JP4557342B2 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP4557342B2
JP4557342B2 JP2000004773A JP2000004773A JP4557342B2 JP 4557342 B2 JP4557342 B2 JP 4557342B2 JP 2000004773 A JP2000004773 A JP 2000004773A JP 2000004773 A JP2000004773 A JP 2000004773A JP 4557342 B2 JP4557342 B2 JP 4557342B2
Authority
JP
Japan
Prior art keywords
circuit
signal
reset
direct current
response
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000004773A
Other languages
English (en)
Other versions
JP2001195876A (ja
Inventor
和樹 小川
喜幸 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Semiconductor Ltd
Original Assignee
Fujitsu Semiconductor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Semiconductor Ltd filed Critical Fujitsu Semiconductor Ltd
Priority to JP2000004773A priority Critical patent/JP4557342B2/ja
Priority to TW089115603A priority patent/TW523756B/zh
Priority to US09/642,937 priority patent/US6700437B1/en
Priority to KR1020000048551A priority patent/KR100643060B1/ko
Publication of JP2001195876A publication Critical patent/JP2001195876A/ja
Priority to US10/757,395 priority patent/US7167042B2/en
Priority to US11/045,104 priority patent/US7078945B2/en
Application granted granted Critical
Publication of JP4557342B2 publication Critical patent/JP4557342B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/14Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/12Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
    • G11C29/12005Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details comprising voltage or current generators
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/02Detection or location of defective auxiliary circuits, e.g. defective refresh counters
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1006Data managing, e.g. manipulating data before writing or reading out, data bus switches or control circuits therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/22Read-write [R-W] timing or clocking circuits; Read-write [R-W] control signal generators or management 
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C2029/0401Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals in embedded memories
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/50Marginal testing, e.g. race, voltage or current testing
    • G11C2029/5006Current
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2207/00Indexing scheme relating to arrangements for writing information into, or reading information out from, a digital store
    • G11C2207/22Control and timing of internal memory operations
    • G11C2207/2227Standby or low power modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dram (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)
  • For Increasing The Reliability Of Semiconductor Memories (AREA)
  • Power Sources (AREA)
  • Static Random-Access Memory (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、ロジック回路と、該ロジック回路より消費電力の大きいメモリ回路等のマクロが混載される半導体装置に関するものである。
【0002】
近年のメモリデバイスには、メモリ以外のロジック回路が同一チップ上に混載されたものがある。このようなデバイスでは、メモリとロジック回路とを混載する故に、メモリ回路の消費電力の低減と、メモリ回路及びロジック回路の安定した動作とを両立させることが難しくなっている。そこで、このような半導体装置において、消費電力の低減と動作の安定化及び確実な動作試験の実施が必要となっている。
【0003】
【従来の技術】
図16に示すチップには、メモリマクロとして搭載されるメモリ回路1とロジック回路2とが混載され、そのメモリ回路1とロジック回路2には共通の外部電源が供給されている。
