揮発性半導体記憶装置を実現することができる。
また、本発明の不揮発性半導体記憶装置の製造方法は、トランジスタが形成された基板上にトランジスタを覆って第1の層間絶縁層を形成する工程と、第1の層間絶縁層を貫通してトランジスタのドレイン電極またはソース電極上に第1のコンタクトホールを形成する工程と、第1のコンタクトホール内の底部及び側壁に抵抗変化層を形成する工程と、第1のコンタクトホールの抵抗変化層の内側に第1のコンタクトプラグを形成する工程と、第1の層間絶縁層を貫通して前記トランジスタのドレイン電極またはソース電極上に第2のコンタクトホールを形成する工程と、第2のコンタクトホール内に第2のコンタクトプラグを形成する工程と、抵抗変化層の少なくとも一部を被覆して第1の配線と、第2のコンタクトプラグの少なくとも一部を被覆して第2の配線を形成する工程とを備えた方法からなる。
このような方法とすることにより、1T1R型のメモリセルを構成することができ、抵抗変化素子の下部電極はドレイン電極またはソース電極と、また、上部電極は第1の配線及び第1のコンタクトプラグとそれぞれ共用することができ、メモリセルの構造を簡素化して微細化することができる。また、抵抗変化層の底部は、CMPやドライエッチなどの加工に曝されることがないので、プラズマダメージ、ガスやスラリーによるダメージ、還元などの影響を確実に防止できる。また、抵抗変化層は、通常のSi半導体プロセスに1マスク追加するだけで形成できるのでプロセスでの工数が増えることなくプロセスコストも低減可能な不揮発性半導体記憶装置を実現することができる。
本発明の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。
本発明の不揮発性半導体記憶装置は、抵抗変化素子の上部電極及び下部電極を配線やコンタクトプラグと共用することができる簡素化された1T1R型のメモリセルを構成することができ、抵抗変化層は、通常のSi半導体プロセスに1マスク追加するだけで形成できるものである。
したがって、本発明を適用すると動作の高速性に加えて可逆的に安定した書き換え特性と良好な抵抗値のリテンション特性を有する不揮発性半導体記憶装置が実現でき、通常のSi半導体プロセスと親和性の高い低コストの製造プロセスで製造でき微細化ができるので多大な効果を奏する。
図1(a)は、本発明の実施の形態1に係る不揮発性半導体記憶装置の構成例を示す断面図である。 図1(b)は、図1(a)の一点鎖線に沿って切った断面図である。 図1(c)は、本発明の実施の形態1に係る不揮発性半導体記憶装置の100をアレイ化した構成例の詳細を示す断面図である。 図1(d)は図1(c)の一点鎖線に沿って切った断面図である。 図1(e)は、本発明の実施の形態1に係る不揮発性半導体記憶装置の100をアレイ化した構成例の詳細を示した平面図である。 図1(f)は、本発明の実施の形態1に係る不揮発性半導体記憶装置の100をアレイ化した別の構成例を示した平面図である。 図2(a)から(d)は、本発明の実施の形態1に係る不揮発性半導体記憶装置の製造方法を示す断面図である。 図3(a)及び(b)は、図2(c)及び図2(d)の矢印Xの方向から見た不揮発性半導体記憶装置の要部を拡大した平面図である。 図4は、本発明の実施の形態2に係る不揮発性半導体記憶装置の構成例を示す断面図である。 図5(a)から(c)は、本発明の実施の形態2に係る不揮発性半導体記憶装置の製造方法を示す断面図である。 図6(a)及び(b)は、本発明の実施の形態2に係る不揮発性半導体記憶装置の製造方法を示す断面図である。 図7は、本発明の実施の形態3に係る不揮発性半導体記憶装置の構成例を示す断面図である。 図8(a)から(c)は、本発明の実施の形態3に係る不揮発性半導体記憶装置の製造方法を示す断面図である。 図9(a)及び(b)は、本発明の実施の形態3に係る不揮発性半導体記憶装置の製造方法を示す断面図である。 図10は、本発明の実施の形態4に係る不揮発性半導体記憶装置の構成例を示す断面図である。 図11(a)から(c)は、本発明の実施の形態4に係る不揮発性半導体記憶装置の製造方法を示す断面図である。 図12(a)及び(b)は、本発明の実施の形態4に係る不揮発性半導体記憶装置の製造方法を示す断面図である。 図13は、本発明の実施の形態5に係る不揮発性半導体装置の構成を示すブロック図である。 図14は、図13に示すC部の構成を示す拡大断面図である。 図15は、従来の一般的な不揮発性半導体記憶装置の断面図である。 図16(a)は、本発明の実施の形態1の変形例Aに係る不揮発性半導体記憶装置100Aの構成例を示した断面図である。図16(b)は、図16(a)の断面図の1点鎖線に沿って切った断面図である。 図17(a)〜(d)は本実施の形態1の変形例Aに係る不揮発性半導体記憶装置100Aの製造方法を示す断面図である。 図18(a)及び図18(b)はそれぞれ、図17(c)及び図17(d)において矢印Xの方向から見た不揮発性記憶装置100Aの要部を拡大した平面図である。 図19(a)は、本発明の実施の形態1の変形例Bに係る不揮発性半導体記憶装置100Bの構成例を示した断面図である。図19(b)は、図19(a)の断面図の1点鎖線に沿って切った断面図である。 図20(a)〜(d)は本実施の形態1の変形例Bに係る不揮発性半導体記憶装置100Bの製造方法を示す断面図である。 図21(a)及び図21(b)はそれぞれ、図20(c)及び図20(d)において矢印Xの方向から見た不揮発性記憶装置100Bの要部を拡大した平面図である。 図22(a)は、本発明の実施の形態1の変形例Cに係る不揮発性半導体記憶装置100Cの構成例を示した断面図である。図22(b)は、図22(a)の断面図の1点鎖線に沿って切った断面図である。 図23(a)〜(c)は不揮発性半導体記憶装置100Cの製造方法を示す断面図である。 図24(a)〜(c)は不揮発性半導体記憶装置100Cの製造方法を示す断面図である。 図25(a)及び図25(b)はそれぞれ、図23(b)及び図23(c)において矢印Xの方向から見た不揮発性記憶装置100Cの要部を拡大した平面図である。
以下、本発明の実施の形態に係る不揮発性半導体記憶装置とその製造方法について、図面を参照しながら説明する。なお、図面において、同じ符号が付いたものは、説明を省略する場合がある。また、図面は理解しやすくするために、それぞれの構成要素を模式的に示したもので、形状などについては正確な表示ではない。
(実施の形態1)
図1(a)は、本発明の実施の形態1に係る不揮発性半導体記憶装置100の構成例を示した断面図である。
図1(b)は、図1(a)の一点鎖線に沿って切った断面図である。
図1(a)に示すように本実施の形態1の不揮発性半導体記憶装置100は、トランジスタ101が形成された基板102と、この基板102上にトランジスタ101を覆って形成された第1の層間絶縁層103と、この第1の層間絶縁層103を貫通して形成され、トランジスタ101のドレイン電極101aまたはソース電極101bと電気的に接続された第1のコンタクトプラグ104または第2のコンタクトプラグ105とを有している。そして、不揮発性半導体記憶装置100は、この第1のコンタクトプラグ104を完全に被覆して形成された抵抗変化層106と、この抵抗変化層106上に形成された第1の配線107と、第2のコンタクトプラグ105の少なくとも一部を被覆して形成された第2の配線108とを備え、抵抗変化層106の端面は第1の配線107の端面と同一面を共有している。
別の言い方をすれば、トランジスタ101は、第1主電極(ドレイン電極101a)と第2主電極(ソース電極101b)と制御電極(ゲート電極101e)とを有し、第1主電極は第1のコンタクトプラグ104と接続され、第2主電極は第2のコンタクトプラグ105と接続されている。なお、第1主電極および第2主電極のいずれがドレイン電極となりいずれがソース電極となるかは特に限定されず、両者が入れ替わる場合もある。
抵抗変化層106は第1のコンタクトプラグ104の上端面(この上端面は層間絶縁層103の上端面と同一平面をなす)を完全に被覆している。抵抗変化層106は、少なくとも第1のコンタクトプラグ104の上端面の一部を被覆していればよいが、本実施形態のように完全に被覆していることが好ましい。
また、第1の配線107は、抵抗変化層106と接する面に少なくとも貴金属からなる電極層109を備えており、この電極層109は、例えば白金からなる材料で形成されている。白金などの貴金属からなる電極層109を介して第1の配線107と抵抗変化層106とを接合することにより、第1の配線107と抵抗変化層106との密着性が向上するとともに、動作可能な第1の配線107及び貴金属系材料からなる電極層109からなる電極層がセルサイズを大きくすることなく集積化しやすい構造により実現することができる。
また、後述するように第1の配線107をリソグラフィー工程でのマスクとして電極層109及び抵抗変化層106の不要な部分を除去するので、抵抗変化層106の端面と第1の配線107の端面を含む端面が同一面内に形成されている。
なお、ドレイン電極101a及びソース電極101bの下部にはそれぞれドレイン領域101c及びソース領域101dが基板102の表面に形成され、ドレイン電極101a及びソース電極101bの間にはゲート電極101eが形成されている。
また、第1の層間絶縁層103を貫通して第1のコンタクトプラグ104及び第2のコンタクトプラグ105が埋め込まれた第1のコンタクトホール104a及び第2のコンタクトホール105aが形成されている。
したがって、抵抗変化素子111は、第1の配線107及び電極層109からなる上部電極と第1のコンタクトプラグ104からなる下部電極とに抵抗変化層106が挟まれて、第1の配線107の下部に微細化されて構成されている。そして、この抵抗変化素子111とトランジスタ101とが直列に接続されてメモリセル112が構成されている。
ここで、抵抗変化層106は、少なくともタンタル酸化物を含む材料からなる構成としてもよい。
このような構成とすることにより、動作の高速性に加えて可逆的に安定した書き換え特性と良好な抵抗値のリテンション特性を有し、通常のSi半導体プロセスと親和性の高い製造プロセスで製造できる不揮発性半導体記憶装置100を実現することができる。
図1(c)は、本発明の実施の形態1に係る不揮発性半導体記憶装置の100をアレイ化した構成例の詳細を示す断面図であり、図1(d)は図1(c)の一点鎖線に沿って切った断面図である。
図1(c)、(d)に示すように、第2の配線108は、層間絶縁層103の上に形成された第2の層間絶縁層113を貫通する第3のコンタクト114を介して第3の配線115と接続される。第1の配線107と第3の配線115とは基板102の厚み方向から見て互いに直交している。
