以下、本発明に係る画像形成装置を図面に則して更に詳しく説明する。
実施例1
図1に、本発明の画像形成装置の一実施例である電子写真式のレーザービームプリンタの概略構成を示す。実施例1のレーザービームプリンタは、先に説明した図21に示すレーザービームプリンタと同様の構成とされ、同じ構成及び機能をなす部材には、同じ参照番号を付し、詳しい説明は省略する。
実施例1にて、像担持体としてのドラム状の電子写真感光体、即ち、感光体ドラム1は、OPC等の感光材料をアルミニウムやニッケル等のシリンダ状の基板上に形成して構成されている。
先ず、感光体ドラム1の表面は、帯電バイアス(電圧)が印加される帯電手段としての帯電ローラ2によって一様に帯電される。なお、帯電ローラ2に印加される帯電バイアスは、高電圧電源(不図示)から供給されるものであり、直流電圧(DC電圧)と交流電圧(AC電圧)を重畳した電圧である。高電圧電源が帯電ローラ2に印加する直流電圧は、通常は−620ボルトとされている。また高電圧電源が帯電ローラ2に印加する交流電圧は、周波数が500〜1000Hz、電圧の振幅(ピーク間電圧)が1600〜2000Vの正弦波状の電圧とされている。
次に、画像情報に応じて、露光手段からレーザービーム3を走査露光して、一様帯電された感光体ドラム1上に静電潜像が形成される。この静電潜像は、現像バイアスを印加することによって現像手段4で現像され、可視化される。現像方法としては、ジャンピング現像法、2成分現像法等が用いられ、イメージ露光と反転現像との組み合わせで用いられることが多い。
記録材としての記録紙Pは給紙カセット26から給紙ローラ22によって取り出され、レジストローラ24に送られる。記録紙Pはレジストローラ24によって、感光体ドラム1表面に形成されたトナー像と同期を取り感光体ドラム1と転写ローラ5とで形成される転写ニップ部Ntに供給される。紙有無検知センサ、即ち、トップセンサ114は、給紙される記録紙Pの先端を検知する。転写ニップ部Ntにおいて、感光体ドラム1上のトナー像は、不図示の電源により転写ローラ5に印加される転写バイアスの作用で記録紙Pに転写される。
トナー像を保持した記録紙Pは定着手段6へ搬送され、定着手段6のニップ部で加熱・加圧されてトナー像が記録紙P上に定着され永久画像となり機外へ排出される。一方、転写後に感光体ドラム1上に残留する転写残留トナーは、クリーニング手段7により感光体ドラム1表面より除去される。
実施例1のプリンタは、A4サイズ紙24ppm(1分間に24枚プリント)とされ、プロセススピードは約150mm/sec、解像度は600dpiであった。
図2に、上記構成のプリンタの制御手段101の構成の一例を制御ブロック図で示す。
本実施例では、プリンタ装置本体100は、制御手段101を備えており、制御手段101は、エンジンコントローラ102とビデオコントローラ103と有する。エンジンコントローラ102は、帯電手段2に印加する帯電バイアスを制御するための1次帯電バイアス制御回路111、転写手段5に印加する転写バイアスを制御する転写バイアス制御回路112、現像手段4(即ち、現像剤担持体としての現像ローラ4a)に印加する現像バイアスを制御する現像バイアス制御回路113、紙先端を検知する紙有無検知センサ114、メインモータ115、レーザ駆動回路116などと電気的に接続され、信号の送受信を行い、画像形成のための装置の駆動及びプロセス条件などを制御する。また、ビデオコントローラ103は、ホストコンピュータなどとされる外部装置104と接続されており、外部装置104からの信号を受信して、ビデオ信号を形成し、エンジンコントローラ102に送信する。
次に、図3及び図4を参照して、本発明を説明する。
図3は、本実施例に従ってハーフトーン画像を2枚連続してプリントした場合の動作態様を説明するためのフロー図であり、図4は、そのときの、転写バイアス電圧、帯電バイアス電圧(帯電DC電圧)、感光体電位、印字画像濃度をタイミングチャートで示したものである。本実施例にて、感光体は、円筒のドラム形状とされる感光体ドラム1とされ、回転に伴って、帯電、露光、現像、転写、クリーニングの工程を経るので、タイミングチャートはそれぞれの工程で若干の時間差を持っているが、ここでは簡単のためにその時間差は無視して説明する。
なお、図3のフローチャートにおける動作は、制御手段101が有するビデオコントローラ103及びエンジンコントローラ102が実行する動作である。特に、エンジンコントローラ102は、転写バイアス制御回路112に制御信号を送信することで転写バイアス電圧を制御し、1次帯電バイアス制御回路111に制御信号を送信することで帯電バイアス電圧を制御する。
本実施によると、プリントが開始され、プリント指示が装置本体制御手段101にて受信されると、プリント開始のための前回転処理動作が始まる(S−01、S−02)。
図4を参照すると理解されるように、前回転処理において、転写バイアス電圧は0Vから非通紙時の転写バイアス電圧V0へと切り替える。なお、転写バイアス制御回路112は、非通紙時の転写バイアス電圧V0を印加して流れる転写電流量が一定となるよう転写電流検知部(不図示)で検知した値に基づいて非通紙時の転写バイアス電圧V0を印加し、非通紙時の転写バイアス電圧V0から転写ローラ5の抵抗値を概算して通紙時の転写バイアス電圧Vtを決定するものである。