【0004】
前記メモリ回路1では、種々の内部電源をそれぞれ内部電源発生回路で生成して使用している。内部電源生成回路の一つである基板電位発生回路を図17に示す。
【0005】
基板電位発生回路3は、基板電位検出回路4と、発振回路5と、ポンピング回路6とから構成される。
前記基板電位検出回路4は、電源Vccが抵抗R1を介してPチャネルMOSトランジスタTr1のソースに供給され、同トランジスタTr1のドレインは電源Vssに接続される。
【0006】
前記トランジスタTr1のゲートには、基板電位VBBが供給され、同トランジスタTr1のソースであるノードN1はインバータ回路7aの入力端子に接続されている。前記インバータ回路7aの出力信号は、インバータ回路7bを介して前記発振回路5に出力される。
【0007】
従って、基板電位検出回路4では基板電位VBBの上昇にともなってトランジスタTr1のドレイン電流が減少し、そのドレイン電流の減少にともなってノードN1の電位が上昇する。
【0008】
そして、ノードN1の電位がインバータ回路7aのしきい値以下であれば、インバータ回路7bの出力信号はLレベルとなり、ノードN1の電位がインバータ回路7aのしきい値以上であれば、インバータ回路7bの出力信号はHレベルとなる。
【0009】
前記基板電位検出回路4の出力信号は、NAND回路8aに入力され、そのNAND回路8aの出力信号は、偶数段のインバータ回路7cを介して前記ポンピング回路6に出力される。また、インバータ回路7cの出力信号は、NAND回路8aに入力される。
【0010】
このような発振回路5では、基板電位検出回路4の出力信号がLレベルであれば、インバータ回路7cの出力信号は発振することなくHレベルに固定される。また、基板電位検出回路4の出力信号がLレベルからHレベルに切り替わると、発振回路5の出力信号がNAND回路8a及びインバータ回路7cの動作遅延時間に基づいて、所定の周波数で発振する。
【0011】
前記ポンピング回路6は、前記発振回路5の出力信号が容量9の入力端子に入力され、その容量9の出力端子はダイオード10aのアノード及びダイオード10bのカソードに接続されている。
【0012】
前記ダイオード10aのカソードは電源Vssに接続され、前記ダイオード10bのアノードから基板電位VBBが出力される。
このようなポンピング回路6では、発振回路5から出力される発振信号に基づいて、容量9の入力端子電位が昇降すると、容量9の容量結合に基づいて、容量9の出力端子電位が昇降し、その昇降動作に基づいて基板電位VBBを低下させるように動作する。
【0013】
このような動作により、基板電位発生回路3では基板電位検出回路4のトランジスタTr1に常時流れるドレイン電流によりDC電流を消費し、このような基板電位発生発生回路3を複数備えるメモリ回路1では、ロジック回路2に比して消費電流が大きくなっている。
【0014】
【発明が解決しようとする課題】
上記のような半導体装置では、メモリ回路1に搭載される基板電位発生回路3等の内部電源生成回路が常時動作しているため、その消費電力が大きく、チップ全体の消費電流を増大させている。
【0015】
そこで、メモリ回路1の不使用時には、メモリ回路1への電源の供給を遮断すれば、消費電力を低減することはできるが、メモリ回路1と共通の電源配線でロジック回路2に電源を供給している場合には、メモリ回路1のみ電源を遮断することはできない。
【0016】
また、メモリ回路1とロジック回路2に電源が別々に供給されている場合には、メモリ回路1の電源のみを遮断することはできるが、電源遮断時にチップ内に生じる電源電位差により、ハングアップ動作あるいはラッチアップ動作等の誤動作が生じたり、メモリ回路1あるいはロジック回路2の破壊等の不具合が生じるおそれがある。
【0017】
一方、メモリ回路1の消費電流は、ロジック回路2の消費電流に比べて格段に大きいため、メモリ回路1が活性化されている状態では、ロジック回路2の動作電流が正常であるか否かの試験を行うことはできないという問題点がある。
【0018】
この発明の目的は、ロジック回路とその他のマクロが混載された半導体装置において、消費電力の低減を図りながら、安定した動作を確保し、かつロジック回路の消費電流の試験を可能とする半導体装置を提供することにある。
【0019】
【課題を解決するための手段】
図1は、請求項1の原理説明図である。すなわち、チップ11上に、ロジック回路13とマクロ12が混載され、前記ロジック回路13とマクロ12に共通の電源が供給される。マクロ12は、直流電流を消費する直流電流消費回路を備えている。この直流電流消費回路は、マクロを動作させない停止モードにおいて停止信号に応答して直流電流を停止する。また、停止信号に応答して直流電流消費回路に流れる直流電流を、直流電流消費回路に含まれる第一のスイッチ回路で遮断して消費電流を低減する。なお、この第一のスイッチ回路は、前記内部電源発生回路内の内部電源を検出する回路の出力端子と、前記外部電源の第一電源との間に接続される。さらに、直流電流消費回路は、内部電源発生回路の出力端子と外部電源の第二電源との間に接続され、停止信号に応答して内部電源発生回路の出力端子と第二電源とを接続する第二のスイッチ回路を含む。
【0021】
【発明の実施の形態】
(第一の実施の形態)
図2〜図6は、第一の実施の形態を示す。前記従来例と同一構成部分は同一符号を付してその説明を省略する。
【0022】
図2に示すチップ11は、メモリマクロとして搭載されるメモリ回路12と、ロジック回路13とが混載されている。
前記チップ11の周辺部には、多数の外部端子14が形成され、そのいずれか一つの外部端子14aから前記メモリ回路12に内部電源生成回路の動作を停止させて、メモリ回路12の消費電流を低減させるための停止信号PCが入力される。
【0023】
また、前記メモリ回路12及びロジック回路13には、共通のいずれかの外部端子14から共通の電源が供給される。
前記停止信号PCは、各内部電源生成回路に入力され、例えば図3に示すように、基板電位発生回路15の基板電位検出回路16では、電源VDDと抵抗R1との間にPチャネルMOSトランジスタTr2が介在され、そのトランジスタTr2のゲートに前記停止信号PCが入力される。
【0024】
また、トランジスタTr1と並列にNチャネルMOSトランジスタTr2aが接続され、そのトランジスタTr2aのゲートに前記停止信号PCが入力される。
メモリ回路12を動作させる通常モードでは、Lレベルの停止信号PCが入力され、メモリ回路12を動作させない停止モードでは、Hレベルの停止信号PCが入力される。
【0025】
そして、Lレベルの停止信号PCが入力されると、基板電位検出回路16のトランジスタTr2がオンされて、トランジスタTr2から抵抗R1を介してトランジスタTr1にドレイン電流が流れて基板電位発生回路15が活性化され、所定の基板電位VBBが生成される。
【0026】
また、Hレベルの停止信号PCが入力されると、基板電位検出回路16のトランジスタTr2がオフされるとともに、トランジスタTr2aがオンされる。すると、基板電位検出回路16でのDC電流が遮断されるとともに、インバータ回路7bの出力信号はLレベルとなって、基板電位発生回路15が不活性化される。
【0027】
なお、この実施の形態の基板電位発生回路15は、前記トランジスタTr2,Tr2aを除いて、前記従来例の基板電位発生回路3と同様である。