図1(e)は、本発明の実施の形態1に係る不揮発性半導体記憶装置の100をアレイ化した構成例の詳細を示した平面図である。
トランジスタのゲート電極101eが複数の素子に共通して形成され、ソース領域101c、ドレイン領域101dが独立して形成されている。第1の配線107及び第3の配線115も複数の素子に共通して形成され、個別形成された第1のコンタクトプラグ104上に電極層109及び抵抗変化層106が矩形状に形成されている。
一方、第2のコンタクトプラグ105の上端面を完全に被覆するように、第2の配線108が形成されている。第2の配線108の上には、第3のコンタクトプラグ114が形成されている。複数の第3のコンタクトプラグ114の上端面を完全に被覆するように第3の配線115が形成されている。すなわちドレイン電極101bは、第2のコンタクトプラグ105、第2の配線108、第3のコンタクトプラグ114を介して、第3の配線115と電気的に接続されている。
別の言い方をすると、不揮発性半導体記憶装置100は、基板102の主面に平行な第1の平面内において第1の方向に延びるように互いに平行に形成された第1の配線107と、第1の平面に平行な第2の平面内において第1の方向と立体交差する第2の方向に延びるように互いに平行に形成された第3の配線115とを備えている。基板102の厚み方向から見ると、第1の配線107と第3の配線115とは直交している。
第1の配線107と第3の配線115との立体交差点において、第1の配線107の下方の基板上にソース電極101aが形成されている。また、第3の配線115の下方において第1の配線107が存在しない部分の基板上にはドレイン電極101bが形成されている。さらに、ソース電極101aとドレイン電極101bとの間には、層間絶縁層103の中にゲート電極101eが形成されている。第1の配線107及び第3の配線115は、複数のメモリセル112と電気的に接続されている。
ソース電極101aと第1の配線107との間には、層間絶縁層103を貫通する第1のコンタクトプラグ104と、第1のコンタクトプラグ104の上端面を完全に被覆する抵抗変化層108と、電極層109とがこの順に積層されている。
第1の配線107が延びる方向(図1(b)における左右)を前後方向(第1の方向)とし、第1の方向に垂直で基板102の主面に水平な方向(図1(b)における紙面に垂直な方向)を左右方向とし、基板102の主面に垂直な方向(図1(b)における上下)を上下方向とするとき、抵抗変化層106の前後の端面は第1の配線107に覆われていて、抵抗変化層106の前後の端面と第1の配線107の前後の端面とは同一面内になく、抵抗変化層106の左側の端面と第1の配線107の左側の端面とは図1(a)に示すように同一面内にあり、抵抗変化層106の右側の端面と第1の配線107の右側の端面とは図1(a)に示すように同一面内にある。なお、上述の説明においていずれを左と呼び、いずれを右と呼ぶかは任意である。
本アレイの特徴は、第1の配線107の下層に複数の抵抗変化素子111が形成されていて、微細化に有利なレイアウトとなっている。
また、図1(f)は、本発明の実施の形態1に係る不揮発性半導体記憶装置の100をアレイ化した別の構成例を示した平面図である。
図1(c)との違いは、第2のコンタクトプラグ105、第2の配線108が隣接するメモリセル112同士で共有されている点である。共有される分だけメモリセル112の面積を小さくすることができ、微細化に有利である。
次に、本発明の不揮発性半導体記憶装置100の動作例を示す。
まず、抵抗変化素子111の安定に保持する抵抗値を変化させ、不揮発性半導体記憶装置100にデータを書き込む場合について示す。ここで、抵抗変化層106の抵抗値を変化させるために必要なしきい値電圧をVpとする。
第1の配線107に電圧Vpを印加し、第2の配線108にVpの2倍の電圧2Vpを印加し、ゲート電極101eにトランジスタ101をONにする所定の電圧を印加する。このようにすると、電圧2Vpは第2のコンタクトプラグ105とトランジスタ101を経由して、抵抗変化素子111の下部電極である第1のコンタクトプラグ104に電圧2Vpが伝達される。
そして、抵抗変化素子111の第1のコンタクトプラグ104と上部電極である第1の配線107との間には電圧Vpが印加されるので、抵抗変化層106の抵抗値が変化し、抵抗変化素子111に新たなデータが書き込まれる。
また、第1の配線107に電圧Vpを印加し、第2の配線108に0Vの電圧を印加し、トランジスタ101をONにすると、上記と同様の経路をたどって、抵抗変化素子111の上部電極である第1の配線107と下部電極である第1のコンタクトプラグ104との間には電圧―Vpが印加されるので、抵抗変化素子111には上記と逆のデータが書き込まれる。
次に、不揮発性半導体記憶装置100のデータの読み出し動作を示す。第1の配線107に電圧Vpを印加し、第2の配線108に電圧Vpと2Vpとの間の大きさの電圧(Vp+ΔV)を印加し、ゲート電極101eに所定の電圧を印加しトランジスタ101をONにする。このようにすると、上記と同様に抵抗変化素子111にしきい値電圧Vpよりも小さい電圧ΔVが印加される。この場合には、抵抗変化素子111のデータは変化せず、抵抗変化素子111の安定に保持している抵抗値に対応した電流が流れる。この電流を
読み取ることにより、抵抗変化素子111に記憶されているデータを読み取ることができる。
このような構成とすることにより、1T1R型のメモリセル112を構成することができ、抵抗変化素子111の下部電極は第1のコンタクトプラグ104と、また、上部電極は第1の配線107とそれぞれ共用することができ、メモリセルの構造を簡素化して微細化することができる。抵抗変化層106の端面と第1の配線107の端面を共有(同一面内に形成)しているので、それぞれを異なるマスクで作成した場合に必要なマスク合わせ余裕などのマージンを取る必要もなくメモリセルを微細化することができる。また、抵抗変化層106は、後述するように通常のSi半導体プロセスに1マスク追加するだけで形成できるので、プロセスでの工数が増えることなく、プロセスコストも低減可能な不揮発性半導体記憶装置を実現することができる。
図2(a)から(d)は本実施の形態1の不揮発性半導体記憶装置100の製造方法を示す断面図である。
次に、図2(a)から(d)を用いて、本実施の形態1の不揮発性半導体記憶装置100の製造方法について説明する。
図2に示すように本実施の形態1の製造方法は、トランジスタ101が形成された基板102上に第1の層間絶縁層103を形成する工程と、第1のコンタクトプラグ104及び第2のコンタクトプラグ105を形成する工程と、抵抗変化層106を形成する工程と、第1の配線107を形成する工程と、第2の配線108を形成する工程とを備えている。
まず、図2(a)に示すように、第1の層間絶縁層103を形成する工程において、トランジスタ101が形成された基板102上にトランジスタ101を覆って第1の層間絶縁層103を形成する。
次に、図2(b)に示すように、第1のコンタクトプラグ104及び第2のコンタクトプラグ105を形成する工程において、この第1の層間絶縁層103を貫通してトランジスタ101のドレイン電極101aまたはソース電極101b上に第1のコンタクトホール104a及び第2のコンタクトホール105aを形成し、第1のコンタクトホール104a及び第2のコンタクトホール105a内に第1のコンタクトプラグ104及び第2のコンタクトプラグ105を形成する。
次に、図2(c)に示すように、抵抗変化層106を形成する工程において、第1のコンタクトホール104aを完全に被覆して抵抗変化層106及び電極層109を形成する。この電極層109には、抵抗変化層106の機能を十分に引き出し、即ち抵抗変化させやすい電極として、貴金属材料、例えば白金層を用いてもよい。
抵抗変化層106及び電極層109は、まず層間絶縁層103の上面全面に抵抗変化材料及び電極材料を堆積させ、所定形状のマスク(フォトレジスト等)を被覆した上でエッチングすることにより形成しうる。
そして、図2(d)に示すように、配線層107及び配線層108を形成する工程において、抵抗変化層106及び電極層109上の少なくとも一部を被覆して、抵抗変化層106及び電極層109の一部を除去するためのマスクとしても用いる第1の配線107を形成する工程と、第2のコンタクトプラグ105の少なくとも一部を被覆して第2の配線108を形成する工程とにより不揮発性半導体記憶装置100を製造することができる。
第1の配線107及び第2の配線108は、まず層間絶縁層103の上面全面において抵抗変化層106及び電極層109を覆うように、配線材料を堆積させ、所定形状のマスク(フォトレジスト等)を被覆した上でエッチングすることにより形成しうる。このとき、第1の配線107を形成すると共に抵抗変化層106及び電極層109のエッチングが連続して行われても良いし、第1の配線107を形成した後でフォトレジストが除去され、第1の配線107をマスクとして抵抗変化層106及び電極層109のエッチングが行われても良い。
第1の配線107と第2の配線108とは、同一の工程で同時平行的に形成されても良い。この場合には、第1の配線107を形成する工程が第2の配線108を形成する工程をも兼ねることになる。
なお、第1の配線107が抵抗変化層106の電極としても機能するのであれば、製造方法の簡略化の視点から、電極層109を形成しなくてもよい。
このような方法とすることにより、1T1R型のメモリセル112を構成することができ、抵抗変化素子111の下部電極は第1のコンタクトプラグ104と、また、上部電極は第1の配線107とそれぞれ共用することができ、メモリセル112の構造を簡素化して微細化することができる。また、抵抗変化層106は、通常のSi半導体プロセス、例えばCMOSの製造工程に1マスク追加するだけで形成できるため、プロセスでの工数が増えることなくプロセスコストも低減可能な不揮発性半導体記憶装置100を実現することができる。
必要なマスクの数が少なくなる一つの要素は、抵抗変化層と第1の配線とで左右の端面が同一平面内にあることである。かかる構成により、第1の配線(あるいは第1の配線を形成するためのフォトレジスト等のマスク)をマスクとして抵抗変化層の形状を定めることができる。つまり、第1の配線(あるいは第1の配線を形成するためのフォトレジスト等のマスク)を抵抗変化層のマスクにも流用することで、必要なマスクの数が削減される。
また、図15のように単独で抵抗変化層106を形成する場合、矩形形状を確実に実現するために、フォトレジストの密着性を十分に確保する必要がある。よって、素子面積をある程度大きくしなければならない。本実施形態では抵抗変化層106が、ライン状に形成された抵抗変化材料と、ライン状に形成された配線材料との交差部分に形成される。ライン状に抵抗変化材料を形成する場合、矩形形状に比べ幅を狭くできる。よって、図15のような構成に対して素子面積をより小さくできる。