また、帯電バイアス電圧(DC電圧)は、前回転が開始すると感光体ドラム表面を所定電位に帯電するためにonする。本実施例では感光体帯電電位−600ボルトを得るために帯電DC電圧は−620ボルトとした。感光体電位は帯電onにより所定の暗電位VD=−600ボルトになる。1ページ目のプリントが開始されると、帯電DC電圧はonのまま一定であるが、感光体電位は露光を受けるために約−300ボルトになっている。
一方、前回転処理が終わると、記録紙Pが給紙カセット26から給紙ローラ22によって取り出され、レジストローラ24に送られる(S−03)。記録紙の先端がトップセンサ114で検知されると(S−04)、転写バイアス制御回路112は、感光体ドラム1上に現像されたトナー像を記録紙Pに転写するために非通紙時の転写バイアス電圧V0から通紙時の転写バイアス電圧Vtに切り替える(S−05)。なお、いずれの転写バイアス電圧も正極性の電圧であるが、非通紙時の転写電圧V0(第3の転写電圧)よりも通紙時の転写電圧Vt(第1の転写電圧)の方が電圧値が高い(電圧の絶対値が大きい)。
実施例1で転写バイアス制御回路112は、非通紙時は転写ローラ5を通じて感光体ドラム1に約3μA(マイクロアンペア)の転写電流が流れるように非通紙時の転写電圧V0を制御した。このときの転写ローラ5に印加される転写バイアス電圧は+700V(ボルト)程度となる。
一方、転写バイアス制御回路112は、通紙時は非通紙時に転写ローラ5に印加される転写バイアス電圧V0(第3の転写電圧)から換算される値となるよう制御している。転写ローラ5に印加される通紙時の転写バイアス電圧Vt(第1の転写電圧)は、プリンタ装置本体100の置かれた環境により変化する転写ローラ5の抵抗値によって異なるが、いずれの環境であっても、転写ローラ5に流れる転写電流が約6μAとなるように設定される。
転写バイアス制御回路112が、非通紙時に感光体ドラム1に約3μAの転写電流が流れるように制御しているのは以下の2つの理由による。
まず第1の理由について述べる。
通紙時の転写バイアス電圧Vt(第1の転写電圧)を転写ローラ5に印加する際には約6μAの転写電流が転写ローラ5に流れるように設定されているが、この約6μAの転写電流が全て感光体ドラム1に流れるわけではなく、記録紙Pを介して、電流の一部が感光体ドラム1以外に流れる。例えば、記録紙Pが−転写ニップ部Ntに搬送されるように記録紙Pの搬送をガイドする転写前ガイド(不図示)や、記録紙Pの先端が到達した後の定着ローラ6に対して、電流の一部が流れる。
そして、転写ローラ5に約6μAが流れるように転写バイアス制御回路112が転写ローラ5に印加する転写バイアス電圧を制御すると、結果的に感光体ドラム1には約3μAの電流が流れる。
以上のことから、通紙時において感光体ドラム1には約3μAの電流が流れることとなるが、感光体ドラム1の表面電位を一定にするには非通紙時においても感光体ドラム1に流れる電流が約3μAとなるようにすることが必要となる。これは、感光体ドラム1に流れる電流値の大きさが感光ドラム1の表面電位に影響をあたえることによる。
したがって、転写バイアス制御回路112が非通紙時には感光体ドラム1に約3μAの電流が流れるように転写ローラ5に印加する転写バイアス電圧を制御しているのである。
次に第2の理由について述べる。
現像ローラ4aから感光体ドラム1に現像するトナーは、通常は負極性のトナーであるが、トナー粒子同士の摩擦に起因して、正極性を帯びるトナーも存在する。そして、記録材が転写ニップ部Ntに存在しない非通紙時において、転写ローラ5に印加する転写電圧の印加を停止して0V(第2の転写電圧)にすると、正極性のトナーとの電位差が小さくなり、正極性のトナーが転写ローラ5に転移してしまう場合がある。このような転移が発生すると、次に通紙する記録材の裏面が汚れてしまう問題が発生する。そこで、非通紙時に感光体ドラム1に約3μAの転写電流が流れるように制御することで、正極性のトナーと転写ローラ5との間に電位差を設けて、正極性のトナーが転写ローラ5に転移しにくくしている。
1ページ目後端で記録紙Pの後端が感光体ドラム1から剥離されるときに発生する剥離放電による感光体メモリを防止するために、紙後端から約8mm手前の部分が転写ニップ部Ntを通過するときに通紙時の転写バイアス電圧Vtを一旦停止して0Vとし(S−06、S−07)、記録紙Pの後端が転写ニップ部Ntを4mm過ぎてから非通紙時の転写バイアス電圧V0を印加する(S−08、S−09)。
ここで、前記工程S−07〜S−09において、転写バイアス電圧を停止して0Vとした時に転写ローラ5を通過した感光体ドラム1上の領域を「領域A」と呼ぶ。また、記録紙Pの後端がどの位置にあるか、また、上記「領域A」がどの位置にあるかの判断は、本実施例では、エンジンコントローラ102が時間を計時するカウンタを有し、トップセンサ8で紙先端を検知してからカウンタが計時する時間によって記録紙の位置、「領域A」の位置を判断する構成とした。
図4にて理解されるように、連続して搬送される記録材Pの間隔(記録材間隔)に相当する領域では転写バイアス電圧を非通紙時の転写電圧V0に維持し、帯電DC電圧はonで一定である。なお、感光体ドラム1の表面電位は記録材間隔では露光を受けないので暗電位VDである。