また、図4に示すように、前記停止信号PCは、メモリ回路12の動作を停止させるためのコマンド信号CMを外部から入力し、そのコマンド信号CMに基づいてコマンドデコーダ16aから前記トランジスタTr2のゲートに出力する構成としてもよい。このコマンドデコーダ16aは、メモリ回路12内に形成してもよい。
【0028】
図5に示すように、前記停止信号PCは、バッファ回路17aを介してNチャネルMOSトランジスタTr3のゲートに入力される。前記トランジスタTr3のソースは電源Vssに接続され、ドレインはチップ基板20上のP型拡散領域18に接続されている。なお、前記P型拡散領域18の周囲にはN型拡散領域19が形成されている。
【0029】
前記バッファ回路17aは、低電位側電源として基板電位VBBが供給され、Lレベルの停止信号PCが入力されている時は、基板電位VBBレベルの信号を出力して、トランジスタTr3を確実にオフさせるレベルシフト機能を備えている。
【0030】
上記のように構成されたチップ11では、基板電位検出回路16のトランジスタTr2にHレベルの停止信号PCを入力すると、トランジスタTr2がオフされる。
【0031】
すると、ノードN1はLレベルとなって、基板電位検出回路16の出力信号はLレベルとなり、発振回路5の発振動作は停止して、基板電位発生回路15の動作は停止する。
【0032】
この結果、基板電位検出回路16でのトランジスタTr2,Tr1のドレイン電流は遮断され、発振回路5のスイッチング電流も遮断される。
基板電位発生回路15の動作が停止すると、基板電位VBBが不安定となる。すなわち、図6に模式的に示すように、停止信号PCにより基板電位発生回路3の動作を停止させると、ポンピング回路6はスイッチが開いた状態となる。
【0033】
この状態で基板20のP型拡散領域18に正電位のノイズNが侵入して、P型拡散領域18とN型拡散領域19との間のPN接合部にそのしきい値を超える電圧が印加されると、その接合部に大きなノイズ電流Iaが流れ、そのノイズ電流がメモリ回路1あるいはロジック回路2のラッチアップ動作等の不具合の原因となる。
【0034】
しかし、この実施の形態では、図5に示すように、Hレベルの停止信号PCに基づいて、基板電位発生回路15の動作が停止した状態でP型拡散領域18にノイズNが侵入しても、トランジスタTr3がオンされているので、ノイズ電流IbはトランジスタTr3のドレイン電流として電源Vssに吸収される。また、基板電位VBBは電源Vssに固定されて、安定化される。
【0035】
上記のように構成された半導体装置では、次に示す作用効果を得ることができる。
(1)メモリ回路12の基板電位発生回路15に停止信号PCを入力すると、基板電位発生回路15で消費されるDC電流を遮断することができるので、メモリ回路12の消費電流を低減することができる。
【0036】
(2)基板電位発生回路15で消費されるDC電流を遮断することにより、ロジック回路13の非動作時のDC電流の試験、動作時の動作電流の試験等を行うことができる。
【0037】
(3)メモリ回路12の電源を遮断することなく、基板電位発生回路15で消費されるDC電流を遮断することができるので、電源の遮断にともなうラッチアップ動作等の不具合を未然に防止することができる。
【0038】
(4)外部端子14aから停止信号PCを基板電位発生回路15に入力することにより、メモリ回路12で消費されるDC電流を遮断することができるので、使用者がメモリ回路12の消費電流の低減して、ロジック回路13の電流試験を可能とする停止モードを任意に選択することができる。
【0039】
(5)基板電位発生回路15の動作を停止させた時、基板電位VBBを電源Vssレベルに固定することができるので、ノイズNによるメモリ回路12及びロジック回路13の誤動作を防止することができる。
(第二の実施の形態)
前記第一の実施の形態では、基板電位発生回路15に停止信号PCを入力して、基板電位発生回路15で消費されるDC電流を遮断する構成としたが、前記メモリ回路12で生成される内部電源は基板電位VBBだけではなく、昇圧電源Vpp、降圧電源VII、プリチャージ電源VCP等がある。
【0040】
これらの電源Vpp,VII,VCPは、図7に示すように、それぞれVpp発生回路21、VII発生回路22、VCP発生回路23で生成され、各発生回路21,22,23は、前記基板電位発生回路15と同様な構成である。
【0041】
前記Vpp発生回路21は、例えば3Vの電源Vccに対し5Vの電源電圧を生成し、前記VII発生回路22は、3Vの電源Vccに対し2Vの電源電圧を生成し、前記VCP発生回路23は、3Vの電源Vccに対し1.5Vの電源電圧を生成するように構成される。
【0042】
この実施の形態は、各発生回路21,22,23も基板電位発生回路15と同様に、停止信号PCに基づいてその動作を停止し、かつ停止時の電位を電源Vccあるいは電源Vssに固定するものである。
【0043】
すなわち、前記外部端子14aに入力される停止信号PCは、バッファ回路17bを介してVpp発生回路21、VII発生回路22、VCP発生回路23及びVBB発生回路15に入力される。
【0044】
また、バッファ回路17bの出力信号は、バッファ回路17c〜17fに入力され、各バッファ回路17c〜17fの出力信号は、スイッチとして動作するトランジスタTr4〜Tr7のゲートに入力される。
【0045】
前記Vpp発生回路21の出力端子は、前記トランジスタTr4を介して電源Vccに接続され、前記VII発生回路22の出力端子は、トランジスタTr5を介して電源Vccに接続される。
【0046】
前記VCP発生回路23の出力端子は、トランジスタTr6を介して電源Vssに接続され、前記VBB発生回路15は、前記第一の実施の形態と同様に、トランジスタTr7を介して電源Vssに接続される。
【0047】
そして、外部端子14aにHレベルの停止信号PCが入力されると、各発生回路21,22,23,15の動作が停止され、各バッファ回路17b〜17fを介してトランジスタTr4〜Tr7がオンされる。
【0048】
すると、Vpp発生回路21及びVII発生回路22の出力端子は、電源Vccレベルに固定され、VCP発生回路23及びVBB発生回路15の出力端子は、電源Vssレベルに固定される。なお、各バッファ回路17c〜17fは、前記第一の実施の形態のバッファ回路17aと同様に、Lレベルの停止信号PCが入力されたとき、各トランジスタTr4〜Tr7を確実にオフさせるレベルシフト機能を備えている。
【0049】
このように構成されたメモリ回路12では、各発生回路21,22,23,15について、前記第一の実施の形態と同様な作用効果を得ることができる。
(第三の実施の形態)
前記メモリ回路12において、通常動作時にDC電流を消費する回路として、前記内部電源発生回路の他に、図8に示す基準電位発生回路がある。
【0050】
この基準電位発生回路は、PチャネルMOSトランジスタTr8,Tr9のソースに電源Vccが供給され、両トランジスタTr8,Tr9のゲートは互いに接続されるとともに、トランジスタTr9のドレインに接続される。
【0051】
前記トランジスタTr8のドレインは、NチャネルMOSトランジスタTr10のドレインに接続されるとともに、同トランジスタTr10及びNチャネルMOSトランジスタTr11のゲートに接続される。