なお、図2(c)に示すように抵抗変化層106と第1の配線107との間に貴金属からなる、例えば白金層を形成してもよい。
図3(a)及び(b)は、図2(c)及び図2(d)の矢印Xの方向から見た不揮発性半導体記憶装置100の要部を拡大した平面図を示す。
ただし、図3(a)は、図2(c)において抵抗変化層106及び電極層109の上に第1の配線107が形成されているものの、左右にはみ出ている抵抗変化層106及び電極層109の除去が完了していない状態を示している。
図3(a)に示すように、第1のコンタクトプラグ104を覆って抵抗変化層106及び電極層109が長方形の形状に形成された上に、これと直交するように長方形の形状の第1の配線107が形成されている。この第1の配線107は、例えばAlなどの導電性材料からなるもので、この第1の配線107をマスクとして抵抗変化層106及び電極層109の不要部分を除去すると図3(b)に示すように微細化された抵抗変化素子111を製造することができる。
なお、抵抗変化層106は、少なくともタンタル酸化物を含む材料からなる方法としてもよい。
このような方法とすることにより、動作の高速性に加えて可逆的に安定した書き換え特性と良好な抵抗値のリテンション特性を有し、通常のSi半導体プロセスと親和性の高い製造プロセスを実現することができる。
本発明の実施の形態1に係る不揮発性半導体記憶装置100の構成例においては、抵抗変化層106と第1の配線107の端面が共有(端面が同一面内に存在)されているが、製造時(エッチング等)の形状のばらつきにより、これらの端面に凹凸があってもかまわない。また、第1のコンタクトプラグ104とトランジスタのドレイン電極101a、第2のコンタクトプラグ105とトランジスタのソース電極101bがそれぞれ直接接続されているが、その間に配線、コンタクトプラグなどが配置されていても、電気的に接続さえされていればかまわない。
[変形例A]
図16(a)は、本発明の実施の形態1の変形例Aに係る不揮発性半導体記憶装置100Aの構成例を示した断面図である。図16(b)は、図16(a)の断面図の1点鎖線に沿って切った断面図である。
図1(a)に示された不揮発性半導体記憶装置100との違いについて説明する。不揮発性半導体記憶装置100の電極層109は、基板102の厚み方向から見ると、抵抗変化層106と同一の形状をしている(図1(c)参照)。これに対し不揮発性半導体記憶装置100Aの電極層109’は、基板102の厚み方向から見ると、第1の配線107と同一の形状を有している点で構造が異なる(図16(b)参照)。すなわち、第1の配線107と電極層109’とは、いずれも第1の方向に延びる様に形成され、その幅(第1の方向を前後方向、基板の厚み方向を上下方向としたときの左右方向の幅)は互いに等しい。
不揮発性半導体記憶装置100は、メモリセル112ごとに電極層109が分離されている。これに対し不揮発性半導体記憶装置100Aでは、複数のメモリセル112にわたって電極層109’が共有される。かかる構成によれば、電極層の微細加工の自由度が向上し、より微細なセルをアレイ化しやすくなる。
図17(a)〜(d)は本実施の形態1の変形例Aに係る不揮発性半導体記憶装置100Aの製造方法を示す断面図である。不揮発性半導体記憶装置100の製造方法との違いについて説明する。図17(a)〜(b)については図2(a)〜(b)と同様であるため、詳細な説明を省略する。
図17(c)は、抵抗変化層106を形成する工程を示す図である。該工程においては、第1のコンタクトホール104aを完全に被覆するように(第1のコンタクトプラグ104の上端面を完全に被覆するように)抵抗変化層106が形成される。ここでは、電極層109は形成せずに、層間絶縁層103の全面に抵抗変化材料を堆積させた後で所望のマスクを用いてエッチングすることにより、抵抗変化層106のみを形成する。
図17(d)は、第1の配線107及び第2の配線108を形成する工程を示す図である。該工程において、抵抗変化層106の少なくとも一部を被覆して、抵抗変化層106の一部を除去するためのマスクとしても用いうる、電極層109’及びその上方の第1の配線107を形成する工程と、第2のコンタクトプラグ105の少なくとも一部を被覆して、同様に電極層109’及びその上方の第2の配線108を形成する工程とにより不揮発性半導体記憶装置100Aを製造することができる。
電極層109’及び第1の配線107及び第2の配線108は、まず層間絶縁層103の上面全面において抵抗変化層106を覆うように、電極材料と配線材料とを堆積させ、所定形状のマスク(フォトレジスト等)を被覆した上でエッチングすることにより形成しうる。このとき、第1の配線107と電極層109’とを形成すると共に抵抗変化層106のエッチングが連続して行われても良いし、第1の配線107と電極層109’とを形成した後でフォトレジストが除去され、第1の配線107及び電極層109’をマスクとして抵抗変化層106のエッチングが行われても良い。
第1の配線107と第2の配線108とは、同一の工程で同時平行的に形成されても良い。この場合には、第1の配線107を形成する工程が第2の配線108を形成する工程をも兼ねることになる。
第1の配線107、第2の配線108を形成する場合のベース面の段差が大きくなると断線などの問題が発生しやすくなる。抵抗変化させるための電極材料の問題等から電極層109を設けなければならない場合、図1(b)のような構成では段差が抵抗変化層106と電極層109の合計となるが、図17(d)では抵抗変化層106のみとなる。本変形例では、第1の配線107、第2の配線108のリソグラフィー工程における焦点深度が向上し、プロセスばらつきが低減され、より微細な配線を形成することができる。
図18(a)及び図18(b)はそれぞれ、図17(c)及び図17(d)において矢印Xの方向から見た不揮発性記憶装置100Aの要部を拡大した平面図である。
ただし、図18(a)は、図17(c)において抵抗変化層106の上に電極層109’及び第1の配線107が形成されているものの、左右にはみ出ている抵抗変化層106の除去が完了していない状態を示している。
図18(a)に示すように、第1のコンタクトプラグ104を覆って抵抗変化層106が長方形の形状に形成された上に、これと直交するように長方形の形状(短冊状、ライン状)の第1の配線107及び電極層109’が形成されている。この第1の配線107は、例えばAlなどの導電性材料からなる。この第1の配線107をマスクとして抵抗変化層106の不要部分を除去すると図18(b)に示すように微細化された抵抗変化素子111Aを製造することができる。
[変形例B]
図19(a)は、本発明の実施の形態1の変形例Bに係る不揮発性半導体記憶装置100Bの構成例を示した断面図である。図19(b)は、図19(a)の断面図の1点鎖線に沿って切った断面図である。
図1(a)に示された不揮発性半導体記憶装置100との違いについて説明する。不揮発性半導体記憶装置100の電極層109は、基板102の厚み方向から見ると、抵抗変化層106と同一の形状をしている(図1(c)参照)。これに対し不揮発性半導体記憶装置100Bの電極層109”は充填層104’上に(第1のコンタクトホール104a内に)埋め込まれている点で構造が異なる。すなわち電極層109”は、充填層104’とともに、第1のコンタクトプラグを構成する。充填層104’は、その上端面が第1のコンタクトホール104aの内部にある(層間絶縁層103の上端面よりも低い)点を除けば第1のコンタクトプラグ104と同様の材料および方法で構成しうる。
図20(a)〜(d)は本実施の形態1の変形例Bに係る不揮発性半導体記憶装置100Bの製造方法を示す断面図である。不揮発性半導体記憶装置100の製造方法との違いについて説明する。図20(a)、(c)、(d)については図2(a)、(c)、(d)と同様であるため、詳細な説明を省略する。
図20(b)の電極層109を形成する工程において、例えばエッチバックにより、第1のコンタクトプラグ104及び第2のコンタクトプラグ105の上部に凹部を形成することで、充填部104’、105’が形成される。充填部104’、105’の上にある凹部を完全に充填するように、電極材料が堆積される。更にCMP法により、第1の層間絶縁膜103上の電極材料が除去され、凹部を充填する形状の電極層109”が形成される。充填部104’と電極層109”とで第1のコンタクトプラグが構成され,充填部105’と電極層109”とで第2のコンタクトプラグが構成される。抵抗変化層106は、第1のコンタクトプラグの上端面(電極層109”の上端面)を完全に被覆する。
コンタクトホールを充填する導電体を「コンタクトプラグ」と呼ぶ。コンタクトプラグは単層でも複層でもよい。コンタクトプラグの上端面が抵抗変化型素子の下部電極として機能する。
以上の製造方法より、化学反応性に乏しい材料であっても、エッチングを用いることなくCMPなどの機械研磨でパターニングすることができるので、電極層の微細加工の自由度が向上し、より微細なセルを形成しやすいという効果を奏する。
図21(a)及び図21(b)はそれぞれ、図20(c)及び図20(d)において矢印Xの方向から見た不揮発性記憶装置100Bの要部を拡大した平面図である。
ただし、図21(a)は、図17(c)において抵抗変化層106の上に第1の配線107が形成されているものの、左右にはみ出ている抵抗変化層106の除去が完了していない状態を示している。
図21(a)に示すように、第1のコンタクトプラグ(電極層109”)を覆って抵抗変化層106が長方形の形状に形成された上に、これと直交するように長方形の形状の第1の配線107が形成されている。この第1の配線107は、例えばAlなどの導電性材料からなる。第1の配線107をマスクとして抵抗変化層106の不要部分を除去すると図21(b)に示すように微細化された抵抗変化素子111Bを製造することができる。
[変形例C]
図22(a)は、本発明の実施の形態1の変形例Cに係る不揮発性半導体記憶装置100Cの構成例を示した断面図である。図22(b)は、図22(a)の断面図の1点鎖線に沿って切った断面図である。
図1(a)に示された不揮発性半導体記憶装置100との違いについて説明する。不揮発性半導体記憶装置100Cでは、電極層109、抵抗変化層106の側壁部(電極層109及び抵抗変化層106の前後方向の端面部分)に側壁絶縁膜113が形成されている点で構造が異なる。