制御手段101は、引き続いて2ページ目のプリントの要否について判断し(S−10)、否である場合には、画像形成動作を終了する。プリントの必要がある場合には、2ページ目のプリント動作に移る。
2ページ目のプリントに関しては1ページ目と同様に帯電バイアス電圧(DC電圧)はonのままで、感光体ドラム1の表面電位はハーフトーン画像のための露光を受けるので−300ボルト程度になる。
図5に、比較従来例における、本実施例の図4に示すと同様の転写バイアス、帯電バイアス電圧、感光体ドラム1の表面電位、印字画像濃度をタイミングチャートで示す。従来比較例では、帯電バイアス電圧(DC電圧)はonで一定とされる。
図5に示すように、比較従来例では、1ページ目の記録紙Pの後端が転写ニップ部Ntを通過する際に転写バイアス電圧をoffにした部分の感光体ドラム1上の該当位置、即ち、領域Aの表面電位は−320ボルトで、他の部分の表面電位−300ボルトよりも低い電位になっている。このため画像濃度はこの該当部分だけハーフトーン濃度が薄く0.8(マクベス濃度計による値)である。一方他の部分のハーフトーン濃度は0.9であった。
このように、比較従来例では連続プリント2枚目以降でハーフトーンの濃度差が生じてしまう。すなわち、ハーフトーンの画像濃度がその該当部分(領域A)で薄くなる傾向が見られた。この様子を図8に模式的に示す。
図8に示すように、比較従来例では、ハーフトーンに濃度が薄い部分が発生している。これはちょうど感光体ドラム1の該当位置(領域A)が転写ニップ部Ntにいたときに転写バイアス電圧がoffになっていたためである。
従って、本実施例においては、2ページ目のプリント時には、2ページ目の帯電バイアス電圧(DC電圧)を、転写バイアス電圧をoffした位置、即ち、上記領域Aが一次帯電ローラ2を配置された帯電ニップ部Ndに到達したとき、通常の−620ボルトから−610ボルトと電圧値を高く(電圧の絶対値を小さく)している(S−11、S−12)。領域Aが帯電ニップ部Ndを通過すると、−610ボルトから−620ボルトに戻す(S−13、S−14)。これにより2ページ目の露光後の感光体電位は−300ボルトで一定にすることができ画像濃度が0.9で一定にすることができた。
その後、先に説明した工程S−03以降の各工程を行うことにより、画像形成を続行する。
本発明においては、図6に示したように、一様なハーフトーンが得られた。しかも、各ページの紙後端では転写バイアスをoffしているので、図7に示すような紙後端メモリの黒線も発生することはなかった。
参考例1
本発明の参考例1について説明する。本参考例にて、画像形成装置の構成は、実施例1の図1に示す画像形成装置と同様である。
本参考例では、1ページ目の記録紙Pの後端が転写ニップ部Ntを通過する際に転写バイアス電圧をoffにすることよる感光体ドラムメモリを防止するために現像バイアス電圧(DC電圧)を制御することを特徴とする。
次に、図9及び図10を参照して、本参考例を説明する。
図9は、実施例1と同様に、本参考例に従ってハーフトーン画像を2枚連続してプリントした場合の動作態様を説明するためのフロー図であり、図10は、そのときの、転写バイアス電圧、帯電バイアス電圧、感光体ドラムの表面電位、現像バイアス電圧(現像DC電圧)、印字画像濃度をタイミングチャートで示したものである。本参考例においても、感光体は、円筒のドラム形状とされる感光体ドラム1とされ、回転に伴って、帯電、露光、現像、転写、クリーニングの工程を経るので、タイミングチャートはそれぞれの工程で若干の時間差を持っているが、ここでは簡単のためにその時間差は無視して説明する。
なお、図9のフローチャートにおける動作は、制御手段101が有するビデオコントローラ103及びエンジンコントローラ102が実行する動作である。特に、エンジンコントローラ102は、転写バイアス制御回路112に制御信号を送信することで転写バイアス電圧を制御し、1次帯電バイアス制御回路111に制御信号を送信することで帯電バイアス電圧を制御する。
本参考例によると、プリントが開始され、プリント指示が装置本体制御手段101にて受信されると、プリント開始のための前回転処理動作が始まる(S−01、S−02)。
図10を参照すると理解されるように、前回転処理において、プリント開始のための前回転動作が始まると、転写バイアス制御回路112は、転写バイアス電圧をoff状態の0Vから非通紙時の転写バイアス電圧V0へ切り替える。なお、転写バイアス制御回路112は、非通紙時の転写バイアス電圧V0を印加して流れる転写電流量が一定となるよう転写電流検知部(不図示)で検知した値に基づいて非通紙時の転写バイアス電圧V0を印加し、非通紙時の転写バイアス電圧V0から転写ローラの抵抗値を概算して通紙時の転写バイアス電圧Vtを決定するものである。
また、帯電バイアス電圧(DC電圧)は、前回転が開始すると感光体ドラム表面を所定電位に帯電するためにonする。本実施例では感光体帯電電位−600ボルトを得るために帯電DC電圧は−620ボルトとした。感光体電位は帯電onにより所定の暗電位VD=−600ボルトになる。1ページ目のプリントが開始されると、帯電DC電圧はonのまま一定であるが、感光体電位は露光を受けるために約−300ボルトになっている。