【0052】
前記トランジスタTr9のドレインは、前記トランジスタTr11のドレインに接続される。前記トランジスタTr10,Tr11のソースは、電源Vssに接続される。
前記トランジスタTr9には、PチャネルMOSトランジスタトランジスタTr12が並列に接続され、同トランジスタTr12のゲートには、前記停止信号PCバーが入力される。
【0053】
前記トランジスタTr10には、NチャネルMOSトランジスタTr13が並列に接続され、同トランジスタTr13のゲートには、前記停止信号PCが入力される。
このように構成された基準電位発生回路では、Lレベルの停止信号PCが入力されている状態で、電源Vcc及び電源Vssが供給されると、各トランジスタTr8〜Tr11がオンされ、トランジスタTr8〜Tr11のオン抵抗に基づいて、トランジスタTr8,Tr10のドレインであるノードN2から所定の基準電位Vrefが出力される。
【0054】
このような動作時には、トランジスタTr8,Tr10にドレイン電流が流れ、トランジスタTr9,Tr11にドレイン電流が流れることから、所定のDC電流を消費している。
【0055】
Hレベルの停止信号PCが入力されると、トランジスタTr12,Tr13がオンされる。すると、トランジスタTr8,Tr9のゲート電位は、ほぼ電源Vccレベルとなって、同トランジスタTr8,Tr9がオフされるとともに、トランジスタTr10,Tr11のゲート電位はほぼ電源VssレベルとなってトランジスタTr10,Tr11がオフされる。この結果、基準電位発生回路は停止モードとなってその動作を停止し、DC電流が遮断される。
【0056】
ところが、このような基準電位発生回路では、停止信号PCがHレベルからLレベルに切り換えられて、停止モードから通常モードに移行しても、正常に動作しない。
【0057】
すなわち、トランジスタTr12,Tr13がオン状態からオフ状態に切り替わっても、トランジスタTr8〜Tr11はオフ状態に維持され、所定の基準電圧Vrefを出力することができない。
【0058】
従って、この基準電位発生回路の停止モードを解除するためには、電源Vcc及び電源Vssを一旦遮断した後、再投入する必要があり、不便である。
そこで、この実施の形態では電源を再投入することなく、停止モードから通常モードに移行可能とした基準電圧発生回路を具体化した。図9にその一例を示す。
【0059】
図9に示す基準電圧発生回路は、図8に示す基準電圧発生回路のトランジスタTr11にNチャネルMOSトランジスタTr14を並列に接続し、同トランジスタTr14のゲートに起動信号PUを入力する構成したものである。
【0060】
前記起動信号PUを前記停止信号PCに基づいて生成する起動信号生成回路24を図10(a)に示す。
すなわち、起動信号生成回路24は前記停止信号PCが4段のインバータ回路7dを介してAND回路25に入力される。また、前記停止信号PCは1段のインバータ回路7eを介して前記AND回路25に入力される。そして、前記AND回路25から前記起動信号PUが出力される。
【0061】
このように構成された起動信号生成回路24では、図10(b)に示すように、停止信号PCがHレベルからLレベルに立ち下がる時、インバータ回路7dと同7eの動作遅延時間の差に相当するパルス幅でHレベルとなる起動信号PUを出力する。また、これ以外の場合には、起動信号PUはLレベルに維持される。
【0062】
上記のような起動信号PUが入力される基準電圧発生回路では、停止信号PCがHレベルからLレベルに立ち下がって、停止モードから通常モードに移行すると、トランジスタTr14に所定時間に限りHレベルとなる起動信号PUが入力される。
【0063】
すると、トランジスタTr14がオンされて、トランジスタTr8,Tr9がオンされ、これにともなってトランジスタTr10,Tr11がオンされて起動され、基準電圧Vrefが出力される。
【0064】
従って、このように構成された基準電圧発生回路では、停止モードから通常モードに移行するとき、電源Vcc及び電源Vssを再投入することなく、自動的に再起動することができる。
(第四の実施の形態)
図11は、メモリ回路12に搭載されるデータ転送回路の従来例を示す。このデータ転送回路は、入力信号INが転送ゲート26aを介してラッチ回路27aに入力され、そのラッチ回路27aの出力信号が転送ゲート26bを介してラッチ回路27bに入力され、ラッチ回路27bから出力信号OUTが出力される。
【0065】
クロック信号φは、前記転送ゲート26aのPチャネル側ゲート及び転送ゲート26bのNチャネル側ゲートに入力される。また、クロック信号φバーは、前記転送ゲート26aのNチャネル側ゲート及び転送ゲート26bのPチャネル側ゲートに入力される。
【0066】
前記ラッチ回路27bの入力端子は、NチャネルMOSトランジスタTr15を介して電源Vssに接続され、そのトランジスタTr15のゲートにはリセット信号RSTが入力される。
【0067】
電源Vcc及び電源Vssの投入時に、前記リセット信号RSTを生成するパワーオンリセット回路を図12(a)に示す。
電源Vccと電源Vssとの間には、抵抗R2,R3及びNチャネルMOSトランジスタTr18 が直列に接続され、同抵抗R2,R3間のノードN3は、NチャネルMOSトランジスタTr16のゲートに接続される。
【0068】
前記トランジスタTr16のドレインであるノードN4は抵抗R4を介して電源Vccに接続され、ソースはNチャネルMOSトランジスタTr19を介して電源Vssに接続される。
【0069】
前記トランジスタTr18 ,Tr19のゲートには、前記停止信号PCバーが入力されている。
前記ノードN4はインバータ回路7fの入力端子に接続され、そのインバータ回路7fの出力信号がインバータ回路7gを介してリセット信号RSTとして出力される。
【0070】
このように構成されたパワーオンリセット回路は、停止信号PCバーがHレベルとなる通常モードでは、図12(b)に示すように、電源Vcc及び電源Vssの投入に基づいて、電源Vccレベルの上昇とともに、ノードN3,N4の電位が徐々に上昇し、リセット信号RSTも徐々に上昇する。
【0071】
ノードN3と電源Vssの電位差がトランジスタTr16のしきい値を超えると、トランジスタTr16がオンされ、ノードN4がほぼ電源Vssレベルとなる。すると、リセット信号RSTは直ちにLレベルとなる。
【0072】
このような動作により、パワーオンリセット回路から出力されるリセット信号RSTは、電源Vcc及び電源Vssの投入時に、電源Vccの上昇とともに上昇し、NチャネルMOSトランジスタのしきい値を超える程度まで上昇した後、Lレベルに立ち下がるパルス信号として出力される。
【0073】
また、上記パワーオンリセット回路は、Hレベルの停止信号PCが入力される停止モードでは、停止信号PCバーがLレベルとなって、トランジスタTr18 ,Tr19がオフされる。
【0074】
すると、抵抗R2,R3に流れるDC電流及び抵抗R4からトランジスタTr16に流れるDC電流が遮断される。
そして、ノードN3,N4は電源Vccレベルとなり、リセット信号RSTはHレベルとなるが、停止モードにおいてリセット信号RSTがHレベルとなっても、メモリ回路12の動作には支障がない。
【0075】