不揮発性半導体記憶装置100Cでは、側壁絶縁膜113が形成されているために、電極層109及び抵抗変化層106の段差が緩和され、第1の配線107’が段差部で断線しにくい。また第1の配線107’の配線抵抗のばらつきも低減できる。
図23(a)〜(c)、図24(a)〜(c)は不揮発性半導体記憶装置100Cの製造方法を示す断面図である。図24(a)、(b)、(c)はそれぞれ、図23(a)、(b)、(c)の断面図の1点鎖線に沿って切った断面図である。
本実施の形態1の不揮発性半導体記憶装置100Cの製造方法について説明する。図23(a)及び図24(a)よりも前の工程については、図2(a)、(b)と同様であるため、説明を省略する。
図23(a)及び図24(a)は、電極層109及び抵抗変化層106を形成する工程を示す図である。該工程においては、第1のコンタクトホール104aを完全に被覆するように(第1のコンタクトプラグ104の上端面を完全に被覆するように)抵抗変化層106及び電極層109が形成される
図23(b)及び図24(b)は、側壁絶縁膜113を形成する工程を示す図である。該工程においては、電極層109及び抵抗変化層106を完全に被覆するように層間絶縁層103の上面全面に絶縁膜を形成し、全面をエッチバックすることで、電極層109及び抵抗変化層106からなる段差の側壁部に側壁絶縁膜113が形成される。
図23(c)及び図24(c)は、第1の配線層107’及び第2の配線層108を形成する工程を示す図である。該工程において、抵抗変化層106及び電極層109及び側壁絶縁膜113の少なくとも一部を被覆して、抵抗変化層106及び電極層109及び側壁絶縁膜113の一部を除去するためのマスクとしても用いうる、第1の配線107’を形成する工程と、第2のコンタクトプラグ105の少なくとも一部を被覆して第2の配線108を形成する工程とにより不揮発性半導体記憶装置100Cを製造することができる。
第1の配線107’及び第2の配線108は、まず層間絶縁層103の上面全面において抵抗変化層106及び電極層109を覆うように、配線材料とを堆積させ、所定形状のマスク(フォトレジスト等)を被覆した上でエッチングすることにより形成しうる。このとき、第1の配線107’を形成すると共に抵抗変化層106及び電極層109のエッチングが連続して行われても良いし、第1の配線107’を形成した後でフォトレジストが除去され、第1の配線107’をマスクとして抵抗変化層106及び電極層109のエッチングが行われても良い。
第1の配線107’と第2の配線108とは、同一の工程で同時平行的に形成されても良い。この場合には、第1の配線107’を形成する工程が第2の配線108を形成する工程をも兼ねることになる。
以上の製造方法では、抵抗変化層106、電極層109の段差が低減されるため、第1の配線107’、第2の配線108を形成する際のリソグラフィー工程において、第1の配線107’が段差部で断線しにくい。また第1の配線107’の配線抵抗のばらつきも低減できる。
図25(a)及び図25(b)はそれぞれ、図23(b)及び図23(c)において矢印Xの方向から見た不揮発性記憶装置100Cの要部を拡大した平面図である。
ただし、図25(a)は、図23(b)において抵抗変化層106及び電極層109の上に第1の配線107’が形成されているものの、左右にはみ出ている抵抗変化層106及び電極層109の除去が完了していない状態を示している。
図25(a)に示すように、第1のコンタクトプラグ104を覆って抵抗変化層106及び電極層109が長方形の形状に形成された上に、これと直交するように長方形の形状(短冊状、ライン状)の第1の配線107’が形成されている。この第1の配線107’は、例えばAlなどの導電性材料からなる。第1の配線107’をマスクとして抵抗変化層106及び電極層109の不要部分を除去すると図25(b)に示すように微細化された抵抗変化素子111Cを製造することができる。
(実施の形態2)
図4は、本発明の実施の形態2に係る不揮発性半導体記憶装置200の構成例を示す断面図である。
図4に示すように、本実施の形態2の不揮発性半導体記憶装置200は、トランジスタ101が形成された基板102と、この基板102上にトランジスタ101を覆って形成された第1の層間絶縁層103と、この第1の層間絶縁層103を貫通して形成され、トランジスタ101のドレイン電極101aまたはソース電極101bと電気的に接続された第1のコンタクトプラグ104または第2のコンタクトプラグ105とを備えている。そして、不揮発性半導体記憶装置200は、第1のコンタクトプラグ104の少なくとも一部を被覆して形成された第1の配線201と、第1の配線201上に形成され、第1の配線201と同形状の第1の抵抗変化層202と、第2のコンタクトプラグ105の少なくとも一部を被覆して形成された第2の配線203と、第2の配線203上に形成され、第2の配線203と同形状の第2の抵抗変化層204と、第1の配線201及び第2の配線203を覆い第1の層間絶縁層103上に形成された第2の層間絶縁層205とを備えている。そして、不揮発性半導体記憶装置200は、第2の層間絶縁層205を貫通して第1の抵抗変化層202上に形成された第3のコンタクトプラグ206と、第2の層間絶縁層205及び第2の抵抗変化層204を貫通して第2の配線203上に形成された第4のコンタクトプラグ207と、第3のコンタクトプラグ206及び第4のコンタクトプラグ207上を覆い第2の層間絶縁層205上に形成された第3の配線208及び第4の配線209とを備えている。
この構成において、抵抗変化素子210は、下部電極である第1の配線201、第1の抵抗変化層202及び上部電極である第3のコンタクトプラグ206により形成されている。
このような構成とすることにより、1T1R型のメモリセル211を構成することができ、抵抗変化素子210の下部電極は第1の配線201と、また、上部電極は第3のコンタクトプラグ206とそれぞれ共用することができ、メモリセル211の構造を簡素化して微細化することができる。
なお、本実施の形態2の不揮発性半導体記憶装置200は、実施の形態1にて既に述べた不揮発性半導体記憶装置100と同様の動作を行うので、動作例についての説明は省略する。
図5(a)から(c)及び図6(a)、(b)は本実施の形態2の不揮発性半導体記憶装置200の製造方法を示す断面図である。図5(a)から(c)及び図6(a)、(b)を用いて、本実施の形態2の不揮発性半導体記憶装置200の製造方法について説明する。
図5及び図6に示すように本実施の形態2の製造方法は、トランジスタ101が形成された基板102上に第1の層間絶縁層103を形成する工程と、第1のコンタクトプラグ104及び第2のコンタクトプラグ105を形成する工程と、第1の配線層及び抵抗変化層を形成する工程と、第1の配線201及び第2の配線203とこれらと同形状の第1の抵抗変化層202及び第2の抵抗変化層204を形成する工程と、第2の層間絶縁層205を形成する工程と、第3のコンタクトプラグ206を形成する工程と、第4のコンタクトプラグ207を形成する工程と、第3の配線208及び第4の配線209を形成する工程とを備えている。
まず、図5(a)に示すように、第1の層間絶縁層103を形成する工程において、トランジスタ101を覆って基板102上に第1の層間絶縁層103を形成する。
次に、図5(b)に示す第1のコンタクトプラグ104及び第2のコンタクトプラグ105を形成する工程において、第1の層間絶縁層103を貫通してトランジスタ101のドレイン電極101a及びソース電極101b上に第1のコンタクトホール104a及び105aを形成したのちに導電体を埋め込み、第1のコンタクトプラグ104及び第2のコンタクトプラグ105を形成する。
そして、図5(c)に示す第1の配線層及び抵抗変化層を形成する工程において、第1のコンタクトプラグ104及び第2のコンタクトプラグ105を覆い、第1の層間絶縁層103上に第1の配線層及び抵抗変化層となる薄膜を堆積する。そして、第1の配線201及び第2の配線203とこれらと同形状の第1の抵抗変化層202及び第2の抵抗変化層204を形成する工程において、第1のコンタクトプラグ104上に第1の配線201及び第1の抵抗変化層202と、第2のコンタクトプラグ105上に第2の配線203及び第2の抵抗変化層204とを互いに分離して形成する。
次に、図6(a)に示す第2の層間絶縁層205を形成する工程において、第1の配線201及び第1の抵抗変化層202並びに第2の配線203及び第2の抵抗変化層204を覆い、第1の層間絶縁層103上に第2の層間絶縁層205を形成する。
図6(b)は、第3のコンタクトプラグ206を形成する工程、第4のコンタクトプラグ207を形成する工程、及び第3の配線208及び第4の配線209を形成する工程を示している。第2の層間絶縁層205を貫通して第1の抵抗変化層202上に第3のコンタクトホール206aを、また、第2の層間絶縁層205及び第2の抵抗変化層204を貫通して第2の配線203上に第4のコンタクトホール207aを形成する。なお、第2の抵抗変化層204の一部を貫通する孔の形成においては、第4のコンタクトホール207aを第3のコンタクトホール206aと同時に第1の抵抗変化層202及び第2の抵抗変化層204に到達する深さまで形成したのちに、この形成された第4のコンタクトホール207aを開口したマスクとして使用して形成する。
そして、これらの第3のコンタクトホール206a及び第4のコンタクトホール207aにそれぞれ導電体材料を埋め込み、第3のコンタクトプラグ206及び第4のコンタクトプラグ207を形成する。
そして、第3のコンタクトプラグ206及び第4のコンタクトプラグ207を覆い、第2の層間絶縁層205上に第3の配線208及び第4の配線209をそれぞれ分離して形成する。
このような方法とすることにより、抵抗変化素子210とトランジスタ101とからなる1T1R型のメモリセル211を含む不揮発性半導体記憶装置200が製造される。このときに、メモリセル211の配線である第1の配線201と、メモリ駆動部や周辺回路との配線としても利用することができる第2の配線203を同じ工程により同時に形成することができることから、プロセスの簡略化が図られている。
また、抵抗変化素子210は、第1の配線201を下部電極とし、第3のコンタクトプラグ206を上部電極として、第1の抵抗変化層202を挟みこんで形成しており、メモリセル211の構造が簡素化され微細化されている。
また、抵抗変化層は、通常のSi半導体プロセスにホール形成用の1マスクを追加するだけで形成できるのでプロセスでの工数が増えることない。高集積化、高速化及び低電力化が可能となるとともに、製造工程も簡略化され、製造期間の短縮や製造コストの削減に寄与することができる。