又、前回転の開始と共に、現像手段4の現像ローラ4aにも現像DC電圧が印加される。本実施例では、現像バイアスは、−450ボルトとした。
一方、前回転処理が終わると、記録紙Pが給紙カセット26から給紙ローラ22によって取り出され、レジストローラ24に送られる(S−03)。記録紙の先端がトップセンサ114で検知されると(S−04)、転写バイアス制御回路112は、感光体ドラム1上に現像されたトナー像を記録紙Pに転写するために非通紙時の転写バイアス電圧V0から通紙時の転写バイアス電圧Vtに切り替える(S−05)。
なお、いずれの転写バイアス電圧も正極性の電圧であるが、非通紙時の転写電圧V0(第3の転写電圧)よりも通紙時の転写電圧Vt(第1の転写電圧)の方が、絶対値が大きい。
本参考例においても、転写バイアス制御回路112は、通紙時は転写ローラ5に流れる転写電流が約6μA(マイクロアンペア)となるように制御した。これにより転写ローラ5を通じて感光体に約3μA(マイクロアンペア)の電流が流れる。このときの転写ローラへの印加電圧は大体+700ボルト程度だった。通紙時は非通紙時に転写ローラ5に印加される転写バイアス電圧V0(第3の転写電圧)から換算される値となるよう制御している。転写ローラ5に印加される通紙時の転写バイアス電圧Vt(第1の転写電圧)は、プリンタ装置本体100の置かれた環境により変化する転写ローラ5の抵抗値によって異なるが、いずれの環境であっても、通紙時は転写ローラ5に流れる転写電流が約6マイクロアンペアとなるように設定される。
1ページ目の記録紙Pの後端が感光体ドラム1から離れるときに発生する放電による感光体メモリを防止するために、記録紙Pの後端から約8mm手前の部分が転写ニップ部Ntを通過するときに転写バイアス電圧を一旦offして0Vとし(S−06、S−07)、記録紙Pの後端が転写ニップ部Ntを4mm過ぎてから非通紙時の転写バイアス電圧V0をonする(S−08、S−09)。
ここで、前記S−07〜S−09において、転写バイアス電圧を停止して0Vとした時に転写ローラ5を通過した感光体ドラム1上の領域を「領域A」とする。
また、記録紙Pの後端がどの位置にあるか、また、「領域A」がどの位置にあるかの判断は、実施例1と同様に、エンジンコントローラ102が時間を計時するカウンタを有し、トップセンサ8で紙先端を検知してからカウンタが計時する時間によって記録紙の位置、「領域A」の位置を判断する構成とした。
図10にて理解されるように、記録材間隔に相当する領域では転写バイアス電圧を非通紙時の転写電圧V0に維持し、帯電DC電圧はonで一定である。なお、感光体ドラム1の表面電位は記録材間隔では露光を受けないので暗電位VDである。
制御手段101は、引き続いて2ページ目のプリントの要否について判断し(S−10)、否である場合には、画像形成動作を終了する。プリントの必要がある場合には、2ページ目のプリント動作に移る。
2ページ目のプリントに関しては1ページ目と同様に帯電バイアス電圧(DC電圧)はonのままで、感光体ドラム1の表面電位はハーフトーン画像のための露光を受けるので−300ボルト程度になる。
一方、実施例1で説明したように、図5に示す比較従来例では、1ページ目の記録紙Pの後端が転写ニップ部Ntを通過する際に転写バイアス電圧をoffにした部分の感光体ドラム1上の該当位置、即ち、領域Aの表面電位は−320ボルトで、他の部分の表面電位−300ボルトよりも高い電位になっている。従って、このまま現像すると、上述の図8に示す比較従来例のように2ページ目のハーフトーンに濃度の薄い領域ができてしまう。
従って、参考例1においては、2ページ目のプリント時には、転写バイアス電圧を停止して0Vとした位置、即ち、領域Aが現像位置に到達したとき、現像ローラ4aに印加される現像バイアス電圧(DC電圧)を、参考例1では−450ボルトの現像バイアス電圧(DC電圧)を−460ボルトと電圧値を低く(電圧の絶対値を大きく)している(S−11、S−12)。このように、10ボルト現像バイアス電圧の絶対値を大きくすることでハーフトーンが薄くなることを防止することができた。また、領域Aが現像位置を通過すると、−460ボルトから−450ボルトに戻す(S−13、S−14)。
その後、先に説明した工程S−03以降の各工程を行うことにより、画像形成を続行する。
参考例1の装置を用いてハーフトーンの画像を連続プリントしてみたが、記録紙Pの後端の剥離放電による黒線とか、記録紙Pの後端付近で転写バイアス電圧をoffすることによるハーフトーンの薄い部分などが共に発生することなく良好な画像を得ることができた。
なお、以上の実施例1、参考例1では帯電バイアス電圧或いは現像バイアス電圧によって2ページ目以降の濃度を補正したが、これに限ることなく、例えば前述の領域Aがレーザー3が感光体ドラム1上に照射される露光位置を通過する際に、レーザー露光量を大きくすることで濃度を一定に保つようにすることも可能である。
以上を、図11を参照して説明するが、図9と異なるのは工程S−11からS−14までのステップなので、工程S―11からS−14について説明する。