前記データ転送回路では、入力信号INがクロック信号φ,φバーの反転にともなってラッチ回路27a,27bに順次転送され、ラッチ回路27bから出力信号OUTとして出力される。
【0076】
また、電源の投入時には、前記リセット信号RSTにより、トランジスタTr15が一時的にオンされ、出力信号OUTがHレベルにリセットされる。
ところが、このようなデータ転送回路において、通常モードから停止モードとなると、クロック信号φがLレベル、同φバーがHレベルに固定される。
【0077】
すると、転送ゲート26aは導通状態、転送ゲート26bは不導通状態に固定され、ラッチ回路27aには、停止モードに切り替わる直前の入力信号INがラッチされた状態となる。
【0078】
次いで、停止モードから通常モードに復帰した場合には、クロック信号φ,φバーの反転動作に基づいて、ラッチ回路27aのラッチデータが転送ゲート26b及びラッチ回路27bを介して出力信号OUTとして出力される。
【0079】
従って、停止モードから通常モードに切り替わるとき、このデータ転送回路から出力される出力信号OUTは不定となり、後段の回路を誤動作させるおそれがある。
【0080】
そこで、この実施の形態では、上記不具合を解決するために図13に示すデータ転送回路28を具体化した。
すなわち、図13に示すデータ転送回路28は、図11に示すデータ転送回路のトランジスタTr15にNチャネルMOSトランジスタTr17を並列に接続し、同トランジスタTr17 のゲートに前記起動信号PUを入力する構成とした。
【0081】
このようなデータ転送回路28では、停止モードから通常モードに切り替わった時、起動信号PUに基づいてトランジスタTr17が一時的にオンされ、ラッチ回路27bの出力信号OUTがHレベルにリセットされる。
【0082】
従って、停止モードから通常モードに切り替わる時、出力信号OUTをHレベルにリセットすることができるので、後段の回路の誤動作を確実に防止することができる。
(第五の実施の形態)
図14は、第五の実施の形態を示す。この実施の形態は、前記パワーオンリセット回路で生成されるリセット信号RSTと前記起動信号生成回路24で生成される起動信号PUとを論理合成する回路を具体化したものである。
【0083】
すなわち、図12(a)に示すパワーオンリセット回路で生成されるリセット信号RSTがNOR回路29に入力され、そのNOR回路29には前記起動信号生成回路24で生成される起動信号PUが入力される。そして、NOR回路29の出力信号がインバータ回路7hを介して合成リセット信号RSTSとして出力される。
【0084】
すると、合成リセット信号RSTSは、リセット信号RSTと起動信号PUの少なくともいずれかがHレベルとなった時、Hレベルとなる。
このような合成リセット信号RSTSを生成して、図11に示すデータ転送回路のトランジスタTr15のゲートに入力すると、電源Vcc及び電源Vssの投入時と、停止モードから通常モードへの切り替わり時にラッチ回路27bの出力信号OUTをHレベルにリセットすることができる。
【0085】
従って、合成リセット信号RSTSを使用することにより、図13に示すデータ転送回路28のトランジスタTr17及び同トランジスタTr17のゲートに起動信号PUを入力するための配線が不要となる。
【0086】
この結果、多数のデータ転送回路を備えるメモリ回路12の素子数及び配線数を削減することができる。
また、図15に示すように、前記NOR回路29に前記外部端子14aから入力される停止信号PCを入力しても同様な作用効果を得ることができる。
【0087】
上記実施の形態から把握できるぜ請求項以外の技術思想を以下に述べる。
(1)請求項1乃至5のいずれかにおいて、前記マクロは、メモリマクロで構成し、前記停止信号は、前記メモリマクロの基板電位発生回路の基板電位検出回路で消費される直流電流を遮断する前記第一のスイッチ回路を制御可能とした。
【0088】
(2)請求項1乃至5及び上記(1)のいずれかにおいて、前記マクロには、通常モードでは直流電流を流すことにより、電源電圧を分圧した基準電圧を生成する基準電圧発生回路と、前記停止モードでは、前記停止信号に基づいて前記基準電圧発生回路の直流電流を遮断して該基準電圧発生回路を不活性化する第三のスイッチ回路と、前記停止モードから通常モードへの移行時には、前記停止信号の切り替わりに基づいて起動信号を生成する起動信号生成回路と、前記起動信号に基づいて前記基準電圧発生回路に直流電流を流して、該基準電圧発生回路を起動する第四のスイッチ回路とを備えた。
【0089】
(3)請求項1乃至5及び上記(1)のいずれかにおいて、前記マクロには、通常モードではクロック信号に基づいて入力信号を複数のラッチ回路で順次転送するデータ転送回路と、リセット信号の入力に基づいて、前記データ転送回路の出力信号をリセットする第一のリセット回路と、電源の投入時には、前記リセット信号を生成するパワーオンリセット回路と、前記停止モードから通常モードへの移行時には、前記停止信号の切り替わりに基づいて起動信号を生成する起動信号生成回路と、前記起動信号に基づいて前記データ転送回路の出力信号をリセットする第二のリセット回路とを備えた。
【0090】
(4)上記(3)において、前記第一及び第二のリセット回路を共通のリセット回路とし、前記起動信号と前記リセット信号の論理和信号で該リセット回路を動作させる。
【0091】
(5)上記(3)において、前記第一及び第二のリセット回路を共通のリセット回路とし、前記停止信号と前記リセット信号の論理合成信号で該リセット回路を動作させる。
【0092】
(6)請求項1乃至5において、前記停止信号を外部端子から前記マクロに入力して、前記マクロの直流電流を遮断することにより、前記外部端子を前記ロジック回路の電流試験を行うための端子として使用可能とした。
【0093】
【発明の効果】
以上詳述したように、この発明はロジック回路とその他のマクロが混載された半導体装置において、消費電力の低減を図りながら、安定した動作を確保し、かつロジック回路の消費電流の試験を可能とする半導体装置を提供することができる。
【図面の簡単な説明】
【図1】 本発明の原理説明図である。
【図2】 第一の実施の形態の半導体装置を示す概略図である。
【図3】 基板電位発生回路を示す回路図である。
【図4】 基板電位発生回路の別例を示す回路図である。
【図5】 基板にノイズが侵入した場合の動作を示す説明図である。
【図6】 基板にノイズが侵入した場合の動作を示す説明図である。
【図7】 第二の実施の形態を示す概略図である。
【図8】 第三の実施の形態の基準電圧発生回路の従来例を示す回路図である。
【図9】 第三の実施の形態の基準電圧発生回路を示す回路図である。
【図10】 起動信号生成回路を示す回路図である。
【図11】 第四の実施の形態のデータ転送回路の従来例を示す回路図である。
【図12】 パワーオンリセット回路を示す回路図である。
【図13】 第四の実施の形態のデータ転送回路を示す回路図である。
【図14】 第五の実施の形態を示す回路図である。
【図15】 第五の実施の形態を示す回路図である。
【図16】 従来の半導体装置を示す概略図である。
【図17】 従来の基板電位発生回路を示す回路図である。
【符号の説明】
11 チップ
12 マクロ(メモリ回路)
13 ロジック回路
14a 外部端子
PC 停止信号