また、第3のコンタクトホール206aより第4のコンタクトホール207aのサイズを大きく設定すれば、サイズが大きくなればエッチングレートが大きいというホールエッチの特徴を生かして、異なる深さの第3のコンタクトホール206aと第4のコンタクトホール207aを同時に形成することも可能である。この場合には、マスクの追加をすることがなく、よりプロセスコストが低い不揮発性半導体記憶装置を実現することができる。
ここで、第1の抵抗変化層202は、少なくともタンタル酸化物を含む材料からなる構成としてもよい。
このような構成とすることにより、動作の高速性に加えて可逆的に安定した書き換え特性と良好な抵抗値のリテンション特性を有し、通常のSi半導体プロセスと親和性の高い製造プロセスを実現することができる。
本発明の実施の形態2に係る不揮発性半導体記憶装置200の構成例においては、第1のコンタクトプラグ104とトランジスタのドレイン電極101a、第2のコンタクトプラグ105とトランジスタのソース電極101bがそれぞれ直接接続されているが、その間に配線、コンタクトプラグなどが配置されていても、電気的に接続さえされていればかまわない。
(実施の形態3)
図7は、本発明の実施の形態3に係る不揮発性半導体記憶装置300の構成例を示す断面図である。
図7に示すように、本実施の形態3の不揮発性半導体記憶装置300は、トランジスタ101が形成された基板102と、この基板102上にトランジスタ101を覆って形成された第1の層間絶縁層103と、この第1の層間絶縁層103を貫通して形成され、トランジスタ101のドレイン電極101aまたはソース電極101bと電気的に接続された第1のコンタクトプラグ301または第2のコンタクトプラグ302とを備えている。そして、不揮発性半導体記憶装置300は、第1のコンタクトプラグ301の少なくとも一部を被覆して形成された第1の配線303と、第2のコンタクトプラグ302の少なくとも一部を被覆して形成された第2の配線304と、第1のコンタクトホール301a内の底部及び側壁に第1のコンタクトプラグ301と第1の層間絶縁層103及びドレイン電極101aまたはソース電極101bとに挟まれた抵抗変化層305とを備えた構成である。
このような構成とすることにより、抵抗変化素子306とトランジスタ101とからなる1T1R型のメモリセル307を含む不揮発性半導体記憶装置300が製造される。このときに、メモリセル307の配線である第1の配線303と、メモリ駆動部や周辺回路との配線としても利用することができる第2の配線304を同じ工程により同時に形成することができることから、プロセスの簡略化が図られている。
また、抵抗変化素子306は、ドレイン電極101aを下部電極とし、第1のコンタクトプラグ301及び第1の配線303を上部電極として、抵抗変化層305を挟みこんで形成しており、メモリセル307の構造が簡素化され微細化されている。また、抵抗変化層305の底部は、CMPやドライエッチなどの加工に曝されることがないので、プラズマダメージ、ガスやスラリーによるダメージ、還元などの影響を確実に防止できる。更に、抵抗変化層305は、第1のコンタクトホール301a内の底部及び側壁に隣接して微細化及び集積化されて形成されているが、通常のSi半導体プロセスに1マスク追加するだけで形成できる。したがって、不揮発性半導体記憶装置300の製造プロセスでの工数が増えることがない。このことにより、さらに不揮発性半導体記憶装置300の微細化が可能となり、高集積化、高速化及び低電力化が可能となるとともに、製造工程も簡略化され、製造期間の短縮や製造コストの削減に寄与することができる。
なお、本実施の形態3の不揮発性半導体記憶装置300は、実施の形態1にて既に述べた不揮発性半導体記憶装置100と同様の動作を行うので、動作例についての説明は省略する。
図8(a)から(c)及び図9(a)、(b)は本実施の形態3の不揮発性半導体記憶装置300の製造方法を示す断面図である。図8(a)から(c)及び図9(a)、(b)を用いて、本実施の形態3の不揮発性半導体記憶装置300の製造方法について説明する。
図8及び図9に示すように本実施の形態3の製造方法は、トランジスタ101が形成された基板102上に第1の層間絶縁層103を形成する工程と、第1のコンタクトホール内に抵抗変化層305及び第1のコンタクトプラグ301を形成する工程と、第2のコンタクトプラグ302を形成する工程と、第1の配線層303及び第2の配線304を形成する工程とを備えている。
まず、図8(a)に示すように、第1の層間絶縁層103を形成する工程において、トランジスタ101を覆って基板102上に第1の層間絶縁層103を形成する。
次に、図8(b)に示す第1の抵抗変化層305を形成する工程において、第1の層間絶縁層103を貫通してトランジスタ101のドレイン電極101a上に第1のコンタクトホール301aを形成したのちに抵抗変化層を全面に成膜し、第1の層間絶縁層103上の抵抗変化層をCMPあるいはエッチングにより除去して、第1のコンタクトホール301aの底部及び側壁に抵抗変化層305を形成する。
そして、図8(c)に示す第1のコンタクトプラグ301を形成する工程において、第1のコンタクトホール301a及び抵抗変化層305の内側に導電体を埋め込み、第1のコンタクトプラグ301を形成する。
次に、図9(a)に示す第2のコンタクトプラグ302を形成する工程において、第1の層間絶縁層103を貫通してトランジスタ101のソース電極101b上に第1のコンタクトホール302aを形成したのちに導電体を埋め込み、第2のコンタクトプラグ302を形成する。
図9(b)は、第1の配線303及び第2の配線304を形成する工程を示している。抵抗変化層305及び第1のコンタクトプラグ301の少なくとも一部を被覆して第1の配線303と、第2のコンタクトプラグ302の少なくとも一部を被覆して第2の配線304をそれぞれ分離して形成する。
このような方法とすることにより、1T1R型のメモリセルを構成することができ、抵抗変化素子の下部電極はドレイン電極101aと、また、上部電極は第1の配線303及び第1のコンタクトプラグ301とそれぞれ共用することができ、メモリセルの構造を簡素化して微細化することができる。また、抵抗変化層は、通常のSi半導体プロセスに1マスク追加するだけで形成できるので、プロセスでの工数が増えることなくプロセスコストも低減可能な不揮発性半導体記憶装置を実現することができる。
また、抵抗変化素子306は、ドレイン電極101aを下部電極とし、第1の配線303及び第1のコンタクトプラグ301を上部電極として、抵抗変化層305を挟みこんで形成しており、メモリセル307の構造が簡素化され微細化されている。また、抵抗変化層は、通常のSi半導体プロセスに1マスク追加するだけで形成できるのでプロセスでの工数が増えることがない。このことにより、さらに不揮発性半導体記憶装置300の微細化が可能となり、高集積化、高速化及び低電力化が可能となるとともに、製造工程も簡略化され、製造期間の短縮や製造コストの削減に寄与することができる。
ここで、抵抗変化層305は、少なくともタンタル酸化物を含む材料からなる構成としてもよい。
このような構成とすることにより、動作の高速性に加えて可逆的に安定した書き換え特性と良好な抵抗値のリテンション特性を有し、通常のSi半導体プロセスと親和性の高い製造プロセスを実現することができる。
本発明の実施の形態3に係る不揮発性半導体記憶装置300の構成例においては、抵抗変化層305とトランジスタのドレイン電極101a、第2のコンタクトプラグ302とトランジスタのソース電極101bがそれぞれ直接接続されているが、その間に配線、コンタクトプラグなどが配置されていても、電気的に接続さえされていればかまわない。
(実施の形態4)
図10は、本発明の実施の形態4に係る不揮発性半導体記憶装置400の構成例を示す断面図である。
図10に示すように本実施の形態4の不揮発性半導体記憶装置400は、トランジスタ101が形成された基板102と、この基板102上にトランジスタ101を覆って形成された第1の層間絶縁層103と、第1の層間絶縁層103上に形成された抵抗変化層401と、第1の層間絶縁層103を貫通して形成され、トランジスタ101のドレイン電極101aまたはソース電極101bと電気的に接続された第1のコンタクトプラグ402とを備えている。そして、不揮発性半導体記憶装置400は、第1の層間絶縁層103及び抵抗変化層401を貫通して形成され、トランジスタ101のソース電極101bまたはドレイン電極101aと電気的に接続された第2のコンタクトプラグ403と、第1のコンタクトプラグ402上の抵抗変化層401の少なくとも一部を被覆して形成された第1の配線404と、第2のコンタクトプラグ403の少なくとも一部を被覆して形成された第2の配線405とを備えた構成である。
ここでは、抵抗変化層401と第1の層間絶縁膜103を貫通するようにして第2のコンタクトプラグ403を形成し、この第2のコンタクトプラグ403に第2の配線405が接続している構造を示している。
しかしながら、第1のコンタクトプラグ402及び第2のコンタクトプラグ403を形成したのち、これらを覆い第1の層間絶縁層103上に抵抗変化層401を形成し、第2のコンタクトプラグ403上の抵抗変化層401の一部を除去して抵抗変化層401に貫通孔を形成する。そして、この貫通孔にプラグ電極材料を埋め込んで平坦化したのち、その上に第1の配線404と第2の配線405をそれぞれ分離して形成して不揮発性半導体記憶装置400を製造することもできる。
図10に示す不揮発性半導体記憶装置400において、抵抗変化素子406は、第1の配線404を上部電極とし、第1のコンタクトプラグ402を下部電極として、この上部電極及び下部電極により抵抗変化層401を挟んで形成されており、メモリセル407は、この抵抗変化素子406とトランジスタ101とにより1T1R型に構成されている。
このような構成とすることにより、抵抗変化素子406の下部電極は第1のコンタクトプラグ402と、また、上部電極は第1の配線404とそれぞれ共用することができ、メモリセル407の構造を簡素化して微細化することができる。したがって、第1のコンタクトプラグ402が抵抗変化層401を貫通しないところに抵抗変化素子406が構成されることとなる。抵抗変化層401は平坦な部分に形成するので、成膜のみのばらつきを見込めばよく、セル抵抗のばらつきを低減することができる。更に、抵抗変化素子近傍の抵抗変化層はCMPやドライエッチなどの加工に曝されることがないので、プラズマダメージ、ガスやスラリーによるダメージ、還元などの影響を確実に防止できる。また、抵抗変化層401は、通常のSi半導体プロセスに1マスク追加するだけで形成できるので、プロセスでの工数が増えることなくプロセスコストも低減可能な不揮発性半導体記憶装置400を実現することができる。