プリント指示を受信して1ページ目のプリントを終了した後に(S―01からS−09)次ページのプリントを行う場合(S−10でYES)、2ページ目のプリント時には、2ページ目のレーザー露光量を、転写バイアス電圧を停止させて0Vとした位置、即ち、領域Aがレーザー3が感光体ドラム1上に照射される露光位置に到達したとき、通常の露光量から10%出力を上げる(S−11、S−12)。領域Aが露光位置を通過すると、レーザー露光量を通常の露光量に戻す(S−13、S−14)。これにより2ページ目の露光後の感光体ドラム1の表面電位は−300ボルトで一定にすることができ画像濃度が0.9で一定にすることができた。
その後、工程S−03以降の各工程を行うことにより、画像形成を続行する。
以上のようにレーザー露光量を適切に制御することにより、記録紙Pの後端の放電による黒線とか、記録紙Pの後端付近で転写バイアス電圧を停止させて0Vとすることによるハーフトーンの薄い部分などが共に発生することなく良好な画像を得ることができた。
実施例2
本発明の第2実施例について説明する。本実施例にて、画像形成装置の構成は、実施例1の図1に示す画像形成装置と同様である。
実施例2では、より均一な画像を得るために、1ページ目の記録紙Pの後端が転写ニップ部Ntを通過する際に転写バイアス電圧を瞬時的に停止させるのではなく30msec程度時間をかけて徐々に電圧を下げて停止させるようにする点が異なる。本実施例は、更に画像の均一性を改善するために帯電バイアス電圧も30msec程度時間を掛けて徐々に電圧を変化させることを特徴とする。
次に、図12及び図13を参照して、実施例2を説明する。
図12は、実施例1と同様に、実施例2に従ってハーフトーン画像を2枚連続してプリントした場合の動作態様を説明するためのフロー図であり、図13は、そのときの、転写バイアス電圧、帯電バイアス電圧(DC電圧)、感光体ドラム1の表面電位、印字画像濃度をタイミングチャートで示したものである。実施例2においても、感光体は、円筒のドラム形状とされる感光体ドラム1とされ、回転に伴って、帯電、露光、現像、転写、クリーニングの工程を経るので、タイミングチャートはそれぞれの工程で若干の時間差を持っているが、ここでは簡単のためにその時間差は無視して説明することにする。
なお、図12のフローチャートにおける動作は、制御手段101が有するビデオコントローラ103及びエンジンコントローラ102が実行する動作である。特に、エンジンコントローラ102は、転写バイアス制御回路112に制御信号を送信することで転写バイアス電圧を制御し、1次帯電バイアス制御回路111に制御信号を送信することで帯電バイアス電圧を制御する。
実施例2によると、プリントが開始され、プリント指示が装置本体制御手段101にて受信されると、プリント開始のための前回転処理動作が始まる(S−01、S−02)。
図13を参照すると理解されるように、前回転処理において、プリント開始のための前回転動作が始まると、転写バイアス電圧は停止状態の0Vから非通紙時の転写電圧V0へ切り替える。非通紙時の転写電圧V0を印加して流れる転写電流量が一定となるよう転写電流検知部(不図示)で検知した値に基づいて非通紙時の転写バイアス電圧V0を印加し、非通紙時の転写バイアス電圧V0から転写ローラの抵抗値を概算して通紙時の転写バイアス電圧Vtを決定するものである。
また、帯電バイアス電圧(DC電圧)は、前回転が開始すると感光体ドラム表面を所定電位に帯電するためにonする。本実施例では感光体帯電電位−600ボルトを得るために帯電DC電圧は−620ボルトとした。感光体電位は帯電onにより所定の暗電位VD=−600ボルトになる。1ページ目のプリントが開始されると、帯電DC電圧はonのまま一定であるが、感光体電位は露光を受けるために約−300ボルトになっている。
一方、前回転処理が終わると、記録紙Pが給紙カセット26から給紙ローラ22によって取り出され、レジストローラ24に送られる(S−03)。記録紙の先端がトップセンサ114で検知されると(S−04)、転写バイアス制御回路112は、感光体ドラム1上に現像されたトナー像を記録紙Pに転写するために非通紙時の転写バイアス電圧V0から通紙時の転写バイアス電圧Vtに切り替える(S−05)。
実施例2においても、転写バイアス制御回路112は、非通紙時は転写ローラ5を通じて感光体ドラム1に約3μA(マイクロアンペア)の転写電流が流れるように非通紙時の転写電圧V0を制御した。このときの転写ローラ5に印加される転写バイアス電圧は+700V(ボルト)程度となる。
一方、転写バイアス制御回路112は、通紙時は非通紙時に転写ローラ5に印加される転写バイアス電圧V0(第3の転写電圧)から換算される値となるよう制御している。転写ローラ5に印加される通紙時の転写バイアス電圧Vt(第1の転写電圧)は、プリンタ装置本体100の置かれた環境により変化する転写ローラ5の抵抗値によって異なるが、いずれの環境であっても、転写ローラ5に流れる転写電流が約6μAとなるように設定される。
1ページ目後端で記録紙Pの後端が感光体ドラム1から剥離されるときに発生する剥離放電による感光体メモリを防止するために、実施例2では記録紙Pの後端から約12.5mm手前の部分が転写ニップ部Ntを通過するときに転写バイアス電圧を下げ始め、紙後端から約4.5mm手前の部分が転写ニップ中央を通過するときに転写バイアス電圧を0ボルトにした(S−06、S−07)。その後、紙後端が転写ニップを4mm過ぎてから非通紙時の転写バイアス電圧V0とする(S−08、S−09)。