Claims (14)

  1. 半導体装置であって、
    外部電源に接続されたロジック回路と、
    前記外部電源に接続され、直流電流を消費する直流電流消費回路を含むマクロとを備え、
    前記直流電流消費回路は、前記マクロを動作させない停止モードにおいて停止信号に応答して前記直流電流の消費を停止し、
    前記直流電流消費回路は、前記停止信号に応答して該直流電流消費回路内に流れる直流電流を遮断する第一のスイッチ回路を含むとともに、前記外部電源に接続された内部電源発生回路を含み、
    前記直流電流消費回路は、前記内部電源発生回路の出力端子と前記外部電源の第二電源との間に接続され、前記停止信号に応答して前記内部電源発生回路の出力端子と前記第二電源とを接続する第二のスイッチ回路を含み、
    前記第一のスイッチ回路は、前記内部電源発生回路内の内部電源を検出する回路の出力端子と、前記外部電源の第一電源との間に接続されることを特徴とする半導体装置。
  2. 前記直流電流消費回路に接続され、コマンド信号をデコードして前記停止信号を生成するコマンドデコーダを含むことを特徴とする請求項1に記載の半導体装置。
  3. 前記マクロは、
    通常モードではクロック信号に応じて入力信号を複数のラッチ回路で順次転送するデータ転送回路と、
    リセット信号の入力に応答して、前記データ転送回路の出力信号をリセットする第一のリセット回路と、
    電源の投入時に、前記リセット信号を生成するパワーオンリセット回路と、
    前記停止モードから前記通常モードへの移行時に、前記停止信号の切り替わりに応答して起動信号を生成する起動信号生成回路と、
    前記起動信号に応答して前記データ転送回路の出力信号をリセットする第二のリセット回路とを備えることを特徴とする請求項1又は2に記載の半導体装置。
  4. 半導体装置であって、
    外部電源に接続されたロジック回路と、
    前記外部電源に接続され、直流電流を消費する直流電流消費回路を含むマクロとを備え、
    前記直流電流消費回路は、停止モードにおいて停止信号に応答して前記直流電流の消費を停止し、
    前記直流電流消費回路は、前記停止信号に応答して該直流電流消費回路内に流れる直流電流を遮断する第一のスイッチ回路を含むとともに、前記外部電源に接続された内部電源発生回路を含み、
    前記マクロは、
    通常モードではクロック信号に応じて入力信号を複数のラッチ回路で順次転送するデータ転送回路と、
    リセット信号の入力に応答して、前記データ転送回路の出力信号をリセットする第一のリセット回路と、
    電源の投入時に、前記リセット信号を生成するパワーオンリセット回路と、
    前記停止モードから前記通常モードへの移行時に、前記停止信号の切り替わりに応答して起動信号を生成する起動信号生成回路と、
    前記起動信号に応答して前記データ転送回路の出力信号をリセットする第二のリセット回路とを備えることを特徴とする半導体装置。
  5. 半導体装置であって、
    外部電源に接続されたロジック回路と、
    前記外部電源に接続され、直流電流を消費する直流電流消費回路を含むマクロとを備え、
    前記直流電流消費回路は、停止モードにおいて停止信号に応答して前記直流電流の消費を停止し、
    前記直流電流消費回路は、内部電源発生回路及び基板電位検出回路のうちの一つを含み、
    前記マクロは、
    通常モードではクロック信号に応じて入力信号を複数のラッチ回路で順次転送するデータ転送回路と、
    リセット信号の入力に応答して、前記データ転送回路の出力信号をリセットする第一のリセット回路と、
    電源の投入時に、前記リセット信号を生成するパワーオンリセット回路と、
    前記停止モードから前記通常モードへの移行時に、前記停止信号の切り替わりに応答して起動信号を生成する起動信号生成回路と、
    前記起動信号に応答して前記データ転送回路の出力信号をリセットする第二のリセット回路とを備えることを特徴とする半導体装置。
  6. 前記内部電源発生回路及び前記基板電位検出回路のうちの一つは、前記停止信号に応答して該直流電流消費回路内に流れる前記直流電流を遮断する第一のスイッチ回路を含むことを特徴とする請求項記載の半導体装置。
  7. 前記直流電流消費回路は、前記内部電源発生回路を含むとともに、前記内部電源発生回路と前記外部電源との間に接続され、前記停止信号に応答して前記内部電源発生回路と前記外部電源とを接続する第二のスイッチ回路を含むことを特徴とする請求項4〜6のいずれか1つに記載の半導体装置。
  8. 半導体装置であって、
    外部電源に接続されたロジック回路と、
    前記外部電源に接続され、直流電流を消費する直流電流消費回路を含むマクロとを備え、
    前記直流電流消費回路は、停止モードにおいて停止信号に応答して前記直流電流の消費を停止し、
    前記直流電流消費回路は、昇圧電源発生回路、降圧電源発生回路及びプリチャージ電源発生回路のうちの一つを含み、
    前記マクロは、
    通常モードではクロック信号に応じて入力信号を複数のラッチ回路で順次転送するデータ転送回路と、
    リセット信号の入力に応答して、前記データ転送回路の出力信号をリセットする第一のリセット回路と、
    電源の投入時に、前記リセット信号を生成するパワーオンリセット回路と、
    前記停止モードから前記通常モードへの移行時に、前記停止信号の切り替わりに応答して起動信号を生成する起動信号生成回路と、
    前記起動信号に応答して前記データ転送回路の出力信号をリセットする第二のリセット回路とを備えることを特徴とする半導体装置。
  9. 前記直流電流消費回路は、
    前記直流電流消費回路と前記外部電源との間に接続され、前記停止信号に応答して前記直流電流消費回路と前記外部電源とを接続する第二のスイッチ回路とを含むことを特徴とする請求項記載の半導体装置。
  10. 半導体装置であって、
    外部電源に接続されたロジック回路と、
    前記外部電源に接続され、直流電流を消費する直流電流消費回路を含むマクロとを備え、
    前記直流電流消費回路は、
    停止信号に応答して前記直流電流を遮断する第一のスイッチ回路と、
    前記直流電流消費回路と前記外部電源との間に接続され、前記停止信号に応答して前記直流電流消費回路と前記外部電源とを接続する第二のスイッチ回路とを含み、
    前記マクロは、
    通常モードではクロック信号に応じて入力信号を複数のラッチ回路で順次転送するデータ転送回路と、
    リセット信号の入力に応答して、前記データ転送回路の出力信号をリセットする第一のリセット回路と、
    電源の投入時に、前記リセット信号を生成するパワーオンリセット回路と、
    停止モードから前記通常モードへの移行時に、前記停止信号の切り替わりに応答して起動信号を生成する起動信号生成回路と、
    前記起動信号に応答して前記データ転送回路の出力信号をリセットする第二のリセット回路とを備えることを特徴とする半導体装置。
  11. 前記第一のリセット回路及び前記第二のリセット回路を共通のリセット回路とし、前記起動信号と前記リセット信号の論理和信号にて該リセット回路を動作させることを特徴とする請求項3〜10のいずれか1つに記載の半導体装置。
  12. 前記第一のリセット回路及び前記第二のリセット回路を共通のリセット回路とし、前記停止信号と前記リセット信号の論理和信号にて該リセット回路を動作させることを特徴とする請求項3〜10のいずれか1つに記載の半導体装置。
  13. 半導体装置であって、
    ロジック回路と、
    直流電流を消費するとともに、モードが通常モードから停止モードに変化したことを示す停止信号に応答して動作を停止する直流電流消費回路を含むマクロとを備え、
    前記直流電流消費回路は、電源電圧から基準電圧を生成する基準電圧発生回路を含み、
    前記基準電圧発生回路は、
    前記基準電圧を生成する基準電圧発生部と、
    前記停止モードにおいて前記停止信号に応答して前記基準電圧発生回路内に流れる直流電流を遮断する第一のスイッチ回路と、 モードが停止モードから通常モードに変化したことを示す前記停止信号に応答して起動信号を生成する起動信号生成回路と、
    前記基準電圧発生回路及び前記起動信号生成回路に接続され、前記起動信号に応答して前記基準電圧発生回路を起動する第二のスイッチ回路とを含むことを特徴とする半導体装置。
  14. 半導体装置であって、
    外部電源に接続されるとともに、起動信号に応答して通常モードにおいて直流電流を消費する直流電流消費回路を含むマクロと、
    非活性化状態の停止信号に応答して起動信号を生成する起動信号生成回路と、
    前記起動信号生成回路に接続されるとともに、パワーオンリセット回路と論理合成回路とを含むリセット回路とを備え、前記パワーオンリセット回路は、パワーオンリセット信号を生成し、前記論理合成回路は、前記パワーオンリセット信号と前記起動信号とを論理的に合成することにより合成リセット信号を生成し、該合成リセット信号を前記直流電流消費回路に供給して、前記パワーオンリセット信号及び前記起動信号のうちの少なくとも一つが第一の所定レベルに設定されたとき、前記直流電流消費回路の状態をリセットモードに変化させるものであり、前記直流電流消費回路の状態は、前記パワーオンリセット信号及び前記起動信号の両方が第二の所定レベルに設定されたとき、前記リセットモードから前記通常モードに変化することを特徴とする半導体装置。
JP2000004773A 2000-01-13 2000-01-13 半導体装置 Expired - Fee Related JP4557342B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2000004773A JP4557342B2 (ja) 2000-01-13 2000-01-13 半導体装置
TW089115603A TW523756B (en) 2000-01-13 2000-08-03 Semiconductor device having logic circuit and macro circuit
US09/642,937 US6700437B1 (en) 2000-01-13 2000-08-22 Semiconductor device including logic circuit and macro circuit which has a function for stopping a direct current
KR1020000048551A KR100643060B1 (ko) 2000-01-13 2000-08-22 반도체 장치
US10/757,395 US7167042B2 (en) 2000-01-13 2004-01-15 Semiconductor device having logic circuit and macro circuit
US11/045,104 US7078945B2 (en) 2000-01-13 2005-01-31 Semiconductor device having logic circuit and macro circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000004773A JP4557342B2 (ja) 2000-01-13 2000-01-13 半導体装置