このことにより、不揮発性半導体記憶装置400の微細化も可能となり、高集積化、高速化及び低電力化が可能となるとともに、製造工程も簡略化され、製造期間の短縮、製造コストの削減に寄与することができる。
なお、本実施の形態4の不揮発性半導体記憶装置400は、実施の形態1にて既に述べた不揮発性半導体記憶装置100と同様の動作を行うので、動作例についての説明は省略する。
図11(a)から(c)及び図12(a)、(b)は本実施の形態4の不揮発性半導体記憶装置400の製造方法を示す断面図である。図11(a)から(c)及び図12(a)、(b)を用いて、本実施の形態4の不揮発性半導体記憶装置400の製造方法について説明する。
図11及び図12に示すように本実施の形態4の製造方法は、トランジスタ101が形成された基板102上に第1の層間絶縁層103を形成する工程と、第1のコンタクトプラグ402を形成する工程と、抵抗変化層401を形成する工程と、第2のコンタクトプラグ403を形成する工程と、第1の配線層404及び第2の配線層405を形成する工程とを備えている。
まず、図11(a)に示すように、第1の層間絶縁層103を形成する工程において、トランジスタ101を覆って基板102上に第1の層間絶縁層103を形成する。
次に、図11(b)に示す第1のコンタクトプラグ402を形成する工程において、第1の層間絶縁層103を貫通してトランジスタ101のドレイン電極101a上に第1のコンタクトホール402aを形成したのちに導電体を埋め込み、第1のコンタクトプラグ402を形成する。
そして、図11(c)に示す抵抗変化層401を形成する工程において、第1のコンタクトプラグ402を覆い、第1の層間絶縁層103上に抵抗変化層401を堆積する。
次に、図12(a)に示す第2のコンタクトプラグ403を形成する工程において、抵抗変化層401及び第1の層間絶縁層103を貫通してトランジスタ101のソース電極101b上に第2のコンタクトホール403aを形成したのちに導電体を埋め込み、第2のコンタクトプラグ403を形成する。
図12(b)は、第1の配線404及び第2の配線405を形成する工程を示している。すなわち、第1のコンタクトプラグ402の少なくとも一部を被覆して第1の配線404と、第2のコンタクトプラグ403の少なくとも一部を被覆して第2の配線405をそれぞれ分離して形成している。
このような方法とすることにより、抵抗変化素子406とトランジスタ101とからなる1T1R型のメモリセル407を含む不揮発性半導体記憶装置400が製造される。また、抵抗変化素子407は、第1のコンタクトプラグ402を下部電極とし、第1の配線404を上部電極として、抵抗変化層401を挟みこんで形成しており、メモリセル407の構造が簡素化され微細化されている。また、抵抗変化層は、通常のSi半導体プロセスに1マスク追加するだけで形成できるのでプロセスでの工数が増えることがない。このことにより、さらに不揮発性半導体記憶装置400の微細化が可能となり、高集積化、高速化及び低電力化が可能となるとともに、製造工程も簡略化され、製造期間の短縮や製造コストの削減に寄与することができる。
ここで、抵抗変化層401は、少なくともタンタル酸化物を含む材料からなる構成としてもよい。
このような構成とすることにより、動作の高速性に加えて可逆的に安定した書き換え特性と良好な抵抗値のリテンション特性を有し、通常のSi半導体プロセスと親和性の高い製造プロセスを実現することができる。
本発明の実施の形態4に係る不揮発性半導体記憶装置400の構成例においては、第1のコンタクトプラグ402とトランジスタのドレイン電極101a、第2のコンタクトプラグ403とトランジスタのソース電極101bがそれぞれ直接接続されているが、その間に配線、コンタクトプラグなどが配置されていても、電気的に接続さえされていればかまわない。
(実施の形態5)
図13は、本発明の実施の形態5に係る不揮発性半導体装置500の構成を示すブロック図である。また、図14は、図13に示すC部の構成(2ビット分の構成)を示す拡大断面図である。
本実施の形態5の不揮発性半導体装置500は、例えば実施の形態1の不揮発性半導体記憶装置100を備える不揮発性半導体装置500であって、基板の上に互いに平行に、例えばストライプ形状に形成された複数のワード線と、この複数のワード線の上方に基板の主面に平行な面内において同じくストライプ形状に形成され、かつ複数のワード線に立体交差するように形成された複数のビット線と、複数のワード線と複数のビット線との立体交差点に対応して設けられた抵抗変化素子とを具備したメモリアレイを備えたものである。
図13に示すように本実施の形態5に係る不揮発性半導体装置500は、半導体基板上に、メモリ本体部501を備えており、このメモリ本体部501は、メモリアレイ502と、行選択回路/ドライバ503と、列選択回路504と、データの書き込みを行うための書き込み回路505と、選択ビット線に流れる電流量を検出し、データを判定するセンスアンプ506と、端子DQを介して入出力データの入出力処理を行うデータ入出力回路507とを具備している。
メモリアレイ502は、基板上に形成された、互いに交差するように配列された複数のワード線WL0、WL1、WL2及びビット線BL0、BL1、BL2と、これらのワード線WL0、WL1、WL2及びビット線BL0、BL1、BL2の交点に対応してそれぞれ設けられた複数のトランジスタT11、T12、T13、T21、T22、T23、T31、T32、T33(以下、「トランジスタT11、T12、・‥」と表す)と、トランジスタT11、T12、‥と1対1に設けられた複数の抵抗変化素子M11、M12、M13、M21、M22、M23、M31、M32、M33(以下、「抵抗変化素子M11、M12、…」と表す)とを備えている。
また、メモリアレイ502は、ワード線WL0,WL1,WL2に平行して配列されている複数のプレート線PL0,PL1,PL2を備えている。
図13に示すようにワード線WL0、WL1の上方にビット線BL0が配され、そのワード線WL0、WL1とビット線BL0との間に、プレート線PL0,PL1が配されている。
ここで、図13における抵抗変化素子M11は、図14における抵抗変化素子M11が相当し、この抵抗変化素子M11は、上部電極である第1の配線515、貴金属の白金からなる電極層514、抵抗変化層513、及び下部電極である第1のコンタクトプラグ511から構成されている。
なお、図14においてトランジスタ101と抵抗変化素子M11とによりメモリセル516が構成されている。また、トランジスタ101は、第2のコンタクトプラグ517、第2の配線518及び第3のコンタクトプラグ519を介して電気的にビット線BL0に接続されている。
次に、その動作を説明する。外部回路(図示せず)からアドレス信号を受け取り、このアドレス信号に基づいて行アドレス信号を行選択回路/ドライバ503へ出力するとともに、列アドレス信号を列選択回路504へ出力する。ここで、アドレス信号は、複数の抵抗変化素子M11,M12,・・・を含むメモリセル516のうちの選択される特定のメモリセル516のアドレスを示す信号である。また、行アドレス信号は、アドレス信号に示されたアドレスのうちの行のアドレスを示す信号であり、列アドレス信号は、アドレス信号に示されたアドレスのうちの列のアドレスを示す信号である。
外部から入力される制御信号(図示せず)は、データの書き込みサイクルにおいては、データ入出力回路507に入力された入カデータDinに応じて、書き込み用電圧の印加を指示する書き込み信号を書き込み回路505へ出力する。他方、データの読み出しサイクルにおいて、制御信号は、読み出し用電圧の印加を指示する読み出し信号を列選択回路504へ出力する。
行選択回路/ドライバ503は、アドレス信号から出力された行アドレス信号を受け取り、この行アドレス信号に応じて、複数のワード線WL0,WL1,WL2のうちの何れかを選択し、その選択されたワード線に対して、所定の電圧を印加する。
また、列選択回路504は、アドレス信号から出力された列アドレス信号を受け取り、この列アドレス信号に応じて、複数のビット線BL0,BL1,BL2のうちの何れかを選択し、その選択されたビット線に対して、書き込み用電圧または読み出し用電圧を印加する。
書き込み回路505は、制御信号が書き込み信号であった場合、列選択回路504に対して選択されたビット線に対して書き込み用電圧の印加を指示する信号を出力する。
また、センスアンプ506は、データの読み出しサイクルにおいて、読み出し対象となる選択ビット線に流れる電流量を検出し、データ「1」または「0」と判定する。その結果得られた出力データDoは、データ入出力回路507を介して、外部回路へ出力される。
なお、本実施の形態5では実施の形態1の不揮発性半導体記憶装置100を用いて説明したが、実施の形態2から4の不揮発性半導体記憶装置200、300、400を用いてもよい。
上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。
本発明の不揮発性半導体記憶装置は、集積度が高く低電力で、かつ高速の動作が可能で、しかも安定した書き込み及び読み出し特性を有しており、デジタル家電、メモリカード、携帯型電話機及びパーソナルコンピュータなどの種々の電子機器に用いられる不揮発性半導体記憶装置として有用である。
100,200,300,400 不揮発性半導体記憶装置
101 トランジスタ
101a ドレイン電極
101b ソース電極
101c ドレイン領域
101d ソース領域
101e ゲート電極
102 基板
103 第1の層間絶縁層
104,301,402,511 第1のコンタクトプラグ
104a,301a 第1のコンタクトホール
105,302,403,517 第2のコンタクトプラグ
105a 第2のコンタクトホール
106,305,401,513 抵抗変化層
106a,107a,110 端面
107,201,303,404,515 第1の配線
108,203,304,405,518 第2の配線
109,514 電極層
111,210,306,406 抵抗変化素子
112,211,307,407,516 メモリセル
202 第1の抵抗変化層(抵抗変化層)
204 第2の抵抗変化層(抵抗変化層)
205 第2の層間絶縁層
206,519 第3のコンタクトプラグ
206a 第3のコンタクトホール
207 第4のコンタクトプラグ
207a 第4のコンタクトホール
208 第3の配線
209 第4の配線
500 不揮発性半導体装置
501 メモリ本体部
502 メモリアレイ
503 行選択回路/ドライバ
504 列選択回路
505 書き込み回路
506 センスアンプ
507 データ入出力回路