ここで、前記工程S−07〜S−09において、転写バイアス電圧を低下させ初めてから停止させるまでに転写ローラ5を通過した感光体ドラム1上の領域を「領域A」とする。
また、記録紙Pの後端がどの位置にあるか、また、「領域A」がどの位置にあるかの判断は、実施例1と同様に、エンジンコントローラ102が時間を計時するカウンタを有し、トップセンサ8で紙先端を検知してからカウンタが計時する時間によって記録紙の位置、「領域A」の位置を判断する構成とした。
図13にて理解されるように、記録材間隔に相当する領域では転写バイアス電圧を非通紙時の転写電圧V0に維持し、帯電DC電圧はonで一定である。なお、感光体ドラム1の表面電位は記録材間隔では露光を受けないので暗電位VDである。
制御手段101は、引き続いて2ページ目のプリントの要否について判断し(S−10)、否である場合には、画像形成動作を終了する。プリントの必要がある場合には、2ページ目のプリント動作に移る。
2ページ目のプリントに関しては1ページ目と同様に帯電バイアス電圧(DC電圧)はonのままで、感光体ドラム1の表面電位はハーフトーン画像のための露光を受けるので−300ボルト程度になる。
実施例2では、実施例1と異なり、1ページ目の記録紙Pの後端が転写ニップ部Ntを通過する際に、転写電圧を徐々に小さくして停止させるまでに転写位置にあった感光体ドラム1上の対応位置、即ち、領域Aが帯電位置に来た時点で、通常−620ボルトの帯電バイアス電圧を−610ボルトへと、同じく30m秒の時間をかけて徐々に電圧値を大きく(電圧の絶対値を小さく)し、転写バイアス電圧の印加を停止させたときに転写ニップ部Ntを通過した感光体ドラム1上の位置、即ち、領域Aが帯電ニップ部Ndを通過する間は−610ボルトを維持した(S−11、S−12)。
実施例2では、帯電バイアス電圧は、その後一旦−610ボルトから−630ボルトに電圧値を低く(電圧の絶対値を大きく)してから通常の−620ボルトに戻すようにしている(S−14、S−15)。
その後、先に説明した工程S−03以降の各工程を行うことにより、画像形成を続行する。
実施例2では、上述のように、帯電バイアス電圧を−630ボルトに低下させてから通常の−620ボルトに戻しているが、その理由は、転写バイアス電圧を停止状態から非通紙時の転写電圧V0に変更したときに、図14に示すような転写バイアス電圧のオーバーシュートが発生することがあるからである。
実施例2では非通紙時の転写電圧V0が約+500ボルトになるまでに一瞬約+550ボルトにオーバーシュートしてから立ち上げを開始してから約30m秒が経過した後に安定した。実施例3における画像形成装置は、記録紙Pを搬送して画像形成を行う際の搬送速度(プロセススピード)が150mm/秒なので30m秒は記録紙Pの長さで4.5mmに相当する。
2ページ目にハーフトーン画像をプリントした場合、帯電バイアス電圧を一旦−630ボルトにさせなかった場合は、図15に示すように転写バイアス電圧のオーバーシュートを受けた部分の濃度が若干濃くなった。
一方、実施例2では以上のような制御を盛り込むことで、ハーフトーン画像を均一にすることができた。
なお、以上においては帯電バイアス電圧によって2ページ目以降の濃度を補正したが、これに限ることなく、例えば前述の領域Aが現像ローラ4aを通過する際に、現像バイアス電圧を低くすることで濃度を一定に保つようにすることも可能である。
以上を、図16を参照して説明するが、図12と異なるのは工程S−11からS−14までのステップなので、工程S―11からS−14について説明する。
プリント指示を受信して1ページ目のプリントを終了した後に(S―01からS−09)次ページのプリントを行う場合(S−10でYES)、2ページ目のプリント時には、前述の領域Aが現像ローラに来た時点で、通常−450ボルトの現像バイアス電圧を−460ボルトへと、同じく30m秒の時間をかけて徐々に電圧値を低く(電圧の絶対値を大きく)し、領域Aが現像ローラ4aを通過する間−460ボルトを維持した(S−11、S−12)。
実施例2では、現像バイアス電圧は、その後一旦−460ボルトから−440ボルトに電圧値を高く(電圧の絶対値を小さく)してから通常の−450ボルトに戻すようにしている(S−14、S−15)。
その後、先に説明した工程S−03以降の各工程を行うことにより、画像形成を続行する。
実施例2では、上述のように、現像バイアス電圧を−440ボルトにしてから通常の−450ボルトに戻しているが、その理由は前述したとおり、転写バイアス電圧を停止状態から非通紙時の転写バイアス電圧V0に変更したときに、図14に示すような転写バイアス電圧のオーバーシュートが発生することがあるからである。
以上のように、現像バイアス電圧を適切に制御することで、ハーフトーン画像を均一にすることができた。
参考例2
本発明の参考例2について説明する。本参考例にて、画像形成装置の構成は、実施例1の図1に示す画像形成装置と同様である。