Publications (2)

Publication Number Publication Date
JP2001195876A JP2001195876A (ja) 2001-07-19
JP4557342B2 true JP4557342B2 (ja) 2010-10-06

Family

ID=18533521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000004773A Expired - Fee Related JP4557342B2 (ja) 2000-01-13 2000-01-13 半導体装置

Country Status (4)

Country Link
US (3) US6700437B1 (ja)
JP (1) JP4557342B2 (ja)
KR (1) KR100643060B1 (ja)
TW (1) TW523756B (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4032066B2 (ja) 2003-06-27 2008-01-16 富士通株式会社 半導体集積回路
US8748923B2 (en) * 2005-03-14 2014-06-10 Philips Lumileds Lighting Company Llc Wavelength-converted semiconductor light emitting device
TWI326084B (en) * 2005-09-13 2010-06-11 Hynix Semiconductor Inc Synchronous dynamic random access memory integrated circuit semiconductor memory with reset function and method of resetting a memory without powering down the memory
JP2008005374A (ja) * 2006-06-26 2008-01-10 Mitsubishi Electric Corp マルチストリーム対応マルチプレクサ及びデマルチプレクサシステム
JP4808109B2 (ja) * 2006-09-01 2011-11-02 富士通セミコンダクター株式会社 半導体装置
KR100894106B1 (ko) * 2008-03-17 2009-04-20 주식회사 하이닉스반도체 전원전압 레벨다운 회로