Claims (7)

  1. 第1主電極と第2主電極と制御電極とを有するトランジスタが複数形成された基板と、
    前記基板上に前記複数のトランジスタを覆うように形成された第1の層間絶縁層と、
    前記第1の層間絶縁層を貫通し前記複数のトランジスタが有する第1主電極のそれぞれと電気的に接続されるように形成された複数の第1のコンタクトプラグと、
    前記複数の第1のコンタクトプラグのそれぞれについてその上端面の少なくとも一部を被覆するように前記複数の第1のコンタクトプラグのそれぞれに対応して個別に形成された複数の抵抗変化層と、
    前記複数の抵抗変化層上に第1の方向に延びるように形成された第1の配線と、を備え、
    前記第1の方向を前後方向とし、前記第1の方向に垂直で前記基板の主面に平行な方向を左右方向とするとき、前記抵抗変化層の前後の端面は前記第1の配線の端面と同一面内になく、前記第1の配線の左側の端面と前記抵抗変化層の左側の端面とが同一面内にあり、前記第1の配線の右側の端面と前記抵抗変化層の右側の端面とが同一面内にある、不揮発性半導体記憶装置。
  2. 前記第1の配線は、前記抵抗変化層と接する面に少なくとも貴金属からなる電極層を備えたことを特徴とする請求項1に記載の不揮発性半導体記憶装置。
  3. 前記貴金属は白金からなることを特徴とする請求項2に記載の不揮発性半導体記憶装置。
  4. トランジスタが形成された基板と、
    前記基板上に前記トランジスタを覆って形成された第1の層間絶縁層と、
    前記第1の層間絶縁層に形成され、前記トランジスタのソース電極またはドレイン電極と電気的に接続された第1のコンタクトプラグまたは第2のコンタクトプラグと、
    前記第1のコンタクトプラグの少なくとも一部を被覆して形成された第1の配線と、
    前記第1の配線上に形成され、前記第1の配線と同一端面を有する第1の抵抗変化層と、
    前記第2のコンタクトプラグの少なくとも一部を被覆して形成された第2の配線と、
    前記第2の配線上に形成され、前記第2の配線と同一端面を有する第2の抵抗変化層と、
    前記第1の配線、前記第2の配線、前記第1の抵抗変化層及び前記第2の抵抗変化層を覆い前記第1の層間絶縁層上に形成された第2の層間絶縁層と
    前記第2の層間絶縁層を貫通して前記第1の抵抗変化層上に形成された第3のコンタクトプラグと、
    前記第2の層間絶縁層及び前記第2の抵抗変化層を貫通して前記第2の配線上に形成された第4のコンタクトプラグと、
    前記第3のコンタクトプラグ及び前記第4のコンタクトプラグ上を覆い前記第2の層間絶縁層上に形成された第3の配線及び第4の配線とを備えたことを特徴とする不揮発性半導体記憶装置。
  5. 前記抵抗変化層は、少なくともタンタル酸化物を含む材料からなることを特徴とする請求項1から4のいずれか1項に記載の不揮発性半導体記憶装置。
  6. トランジスタが形成された基板上に前記トランジスタを覆って第1の層間絶縁層を形成する工程と、
    前記第1の層間絶縁層を貫通して前記トランジスタのドレイン電極またはソース電極上に第1のコンタクトホール及び第2のコンタクトホールを形成し、前記第1のコンタクトホール及び前記第2のコンタクトホール内に第1のコンタクトプラグ及び第2のコンタクトプラグを形成する工程と、
    前記第1のコンタクトプラグの少なくとも一部を被覆して抵抗変化層を形成する工程と、
    前記抵抗変化層の少なくとも一部を除去すると同時に、前記抵抗変化層の少なくとも一部を被覆した第1の配線と、前記第2のコンタクトプラグの少なくとも一部を被覆した第2の配線とを形成する工程とを備えた不揮発性半導体記憶装置の製造方法。
  7. トランジスタが形成された基板上に前記トランジスタを覆って第1の層間絶縁層を形成する工程と、
    前記第1の層間絶縁層を貫通して前記トランジスタのドレイン電極またはソース電極上に第1のコンタクトホールまたは第2のコンタクトホールを形成し、前記第1のコンタクトホール及び前記第2のコンタクトホール内に第1のコンタクトプラグ及び第2のコンタクトプラグを形成する工程と、
    前記第1のコンタクトプラグの少なくとも一部を被覆して第1の配線層及び前記第1の配線層と同一端面を有する第1の抵抗変化層を、前記第2のコンタクトプラグの少なくとも一部を被覆して第2の配線層及び前記第2の配線層と同一端面を有する第2の抵抗変化層を形成する工程と、
    前記第1の配線と前記第1の抵抗変化層及び前記第2の配線と前記第2の抵抗変化層を覆い前記第1の層間絶縁層上に第2の層間絶縁層を形成する工程と、
    前記第2の層間絶縁層を貫通して前記第1の抵抗変化層上に第3のコンタクトプラグを形成する工程と、
    前記第2の層間絶縁層及び前記第2の抵抗変化層を貫通して前記第2の配線上に第4のコンタクトプラグを形成する工程と、
    前記第3のコンタクトプラグ及び前記第4のコンタクトプラグ上を覆い前記第2の層間絶縁層上に第3の配線及び第4の配線を形成する工程とを備えたことを特徴とする不揮発性半導体記憶装置の製造方法。
JP2009553358A 2008-02-12 2009-02-09 不揮発性半導体記憶装置及びその製造方法 Active JP4563504B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008030242 2008-02-12
JP2008030242 2008-02-12
PCT/JP2009/000501 WO2009101785A1 (ja) 2008-02-12 2009-02-09 不揮発性半導体記憶装置及びその製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010171014A Division JP2010287905A (ja) 2008-02-12 2010-07-29 不揮発性半導体記憶装置及びその製造方法

Publications (2)

Publication Number Publication Date
JP4563504B2 true JP4563504B2 (ja) 2010-10-13
JPWO2009101785A1 JPWO2009101785A1 (ja) 2011-06-09

Family

ID=40956819

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2009553358A Active JP4563504B2 (ja) 2008-02-12 2009-02-09 不揮発性半導体記憶装置及びその製造方法
JP2010171014A Pending JP2010287905A (ja) 2008-02-12 2010-07-29 不揮発性半導体記憶装置及びその製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2010171014A Pending JP2010287905A (ja) 2008-02-12 2010-07-29 不揮発性半導体記憶装置及びその製造方法

Country Status (6)

Country Link
US (1) US8537605B2 (ja)
EP (2) EP2244293A4 (ja)
JP (2) JP4563504B2 (ja)
KR (1) KR101104443B1 (ja)
CN (1) CN101946321B (ja)
WO (1) WO2009101785A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011142386A1 (ja) * 2010-05-11 2011-11-17 日本電気株式会社 半導体装置及びその製造方法
JP5156060B2 (ja) * 2010-07-29 2013-03-06 シャープ株式会社 不揮発性半導体記憶装置
CN102693985B (zh) * 2011-03-25 2016-03-02 北京兆易创新科技股份有限公司 一种可编程存储器及其制造方法
FR2973568A1 (fr) * 2011-04-01 2012-10-05 St Microelectronics Crolles 2 Procede de controle de la conduction electrique entre deux portions metalliques et dispositif associe.
CN102738390A (zh) * 2011-04-12 2012-10-17 北京大学 阻变存储器单元及其制造方法
KR102161603B1 (ko) * 2014-03-11 2020-10-05 에스케이하이닉스 주식회사 전자 장치
US9436792B2 (en) * 2014-08-22 2016-09-06 Samsung Electronics Co., Ltd. Method of designing layout of integrated circuit and method of manufacturing integrated circuit
KR20170079087A (ko) * 2015-12-30 2017-07-10 에스케이하이닉스 주식회사 전자장치 및 그 제조방법
US9812507B2 (en) * 2016-03-11 2017-11-07 Toshiba Memory Corporation Semiconductor memory device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001270795A (ja) * 2000-03-28 2001-10-02 Toshiba Corp 酸化物エピタキシャル歪格子膜の製造法
JP2005120421A (ja) * 2003-10-16 2005-05-12 Sony Corp 細孔構造体及びその製造方法、メモリ装置及びその製造方法、吸着量分析装置、並びに磁気記録媒体
JP2006294970A (ja) * 2005-04-13 2006-10-26 Renesas Technology Corp 半導体装置
JP2007194238A (ja) * 2006-01-17 2007-08-02 Elpida Memory Inc 相変化メモリ装置および相変化メモリ装置の製造方法
WO2007102341A1 (ja) * 2006-03-09 2007-09-13 Matsushita Electric Industrial Co., Ltd. 抵抗変化型素子、半導体装置、およびその製造方法
JP2007273962A (ja) * 2006-03-02 2007-10-18 Qimonda Ag 自己整合プロセスを用いて形成された相変化メモリ
JP2007288008A (ja) * 2006-04-19 2007-11-01 Matsushita Electric Ind Co Ltd 抵抗変化素子とそれを用いた抵抗変化型メモリ
WO2007138646A1 (ja) * 2006-05-25 2007-12-06 Hitachi, Ltd. 不揮発性メモリ素子およびその製造方法ならびに不揮発性メモリ素子を用いた半導体装置
JP2008021750A (ja) * 2006-07-11 2008-01-31 Matsushita Electric Ind Co Ltd 抵抗変化素子およびその製造方法、ならびにそれを用いた抵抗変化型メモリ
WO2008149605A1 (ja) * 2007-06-04 2008-12-11 Nec Corporation 抵抗変化素子およびこれを備えた半導体装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6958508B2 (en) * 2000-10-17 2005-10-25 Matsushita Electric Industrial Co., Ltd. Ferroelectric memory having ferroelectric capacitor insulative film
JP4829678B2 (ja) 2000-10-17 2011-12-07 パナソニック株式会社 強誘電体メモリ及びその製造方法
JP4190238B2 (ja) * 2002-09-13 2008-12-03 株式会社ルネサステクノロジ 不揮発性半導体記憶装置
JP4355136B2 (ja) * 2002-12-05 2009-10-28 シャープ株式会社 不揮発性半導体記憶装置及びその読み出し方法
WO2005098952A1 (ja) * 2004-04-08 2005-10-20 Renesas Technology Corp. 半導体記憶装置
JP3903323B2 (ja) * 2004-09-14 2007-04-11 松下電器産業株式会社 抵抗変化素子及びそれを用いた不揮発性メモリ
JP2006120701A (ja) 2004-10-19 2006-05-11 Matsushita Electric Ind Co Ltd 可変抵抗素子とその駆動方法、および半導体装置
KR100827653B1 (ko) * 2004-12-06 2008-05-07 삼성전자주식회사 상변화 기억 셀들 및 그 제조방법들
KR100697282B1 (ko) * 2005-03-28 2007-03-20 삼성전자주식회사 저항 메모리 셀, 그 형성 방법 및 이를 이용한 저항 메모리배열
JP2006319028A (ja) * 2005-05-11 2006-11-24 Nec Corp スイッチング素子、書き換え可能な論理集積回路、およびメモリ素子
JP2007095898A (ja) 2005-09-28 2007-04-12 Toshiba Corp 半導体記憶装置及びその製造方法
KR100695164B1 (ko) * 2005-11-09 2007-03-14 삼성전자주식회사 스위칭 소자로서 트랜지스터 및 다이오드를 포함하는하이브리드 타입의 비휘발성 메모리 소자
JP4939324B2 (ja) 2005-12-02 2012-05-23 シャープ株式会社 可変抵抗素子及びその製造方法
JP4699932B2 (ja) * 2006-04-13 2011-06-15 パナソニック株式会社 抵抗変化素子とそれを用いた抵抗変化型メモリならびにその製造方法
JP5241717B2 (ja) 2006-08-31 2013-07-17 アイメック 抵抗スイッチング装置の抵抗スイッチング材料の制御された形成方法および該方法によって得られる装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001270795A (ja) * 2000-03-28 2001-10-02 Toshiba Corp 酸化物エピタキシャル歪格子膜の製造法
JP2005120421A (ja) * 2003-10-16 2005-05-12 Sony Corp 細孔構造体及びその製造方法、メモリ装置及びその製造方法、吸着量分析装置、並びに磁気記録媒体
JP2006294970A (ja) * 2005-04-13 2006-10-26 Renesas Technology Corp 半導体装置
JP2007194238A (ja) * 2006-01-17 2007-08-02 Elpida Memory Inc 相変化メモリ装置および相変化メモリ装置の製造方法
JP2007273962A (ja) * 2006-03-02 2007-10-18 Qimonda Ag 自己整合プロセスを用いて形成された相変化メモリ
WO2007102341A1 (ja) * 2006-03-09 2007-09-13 Matsushita Electric Industrial Co., Ltd. 抵抗変化型素子、半導体装置、およびその製造方法
JP2007288008A (ja) * 2006-04-19 2007-11-01 Matsushita Electric Ind Co Ltd 抵抗変化素子とそれを用いた抵抗変化型メモリ
WO2007138646A1 (ja) * 2006-05-25 2007-12-06 Hitachi, Ltd. 不揮発性メモリ素子およびその製造方法ならびに不揮発性メモリ素子を用いた半導体装置
JP2008021750A (ja) * 2006-07-11 2008-01-31 Matsushita Electric Ind Co Ltd 抵抗変化素子およびその製造方法、ならびにそれを用いた抵抗変化型メモリ
WO2008149605A1 (ja) * 2007-06-04 2008-12-11 Nec Corporation 抵抗変化素子およびこれを備えた半導体装置

Also Published As

Publication number Publication date
EP2447996A3 (en) 2013-02-06
KR20100101013A (ko) 2010-09-15
CN101946321B (zh) 2014-03-26
JPWO2009101785A1 (ja) 2011-06-09
US8537605B2 (en) 2013-09-17
CN101946321A (zh) 2011-01-12
EP2447996A2 (en) 2012-05-02
JP2010287905A (ja) 2010-12-24
EP2244293A4 (en) 2011-08-10
US20110114912A1 (en) 2011-05-19
EP2244293A1 (en) 2010-10-27
EP2447996B1 (en) 2014-04-02
KR101104443B1 (ko) 2012-01-12
WO2009101785A1 (ja) 2009-08-20

Similar Documents

Publication Publication Date Title
JP4563504B2 (ja) 不揮発性半導体記憶装置及びその製造方法
KR101148456B1 (ko) 기억 소자 및 기억 소자의 동작 방법
JP5923641B2 (ja) 3次元メモリおよびその形成方法
KR100707181B1 (ko) 듀얼 스토리지 노드를 구비하는 반도체 메모리 장치와 그제조 및 동작 방법
JP5079927B2 (ja) 不揮発性メモリ装置の製造方法、不揮発性メモリ素子、および不揮発性メモリ装置
JP5661992B2 (ja) 積層されたnand型抵抗性メモリセルストリングを含む不揮発性メモリ素子及びその製造方法
US7139188B2 (en) Memory architecture and method of manufacture and operation thereof
US9847249B2 (en) Buried etch stop layer for damascene bit line formation
KR20080024971A (ko) 3차원적으로 배열된 메모리 셀 트랜지스터들을 구비하는낸드 플래시 메모리 장치
JP2009260052A (ja) 不揮発性半導体記憶装置とその製造方法および半導体装置
KR20110032252A (ko) 수직 어레이 트랜지스터를 갖는 저항성 메모리 소자
JP4606520B2 (ja) 抵抗変化型不揮発性記憶装置
US6191441B1 (en) Ferroelectric memory device and its drive method
US9524974B1 (en) Alternating sidewall assisted patterning
WO2014119537A1 (ja) 半導体装置及びその製造方法
JP2008288436A (ja) 不揮発性記憶素子及びその製造方法、並びにその不揮発性記憶素子を用いた不揮発性半導体装置及びその製造方法
US20240186319A1 (en) Transistor array and method for manufacturing same, and semiconductor device and method for manufacturing same
US20240172411A1 (en) Transistor array and method for manufacturing same, semiconductor device and method for manufacturing same
JP2006332671A (ja) 相変化記憶素子及びその製造方法
US7733698B2 (en) Memory device, a non-volatile semiconductor memory device and a method of forming a memory device
JP4872469B2 (ja) 記憶素子の製造方法
JP2004303809A (ja) キャパシタ、メモリ装置、及び電子機器
JP2004288945A (ja) 強誘電体メモリ及びその製造方法
KR20120087667A (ko) 반도체 장치 및 그의 제조방법

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100728

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4563504

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250