参考例2では、1ページ目の記録紙Pの後端が感光体ドラム1から離れるときに発生する放電による感光体メモリを防止するために、紙後端から約8mm手前の部分が転写ニップを通過するときに転写バイアスを一旦マイナスの転写バイアス電圧に切り替えて、記録紙Pの後端が転写ニップ部Ntを2mm過ぎてから転写バイアス電圧を停止させ、さらに記録紙Pの後端が転写ニップ部Ntを4mm過ぎてから非通紙時の転写バイアス電圧V0をonするようにしたことを特徴とする。負極性の転写バイアス電圧値は、実施例4では−1〜−2kV程度に設定した。
次に、図17及び図18を参照して、参考例2を説明する。
図17は、実施例1と同様に、参考例2に従ってハーフトーン画像を2枚連続してプリントした場合の動作態様を説明するためのフロー図であり、図18は、そのときの、転写バイアス、帯電DC(直流)電圧、感光体電位、印字画像濃度をタイミングチャートで示したものである。本実施例においても、感光体は、円筒のドラム形状とされる感光体ドラム1とされ、回転に伴って、帯電、露光、現像、転写、クリーニングの工程を経るので、タイミングチャートはそれぞれの工程で若干の時間差を持っているが、ここでは簡単のためにその時間差は無視して説明することにする。
なお、図17のフローチャートにおける動作は、制御手段101が有するビデオコントローラ103及びエンジンコントローラ102が実行する動作である。特に、エンジンコントローラ102は、転写バイアス制御回路112に制御信号を送信することで転写バイアス電圧を制御し、1次帯電バイアス制御回路111に制御信号を送信することで帯電バイアス電圧を制御する。
プリント開始のための前回転動作の部分は実施例1と同様である。
つまり、参考例2によると、プリントが開始され、プリント指示が装置本体制御手段101にて受信されると、プリント開始のための前回転処理動作が始まる(S−01、S−02)。
図18を参照すると理解されるように、前回転処理において、転写バイアス電圧は停止状態の0Vから非通紙時の転写電圧V0へと切り替える。非通紙時の転写電圧V0を印加して流れる転写電流量が一定となるよう転写電流検知部(不図示)で検知した値に基づいて非通紙時の転写バイアス電圧V0を印加し、非通紙時の転写バイアス電圧V0から転写ローラの抵抗値を概算して通紙時の転写バイアス電圧Vtを決定するものである。
また、帯電バイアス電圧(DC電圧)は、前回転が開始すると感光体ドラム表面を所定電位に帯電するためにonする。参考例2では感光体帯電電位−600ボルトを得るために帯電DC電圧は−620ボルトとした。感光体電位は帯電onにより所定の暗電位VD=−600ボルトになる。1ページ目のプリントが開始されると、帯電DC電圧はonのまま一定であるが、感光体電位は露光を受けるために約−300ボルトになっている。
一方、前回転処理が終わると、記録紙Pが給紙カセット26から給紙ローラ22によって取り出され、レジストローラ24に送られる(S−03)。記録紙の先端がトップセンサ8で検知されると(S−04)、転写バイアス制御回路112は、感光体ドラム1上に現像されたトナー像を記録紙Pに転写するために非通紙時の転写バイアス電圧V0から通紙時の転写バイアス電圧Vtに切り替える(S−05)。
参考例2では、転写バイアス制御回路112は、非通紙時は転写ローラ5を通じて感光体ドラム1に約3μA(マイクロアンペア)の転写電流が流れるように非通紙時の転写電圧V0を制御した。このときの転写ローラ5に印加される転写バイアス電圧は+700V(ボルト)程度となる。
一方、転写バイアス制御回路112は、通紙時は非通紙時に転写ローラ5に印加される転写バイアス電圧V0(第3の転写電圧)から換算される値となるよう制御している。転写ローラ5に印加される通紙時の転写バイアス電圧Vt(第1の転写電圧)は、プリンタ装置本体100の置かれた環境により変化する転写ローラ5の抵抗値によって異なるが、いずれの環境であっても、転写ローラ5に流れる転写電流が約6μAとなるように設定される。
上述のように、実施例4では、1ページ目後端で記録紙Pの後端が感光体ドラム1から剥離されるときに発生する剥離放電による感光体メモリを防止するために、記録紙Pの後端から約8mm手前の部分が転写ニップ部Ntを通過するときに転写バイアスを一旦マイナスの電圧に切り替えて、紙後端が転写ニップを2mm過ぎてから転写バイアスを対し状態し、さらに記録紙Pの後端が転写ニップ部Ntを4mm過ぎてから非通紙時の転写バイアス電圧V0とする(S−06、S−07、S−08、S−09、S−10、S−11)。参考例2で、マイナスの電圧値は−1〜−2kV程度に設定した。 制御手段101は、引き続いて2ページ目のプリントの要否について判断し(S−12)、否である場合には、画像形成動作を終了する。プリントの必要がある場合には、2ページ目のプリント動作に移る。
ここで、前記工程S−08〜S−10において、転写バイアス電圧を停止させ、また、転写バイアス電圧値を負の値とした時に転写ローラ5を通過した感光体ドラム1上の領域を「領域A」とする。
また、記録紙Pの後端がどの位置にあるか、また、「領域A」がどの位置にあるかの判断は、実施例1と同様に、エンジンコントローラ102が時間を計時するカウンタを有し、トップセンサ8で紙先端を検知してからカウンタが計時する時間によって記録紙の位置、「領域A」の位置を判断する構成とした。
その後、記録材間隔に相当する領域では転写バイアス電圧は非通紙時の転写電圧V0を維持し、帯電バイアス電圧はonで一定である。感光体ドラム1の表面電位は記録材間隔では露光を受けないので暗電位VDである。
制御手段101は、引き続いて2ページ目のプリントの要否について判断し(S−12)、否である場合には、画像形成動作を終了する。プリントの必要がある場合には、2ページ目のプリント動作に移る。
2ページ目のプリントに関しては1ページ目と同様に帯電バイアス電圧(DC電圧)はonのままで、感光体ドラム1の表面電位はハーフトーン画像のための露光を受けるので−300ボルト程度になる。
図19に、比較従来例における、転写バイアス、帯電バイアス電圧、感光体ドラムの表面電位、印字画像濃度をタイミングチャートで示す。従来比較例では、1ページ目の記録紙Pの後端で転写バイアス電圧をマイナス電圧にした部分の感光体ドラム1の表面電位は−330ボルトで、転写バイアス電圧を停止させて0Vとした部分の感光体ドラムの表面電位は−320ボルトと、その他の部分の電位−300ボルトよりも低い電位となる。このため、画像濃度は、上記各該当部分においてハーフトーン濃度が薄く、即ち、マイナスの該当部分は0.75(マクベス濃度計による値)、offの該当部分は0.8である。一方他の部分のハーフトーン濃度は、0.9であった。
このように、比較従来例では連続プリント2枚目以降でハーフトーンの濃度差、即ち、ハーフトーンの画像濃度がその該当部分で薄くなる傾向が見られた。
そこで、参考例2では、図18に示すように、2ページ目のプリント時には、2ページ目の帯電バイアス電圧を、転写バイアスをマイナスにした位置が帯電部に来たときに通常の−620ボルトから−600ボルトに上げ、転写バイアス電圧を停止させて0Vとした位置が帯電ニップ部Ndに来たときに通常の−620ボルトから−610ボルトに絶対値を小さくしている。
つまり、参考例2では、図17に示すように、2ページ目のプリント時には、2ページ目の帯電バイアス電圧を、転写バイアス電圧をマイナスとした位置、即ち、領域Aが一次帯電ローラ2を配置された帯電ニップ部Ndに到達したとき、通常の−620ボルトから−600ボルトに電圧値を高く(電圧の絶対値を小さく)し(S−13、S−14)、領域Aの先端が帯電ニップを10mm通過した時点で、即ち、転写バイアス電圧を停止させて0Vとした位置で、−600ボルトから−610ボルトに電圧値を低く(電圧の絶対値を大きく)している(S−15、S−16)。又、領域Aが帯電ニップ部Ndを通過すると、−610ボルトから通常の−620ボルトに戻す(S−17、S−18)。これにより2ページ目の露光後の感光体ドラム1の表面電位は−300ボルトで一定にすることができ画像濃度が0.9で一定にすることができた。
その後、先に説明した工程S−03以降の各工程を行うことにより、画像形成を続行する。
参考例2にて、記録紙Pの後端で一旦マイナスの転写バイアス電圧を印加することは、記録紙Pの後端の剥離放電による黒線を防ぐ効果はより大きいが、次ページのハーフトーンの濃度薄の帯はより目立つ傾向があった。本実施例では帯電バイアス電圧を補正することでハーフトーンのムラ、及び、黒線を防ぐことができた。
また、参考例2では記録紙Pの後端が転写ニップ部Ntを通過した後2mmでマイナス電圧を印加し、4mmで正極性の非通紙時の転写バイアス電圧V0を印加したが、転写ニップ部Ntを通過後2mmでマイナス電圧からすぐ正極性の非通紙時の転写バイアス電圧V0に切り替えても特に問題なく、効果は同様に得られた。
なお、以上においては帯電バイアス電圧によって2ページ目以降の濃度を補正したが、これに限ることなく、例えば前述の領域Aが現像ローラ4aを通過する際に、現像バイアスを低くすることで濃度を一定に保つようにすることも可能である。
以上を、図20を参照して説明するが、図17と異なるのは工程S−13からS−18までのステップなので、工程S―13からS−18について説明する。
プリント指示を受信して1ページ目のプリントを終了した後に(S―01からS−11)次ページのプリントを行う場合(S−12でYES)、2ページ目のプリント時には、2ページ目の現像バイアス電圧(DC電圧)を、転写バイアス電圧をマイナス電圧とした位置、即ち、領域Aが現像ローラ4aに到達したとき、通常の−450ボルトから−470ボルトに電圧値を低く(電圧の絶対値を大きく)し(S−13、S−14)、領域Aの先端が現像ローラ4aを10mm通過した時点で、即ち、転写バイアス電圧を停止させて0Vとした位置で、−470ボルトから−460ボルトに電圧値を高く(電圧の絶対値を小さく)している(S−15、S−16)。又、領域Aが現像ローラ4aを通過すると、−460ボルトから通常の−450ボルトに戻す(S−17、S−18)。これにより2ページ目の露光後の感光体電位は−300ボルトで一定にすることができ画像濃度が0.9で一定にすることができた。
その後、先に説明した工程S−03以降の各工程を行うことにより、画像形成を続行する。
以上のように、現像バイアス電圧を適切に制御することで、ハーフトーンのムラ、及び、黒線を防ぐことができた。
なお、本発明は上記実施例に限定されるものではなく、添付のクレームの範囲で種々の変形が可能であることはいうまでもない。