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0444257A (ja) * 1990-06-07 1992-02-14 Mitsubishi Electric Corp 半導体集積回路装置
JPH04259983A (ja) * 1991-02-15 1992-09-16 Hitachi Ltd 半導体記憶装置
JPH06259964A (ja) * 1993-03-08 1994-09-16 Matsushita Electric Ind Co Ltd 基板電圧検知回路および基板電圧発生回路および定電圧発生回路および半導体メモリ装置
JPH07303369A (ja) * 1994-04-08 1995-11-14 Lg Semicon Co Ltd 半導体デバイス用内部電圧発生器
JPH1064259A (ja) * 1996-08-27 1998-03-06 Fujitsu Ltd 半導体記憶装置
JPH1196766A (ja) * 1997-07-25 1999-04-09 Toshiba Corp ロジック混載メモリ

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2524380Y2 (ja) * 1992-11-27 1997-01-29 双葉電子工業株式会社 ラジコン送信機の電源制御回路
EP0716368B1 (en) * 1994-12-05 2002-06-12 STMicroelectronics S.r.l. Charge pump voltage multiplier circuit with control feedback and corresponding method
KR0142970B1 (ko) * 1995-06-24 1998-08-17 김광호 반도체 메모리 장치의 기준전압 발생회로
JP2950313B2 (ja) * 1998-01-19 1999-09-20 日本電気株式会社 半導体集積回路の入力バッファ回路
US6161204A (en) * 1998-02-17 2000-12-12 Micron Technology, Inc. Method and apparatus for testing SRAM memory cells
US6031755A (en) * 1998-03-25 2000-02-29 Rohm Co., Ltd. Non-volatile semiconductor memory device and its testing method
KR100281693B1 (ko) * 1998-09-02 2001-02-15 윤종용 고속 삼상 부스터 회로
JP3371845B2 (ja) * 1999-03-26 2003-01-27 日本電気株式会社 モード設定確定信号生成回路及び半導体記憶装置
US6288590B1 (en) * 1999-05-21 2001-09-11 Intel Corporation High voltage protection input buffer
DE19947115C2 (de) * 1999-09-30 2002-01-03 Infineon Technologies Ag Schaltungsanordnung zur stromsparenden Referenzspannungserzeugung
US6265947B1 (en) * 2000-01-11 2001-07-24 Ericsson Inc. Power conserving phase-locked loop and method
JP3399433B2 (ja) * 2000-02-08 2003-04-21 松下電器産業株式会社 基準電圧発生回路
KR100416374B1 (ko) * 2001-04-26 2004-01-31 삼성전자주식회사 마이크로 컨트롤러용 저전압 리셋 회로

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0444257A (ja) * 1990-06-07 1992-02-14 Mitsubishi Electric Corp 半導体集積回路装置
JPH04259983A (ja) * 1991-02-15 1992-09-16 Hitachi Ltd 半導体記憶装置
JPH06259964A (ja) * 1993-03-08 1994-09-16 Matsushita Electric Ind Co Ltd 基板電圧検知回路および基板電圧発生回路および定電圧発生回路および半導体メモリ装置
JPH07303369A (ja) * 1994-04-08 1995-11-14 Lg Semicon Co Ltd 半導体デバイス用内部電圧発生器
JPH1064259A (ja) * 1996-08-27 1998-03-06 Fujitsu Ltd 半導体記憶装置
JPH1196766A (ja) * 1997-07-25 1999-04-09 Toshiba Corp ロジック混載メモリ

Also Published As

Publication number Publication date
US7078945B2 (en) 2006-07-18
TW523756B (en) 2003-03-11
KR20010076175A (ko) 2001-08-11
US20040145408A1 (en) 2004-07-29
US6700437B1 (en) 2004-03-02
KR100643060B1 (ko) 2006-11-10
US20050127985A1 (en) 2005-06-16
US7167042B2 (en) 2007-01-23
JP2001195876A (ja) 2001-07-19

Similar Documents

Publication Publication Date Title
JP4820571B2 (ja) 半導体装置
KR100292595B1 (ko) 저 전력 및 작은 영역의 슬립 모드를 갖는 반도체 집적 회로
US6861882B2 (en) Semiconductor integrated circuit with reduced leakage current
US7982514B2 (en) State-retentive master-slave flip flop to reduce standby leakage current
JP2004222272A (ja) パワー検出部を具備して漏洩電流経路を遮断するレベルシフト
JP2008102923A (ja) システムオンチップ
US7389437B2 (en) Semiconductor circuit with mask register
US20200118602A1 (en) Power switch control in a memory device
US6566932B2 (en) On-chip system with voltage level converting device for preventing leakage current due to voltage level difference
KR20060087716A (ko) 메모리 장치
US7078945B2 (en) Semiconductor device having logic circuit and macro circuit
JP2011192084A (ja) 半導体集積回路および電子情報機器
JP3672184B2 (ja) 中継用マクロセル
JP2006295773A (ja) 半導体集積回路
JP4772480B2 (ja) 半導体集積装置
KR20070109221A (ko) 반도체 장치의 내부전압 생성회로
KR100225213B1 (ko) 반도체 장치 및 이 반도체 장치의 클럭 신호 제어방법(control of clock signal in semiconductor device)
JP2004253072A (ja) 半導体装置及びその制御方法
KR19980022291A (ko) 반도체 메모리 장치의 내부 전압 변환기 및 그 구동 방법
JP4322072B2 (ja) 半導体装置
US5786686A (en) Low-power consumption type semiconductor device
JP4240863B2 (ja) 半導体集積回路
KR100295065B1 (ko) 반도체메모리장치의출력장치
KR0182949B1 (ko) 파워-업 구동회로의 안정적인 파워-업 구동방법
KR20060120776A (ko) 전력소비를 줄일 수 있는 반도체 디바이스의 전압 변환드라이버

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040318

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070213

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070416

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071031

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071130

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080314

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100720

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees